1
|
Sahrizan NSA, Manan HA, Abdul Hamid H, Abdullah JM, Yahya N. Functional Alteration in the Brain Due to Tumour Invasion in Paediatric Patients: A Systematic Review. Cancers (Basel) 2023; 15:cancers15072168. [PMID: 37046828 PMCID: PMC10093754 DOI: 10.3390/cancers15072168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Working memory, language and speech abilities, motor skills, and visual abilities are often impaired in children with brain tumours. This is because tumours can invade the brain's functional areas and cause alterations to the neuronal networks. However, it is unclear what the mechanism of tumour invasion is and how various treatments can cause cognitive impairment. Therefore, this study aims to systematically evaluate the effects of tumour invasion on the cognitive, language, motor, and visual abilities of paediatric patients, as well as discuss the alterations and modifications in neuronal networks and anatomy. The electronic database, PubMed, was used to find relevant studies. The studies were systematically reviewed based on the type and location of brain tumours, cognitive assessment, and pre- and post-operative deficits experienced by patients. Sixteen studies were selected based on the inclusion and exclusion criteria following the guidelines from PRISMA. Most studies agree that tumour invasion in the brain causes cognitive dysfunction and alteration in patients. The effects of a tumour on cognition, language, motor, and visual abilities depend on the type of tumour and its location in the brain. The alteration to the neuronal networks is also dependent on the type and location of the tumour. However, the default mode network (DMN) is the most affected network, regardless of the tumour type and location.Furthermore, our findings suggest that different treatment types can also contribute to patients' cognitive function to improve or deteriorate. Deficits that persisted or were acquired after surgery could result from surgical manipulation or the progression of the tumour's growth. Meanwhile, recovery from the deficits indicated that the brain has the ability to recover and reorganise itself.
Collapse
Affiliation(s)
- Nur Shaheera Aidilla Sahrizan
- Department of Radiology, Makmal Pemprosesan Imej Kefungsian (Functional Image Processing Laboratory), University Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia
- Department of Radiology and Intervency, Hospital Pakar Kanak-Kanak (Children Specialist Hospital), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Hanani Abdul Manan
- Department of Radiology, Makmal Pemprosesan Imej Kefungsian (Functional Image Processing Laboratory), University Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia
- Department of Radiology and Intervency, Hospital Pakar Kanak-Kanak (Children Specialist Hospital), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Hamzaini Abdul Hamid
- Department of Radiology, Makmal Pemprosesan Imej Kefungsian (Functional Image Processing Laboratory), University Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia
- Department of Radiology and Intervency, Hospital Pakar Kanak-Kanak (Children Specialist Hospital), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Jafri Malin Abdullah
- Jabatan Neurosains, Pusat Pengajian Sains Perubatan, Jalan Hospital USM, Kampus Kesihatan, Universiti Sains Malaysia, Kota Bharu 16150, Malaysia
- Brain and Behaviour Cluster, Pusat Pengajian Sains Perubatan, Kampus Kesihatan, Universiti Sains Malaysia, Kota Bharu 16150, Malaysia
- Department of Neurosciences & Brain Behaviour Cluster, Hospital Universiti Sains Malaysia, Kampus Kesihatan, Universiti Sains Malaysia, Kota Bharu 16150, Malaysia
| | - Noorazrul Yahya
- Diagnostic Imaging & Radiotherapy Program, School of Diagnostic & Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
2
|
Braid J, Richlan F. The Functional Neuroanatomy of Reading Intervention. Front Neurosci 2022; 16:921931. [PMID: 35784836 PMCID: PMC9243375 DOI: 10.3389/fnins.2022.921931] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/31/2022] [Indexed: 11/29/2022] Open
Abstract
The present article reviews the literature on the brain mechanisms underlying reading improvements following behavioral intervention for reading disability. This includes evidence of neuroplasticity concerning functional brain activation, brain structure, and brain connectivity related to reading intervention. Consequently, the functional neuroanatomy of reading intervention is compared to the existing literature on neurocognitive models and brain abnormalities associated with reading disability. A particular focus is on the left hemisphere reading network including left occipito-temporal, temporo-parietal, and inferior frontal language regions. In addition, potential normalization/compensation mechanisms involving right hemisphere cortical regions, as well as bilateral sub-cortical and cerebellar regions are taken into account. The comparison of the brain systems associated with reading intervention and the brain systems associated with reading disability enhances our understanding of the neurobiological basis of typical and atypical reading development. All in all, however, there is a lack of sufficient evidence regarding rehabilitative brain mechanisms in reading disability, which we discuss in this review.
