1
|
Beyond Seizure Control: Treating Comorbidities in Epilepsy via Targeting of the P2X7 Receptor. Int J Mol Sci 2022; 23:ijms23042380. [PMID: 35216493 PMCID: PMC8875404 DOI: 10.3390/ijms23042380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/17/2022] Open
Abstract
Epilepsy is one of the most common chronic diseases of the central nervous system (CNS). Treatment of epilepsy remains, however, a clinical challenge with over 30% of patients not responding to current pharmacological interventions. Complicating management of treatment, epilepsy comes with multiple comorbidities, thereby further reducing the quality of life of patients. Increasing evidence suggests purinergic signalling via extracellularly released ATP as shared pathological mechanisms across numerous brain diseases. Once released, ATP activates specific purinergic receptors, including the ionotropic P2X7 receptor (P2X7R). Among brain diseases, the P2X7R has attracted particular attention as a therapeutic target. The P2X7R is an important driver of inflammation, and its activation requires high levels of extracellular ATP to be reached under pathological conditions. Suggesting the therapeutic potential of drugs targeting the P2X7R for epilepsy, P2X7R expression increases following status epilepticus and during epilepsy, and P2X7R antagonism modulates seizure severity and epilepsy development. P2X7R antagonism has, however, also been shown to be effective in treating conditions most commonly associated with epilepsy such as psychiatric disorders and cognitive deficits, which suggests that P2X7R antagonisms may provide benefits beyond seizure control. This review summarizes the evidence suggesting drugs targeting the P2X7R as a novel treatment strategy for epilepsy with a particular focus of its potential impact on epilepsy-associated comorbidities.
Collapse
|
2
|
Andrejew R, Oliveira-Giacomelli Á, Ribeiro DE, Glaser T, Arnaud-Sampaio VF, Lameu C, Ulrich H. The P2X7 Receptor: Central Hub of Brain Diseases. Front Mol Neurosci 2020; 13:124. [PMID: 32848594 PMCID: PMC7413029 DOI: 10.3389/fnmol.2020.00124] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/17/2020] [Indexed: 12/27/2022] Open
Abstract
The P2X7 receptor is a cation channel activated by high concentrations of adenosine triphosphate (ATP). Upon long-term activation, it complexes with membrane proteins forming a wide pore that leads to cell death and increased release of ATP into the extracellular milieu. The P2X7 receptor is widely expressed in the CNS, such as frontal cortex, hippocampus, amygdala and striatum, regions involved in neurodegenerative diseases and psychiatric disorders. Despite P2X7 receptor functions in glial cells have been extensively studied, the existence and roles of this receptor in neurons are still controversially discussed. Regardless, P2X7 receptors mediate several processes observed in neuropsychiatric disorders and brain tumors, such as activation of neuroinflammatory response, stimulation of glutamate release and neuroplasticity impairment. Moreover, P2X7 receptor gene polymorphisms have been associated to depression, and isoforms of P2X7 receptors are implicated in neuropsychiatric diseases. In view of that, the P2X7 receptor has been proposed to be a potential target for therapeutic intervention in brain diseases. This review discusses the molecular mechanisms underlying P2X7 receptor-mediated signaling in neurodegenerative diseases, psychiatric disorders, and brain tumors. In addition, it highlights the recent advances in the development of P2X7 receptor antagonists that are able of penetrating the central nervous system.
Collapse
Affiliation(s)
- Roberta Andrejew
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Deidiane Elisa Ribeiro
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Talita Glaser
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Claudiana Lameu
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Cao SX, Zhang Y, Hu XY, Hong B, Sun P, He HY, Geng HY, Bao AM, Duan SM, Yang JM, Gao TM, Lian H, Li XM. ErbB4 deletion in noradrenergic neurons in the locus coeruleus induces mania-like behavior via elevated catecholamines. eLife 2018; 7:39907. [PMID: 30179154 PMCID: PMC6185106 DOI: 10.7554/elife.39907] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/02/2018] [Indexed: 11/13/2022] Open
Abstract
Dysfunction of the noradrenergic (NE) neurons is implicated in the pathogenesis of bipolar disorder (BPD). ErbB4 is highly expressed in NE neurons, and its genetic variation has been linked to BPD; however, how ErbB4 regulates NE neuronal function and contributes to BPD pathogenesis is unclear. Here we find that conditional deletion of ErbB4 in locus coeruleus (LC) NE neurons increases neuronal spontaneous firing through NMDA receptor hyperfunction, and elevates catecholamines in the cerebrospinal fluid (CSF). Furthermore, Erbb4-deficient mice present mania-like behaviors, including hyperactivity, reduced anxiety and depression, and increased sucrose preference. These behaviors are completely rescued by the anti-manic drug lithium or antagonists of catecholaminergic receptors. Our study demonstrates the critical role of ErbB4 signaling in regulating LC-NE neuronal function, reinforcing the view that dysfunction of the NE system may contribute to the pathogenesis of mania-associated disorder. Bipolar disorder is a mental illness that affects roughly 1 in 100 people worldwide. It features periods of depression interspersed with episodes of mania – a state of delusion, heightened excitation and increased activity. Evidence suggests that changes in a brain region called the locus coeruleus contribute to bipolar disorder. Cells within this area produce a chemical called norepinephrine, whose levels increase during mania and decrease during depression. But it is unclear exactly how norepinephrine-producing cells, also known as noradrenergic cells, contribute to bipolar disorder. The answer may lie in a protein called ErbB4, which is found within the outer membrane of many noradrenergic neurons. ErbB4 is active in both the developing and adult brain, and certain people with bipolar disorder have mutations in the gene that codes for the protein. Might changes in ErbB4 disrupt the activity of noradrenergic neurons? And could these changes increase the risk of bipolar disorder? To find out, Cao, Zhang et al. deleted the gene for ErbB4 from noradrenergic neurons in the locus coeruleus of mice. The mutant mice showed mania-like behaviors: compared to normal animals, they were hyperactive, less anxious, and consumed more of a sugary solution. Treating the mice with lithium, a medication used in bipolar disorder, reversed these changes and made the rodents behave more like non-mutant animals. Further experiments revealed that noradrenergic neurons in the mutant mice showed increased spontaneous activity. These animals also had more of the chemicals noradrenaline and dopamine in the fluid circulating around their brains and spinal cords. The results thus suggest that losing ErbB4 enhances the spontaneous firing of noradrenergic neurons in the locus coeruleus. This increases release of noradrenaline and dopamine, which in turn leads to mania-like behaviors. Future research should examine whether drugs that target ErbB4 could treat mania and improve the lives of people with bipolar disorder and related conditions.
