1
|
Jiménez J, Mishra R, Wang X, Magee CM, Bonning BC. Composition and abundance of midgut plasma membrane proteins in two major hemipteran vectors of plant viruses, Bemisia tabaci and Myzus persicae. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 116:e22133. [PMID: 39054788 DOI: 10.1002/arch.22133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/13/2024] [Accepted: 06/29/2024] [Indexed: 07/27/2024]
Abstract
Multiple species within the order Hemiptera cause severe agricultural losses on a global scale. Aphids and whiteflies are of particular importance due to their role as vectors for hundreds of plant viruses, many of which enter the insect via the gut. To facilitate the identification of novel targets for disruption of plant virus transmission, we compared the relative abundance and composition of the gut plasma membrane proteomes of adult Bemisia tabaci (Hemiptera: Aleyrodidae) and Myzus persicae (Hemiptera: Aphididae), representing the first study comparing the gut plasma membrane proteomes of two different insect species. Brush border membrane vesicles were prepared from dissected guts, and proteins extracted, identified and quantified from triplicate samples via timsTOF mass spectrometry. A total of 1699 B. tabaci and 1175 M. persicae proteins were identified. Following bioinformatics analysis and manual curation, 151 B. tabaci and 115 M. persicae proteins were predicted to localize to the plasma membrane of the gut microvilli. These proteins were further categorized based on molecular function and biological process according to Gene Ontology terms. The most abundant gut plasma membrane proteins were identified. The ten plasma membrane proteins that differed in abundance between the two insect species were associated with the terms "protein binding" and "viral processes." In addition to providing insight into the gut physiology of hemipteran insects, these gut plasma membrane proteomes provide context for appropriate identification of plant virus receptors based on a combination of bioinformatic prediction and protein localization on the surface of the insect gut.
Collapse
Affiliation(s)
- Jaime Jiménez
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA
| | - Ruchir Mishra
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA
| | - Xinyue Wang
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA
| | - Ciara M Magee
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA
| | - Bryony C Bonning
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
2
|
Wang Z, Yang W, Yin C, Ma W, Liao M, Li F, Zhang J. Cry9A and Vip3A protein-induced transcriptional changes correspond to their synergistic damage to the midgut of Chilo suppressalis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105596. [PMID: 37945246 DOI: 10.1016/j.pestbp.2023.105596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/13/2023] [Accepted: 08/28/2023] [Indexed: 11/12/2023]
Abstract
Cry and Vip3 proteins are both pore-forming toxins produced by Bacillus thuringiensis that show synergistic insecticidal activity against different insect pests. However, the synergistic effect of Cry and Vip3 proteins on the midgut in target insects is still unclear. In this study, faster and more serious damage was observed after treatment with both Cry9A and Vip3A proteins in the Chilo suppressalis midgut compared to single-protein treatment. Through RNA sequencing, midgut transcriptomic comparison was performed between dual- and single-protein treatments according to midgut injury. After 6 h, 609 differentially expressed genes were found with the combined Cry9A and Vip3A treatments, which was much more than that in the single treatment, corresponding to faster and more serious damage. These genes were mainly enriched in similar pathways, such as lipid metabolic, oxidation-reduction and carbohydrate metabolic process, peptide secretion and cell-cell adhesion; however, the number and expression level of differentially expressed genes are increased. For specific genes significantly regulated by induction of Cry9A and Vip3A, lipases, phospholipid scramblase, probable tape measure protein and arylsulfatase J were significantly downregulated after 6 h treatment. In addition, regular genes related to the activation and receptor binding of B. thuringiensis toxins were differentially regulated, such as ATP-binding cassette subfamily G member 1 and serine protease. Validation with RT-qPCR showed agreement with the sequencing results. Overall, our results support that stronger and faster midgut responses at the cellular and transcriptional levels are induced by the synergistic toxicity of Cry9A and Vip3A in C. suppressalis.
Collapse
Affiliation(s)
- Zeyu Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenquan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Chuanlin Yin
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Min Liao
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Fei Li
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
3
|
Van Lommel J, Holtof M, Tilleman L, Cools D, Vansteenkiste S, Polgun D, Verdonck R, Van Nieuwerburgh F, Vanden Broeck J. Post-feeding transcriptomics reveals essential genes expressed in the midgut of the desert locust. Front Physiol 2023; 14:1232545. [PMID: 37692997 PMCID: PMC10484617 DOI: 10.3389/fphys.2023.1232545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/26/2023] [Indexed: 09/12/2023] Open
Abstract
The digestive tract constitutes an important interface between an animal's internal and external environment. In insects, available gut transcriptome studies are mostly exploratory or look at changes upon infection or upon exposure to xenobiotics, mainly performed in species belonging to holometabolan orders, such as Diptera, Lepidoptera or Coleoptera. By contrast, studies focusing on gene expression changes after food uptake and during digestion are underrepresented. We have therefore compared the gene expression profiles in the midgut of the desert locust, Schistocerca gregaria, between three different time points after feeding, i.e., 24 h (no active digestion), 10 min (the initial stage of feeding), and 2 h (active food digestion). The observed gene expression profiles were consistent with the polyphagous herbivorous lifestyle of this hemimetabolan (orthopteran) species. Our study reveals the upregulation of 576 genes 2 h post-feeding. These are mostly predicted to be associated with digestive physiology, such as genes encoding putative digestive enzymes or nutrient transporters, as well as genes putatively involved in immunity or in xenobiotic metabolism. The 10 min time point represented an intermediate condition, suggesting that the S. gregaria midgut can react rapidly at the transcriptional level to the presence of food. Additionally, our study demonstrated the critical importance of two transcripts that exhibited a significant upregulation 2 h post-feeding: the vacuolar-type H(+)-ATPase and the sterol transporter Niemann-Pick 1b protein, which upon RNAi-induced knockdown resulted in a marked increase in mortality. Their vital role and accessibility via the midgut lumen may make the encoded proteins promising insecticidal target candidates, considering that the desert locust is infamous for its huge migrating swarms that can devastate the agricultural production in large areas of Northern Africa, the Middle East, and South Asia. In conclusion, the transcriptome datasets presented here will provide a useful and promising resource for studying the midgut physiology of S. gregaria, a socio-economically important pest species.