Collapse
|
3
|
Perdue MV, Mahaffy K, Vlahcevic K, Wolfman E, Erbeli F, Richlan F, Landi N. Reading intervention and neuroplasticity: A systematic review and meta-analysis of brain changes associated with reading intervention. Neurosci Biobehav Rev 2022; 132:465-494. [PMID: 34856223 PMCID: PMC10327490 DOI: 10.1016/j.neubiorev.2021.11.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 11/22/2022]
Abstract
Behavioral research supports the efficacy of intervention for reading disability, but the brain mechanisms underlying improvement in reading are not well understood. Here, we review 39 neuroimaging studies of reading intervention to characterize links between reading improvement and changes in the brain. We report evidence of changes in activation, connectivity, and structure within the reading network, and right hemisphere, frontal and sub-cortical regions. Our meta-analysis of changes in brain activation from pre- to post- reading intervention in eight studies did not yield any significant effects. Methodological heterogeneity among studies may contribute to the lack of significant meta-analytic findings. Based on our qualitative synthesis, we propose that brain changes in response to intervention should be considered in terms of interactions among distributed cognitive, linguistic and sensory systems, rather than via a "normalized" vs. "compensatory" dichotomy. Further empirical research is needed to identify effects of moderating factors such as features of intervention programs, neuroimaging tasks, and individual differences among participants.
Collapse
Affiliation(s)
- Meaghan V Perdue
- Dept. of Psychological Sciences, University of Connecticut, Storrs, CT, USA; Haskins Laboratories, New Haven, CT, USA; Dept. of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Kelly Mahaffy
- Dept. of Psychological Sciences, University of Connecticut, Storrs, CT, USA; Haskins Laboratories, New Haven, CT, USA
| | - Katherine Vlahcevic
- Dept. of Psychological Sciences, University of Connecticut, Storrs, CT, USA; Haskins Laboratories, New Haven, CT, USA
| | - Emma Wolfman
- Dept. of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Florina Erbeli
- Dept. of Educational Psychology, Texas A&M University, College Station, TX, USA
| | - Fabio Richlan
- Centre for Cognitive Neuroscience & Department of Psychology, University of Salzburg, Salzburg, Austria
| | - Nicole Landi
- Dept. of Psychological Sciences, University of Connecticut, Storrs, CT, USA; Haskins Laboratories, New Haven, CT, USA
| |
Collapse
|
4
|
Krafnick AJ, Napoliello EM, Flowers DL, Eden GF. The Role of Brain Activity in Characterizing Successful Reading Intervention in Children With Dyslexia. Front Neurosci 2022; 16:898661. [PMID: 35769700 PMCID: PMC9234261 DOI: 10.3389/fnins.2022.898661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/23/2022] [Indexed: 11/23/2022] Open
Abstract
Studies of reading intervention in dyslexia have shown changes in performance and in brain function. However, there is little consistency in the location of brain regions associated with successful reading gains in children, most likely due to variability/limitations in methodologies (study design, participant criteria, and neuroimaging procedures). Ultimately for the results to be meaningful, the intervention has to be successful, be assessed against a control, use rigorous statistics, and take biological variables (sex) into consideration. Using a randomized, crossover design, 31 children with dyslexia were assigned to a phonological- and orthographic-based tutoring period as well as a within-subjects control period to examine: (1) intervention-induced changes in behavior (reading performance) and in brain activity (during reading); and (2) behavioral and brain activity pre-intervention data that predicted intervention-induced gains in reading performance. We found gains in reading ability following the intervention, but not following the control period, with no effect of participants' sex. However, there were no changes in brain activity following the intervention (regardless of sex), suggesting that individual brain changes are too variable to be captured at the group level. Reading gains were not predicted by pre-intervention behavioral data, but were predicted by pre-intervention brain activity in bilateral supramarginal/angular gyri. Notably, some of this prediction was only found in females. Our results highlight the limitations of brain imaging in detecting the neural correlates of reading intervention in this age group, while providing further evidence for its utility in assessing eventual success of intervention, especially if sex is taken into consideration.