Collapse
Affiliation(s)
- Shu-Xia Cao
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Zhang
- Center for Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Xing-Yue Hu
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Hong
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Sun
- Center for Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Hai-Yang He
- Center for Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong-Yan Geng
- Center for Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Ai-Min Bao
- Center for Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Shu-Min Duan
- Center for Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian-Ming Yang
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Tian-Ming Gao
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hong Lian
- Center for Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Ming Li
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Center for Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Deletion of asparagine endopeptidase reduces anxiety- and depressive-like behaviors and improves abilities of spatial cognition in mice. Brain Res Bull 2018; 142:147-155. [DOI: 10.1016/j.brainresbull.2018.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 12/21/2022]
|
5
|
Saul MC, Stevenson SA, Zhao C, Driessen TM, Eisinger BE, Gammie SC. Genomic variants in an inbred mouse model predict mania-like behaviors. PLoS One 2018; 13:e0197624. [PMID: 29768498 PMCID: PMC5955540 DOI: 10.1371/journal.pone.0197624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/05/2018] [Indexed: 11/18/2022] Open
Abstract
Contemporary rodent models for bipolar disorders split the bipolar spectrum into complimentary behavioral endophenotypes representing mania and depression. Widely accepted mania models typically utilize single gene transgenics or pharmacological manipulations, but inbred rodent strains show great potential as mania models. Their acceptance is often limited by the lack of genotypic data needed to establish construct validity. In this study, we used a unique strategy to inexpensively explore and confirm population allele differences in naturally occurring candidate variants in a manic rodent strain, the Madison (MSN) mouse strain. Variants were identified using whole exome resequencing on a small population of animals. Interesting candidate variants were confirmed in a larger population with genotyping. We enriched these results with observations of locomotor behavior from a previous study. Resequencing identified 447 structural variants that are mostly fixed in the MSN strain relative to control strains. After filtering and annotation, we found 11 non-synonymous MSN variants that we believe alter protein function. The allele frequencies for 6 of these variants were consistent with explanatory variants for the Madison strain's phenotype. The variants are in the Npas2, Cp, Polr3c, Smarca4, Trpv1, and Slc5a7 genes, and many of these genes' products are in pathways implicated in human bipolar disorders. Variants in Smarca4 and Polr3c together explained over 40% of the variance in locomotor behavior in the Hsd:ICR founder strain. These results enhance the MSN strain's construct validity and implicate altered nucleosome structure and transcriptional regulation as a chief molecular system underpinning behavior.
Collapse
Affiliation(s)
- Michael C. Saul
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Sharon A. Stevenson
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Changjiu Zhao
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Terri M. Driessen
- School of Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Brian E. Eisinger
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Stephen C. Gammie
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
6
|
Chen X, Long F, Cai B, Chen X, Chen G. A novel relationship for schizophrenia, bipolar and major depressive disorder Part 3: Evidence from chromosome 3 high density association screen. J Comp Neurol 2017; 526:59-79. [PMID: 28856687 DOI: 10.1002/cne.24311] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 07/29/2017] [Accepted: 07/31/2017] [Indexed: 12/30/2022]
Abstract
Familial clustering of schizophrenia (SCZ), bipolar disorder (BPD), and major depressive disorder (MDD) was systematically reported (Aukes et al, Genet Med 2012, 14, 338-341) and convergent evidence from genetics, symptomatology, and psychopharmacology imply that there are intrinsic connections between these three major psychiatric disorders, for example, any two or even three of these disorders could co-exist in some families. A total of 60, 838 single-nucleotide polymorphisms (SNPs) on chromosome 3 were genotyped by Affymetrix Genome-Wide Human SNP array 6.0 on 119 SCZ, 253 BPD (type-I), 177 MDD patients and 1,000 controls. The population of Shandong province was formed in 14 century and believed that it belongs to homogenous population. Associated SNPs were systematically revealed and outstanding susceptibility genes (CADPS, GRM7,KALRN, LSAMP, NLGN1, PRICKLE2, ROBO2) were identified. Unexpectedly, flanking genes for the associated SNPs distinctive for BPD and/or MDD were replicated in an enlarged cohort of 986 SCZ patients. The evidence from this chromosome 3 analysis supports the notion that both of bipolar and MDD might be subtypes of schizophrenia rather than independent disease entity. Also, a similar finding was detected on chromosome 5, 6, 7, and 8 (Chen et al. Am J Transl Res 2017;9 (5):2473-2491; Curr Mol Med 2016;16(9):840-854; Behav Brain Res 2015;293:241-251; Mol Neurobiol 2016. doi: 10.1007/s12035-016-0102-1). Furthermore, PRICKLE2 play an important role in the pathogenesis of three major psychoses in this population.