Collapse
Affiliation(s)
- Joachim Van Lommel
- Molecular Developmental Physiology and Signal Transduction Lab, Department of Biology, University of Leuven, Leuven, Belgium
| | - Michiel Holtof
- Molecular Developmental Physiology and Signal Transduction Lab, Department of Biology, University of Leuven, Leuven, Belgium
| | | | - Dorien Cools
- Molecular Developmental Physiology and Signal Transduction Lab, Department of Biology, University of Leuven, Leuven, Belgium
| | - Seppe Vansteenkiste
- Molecular Developmental Physiology and Signal Transduction Lab, Department of Biology, University of Leuven, Leuven, Belgium
| | - Daria Polgun
- Molecular Developmental Physiology and Signal Transduction Lab, Department of Biology, University of Leuven, Leuven, Belgium
| | - Rik Verdonck
- Molecular Developmental Physiology and Signal Transduction Lab, Department of Biology, University of Leuven, Leuven, Belgium
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | | | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction Lab, Department of Biology, University of Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Tavares CS, Mishra R, Ghobrial PN, Bonning BC. Composition and abundance of midgut surface proteins in the Asian citrus psyllid, Diaphorina citri. J Proteomics 2022; 261:104580. [DOI: 10.1016/j.jprot.2022.104580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
|
5
|
Li W, Wang L, Zhou F, Li C, Ma W, Chen H, Wang G, Pickett JA, Zhou JJ, Lin Y. Overexpression of the homoterpene synthase gene, OsCYP92C21, increases emissions of volatiles mediating tritrophic interactions in rice. PLANT, CELL & ENVIRONMENT 2021; 44:948-963. [PMID: 33099790 DOI: 10.1111/pce.13924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/12/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Plant defence homoterpenes can be used to attract pest natural enemies. However, the biosynthetic pathway of homoterpenes is still unknown in rice, and the practical application of such indirect defence systems suffers from inherent limitations due to their low emissions from plants. Here, we demonstrated that the protein OsCYP92C21 is responsible for homoterpene biosynthesis in rice. We also revealed that the ability of rice to produce homoterpenes is dependent on the subcellular precursor pools. By increasing the precursor pools through specifically subcellular targeting expression, genetic transformation and genetic introgression, we significantly enhanced homoterpene biosynthesis in rice. The final introgressed GM rice plants exhibited higher homoterpene emissions than the wild type rice and the highest homoterpene emission reported so far for such GM plants even without the induction of herbivore attack. As a result, these GM rice plants demonstrated strong attractiveness to the parasitic wasp Cotesia chilonis. This study discovered the homoterpene biosynthesis pathway in rice, and lays the foundation for the utilisation of plant indirect defence mechanism in the "push-pull" strategy of integrated pest management through increasing precursor pools in the subcellular compartments and overexpressing homoterpene synthase by genetic transformation.
Collapse
Affiliation(s)
- Wei Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Lingnan Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Fei Zhou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Changyan Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hao Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Jing-Jiang Zhou
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, China
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
6
|
Sun Y, Wang P, Abouzaid M, Zhou H, Liu H, Yang P, Lin Y, Hull JJ, Ma W. Nanomaterial-wrapped dsCYP15C1, a potential RNAi-based strategy for pest control against Chilo suppressalis. PEST MANAGEMENT SCIENCE 2020; 76:2483-2489. [PMID: 32061016 DOI: 10.1002/ps.5789] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 01/26/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Although the utility of double-stranded RNA (dsRNA)-mediated knockdown as an environmentally friendly pest management strategy has gained traction in recent years, its overall efficacy has been limited by poor stability and limited cellular uptake. Encapsulation of dsRNAs with various nanomaterials, however, has shown promise in overcoming these limitations. This study sought to investigate the biological efficacy of an oral dsRNA nanomaterial mixture targeting the CYP15C1 gene product in the economically important rice pest, Chilo suppressalis. RESULTS A putative CYP15C1 ortholog was cloned from C. suppressalis midguts. The transcript is downregulated in fifth-instar larvae and is most highly expressed in heads. RNA interference (RNAi)-mediated knockdown of CsCYP15C1 was associated with significantly increased mortality. More importantly, feeding a dsRNA-nanomaterial mixture significantly increased larval mortality compared with feeding dsRNA alone. CONCLUSION A critical role for CsCYP15C1 function in molting is supported by sequence similarity with known juvenile hormone epoxidases, its expression profile, and abnormal molting phenotypes associated with RNA-mediated knockdown. CsCYP15C1 is thus a prime target for controlling C. suppressalis. Furthermore, RNAi-mediated characterization of candidate gene function can be enhanced by incorporating an enveloping nanomaterial. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yajie Sun
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Peipei Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mostafa Abouzaid
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hao Zhou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hui Liu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Pan Yang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
| | - J Joe Hull
- U.S. Arid Land Agricultural Research Center, U.S. Agricultural Research Service, Department of Agriculture, Maricopa, AZ, USA
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
7
|
Zhou H, Hu W, Huang Q, Abouzaid M, Jin H, Sun Y, Qiu L, Zhang W, Lin Y, Ma W. Knockdown of cadherin genes decreases susceptibility of Chilo suppressalis larvae to Bacillus thuringiensis produced Crystal toxins. INSECT MOLECULAR BIOLOGY 2020; 29:301-308. [PMID: 31908051 DOI: 10.1111/imb.12634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/24/2019] [Accepted: 12/31/2019] [Indexed: 06/10/2023]
Abstract
The striped rice stem borer, Chilo suppressalis Walker, is one of the most destructive rice pests in Asia. Insecticidal crystal proteins (Cry toxins) produced by Bacillus thuringiensis are widely used as biopesticides or in developing transgenic crops for pest management. In this study, we tested the involvement of two newly cloned C. suppressalis cadherins (CsCAD3 and CsCAD4) in the toxicity of Cry1Ab/Ac, Cry2Aa and Cry1Ca. Our results showed that CsCAD4 was expressed highest in the midgut, whereas CsCAD3 was expressed highest in the epidermis. The feeding of double-stranded RNA specific to CsCAD3 and CsCAD4 respectively significantly suppressed the expressions of target gene. The knockdown of CsCAD3 significantly reduced the mortality of larvae to Cry1Ab/Ac, whereas knockdown of CsCAD4 significantly decreased the larval susceptibility to Cry2Aa. In contrast, reduced expressions of CsCAD3 or CsCAD4 were not interacted with larval susceptibility to Cry1Ca. Our results suggest that CsCAD3 and CsCAD4 function in Cry toxin toxicity and these findings will help us to better understand the action mechanism of Cry toxins in C. suppressalis.
Collapse
Affiliation(s)
- H Zhou
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - W Hu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Q Huang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - M Abouzaid
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - H Jin
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Y Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - L Qiu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - W Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan, Hubei, China
| | - Y Lin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan, Hubei, China
| | - W Ma
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
8
|
Wang B, Wei J, Wang Y, Chen L, Liang G. Polycalin is involved in the toxicity and resistance to Cry1Ac toxin in Helicoverpa armigera (Hübner). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21661. [PMID: 32011765 DOI: 10.1002/arch.21661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/02/2020] [Accepted: 01/19/2020] [Indexed: 06/10/2023]
Abstract
Polycalin has been confirmed as a binding protein of the Cry toxins in a few Lepidoptera insects, but its function in the action mechanism of Cry1Ac and whether it is involved in resistance evolution are still unclear. In this study, Ligand blot and enzyme-linked immunosorbent assays showed that Helicoverpa armigera polycalin could specifically interact with Cry1Ac with a high affinity (Kd = 118.80 nM). Importantly, antisera blocking polycalin in H. armigera larvae decreased the toxicity of Cry1Ac by 31.84%. Furthermore, the relative gene and protein expressions were lower in Cry1Ac-resistant strain (LF60) than that in Cry1Ac-susceptible strain (LF). These findings indicated that H. armigera polycalin was a possible receptor of Cry1Ac and may be contributed to the resistance to Cry1Ac.
Collapse
Affiliation(s)
- Bingjie Wang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Integrated Pest Management of Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jizhen Wei
- State Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yanan Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
9
|
Qiu L, Sun Y, Jiang Z, Yang P, Liu H, Zhou H, Wang X, Zhang W, Lin Y, Ma W. The midgut V-ATPase subunit A gene is associated with toxicity to crystal 2Aa and crystal 1Ca-expressing transgenic rice in Chilo suppressalis. INSECT MOLECULAR BIOLOGY 2019; 28:520-527. [PMID: 30719783 DOI: 10.1111/imb.12570] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Insecticidal crystal (Cry) proteins produced by the bacterium Bacillus thuringiensis (Bt) are toxic to a diverse range of insects. Transgenic rice expressing Cry1A, Cry2A and Cry1C toxins have been developed that are lethal to Chilo suppressalis, a devastating insect pest of rice in China. Identifying the mechanisms underlying the interactions of Cry toxins with susceptible hosts will improve both our understanding of Cry protein toxicology and long-term efficacy of Bt crops. In this study, we tested the hypothesis that V-ATPase subunit A contributes to the action of Cry1Ab/1Ac, Cry2Aa and Cry1Ca toxins in C. suppressalis. The full-length V-ATPase subunit A transcript was initially cloned from the C. suppressalis larval midgut and then used to generate double-stranded RNA (dsRNA)-producing bacteria. Toxicity assays using transgenic rice lines TT51 (Cry1Ab and Cry1Ac fusion genes), T2A-1 (Cry2Aa), and T1C-19 (Cry1Ca) in conjunction with V-ATPase subunit A dsRNA-treated C. suppressalis larvae revealed significantly reduced larval susceptibility to T2A-1 and T1C-19 transgenic rice, but not to TT51 rice. These results suggest that the V-ATPase subunit A plays a crucial role in mediating Cry2Aa and Cry1Ca toxicity in C. suppressalis. These findings will have significant implications on the development of future resistance management tools.
Collapse
Affiliation(s)
- L Qiu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan, Hubei, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Y Sun
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Z Jiang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - P Yang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - H Liu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - H Zhou
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - X Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - W Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan, Hubei, China
| | - Y Lin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan, Hubei, China
| | - W Ma
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
10
|
Javed MA, Coutu C, Theilmann DA, Erlandson MA, Hegedus DD. Proteomics analysis of Trichoplusia ni midgut epithelial cell brush border membrane vesicles. INSECT SCIENCE 2019; 26:424-440. [PMID: 29064633 PMCID: PMC7379565 DOI: 10.1111/1744-7917.12547] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/11/2017] [Accepted: 09/29/2017] [Indexed: 06/07/2023]
Abstract
The insect midgut epithelium is composed of columnar, goblet, and regenerative cells. Columnar epithelial cells are the most abundant and have membrane protrusions that form the brush border membrane (BBM) on their apical side. These increase surface area available for the transport of nutrients, but also provide opportunities for interaction with xenobiotics such as pathogens, toxins and host plant allelochemicals. Recent improvements in proteomic and bioinformatics tools provided an opportunity to determine the proteome of the T. ni BBM in unprecedented detail. This study reports the identification of proteins from BBM vesicles (BBMVs) using single dimension polyacrylamide gel electrophoresis coupled with multi-dimensional protein identification technology. More than 3000 proteins were associated with the BBMV, of which 697 were predicted to possess either a signal peptide, at least one transmembrane domain or a GPI-anchor signal. Of these, bioinformatics analysis and manual curation predicted that 185 may be associated with the BBMV or epithelial cell plasma membrane. These are discussed with respect to their predicted functions, namely digestion, nutrient uptake, cell signaling, development, cell-cell interactions, and other functions. We believe this to be the most detailed proteomic analysis of the lepidopteran midgut epithelium membrane to date, which will provide information to better understand the biochemical, physiological and pathological processes taking place in the larval midgut.