Collapse
Affiliation(s)
- Xing Chen
- Department of Medical Genetics, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Feng Long
- Department of Medical Genetics, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Bin Cai
- CapitalBio corporation, Beijing, People's Republic of China
| | - Xiaohong Chen
- CapitalBio corporation, Beijing, People's Republic of China
| | - Gang Chen
- Department of Medical Genetics, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| |
Collapse
|
7
|
Saul MC, Majdak P, Perez S, Reilly M, Garland T, Rhodes JS. High motivation for exercise is associated with altered chromatin regulators of monoamine receptor gene expression in the striatum of selectively bred mice. GENES BRAIN AND BEHAVIOR 2016; 16:328-341. [DOI: 10.1111/gbb.12347] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/02/2016] [Accepted: 10/03/2016] [Indexed: 01/12/2023]
Affiliation(s)
- M. C. Saul
- Carl R. Woese Institute for Genomic Biology Urbana IL
| | | | - S. Perez
- The Beckman Institute for Advanced Science and Technology University of Illinois Urbana IL
| | - M. Reilly
- National Institute on Alcohol Abuse and Alcoholism National Institutes of Health Bethesda MD
| | - T. Garland
- Department of Biology University of California Riverside CA
| | - J. S. Rhodes
- Carl R. Woese Institute for Genomic Biology Urbana IL
- The Neuroscience Program
- The Beckman Institute for Advanced Science and Technology University of Illinois Urbana IL
- Department of Psychology University of Illinois Urbana IL USA
| |
Collapse
|
8
|
Sharma AN, Fries GR, Galvez JF, Valvassori SS, Soares JC, Carvalho AF, Quevedo J. Modeling mania in preclinical settings: A comprehensive review. Prog Neuropsychopharmacol Biol Psychiatry 2016; 66:22-34. [PMID: 26545487 PMCID: PMC4728043 DOI: 10.1016/j.pnpbp.2015.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/29/2015] [Accepted: 11/03/2015] [Indexed: 12/17/2022]
Abstract
The current pathophysiological understanding of mechanisms leading to onset and progression of bipolar manic episodes remains limited. At the same time, available animal models for mania have limited face, construct, and predictive validities. Additionally, these models fail to encompass recent pathophysiological frameworks of bipolar disorder (BD), e.g. neuroprogression. Therefore, there is a need to search for novel preclinical models for mania that could comprehensively address these limitations. Herein we review the history, validity, and caveats of currently available animal models for mania. We also review new genetic models for mania, namely knockout mice for genes involved in neurotransmission, synapse formation, and intracellular signaling pathways. Furthermore, we review recent trends in preclinical models for mania that may aid in the comprehension of mechanisms underlying the neuroprogressive and recurring nature of BD. In conclusion, the validity of animal models for mania remains limited. Nevertheless, novel (e.g. genetic) animal models as well as adaptation of existing paradigms hold promise.
Collapse
Affiliation(s)
- Ajaykumar N. Sharma
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA,Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Gabriel R. Fries
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Juan F. Galvez
- Department of Psychiatry, Pontificia Universidad Javeriana School of Medicine, Bogotá, Colombia
| | - Samira S. Valvassori
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Jair C. Soares
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - André F. Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Joao Quevedo
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil.
| |
Collapse
|
9
|
Rajkowska G, Clarke G, Mahajan G, Licht C, van de Werd HM, Yuan P, Stockmeier C, Manji H, Uylings H. Differential effect of lithium on cell number in the hippocampus and prefrontal cortex in adult mice: a stereological study. Bipolar Disord 2016; 18:41-51. [PMID: 26842627 PMCID: PMC4836867 DOI: 10.1111/bdi.12364] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 10/19/2015] [Accepted: 11/16/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Neuroimaging studies have revealed lithium-related increases in the volume of gray matter in the prefrontal cortex (PFC) and hippocampus. Postmortem human studies have reported alterations in neuronal and glial cell density and size in the PFC of lithium-treated subjects. Rodents treated with lithium exhibit cell proliferation in the dentate gyrus (DG) of the hippocampus. However, it is not known whether hippocampal and PFC volume are also increased in these animals or whether cell number in the PFC is altered. METHODS Using stereological methods, this study estimated the total numbers of neurons and glia, and the packing density of astrocytes in the DG and PFC of normal adult mice treated with lithium, and evaluated the total volume of these regions and the entire neocortex. RESULTS Lithium treatment increased the total numbers of neurons and glia in the DG (by 25% and 21%, respectively) and the density of astrocytes but did not alter total numbers in the PFC. However, the volumes of the hippocampus and its subfields, the PFC and its subareas, and the entire neocortex were not altered by lithium. CONCLUSIONS Both neuronal and glial cells accounted for lithium-induced cell proliferation in the DG. That the numbers of neurons and glia were unchanged in the PFC is consistent with the view that this region is not a neurogenic zone. Further studies are required to clarify the impact of lithium treatment on the PFC under pathological conditions and to investigate the dissociation between increased cell proliferation and unchanged volume in the hippocampus.
Collapse
Affiliation(s)
- G. Rajkowska
- Dept. Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - G. Clarke
- Dept. Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA,Department of Psychiatry and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - G. Mahajan
- Dept. Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - C.M.M. Licht
- Dept. Anatomy & Neuroscience, VU University Medical Center, Amsterdam, the Netherlands,Dept. Epidemiology & Biostatistics, VU University Medical Center, Amsterdam, the Netherlands
| | - H.J.J. M. van de Werd
- Dept. Anatomy & Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| | - P. Yuan
- Laboratory of Molecular Pathophysiology and Experimental Therapeutics, NIMH, NIH, Bethesda, MD, USA
| | - C.A. Stockmeier
- Dept. Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - H.K. Manji
- Laboratory of Molecular Pathophysiology and Experimental Therapeutics, NIMH, NIH, Bethesda, MD, USA,Janssen Research and Development LLC of Johnson & Johnson, Titusville, NJ, USA
| | - H.B.M. Uylings
- Dept. Anatomy & Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
10
|
Fonken LK, Gaudet AD, Gaier KR, Nelson RJ, Popovich PG. MicroRNA-155 deletion reduces anxiety- and depressive-like behaviors in mice. Psychoneuroendocrinology 2016; 63:362-9. [PMID: 26555429 DOI: 10.1016/j.psyneuen.2015.10.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/28/2015] [Accepted: 10/28/2015] [Indexed: 12/26/2022]
Abstract
Depressive disorders have complex and multi-faceted underlying mechanisms, rendering these disorders difficult to treat consistently and effectively. One under-explored therapeutic strategy for alleviating mood disorders is the targeting of microRNAs (miRs). miRs are small non-coding RNAs that cause sequestration/degradation of specific mRNAs, thereby preventing protein translation and downstream functions. miR-155 has validated and predicted neurotrophic factor and inflammatory mRNA targets, which led to our hypothesis that miR-155 deletion would modulate affective behaviors. To evaluate anxiety-like behavior, wildtype (wt) and miR-155 knockout (ko) mice (littermates; both male and female) were assessed in the open field and on an elevated plus maze. In both tests, miR-155 ko mice spent more time in open areas, suggesting they had reduced anxiety-like behavior. Depressive-like behaviors were assessed using the forced swim test. Compared to wt mice, miR-155 ko mice exhibited reduced float duration and increased latency to float. Further, although all mice exhibited a strong preference for a sucrose solution over water, this preference was enhanced in miR-155 ko mice. miR-155 ko mice had no deficiencies in learning and memory (Barnes maze) or social preference/novelty suggesting that changes in mood were specific. Finally, compared to wt hippocampi, miR-155 ko hippocampi had a reduced inflammatory signature (e.g., decreased IL-6, TNF-a) and female miR-155 ko mice increased ciliary neurotrophic factor expression. Together, these data highlight the importance of studying microRNAs in the context of anxiety and depression and identify miR-155 as a novel potential therapeutic target for improving mood disorders.
Collapse
Affiliation(s)
- Laura K Fonken
- Department of Neuroscience, Columbus, OH 43210, USA; Institute for Behavioral Medicine Research, Columbus, OH 43210, USA.
| | - Andrew D Gaudet
- Department of Neuroscience, Columbus, OH 43210, USA; Institute for Behavioral Medicine Research, Columbus, OH 43210, USA; Center for Brain and Spinal Cord Repair, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | | | - Randy J Nelson
- Department of Neuroscience, Columbus, OH 43210, USA; Institute for Behavioral Medicine Research, Columbus, OH 43210, USA
| | - Phillip G Popovich
- Department of Neuroscience, Columbus, OH 43210, USA; Institute for Behavioral Medicine Research, Columbus, OH 43210, USA; Center for Brain and Spinal Cord Repair, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
11
|
Cosgrove VE, Kelsoe JR, Suppes T. Toward a Valid Animal Model of Bipolar Disorder: How the Research Domain Criteria Help Bridge the Clinical-Basic Science Divide. Biol Psychiatry 2016; 79:62-70. [PMID: 26531027 DOI: 10.1016/j.biopsych.2015.09.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/24/2015] [Accepted: 09/02/2015] [Indexed: 02/06/2023]
Abstract
Bipolar disorder is a diagnostically heterogeneous disorder, although mania emerges as a distinct phenotype characterized by elevated mood and increased activity or energy. While bipolar disorder's cyclicity is difficult to represent in animals, models of mania have begun to decode its fundamental underlying neurobiology. When psychostimulants such as amphetamine or cocaine are administered to rodents, a resulting upsurge of motor activity is thought to share face and predictive validity with mania in humans. Studying black Swiss mice, which inherently exhibit proclivity for reward seeking and risk taking, also has yielded some insight. Further, translating the biology of bipolar disorder in humans into animal models has led to greater understanding of roles for candidate biological systems such as the GRIK2 and CLOCK genes, as well as the extracellular signal-related kinase pathway involved in the pathophysiology of the illness. The National Institute of Mental Health Research Domain Criteria initiative seeks to identify building blocks of complex illnesses like bipolar disorder in hopes of uncovering the neurobiology of each, as well as how each fits together to produce syndromes like bipolar disorder or why so many mental illnesses co-occur together. Research Domain Criteria-driven preclinical models of isolated behaviors and domains involved in mania and bipolar disorder will ultimately inform movement toward nosology supported by neurobiology.