Collapse
Affiliation(s)
- Muhammad Afzal Javed
- Saskatoon Research and Development CentreAgriculture and Agri‐Food CanadaSaskatoonSaskatchewanCanada
| | - Cathy Coutu
- Saskatoon Research and Development CentreAgriculture and Agri‐Food CanadaSaskatoonSaskatchewanCanada
| | - David A. Theilmann
- Summerland Research and Development CentreAgriculture and Agri‐Food CanadaSummerlandBritish ColumbiaCanada
| | - Martin A. Erlandson
- Saskatoon Research and Development CentreAgriculture and Agri‐Food CanadaSaskatoonSaskatchewanCanada
| | - Dwayne D. Hegedus
- Saskatoon Research and Development CentreAgriculture and Agri‐Food CanadaSaskatoonSaskatchewanCanada
- Department of Food & Bio‐Product SciencesUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| |
Collapse
|
11
|
Wang Y, Ju D, Yang X, Ma D, Wang X. Comparative Transcriptome Analysis Between Resistant and Susceptible Rice Cultivars Responding to Striped Stem Borer (SSB), Chilo suppressalis (Walker) Infestation. Front Physiol 2018; 9:1717. [PMID: 30555350 PMCID: PMC6283980 DOI: 10.3389/fphys.2018.01717] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 11/15/2018] [Indexed: 11/13/2022] Open
Abstract
The striped stem borer, Chilo suppressalis (Walker), is a notorious pest of rice that causes large losses in China. Breeding and screening of resistance rice cultivars are effective strategies for C. suppressalis management. In this study, insect-resistant traits of 47 rice cultivars were investigated by C. suppressalis artificial infestation (AI) both in field and greenhouse experiments, using the susceptible (S) cultivar 1665 as a control. Results suggest that two rice cultivars, namely 1688 and 1654, are resistant (R) and moderately resistant (MR) to C. suppressalis, respectively. Then, a comparative transcriptome (RNA-Seq) was de novo assembled and differentially expressed genes (DEGs) with altered expression levels were investigated among cultivars 1688, 1654, and 1665, with or without C. suppressalis infestation for 24 h. A total of 2569 and 1861 genes were up-regulated, and 3852 and 1861 genes were down-regulated in cultivars 1688 and 1654, respectively after artificial infestation with C. suppressalis compared to the non-infested control (CK). For the susceptible cultivar 1665, a total of 882 genes were up-regulated and 3863 genes were down-regulated after artificial infestation with C. suppressalis compared to the CK. Twenty four DEGs belong to proteinase inhibitor, lectin and chitinase gene families; plant hormone signal transduction and plant-pathogen interaction pathways were selected as candidate genes to test their possible role in C. suppressalis resistance. RT-qPCR results revealed that 13 genes were significantly up-regulated and 8 were significantly down-regulated in the resistant cultivar 1688 with C. suppressalis artificial infestation (1688AI) compared to the CK. Three genes, LTPL164, LTPL151, and LOC Os11g32100, showed more than a 10-fold higher expression in 1688AI than in 1688CK, suggesting their potential role in insect resistance. Overall, our results provide an important foundation for further understanding the insect resistance mechanisms of selected resistant varieties that will help us to breed C. suppressalis resistant rice varieties.
Collapse
Affiliation(s)
- Yue Wang
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Di Ju
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Xueqing Yang
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Dianrong Ma
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Northeast Rice Biology and Breeding, Ministry of Agriculture, Shenyang, China
- Key Laboratory of Northern Japonica Super Rice Breeding, Ministry of Education, Shenyang, China
| | - Xiaoqi Wang
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
12
|
Qiu L, Wang P, Wu T, Li B, Wang X, Lei C, Lin Y, Zhao J, Ma W. Downregulation of Chilo suppressalis alkaline phosphatase genes associated with resistance to three transgenic Bacillus thuringiensis rice lines. INSECT MOLECULAR BIOLOGY 2018; 27:83-89. [PMID: 28940938 DOI: 10.1111/imb.12349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Insecticidal crystal (Cry) proteins produced by the bacterium Bacillus thuringiensis are highly toxic to lepidopteran pests. Strains of transgenic rice expressing cry genes have been developed that are resistant to rice pests. Understanding the mode of action of Cry toxins in rice pests will improve our ability to use them effectively as insecticides. In this study, we tested the hypothesis that alkaline phosphatases (ALPs) are involved in Cry1A, Cry2Aa and Cry1Ca toxicity in Chilo suppressalis, an important insect pest of rice crops in China. We first cloned three novel C. suppressalis alps (Csalps) from the larval midgut of C. suppressalis. RNA interference knockdown of six different Csalp genes (Csalp1, Csalp2, Csalp3, Csalp4, Csalp5 and Csalp6) showed that knockdown of three of these, Csalp1, Csalp2 and Csalp4, reduced larval mortality to the transgenic rice strain TT51, which expresses a fusion protein of Cry1Ab and Cry1Ac, whereas suppression of Csalp1, Csalp2, Csalp3, Csalp4 and Csalp6 transcripts decreased the susceptibility of larvae to the transgenic rice strain T2A-1, which expresses cry2Aa. Moreover, downregulation of Csalp1, Csalp2, Csalp3, Csalp4 and Csalp5 transcripts conferred significant tolerance to the transgenic rice strain T1C-19, which expresses cry1Ca. These results suggest that these ALPs play a key role in the toxicity of Cry1A, Cry2A and Cry1C to C. suppressalis.
Collapse
Affiliation(s)
- L Qiu
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - P Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - T Wu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - B Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - X Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - C Lei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Y Lin
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
| | - J Zhao
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - W Ma
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
13
|
RNA-seq of Rice Yellow Stem Borer Scirpophaga incertulas Reveals Molecular Insights During Four Larval Developmental Stages. G3-GENES GENOMES GENETICS 2017; 7:3031-3045. [PMID: 28717048 PMCID: PMC5592929 DOI: 10.1534/g3.117.043737] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The yellow stem borer (YSB), Scirpophaga incertulas, is a prominent pest in rice cultivation causing serious yield losses. The larval stage is an important stage in YSB, responsible for maximum infestation. However, limited knowledge exists on the biology and mechanisms underlying the growth and differentiation of YSB. To understand and identify the genes involved in YSB development and infestation, so as to design pest control strategies, we performed de novo transcriptome analysis at the first, third, fifth, and seventh larval developmental stages employing Illumina Hi-seq. High-quality reads (HQR) of ∼229 Mb were assembled into 24,775 transcripts with an average size of 1485 bp. Genes associated with various metabolic processes, i.e., detoxification mechanism [CYP450, GSTs, and carboxylesterases (CarEs)], RNA interference (RNAi) machinery (Dcr-1, Dcr-2, Ago-1, Ago-2, Sid-1, Sid-2, Sid-3, and Sid-1-related gene), chemoreception (CSPs, GRs, OBPs, and ORs), and regulators [transcription factors (TFs) and hormones] were differentially regulated during the developmental stages. Identification of stage-specific transcripts made it possible to determine the essential processes of larval development. Comparative transcriptome analysis revealed that YSB has not evolved much with respect to the detoxification mechanism, but showed the presence of distinct RNAi machinery. The presence of strong specific visual recognition coupled with chemosensory mechanisms supports the monophagous nature of YSB. Designed expressed sequenced tags-simple-sequence repeats (EST-SSRs) will facilitate accurate estimation of the genetic diversity of YSB. This is the first report on characterization of the YSB transcriptome and the identification of genes involved in key processes, which will help researchers and industry to devise novel pest control strategies. This study also opens up a new avenue to develop next-generation resistant rice using RNAi or genome editing approaches.
Collapse
|
14
|
Knockdown of two Cadherin genes confers resistance to Cry2A and Cry1C in Chilo suppressalis. Sci Rep 2017; 7:5992. [PMID: 28729614 PMCID: PMC5519675 DOI: 10.1038/s41598-017-05110-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/23/2017] [Indexed: 11/25/2022] Open
Abstract
Bacillus thuringiensis (Bt) Cry toxins play an important role in the management of insect pests. Resistance to Bt toxins has been reported in many pest insects but the mechanism responsible for this resistance in rice crop pests remains largely unknown. Cadherin is one of several Bt toxin receptors. At present, only one cadherin gene, CsCAD1, has been documented in the striped rice stem borer, Chilo suppressalis. We amplified a nearly full-length transcript of another C. suppressalis cadherin gene, CsCAD2, and found that it has a different expression pattern to CsCAD1. CsCAD1 was highly expressed in fifth and sixth instar larvae, especially in the midgut, while the expression levels of CsCA2 were equably in each developmental stage. Newly hatched larvae were fed on rice smeared with synthesized siRNA to knockdown either CsCAD1 or CsCAD2, and then were fed transgenic rice expressing either the Cry2A or Cry1C toxins. The siRNA-treatment groups had lower mortality and higher survival rates than the control group, suggesting that reduced expression of CsCAD1 or CsCAD2 increased resistance to Cry2A and Cry1C. We conclude that CsCAD1 and CsCAD2 interact with Bt toxins in C. suppressalis and that this interaction could be the mechanism underlying Bt resistance in this insect.
Collapse
|
15
|
RNA interference knockdown of aminopeptidase N genes decrease the susceptibility of Chilo suppressalis larvae to Cry1Ab/Cry1Ac and Cry1Ca-expressing transgenic rice. J Invertebr Pathol 2017; 145:9-12. [DOI: 10.1016/j.jip.2017.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 02/05/2017] [Accepted: 03/02/2017] [Indexed: 11/22/2022]
|
16
|
Knockdown of the MAPK p38 pathway increases the susceptibility of Chilo suppressalis larvae to Bacillus thuringiensis Cry1Ca toxin. Sci Rep 2017; 7:43964. [PMID: 28262736 PMCID: PMC5338291 DOI: 10.1038/srep43964] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/31/2017] [Indexed: 12/21/2022] Open
Abstract
The bacterium Bacillus thuringiensis (Bt) produces a wide range of toxins that are effective against a number of insect pests. Identifying the mechanisms responsible for resistance to Bt toxin will improve both our ability to control important insect pests and our understanding of bacterial toxicology. In this study, we investigated the role of MAPK pathways in resistance against Cry1Ca toxin in Chilo suppressalis, an important lepidopteran pest of rice crops. We first cloned the full-length of C. suppressalis mitogen-activated protein kinase (MAPK) p38, ERK1, and ERK2, and a partial sequence of JNK (hereafter Csp38, CsERK1, CsERK2 and CsJNK). We could then measure the up-regulation of these MAPK genes in larvae at different times after ingestion of Cry1Ca toxin. Using RNA interference to knockdown Csp38, CsJNK, CsERK1 and CsERK2 showed that only knockdown of Csp38 significantly increased the mortality of larvae to Cry1Ca toxin ingested in either an artificial diet, or after feeding on transgenic rice expressed Cry1Ca. These results suggest that MAPK p38 is responsible for the resistance of C. suppressalis larvae to Bt Cry1Ca toxin.
Collapse
|
17
|
Wang XY, Du LX, Liu CX, Gong L, Han LZ, Peng YF. RNAi in the striped stem borer, Chilo suppressalis, establishes a functional role for aminopeptidase N in Cry1Ab intoxication. J Invertebr Pathol 2016; 143:1-10. [PMID: 27823898 DOI: 10.1016/j.jip.2016.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 10/26/2016] [Accepted: 11/03/2016] [Indexed: 10/20/2022]
Abstract
The striped stem borer, Chilo suppressalis, is a major target pest of transgenic rice expressing the Cry1Ab protein from the bacterium Bacillus thuringiensis (Bt) in China. Evolution of resistance in this pest is a major threat to the durability of Bt rice. Since Bt exerts its activity through binding to specific receptors in the midgut of target insects, identification of functional Cry1Ab receptors in the midgut of C. suppressalis larvae is crucial to evaluate potential resistance mechanisms and develop effective strategies for delaying insect resistance. In this work, we identified the putative Cry1Ab toxin-binding protein, aminopeptidase-N (APN), in the midgut of C. suppressalis by ligand blot and mass spectrometry. After cloning the full-length cDNAs encoding APN isoforms from the C. suppressalis larval midgut, we studied their spatiotemporal expression in different gut tissues and developmental stages. Furthermore, RNA interference (RNAi) against C. suppressalis aminopeptidases (CsAPNs) was employed to illustrate a functional role for CsAPNs in Cry1Ab toxicity to C. suppressalis larvae using injection and oral delivery of Stealth™ siRNA. Down-regulating the expression of CsAPNs by RNAi was closely associated with reduced susceptibility of C. suppressalis to Cry1Ab. These data provide the first direct evidence that CsAPNs participate in the mode of Cry1Ab action and may act as the functional receptor of Cry1A in C. suppressalis larvae.