Collapse
Affiliation(s)
- Victoria E Cosgrove
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford; Veterans Affairs Palo Alto Health Care System, Palo Alto.
| | - John R Kelsoe
- Department of Psychiatry, University of California San Diego, San Diego, La Jolla, California; Veterans Affairs San Diego Healthcare System, La Jolla, California
| | - Trisha Suppes
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford; Veterans Affairs Palo Alto Health Care System, Palo Alto
| |
Collapse
|
12
|
Saul MC, Zhao C, Driessen TM, Eisinger BE, Gammie SC. MicroRNA expression is altered in lateral septum across reproductive stages. Neuroscience 2015; 312:130-40. [PMID: 26592715 DOI: 10.1016/j.neuroscience.2015.11.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) inhibit RNA targets and may contribute to postpartum central nervous system (CNS) gene expression changes, although this has never been tested. In the present study, we directly evaluated miRNA levels using RNA sequencing during reproduction in female mice in the lateral septum (LS). We found the reliable and robust changes of miRNAs away from the virgin stage at the three other stages, namely pregnant, day 1 postpartum, and day 8 postpartum. For a given miRNA that was significantly different from the virgin condition in more than one group, the direction of change was always the same. Overall, we identified 32 upregulated miRNAs and 25 downregulated miRNAs that were consistently different from the virgin state. 'Arm switching' occurs for miR-433-3 and miR-7b. Unexpectedly, a third of upregulated miRNAs (relative to virgin) were highly localized within the 12qF1 region of chromosome 12 that includes the Dlk1-Dio3 gene cluster implicated in stem cell and neuronal differentiation. Over 1500 genes were targeted by multiple upregulated miRNAs with about 100 genes targeted by five or more miRNAs. Over 1000 genes were targeted by multiple downregulated miRNAs with about 50 genes targeted by five or more miRNAs. Half of the target genes were regulated by up and downregulated miRNAs, indicating homeostatic regulation. Transcriptional regulation was the most enriched pathway for genes linked to up or down regulated miRNAs. Other enriched pathways included protein kinase activity (e.g., MAP kinase), CNS development, axon guidance, neurotrophin signaling, neuron development/differentiation, and neurogenesis. Previously published postpartum LS gene expression changes were enrichment for LS miRNA targets, as expected. Surprisingly, postpartum gene expression changes from other regions were also enriched against LS miRNA targets, suggesting a core group of miRNAs may act across the CNS during reproduction. Together, we directly examine miRNAs and find significant alterations in the postpartum brain.
Collapse
Affiliation(s)
- M C Saul
- Department of Zoology, University of Wisconsin-Madison, Madison, WI, USA
| | - C Zhao
- Department of Zoology, University of Wisconsin-Madison, Madison, WI, USA
| | - T M Driessen
- Department of Zoology, University of Wisconsin-Madison, Madison, WI, USA
| | - B E Eisinger
- Department of Zoology, University of Wisconsin-Madison, Madison, WI, USA
| | - S C Gammie
- Department of Zoology, University of Wisconsin-Madison, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
13
|
Logan RW, McClung CA. Animal models of bipolar mania: The past, present and future. Neuroscience 2015; 321:163-188. [PMID: 26314632 DOI: 10.1016/j.neuroscience.2015.08.041] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 12/19/2022]
Abstract
Bipolar disorder (BD) is the sixth leading cause of disability in the world according to the World Health Organization and affects nearly six million (∼2.5% of the population) adults in the United State alone each year. BD is primarily characterized by mood cycling of depressive (e.g., helplessness, reduced energy and activity, and anhedonia) and manic (e.g., increased energy and hyperactivity, reduced need for sleep, impulsivity, reduced anxiety and depression), episodes. The following review describes several animal models of bipolar mania with a focus on more recent findings using genetically modified mice, including several with the potential of investigating the mechanisms underlying 'mood' cycling (or behavioral switching in rodents). We discuss whether each of these models satisfy criteria of validity (i.e., face, predictive, and construct), while highlighting their strengths and limitations. Animal models are helping to address critical questions related to pathophysiology of bipolar mania, in an effort to more clearly define necessary targets of first-line medications, lithium and valproic acid, and to discover novel mechanisms with the hope of developing more effective therapeutics. Future studies will leverage new technologies and strategies for integrating animal and human data to reveal important insights into the etiology, pathophysiology, and treatment of BD.
Collapse
Affiliation(s)
- R W Logan
- University of Pittsburgh School of Medicine, Department of Psychiatry, 450 Technology Drive, Suite 223, Pittsburgh, PA 15219, United States
| | - C A McClung
- University of Pittsburgh School of Medicine, Department of Psychiatry, 450 Technology Drive, Suite 223, Pittsburgh, PA 15219, United States.
| |
Collapse
|
14
|
Abstract
The wide spectrum of disruptions that characterizes major depressive disorder (MDD) and bipolar disorder (BD) highlights the difficulties researchers are posed with as they try to mimic these disorders in the laboratory. Nonetheless, numerous attempts have been made to create rodent models of mood disorders or at least models of the symptoms of MDD and BD. Present antidepressants are all descendants of the serendipitous findings in the 1950s that the monoamine oxidase inhibitor iproniazid and the tricyclic antidepressant imipramine were effective antidepressants. Thus, the need for improved animal models to provide insights into the neuropathology underlying the disease is critical. Such information is in turn crucial for identifying new antidepressants and mood stabilisers. Currently, there is a shift away from traditional animal models to more focused research dealing with an endophenotype-style approach, genetic models, and incorporation of new findings from human neuroimaging and genetic studies. Such approaches are opening up more tractable avenues for understanding the neurobiological and genetic bases of these disorders. Further, such models promise to yield better translational animal models and hence more fruitful therapeutic targets. This overview focuses on such animal models and tests and how they can be used to assess MDD and BD in rodents.