Collapse
Affiliation(s)
- X Y Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - L X Du
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - C X Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - L Gong
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - L Z Han
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Y F Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
18
|
Zhu J, Dong YC, Li P, Niu CY. The effect of silencing 20E biosynthesis relative genes by feeding bacterially expressed dsRNA on the larval development of Chilo suppressalis. Sci Rep 2016; 6:28697. [PMID: 27352880 PMCID: PMC4926234 DOI: 10.1038/srep28697] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/06/2016] [Indexed: 12/20/2022] Open
Abstract
RNA interference (RNAi) is a robust tool to study gene functions as well as potential for insect pest control. Finding suitable target genes is the key step in the development of an efficient RNAi-mediated pest control technique. Based on the transcriptome of Chilo suppressalis, 24 unigenes which putatively associated with insect hormone biosynthesis were identified. Amongst these, four genes involved in ecdysteroidogenesis i.e., ptth, torso, spook and nm-g were evaluated as candidate targets for function study. The partial cDNA of these four genes were cloned and their bacterially expressed dsRNA were fed to the insects. Results revealed a significant reduction in mRNA abundance of target genes after 3 days. Furthermore, knocked down of these four genes resulted in abnormal phenotypes and high larval mortality. After 15 days, the survival rates of insects in dsspook, dsptth, dstorso, and dsnm-g groups were significantly reduced by 32%, 38%, 56%, and 67% respectively, compared with control. Moreover, about 80% of surviving larvae showed retarded development in dsRNA-treated groups. These results suggest that oral ingestion of bacterially expressed dsRNA in C. suppressalis could silence ptth, torso, spook and nm-g. Oral delivery of bacterially expressed dsRNA provides a simple and potential management scheme against C. suppressalis.
Collapse
Affiliation(s)
- Jian Zhu
- College of Plant Science &Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong-Cheng Dong
- College of Plant Science &Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Li
- Pest Control Division, National Agricultural Technology Extension and Service Center, Ministry of Agricultural, Beijing 100125, China
| | - Chang-Ying Niu
- College of Plant Science &Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
19
|
Tassone EE, Zastrow-Hayes G, Mathis J, Nelson ME, Wu G, Flexner JL, Carrière Y, Tabashnik BE, Fabrick JA. Sequencing, de novo assembly and annotation of a pink bollworm larval midgut transcriptome. Gigascience 2016; 5:28. [PMID: 27333791 PMCID: PMC4916539 DOI: 10.1186/s13742-016-0130-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/16/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The pink bollworm Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae) is one of the world's most important pests of cotton. Insecticide sprays and transgenic cotton producing toxins of the bacterium Bacillus thuringiensis (Bt) are currently used to manage this pest. Bt toxins kill susceptible insects by specifically binding to and destroying midgut cells, but they are not toxic to most other organisms. Pink bollworm is useful as a model for understanding insect responses to Bt toxins, yet advances in understanding at the molecular level have been limited because basic genomic information is lacking for this cosmopolitan pest. Here, we have sequenced, de novo assembled and annotated a comprehensive larval midgut transcriptome from a susceptible strain of pink bollworm. FINDINGS A de novo transcriptome assembly for the midgut of P. gossypiella was generated containing 46,458 transcripts (average length of 770 bp) derived from 39,874 unigenes. The size of the transcriptome is similar to published midgut transcriptomes of other Lepidoptera and includes up to 91 % annotated contigs. The dataset is publicly available in NCBI and GigaDB as a resource for researchers. CONCLUSIONS Foundational knowledge of protein-coding genes from the pink bollworm midgut is critical for understanding how this important insect pest functions. The transcriptome data presented here represent the first large-scale molecular resource for this species, and may be used for deciphering relevant midgut proteins critical for xenobiotic detoxification, nutrient digestion and allocation, as well as for the discovery of protein receptors important for Bt intoxication.
Collapse
Affiliation(s)
- Erica E Tassone
- Plant Physiology and Genetics Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Service, Maricopa, AZ, 85138, USA
| | | | | | | | - Gusui Wu
- DuPont Pioneer, Johnston, IA, 50131, USA
| | - J Lindsey Flexner
- DuPont Crop Protection, Stine-Haskell Research Center, Newark, DE, 19711, USA
| | - Yves Carrière
- Department of Entomology, University of Arizona, Tucson, AZ, 85721, USA
| | - Bruce E Tabashnik
- Department of Entomology, University of Arizona, Tucson, AZ, 85721, USA
| | - Jeffrey A Fabrick
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Service, Maricopa, AZ, 85138, USA.
| |
Collapse
|
20
|
Han L, Jiang X, Peng Y. Potential resistance management for the sustainable use of insect-resistant genetically modified corn and rice in China. CURRENT OPINION IN INSECT SCIENCE 2016; 15:139-143. [PMID: 27436744 DOI: 10.1016/j.cois.2016.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 04/07/2016] [Accepted: 04/10/2016] [Indexed: 06/06/2023]
Abstract
Many lines of insect-resistant genetically modified (IRGM) corn and rice containing Bacillus thuringiensis (Bt) insecticidal genes have been developed and undergone different environmental biosafety assessments stages in China, showing robust application prospects. The potential of targeted pests to develop resistance to Bt crops is widespread, which threatens the sustainable utility of IRGM corn and rice. In this study, the potential risks of target pest complexes developing resistance to IRGM corn and rice are evaluated. Theoretical and empirical studies implementing precautionary insect resistance management (IRM) strategies to delay resistance evolution are summarized and challenges to IRM are discussed. Additionally, solutions facing these challenges are proposed. Finally, directions for future studies in developing IRGM corn and rice and IRM plans are discussed.
Collapse
Affiliation(s)
- Lanzhi Han
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Xingfu Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Yufa Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| |
Collapse
|
21
|
de Assis Fonseca FC, Firmino AAP, de Macedo LLP, Coelho RR, de Sousa Júnior JDA, Silva-Junior OB, Togawa RC, Pappas GJ, de Góis LAB, da Silva MCM, Grossi-de-Sá MF. Sugarcane giant borer transcriptome analysis and identification of genes related to digestion. PLoS One 2015; 10:e0118231. [PMID: 25706301 PMCID: PMC4338194 DOI: 10.1371/journal.pone.0118231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/11/2015] [Indexed: 11/25/2022] Open
Abstract
Sugarcane is a widely cultivated plant that serves primarily as a source of sugar and ethanol. Its annual yield can be significantly reduced by the action of several insect pests including the sugarcane giant borer (Telchin licus licus), a lepidopteran that presents a long life cycle and which efforts to control it using pesticides have been inefficient. Although its economical relevance, only a few DNA sequences are available for this species in the GenBank. Pyrosequencing technology was used to investigate the transcriptome of several developmental stages of the insect. To maximize transcript diversity, a pool of total RNA was extracted from whole body insects and used to construct a normalized cDNA database. Sequencing produced over 650,000 reads, which were de novo assembled to generate a reference library of 23,824 contigs. After quality score and annotation, 43% of the contigs had at least one BLAST hit against the NCBI non-redundant database, and 40% showed similarities with the lepidopteran Bombyx mori. In a further analysis, we conducted a comparison with Manduca sexta midgut sequences to identify transcripts of genes involved in digestion. Of these transcripts, many presented an expansion or depletion in gene number, compared to B. mori genome. From the sugarcane giant borer (SGB) transcriptome, a number of aminopeptidase N (APN) cDNAs were characterized based on homology to those reported as Cry toxin receptors. This is the first report that provides a large-scale EST database for the species. Transcriptome analysis will certainly be useful to identify novel developmental genes, to better understand the insect's biology and to guide the development of new strategies for insect-pest control.