Collapse
|
15
|
Kovalenko IL, Galyamina AG, Smagin DA, Kudryavtseva NN. Hyperactivity and Abnormal Exploratory Activity Developing in CD-1 Male Mice under Chronic Experience of Aggression and Social Defeats. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/jbbs.2015.511046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Brown RW, Peterson DJ. Applications of the Neonatal Quinpirole Model to Psychosis and Convergence upon the Dopamine D 2 Receptor. Curr Top Behav Neurosci 2015; 29:387-402. [PMID: 26472551 DOI: 10.1007/7854_2015_394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This mini review focuses on the importance of the dopamine D2-like receptor family and its importance in psychosis. Past findings from this laboratory along with collaborators have been that neonatal quinpirole (a dopamine D2-like receptor agonist) results in increases in dopamine D2 receptor sensitivity that persists throughout the animal's lifetime. Findings from this model have been shown to have particular application and validity to schizophrenia, but may have broader implications toward other psychoses, which is reviewed in the present manuscript. In the present review, we also highlight other models of psychoses that have been centered on the subchronic administration of quinpirole to rats in order to model certain psychoses, which has uncovered some interesting and valid behavioral findings. This review highlights the importance of the combination of behavioral findings and neurobiological mechanisms focusing on neural plasticity in discovering underlying pathologies in these disorders that may lead to treatment discoveries, as well as the value of animal models across all psychoses.
Collapse
Affiliation(s)
- Russell W Brown
- Department of Biomedical Science, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614-1702, USA.
| | - Daniel J Peterson
- Department of Psychology, East Tennessee State University, Johnson City, TN, 37614-1702, USA
| |
Collapse
|
17
|
Zhao C, Eisinger BE, Driessen TM, Gammie SC. Addiction and reward-related genes show altered expression in the postpartum nucleus accumbens. Front Behav Neurosci 2014; 8:388. [PMID: 25414651 PMCID: PMC4220701 DOI: 10.3389/fnbeh.2014.00388] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 10/17/2014] [Indexed: 11/13/2022] Open
Abstract
Motherhood involves a switch in natural rewards, whereby offspring become highly rewarding. Nucleus accumbens (NAC) is a key CNS region for natural rewards and addictions, but to date no study has evaluated on a large scale the events in NAC that underlie the maternal change in natural rewards. In this study we utilized microarray and bioinformatics approaches to evaluate postpartum NAC gene expression changes in mice. Modular Single-set Enrichment Test (MSET) indicated that postpartum (relative to virgin) NAC gene expression profile was significantly enriched for genes related to addiction and reward in five of five independently curated databases (e.g., Malacards, Phenopedia). Over 100 addiction/reward related genes were identified and these included: Per1, Per2, Arc, Homer2, Creb1, Grm3, Fosb, Gabrb3, Adra2a, Ntrk2, Cry1, Penk, Cartpt, Adcy1, Npy1r, Htr1a, Drd1a, Gria1, and Pdyn. ToppCluster analysis found maternal NAC expression profile to be significantly enriched for genes related to the drug action of nicotine, ketamine, and dronabinol. Pathway analysis indicated postpartum NAC as enriched for RNA processing, CNS development/differentiation, and transcriptional regulation. Weighted Gene Coexpression Network Analysis (WGCNA) identified possible networks for transcription factors, including Nr1d1, Per2, Fosb, Egr1, and Nr4a1. The postpartum state involves increased risk for mental health disorders and MSET analysis indicated postpartum NAC to be enriched for genes related to depression, bipolar disorder (BPD), and schizophrenia. Mental health related genes included: Fabp7, Grm3, Penk, and Nr1d1. We confirmed via quantitative PCR Nr1d1, Per2, Grm3, Penk, Drd1a, and Pdyn. This study indicates for the first time that postpartum NAC involves large scale gene expression alterations linked to addiction and reward. Because the postpartum state also involves decreased response to drugs, the findings could provide insights into how to mitigate addictions.
Collapse
Affiliation(s)
- Changjiu Zhao
- Department of Zoology, University of Wisconsin-MadisonMadison, WI, USA
| | | | - Terri M. Driessen
- Department of Zoology, University of Wisconsin-MadisonMadison, WI, USA
| | - Stephen C. Gammie
- Department of Zoology, University of Wisconsin-MadisonMadison, WI, USA
- Neuroscience Training Program, University of Wisconsin-MadisonMadison, WI, USA
| |
Collapse
|
18
|
Eisinger BE, Driessen TM, Zhao C, Gammie SC. Medial prefrontal cortex: genes linked to bipolar disorder and schizophrenia have altered expression in the highly social maternal phenotype. Front Behav Neurosci 2014; 8:110. [PMID: 24765068 PMCID: PMC3980118 DOI: 10.3389/fnbeh.2014.00110] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/15/2014] [Indexed: 11/14/2022] Open
Abstract
The transition to motherhood involves CNS changes that modify sociability and affective state. However, these changes also put females at risk for post-partum depression and psychosis, which impairs parenting abilities and adversely affects children. Thus, changes in expression and interactions in a core subset of genes may be critical for emergence of a healthy maternal phenotype, but inappropriate changes of the same genes could put women at risk for post-partum disorders. This study evaluated microarray gene expression changes in medial prefrontal cortex (mPFC), a region implicated in both maternal behavior and psychiatric disorders. Post-partum mice were compared to virgin controls housed with females and isolated for identical durations. Using the Modular Single-set Enrichment Test (MSET), we found that the genetic landscape of maternal mPFC bears statistical similarity to gene databases associated with schizophrenia (5 of 5 sets) and bipolar disorder (BPD, 3 of 3 sets). In contrast to previous studies of maternal lateral septum (LS) and medial preoptic area (MPOA), enrichment of autism and depression-linked genes was not significant (2 of 9 sets, 0 of 4 sets). Among genes linked to multiple disorders were fatty acid binding protein 7 (Fabp7), glutamate metabotropic receptor 3 (Grm3), platelet derived growth factor, beta polypeptide (Pdgfrb), and nuclear receptor subfamily 1, group D, member 1 (Nr1d1). RT-qPCR confirmed these gene changes as well as FMS-like tyrosine kinase 1 (Flt1) and proenkephalin (Penk). Systems-level methods revealed involvement of developmental gene networks in establishing the maternal phenotype and indirectly suggested a role for numerous microRNAs and transcription factors in mediating expression changes. Together, this study suggests that a subset of genes involved in shaping the healthy maternal brain may also be dysregulated in mental health disorders and put females at risk for post-partum psychosis with aspects of schizophrenia and BPD.