Collapse
Affiliation(s)
- Fernando Campos de Assis Fonseca
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brazil
- Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Alexandre Augusto Pereira Firmino
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brazil
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Leonardo Lima Pepino de Macedo
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brazil
- Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| | - Roberta Ramos Coelho
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brazil
- Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | | | - Orzenil Bonfim Silva-Junior
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brazil
- Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| | | | | | | | | | - Maria Fátima Grossi-de-Sá
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brazil
- Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| |
Collapse
|
22
|
De novo analysis of the Adelphocoris suturalis Jakovlev metathoracic scent glands transcriptome and expression patterns of pheromone biosynthesis-related genes. Gene 2014; 551:271-8. [DOI: 10.1016/j.gene.2014.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/21/2014] [Accepted: 09/02/2014] [Indexed: 11/17/2022]
|
23
|
Zhang F, Wang XJ, Huang YH, Zhao ZG, Zhang SS, Gong XS, Xie L, Kang DM, Jing X. Differential expression of hemolymph proteins between susceptible and insecticide-resistant Blattella germanica (Blattodea: Blattellidae). ENVIRONMENTAL ENTOMOLOGY 2014; 43:1117-23. [PMID: 25182623 DOI: 10.1603/en13351] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A proteomic approach combining two-dimensional polyacrylamide gel electrophoresis and tandem mass spectrometry was used to compare hemolymph expression profiles of a beta-cypermethrin-resistant Blattella germanica L. strain and a beta-cypermethrin-susceptible strain. Twenty-eight hemolymph proteins were differentially expressed in the resistant cockroach strain; 19 proteins were upregulated and 9 proteins were downregulated compared with the susceptible strain. Protein identification indicated that expression of putative cuticular protein, nitric oxide synthase, triosephosphate isomerase, alpha-amylase, ABC transporter, and Per a 3 allergen was elevated, and expression of arginine kinase and glycosidase was reduced. The differential expression of these proteins reflects the overall change in cellular structure and metabolism related to the resistance of pyrethroid insecticides.
Collapse
Affiliation(s)
- F Zhang
- Key Laboratory of Animal Resistance Research, College of Life Science, Shandong Normal University, 88 East Wenhua Rd., Jinan 250014, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Yin C, Liu Y, Liu J, Xiao H, Huang S, Lin Y, Han Z, Li F. ChiloDB: a genomic and transcriptome database for an important rice insect pest Chilo suppressalis. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2014; 2014:bau065. [PMID: 24997141 PMCID: PMC4082153 DOI: 10.1093/database/bau065] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
ChiloDB is an integrated resource that will be of use to the rice stem borer research community. The rice striped stem borer (SSB), Chilo suppressalis Walker, is a major rice pest that causes severe yield losses in most rice-producing countries. A draft genome of this insect is available. The aims of ChiloDB are (i) to store recently acquired genomic sequence and transcriptome data and integrate them with protein-coding genes, microRNAs, piwi-interacting RNAs (piRNAs) and RNA sequencing (RNA-Seq) data and (ii) to provide comprehensive search tools and downloadable data sets for comparative genomics and gene annotation of this important rice pest. ChiloDB contains the first version of the official SSB gene set, comprising 80 479 scaffolds and 10 221 annotated protein-coding genes. Additionally, 262 SSB microRNA genes predicted from a small RNA library, 82 639 piRNAs identified using the piRNApredictor software, 37 040 transcripts from a midgut transcriptome and 69 977 transcripts from a mixed sample have all been integrated into ChiloDB. ChiloDB was constructed using a data structure that is compatible with data resources, which will be incorporated into the database in the future. This resource will serve as a long-term and open-access database for research on the biology, evolution and pest control of SSB. To the best of our knowledge, ChiloDB is one of the first genomic and transcriptome database for rice insect pests. Database URL: http://ento.njau.edu.cn/ChiloDB.
Collapse
Affiliation(s)
- Chuanlin Yin
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Jiangsu/The key laboratory of Monitoring and Management of Plant Diseases and Insects, Ministry of Agriculture, Nanjing, Jiangsu 210095, China, Department of Computer Science, College of Information Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China and National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Liu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Jiangsu/The key laboratory of Monitoring and Management of Plant Diseases and Insects, Ministry of Agriculture, Nanjing, Jiangsu 210095, China, Department of Computer Science, College of Information Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China and National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinding Liu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Jiangsu/The key laboratory of Monitoring and Management of Plant Diseases and Insects, Ministry of Agriculture, Nanjing, Jiangsu 210095, China, Department of Computer Science, College of Information Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China and National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, ChinaDepartment of Entomology, College of Plant Protection, Nanjing Agricultural University, Jiangsu/The key laboratory of Monitoring and Management of Plant Diseases and Insects, Ministry of Agriculture, Nanjing, Jiangsu 210095, China, Department of Computer Science, College of Information Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China and National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Huamei Xiao
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Jiangsu/The key laboratory of Monitoring and Management of Plant Diseases and Insects, Ministry of Agriculture, Nanjing, Jiangsu 210095, China, Department of Computer Science, College of Information Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China and National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuiqing Huang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Jiangsu/The key laboratory of Monitoring and Management of Plant Diseases and Insects, Ministry of Agriculture, Nanjing, Jiangsu 210095, China, Department of Computer Science, College of Information Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China and National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongjun Lin
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Jiangsu/The key laboratory of Monitoring and Management of Plant Diseases and Insects, Ministry of Agriculture, Nanjing, Jiangsu 210095, China, Department of Computer Science, College of Information Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China and National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhaojun Han
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Jiangsu/The key laboratory of Monitoring and Management of Plant Diseases and Insects, Ministry of Agriculture, Nanjing, Jiangsu 210095, China, Department of Computer Science, College of Information Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China and National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Fei Li
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Jiangsu/The key laboratory of Monitoring and Management of Plant Diseases and Insects, Ministry of Agriculture, Nanjing, Jiangsu 210095, China, Department of Computer Science, College of Information Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China and National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
25
|
Binding site concentration explains the differential susceptibility of Chilo suppressalis and Sesamia inferens to Cry1A-producing rice. Appl Environ Microbiol 2014; 80:5134-40. [PMID: 24928872 DOI: 10.1128/aem.01544-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chilo suppressalis and Sesamia inferens are two important lepidopteran rice pests that occur concurrently during outbreaks in paddy fields in the main rice-growing areas of China. Previous and current field tests demonstrate that the transgenic rice line Huahui 1 (HH1) producing a Cry1Ab-Cry1Ac hybrid toxin from the bacterium Bacillus thuringiensis reduces egg and larval densities of C. suppressalis but not of S. inferens. This differential susceptibility to HH1 rice correlates with the reduced susceptibility to Cry1Ab and Cry1Ac toxins in S. inferens larvae compared to C. suppressalis larvae. The goal of this study was to identify the mechanism responsible for this differential susceptibility. In saturation binding assays, both Cry1Ab and Cry1Ac toxins bound with high affinity and in a saturable manner to midgut brush border membrane vesicles (BBMV) from C. suppressalis and S. inferens larvae. While binding affinities were similar, a dramatically lower concentration of Cry1A toxin binding sites was detected for S. inferens BBMV than for C. suppressalis BBMV. In contrast, no significant differences between species were detected for Cry1Ca toxin binding to BBMV. Ligand blotting detected BBMV proteins binding Cry1Ac or Cry1Ca toxins, some of them unique to C. suppressalis or S. inferens. These data support that reduced Cry1A binding site concentration is associated with a lower susceptibility to Cry1A toxins and HH1 rice in S. inferens larvae than in C. suppressalis larvae. Moreover, our data support Cry1Ca as a candidate for pyramiding efforts with Cry1A-producing rice to extend the activity range and durability of this technology against rice stem borers.
Collapse
|
26
|
Liu Y, Shahzad MF, Zhang L, Li F, Lin K. Amplifying long transcripts of ryanodine receptors of five agricultural pests by transcriptome analysis and gap filling. Genome 2013; 56:651-8. [PMID: 24299104 DOI: 10.1139/gen-2013-0127] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ryanodine receptor (RyR) is an intracellular calcium release channel that plays a key role in excitation contraction coupling. Insect RyR is the target of diamide insecticides. Better understanding of insect RyR is necessary for studying the molecular mode of action and potential resistance mechanism of diamide insecticides. However, molecular manipulation of the full RyR gene is difficult because of its length (approximately 15 kb). At present, RyR genes have been reported only in a limited number of insects. Here, we developed an efficient strategy to amplify full-length transcripts of insect RyR genes. First, we searched the transcriptomes of five insects, Bemisia tabaci, Cnaphalocrocis medinalis, Chilo suppressalis, Laodelphgax striatellus, and Plutella xylostella, yielding 85 RyR contigs in total. Second, the relative positions of these contigs in RyR transcripts were determined by aligning them with 12 well-annotated RyRs. Third, we designed primers to fill gaps between contigs and used rapid amplification of cDNA ends (RACE) to amplify both 5'- and 3'-ends. Last, we assembled all fragments into long transcripts. As a result, full-length transcripts of three insects, C. suppressalis, L. striatellus, and P. xylostella, were obtained. The RyR transcript of B. tabaci was near full length, containing an intact ORF. Northern blot analysis indicated that RyR genes were expressed in all five insects. Sequence analyses showed that the amplified insect segments contained typical RyRs characteristics, such as EF-hand, motif GVRAGGGIGD, and six transmembrane domains. Seven lepidopteran-specific amino acid residues were found to be located in the C-terminal region of RyR proteins, which might be associated with the specificity of RyRs to diamide insecticides.
Collapse
Affiliation(s)
- Yonglei Liu
- a Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | |
Collapse
|
27
|
Sparks ME, Blackburn MB, Kuhar D, Gundersen-Rindal DE. Transcriptome of the Lymantria dispar (gypsy moth) larval midgut in response to infection by Bacillus thuringiensis. PLoS One 2013; 8:e61190. [PMID: 23658687 PMCID: PMC3641027 DOI: 10.1371/journal.pone.0061190] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 03/07/2013] [Indexed: 11/23/2022] Open
Abstract
Transcriptomic profiles of the serious lepidopteran insect pest Lymantria dispar (gypsy moth) were characterized in the larval midgut in response to infection by Bacillus thuringiensis kurstaki, a biopesticide commonly used for its control. RNA-Seq approaches were used to define a set of 49,613 assembled transcript sequences, of which 838, 1,248 and 3,305 were respectively partitioned into high-, mid- and low-quality tiers on the basis of homology information. Digital gene expression profiles suggested genes differentially expressed at 24 hours post infection, and qRT-PCR analyses were performed for verification. The differentially expressed genes primarily associated with digestive function, including α-amylase, lipase and carboxypeptidase; immune response, including C-type lectin 4; developmental genes such as arylphorin; as well as a variety of binding proteins: cellular retinoic acid binding protein (lipid-binding), insulin-related peptide binding protein (protein-binding) and ovary C/EBPg transcription factor (nucleic acid-binding). This is the first study conducted to specifically investigate gypsy moth response to a bacterial infection challenge using large-scale sequencing technologies, and the results highlight important genes that could be involved in biopesticide resistance development or could serve as targets for biologically-based control mechanisms of this insect pest.
Collapse
Affiliation(s)
- Michael E. Sparks
- United States Department of Agriculture -ARS Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, Maryland, United States of America
| | - Michael B. Blackburn
- United States Department of Agriculture -ARS Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, Maryland, United States of America
| | - Daniel Kuhar
- United States Department of Agriculture -ARS Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, Maryland, United States of America
| | - Dawn E. Gundersen-Rindal
- United States Department of Agriculture -ARS Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, Maryland, United States of America
- * E-mail:
| |
Collapse
|