Collapse
Affiliation(s)
- Brian E Eisinger
- Department of Zoology, University of Wisconsin-Madison Madison, WI, USA
| | - Terri M Driessen
- Department of Zoology, University of Wisconsin-Madison Madison, WI, USA
| | - Changjiu Zhao
- Department of Zoology, University of Wisconsin-Madison Madison, WI, USA
| | - Stephen C Gammie
- Department of Zoology, University of Wisconsin-Madison Madison, WI, USA ; Neuroscience Training Program, University of Wisconsin-Madison Madison, WI, USA
| |
Collapse
|
19
|
Mitchell CL, Saul MC, Lei L, Wei H, Werner T. The mechanisms underlying α-amanitin resistance in Drosophila melanogaster: a microarray analysis. PLoS One 2014; 9:e93489. [PMID: 24695618 PMCID: PMC3973583 DOI: 10.1371/journal.pone.0093489] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/06/2014] [Indexed: 01/25/2023] Open
Abstract
The rapid evolution of toxin resistance in animals has important consequences for the ecology of species and our economy. Pesticide resistance in insects has been a subject of intensive study; however, very little is known about how Drosophila species became resistant to natural toxins with ecological relevance, such as α-amanitin that is produced in deadly poisonous mushrooms. Here we performed a microarray study to elucidate the genes, chromosomal loci, molecular functions, biological processes, and cellular components that contribute to the α-amanitin resistance phenotype in Drosophila melanogaster. We suggest that toxin entry blockage through the cuticle, phase I and II detoxification, sequestration in lipid particles, and proteolytic cleavage of α-amanitin contribute in concert to this quantitative trait. We speculate that the resistance to mushroom toxins in D. melanogaster and perhaps in mycophagous Drosophila species has evolved as cross-resistance to pesticides, other xenobiotic substances, or environmental stress factors.
Collapse
Affiliation(s)
- Chelsea L. Mitchell
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, United States of America
| | - Michael C. Saul
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Liang Lei
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, United States of America
| | - Hairong Wei
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, United States of America
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, United States of America
- * E-mail:
| |
Collapse
|
20
|
Driessen TM, Eisinger BE, Zhao C, Stevenson SA, Saul MC, Gammie SC. Genes showing altered expression in the medial preoptic area in the highly social maternal phenotype are related to autism and other disorders with social deficits. BMC Neurosci 2014; 15:11. [PMID: 24423034 PMCID: PMC3906749 DOI: 10.1186/1471-2202-15-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 12/30/2013] [Indexed: 11/15/2022] Open
Abstract
Background The mother-child relationship is the most fundamental social bond in mammals, and previous studies indicate that the medial preoptic area (MPOA) contributes to this increase in sociability. It is possible that the same genes that lead to elevated sociability in one condition (the maternal state) might also be dysregulated in some disorders with social deficits (e.g. autism). In this study, we examined whether there was enrichment (greater than chance overlap) for social deficit disorder related genes in MPOA microarray results between virgin and postpartum female mice. We utilized microarrays to assess large scale gene expression changes in the MPOA of virgin and postpartum mice. The Modular Single Set Enrichment Test (MSET) was used to determine if mental health disorder related genes were enriched in significant microarray results. Additional resources, such as ToppCluster, NIH DAVID, and weighted co-expression network analysis (WGCNA) were used to analyze enrichment for specific gene clusters or indirect relationships between significant genes of interest. Finally, a subset of microarray results was validated using quantitative PCR. Results Significant postpartum MPOA microarray results were enriched for multiple disorders that include social deficits, including autism, bipolar disorder, depression, and schizophrenia. Together, 98 autism-related genes were identified from the significant microarray results. Further, ToppCluser and NIH DAVID identified a large number of postpartum genes related to ion channel activity and CNS development, and also suggested a role for microRNAs in regulating maternal gene expression. WGCNA identified a module of genes associated with the postpartum phenotype, and identified indirect links between transcription factors and other genes of interest. Conclusion The transition to the maternal state involves great CNS plasticity and increased sociability. We identified multiple novel genes that overlap between the postpartum MPOA (high sociability) and mental health disorders with low sociability. Thus, the activity or interactions of the same genes may be altering social behaviors in different directions in different conditions. Maternity also involves elevated risks for disorders, including depression, psychosis, and BPD, so identification of maternal genes common to these disorders may provide insights into the elevated vulnerability of the maternal brain.
Collapse
Affiliation(s)
- Terri M Driessen
- Department of Zoology, University of Wisconsin-Madison, Madison, WI, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Toker L, Bersudsky Y, Plaschkes I, Chalifa-Caspi V, Berry GT, Buccafusca R, Moechars D, Belmaker RH, Agam G. Inositol-related gene knockouts mimic lithium's effect on mitochondrial function. Neuropsychopharmacology 2014; 39:319-28. [PMID: 23924600 PMCID: PMC3870788 DOI: 10.1038/npp.2013.194] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 07/17/2013] [Accepted: 07/18/2013] [Indexed: 01/22/2023]
Abstract
The inositol-depletion hypothesis proposes that lithium attenuates phosphatidylinositol signaling. Knockout (KO) mice of two genes (IMPA1 or Slc5a3), each encoding for a protein related to inositol metabolism, were studied in comparison with lithium-treated mice. Since we previously demonstrated that these KO mice exhibit a lithium-like neurochemical and behavioral phenotype, here we searched for pathways that may mediate lithium's/the KO effects. We performed a DNA-microarray study searching for pathways affected both by chronic lithium treatment and by the KO of each of the genes. The data were analyzed using three different bioinformatics approaches. We found upregulation of mitochondria-related genes in frontal cortex of lithium-treated, IMPA1 and Slc5a3 KO mice. Three out of seven genes differentially expressed in all three models, Cox5a, Ndufs7, and Ndufab, all members of the mitochondrial electron transfer chain, have previously been associated with bipolar disorder and/or lithium treatment. Upregulation of the expression of these genes was verified by real-time PCR. To further support the link between mitochondrial function and lithium's effect on behavior, we determined the capacity of chronic low-dose rotenone, a mitochondrial respiratory chain complex I inhibitor, to alter lithium-induced behavior as measured by the forced-swim and the amphetamine-induced hyperlocomotion paradigms. Rontenone treatment counteracted lithium's effect on behavior, supporting the proposition suggested by the bioinformatics analysis for a mitochondrial function involvement in behavioral effects of lithium mediated by inositol metabolism alterations.The results provide support for the notion that mitochondrial dysfunction is linked to bipolar disorder and can be ameliorated by lithium. The phenotypic similarities between lithium-treated wild-type mice and the two KO models suggest that lithium may affect behavior by altering inositol metabolism.
Collapse
Affiliation(s)
- Lilach Toker
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Psychiatry Research Unit, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yuly Bersudsky
- Psychiatry Research Unit, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Mental Health Center, Beer-Sheva, Israel
| | - Inbar Plaschkes
- National Institute for Biotechnology in the Negev (NIBN), Beer-Sheva, Israel
| | - Vered Chalifa-Caspi
- National Institute for Biotechnology in the Negev (NIBN), Beer-Sheva, Israel
| | - Gerard T Berry
- Metabolism Program Division of Genetics, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA
| | - Roberto Buccafusca
- Metabolism Program Division of Genetics, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA
| | - Dieder Moechars
- Johnson & Johnson Pharmaceutical Research and Development, Beerse, Belgium
| | - R H Belmaker
- Psychiatry Research Unit, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Mental Health Center, Beer-Sheva, Israel
| | - Galila Agam
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Psychiatry Research Unit, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Division of Basic Sciences, Department of Clinical Biochemistry and Pharmacology, and Psychiatry Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev and Mental Health Center, PO Box 4600, Beer-Sheva 84170, Israel, Tel: +972 8640 1737, E-mail:
| |
Collapse
|
22
|
Niculescu AB. Convergent functional genomics of psychiatric disorders. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:587-94. [PMID: 23728881 DOI: 10.1002/ajmg.b.32163] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 03/19/2013] [Indexed: 12/27/2022]
Abstract
Genetic and gene expression studies, in humans and animal models of psychiatric and other medical disorders, are becoming increasingly integrated. Particularly for genomics, the convergence and integration of data across species, experimental modalities and technical platforms is providing a fit-to-disease way of extracting reproducible and biologically important signal, in contrast to the fit-to-cohort effect and limited reproducibility of human genetic analyses alone. With the advent of whole-genome sequencing and the realization that a major portion of the non-coding genome may contain regulatory variants, Convergent Functional Genomics (CFG) approaches are going to be essential to identify disease-relevant signal from the tremendous polymorphic variation present in the general population. Such work in psychiatry can provide an example of how to address other genetically complex disorders, and in turn will benefit by incorporating concepts from other areas, such as cancer, cardiovascular diseases, and diabetes.
Collapse
Affiliation(s)
- Alexander B Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana; Indianapolis VA Medical Center, Indianapolis, Indiana
| |
Collapse
|
23
|
Saul MC, Stevenson SA, Gammie SC. Sexually dimorphic, developmental, and chronobiological behavioral profiles of a mouse mania model. PLoS One 2013; 8:e72125. [PMID: 23967278 PMCID: PMC3742520 DOI: 10.1371/journal.pone.0072125] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 07/09/2013] [Indexed: 01/12/2023] Open
Abstract
Bipolar disorders are heritable psychiatric conditions often abstracted by separate animal models for mania and depression. The principal mania models involve transgenic manipulations or treatment with stimulants. An additional approach involves analysis of naturally occurring mania models including an inbred strain our lab has recently characterized, the Madison (MSN) mouse strain. These mice show a suite of behavioral and neural genetic alterations analogous to manic aspects of bipolar disorders. In the current study, we extended the MSN strain's behavioral phenotype in new directions by examining in-cage locomotor activity. We found that MSN activity presentation is sexually dimorphic, with MSN females showing higher in-cage activity than MSN males. When investigating development, we found that MSN mice display stable locomotor hyperactivity already observable when first assayed at 28 days postnatal. Using continuous monitoring and analysis for 1 month, we did not find evidence of spontaneous bipolarism in MSN mice. However, we did find that the MSN strain displayed an altered diurnal activity profile, getting up earlier and going to sleep earlier than control mice. Long photoperiods were associated with increased in-cage activity in MSN, but not in the control strain. The results of these experiments reinforce the face validity of the MSN strain as a complex mania model, adding sexual dimorphism, an altered diurnal activity profile, and seasonality to the suite of interesting dispositional phenomena related to mania seen in MSN mice.
Collapse
Affiliation(s)
- Michael C Saul
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| | | | | |
Collapse
|