Collapse
|
5
|
Delaying feedback compensates for impaired reinforcement learning in developmental dyslexia. Neurobiol Learn Mem 2021; 185:107518. [PMID: 34508883 DOI: 10.1016/j.nlm.2021.107518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 08/22/2021] [Accepted: 09/06/2021] [Indexed: 11/21/2022]
Abstract
A theoretical framework suggests that developmental dyslexia is characterized by abnormalities in brain structures underlying the procedural learning and memory systems while the declarative learning and memory systems are presumed to remain intact or even enhanced (Procedural Deficit Hypothesis). This notion has been supported by a substantial body of research, which focused on each system independently. However, less attention has been paid to interactions between these memory systems which may provide insights as to learning situations and conditions in which learning in dyslexia can be improved. The current study was undertaken to examine these important but unresolved issues. To this end, probabilistic reinforcement learning and episodic memory tasks were examined in participants with dyslexia and neurotypicals simultaneously within a single task. Feedback timing presentation was manipulated, building on prior research indicating that delaying feedback timing shifts striatal-based probabilistic learning, to become more hippocampal-dependent. It was hypothesized that if the procedural learning and memory systems are impaired in dyslexia, performance will be impaired under conditions that encourage procedural memory engagement (immediate feedback trials) but not under conditions that promote declarative memory processing (long delayed feedback trials). It was also predicted that the ability to incidentally acquire episodic information would be preserved in dyslexia. The results supported these predictions. Participants with dyslexia were impaired in probabilistic learning of cue-outcome associations compared to neurotypicals in an immediate feedback condition, but not when feedback on choices was presented after a long delay. Furthermore, participants with dyslexia demonstrated similar performance to neurotypicals in a task requiring incidental episodic memory formation. These findings attest to a dissociation between procedural-based and declarative-based learning in developmental dyslexia within a single task, a finding that adds discriminative validity to the Procedural Deficit Hypothesis. Just as important, the present findings suggest that training conditions designed to shift the load from midbrain/striatal systems to declarative memory mechanisms have the potential to compensate for impaired learning in developmental dyslexia.
Collapse
|
6
|
Dębska A, Banfi C, Chyl K, Dzięgiel-Fivet G, Kacprzak A, Łuniewska M, Plewko J, Grabowska A, Landerl K, Jednoróg K. Neural patterns of word processing differ in children with dyslexia and isolated spelling deficit. Brain Struct Funct 2021; 226:1467-1478. [PMID: 33761000 PMCID: PMC8096730 DOI: 10.1007/s00429-021-02255-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/07/2021] [Indexed: 02/07/2023]
Abstract
There is an ongoing debate concerning the extent to which deficits in reading and spelling share cognitive components and whether they rely, in a similar fashion, on sublexical and lexical pathways of word processing. The present study investigates whether the neural substrates of word processing differ in children with various patterns of reading and spelling deficits. Using functional magnetic resonance imaging, we compared written and auditory processing in three groups of 9-13-year olds (N = 104): (1) with age-adequate reading and spelling skills; (2) with reading and spelling deficits (i.e., dyslexia); (3) with isolated spelling deficits but without reading deficits. In visual word processing, both deficit groups showed hypoactivations in the posterior superior temporal cortex compared to typical readers and spellers. Only children with dyslexia exhibited hypoactivations in the ventral occipito-temporal cortex compared to the two groups of typical readers. This is the result of an atypical pattern of higher activity in the occipito-temporal cortex for non-linguistic visual stimuli than for words, indicating lower selectivity. The print-speech convergence was reduced in the two deficit groups. Impairments in lexico-orthographic regions in a reading-based task were associated primarily with reading deficits, whereas alterations in the sublexical word processing route could be considered common for both reading and spelling deficits. These findings highlight the partly distinct alterations of the language network related to reading and spelling deficits.
Collapse
Affiliation(s)
- Agnieszka Dębska
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| | - Chiara Banfi
- Institute of Psychology, University of Graz, Graz, Austria
| | - Katarzyna Chyl
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Gabriela Dzięgiel-Fivet
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Kacprzak
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Faculty of Psychology, Warsaw University, Warsaw, Poland
| | - Magdalena Łuniewska
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Plewko
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Grabowska
- Faculty of Psychology, SWPS University of Social Sciences and Humanities, Warsaw, Poland
| | - Karin Landerl
- Institute of Psychology, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Department of Cognitive Science, Macquarie University, Sydney, NSW, Australia
| | - Katarzyna Jednoróg
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
7
|
Is the Letter ‘t’ in the Word ‘gourmet’? Disruption in Task-Evoked Connectivity Networks in Adults with Impaired Literacy Skills. NEUROSCI 2021. [DOI: 10.3390/neurosci2010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Much work has been done to characterize domain-specific brain networks associated with reading, but very little work has been done with respect to spelling. Our aim was to characterize domain-specific spelling networks (SpNs) and domain-general resting state networks (RSNs) in adults with and without literacy impairments. Skilled and impaired adults were recruited from the University of Alberta. Participants completed three conditions of an in-scanner spelling task called a letter probe task (LPT). We found highly connected SpNs for both groups of individuals, albeit comparatively more connections for skilled (50) vs. impaired (43) readers. Notably, the SpNs did not correlate with spelling behaviour for either group. We also found relationships between SpNs and RSNs for both groups of individuals, this time with comparatively fewer connections for skilled (36) vs. impaired (53) readers. Finally, the RSNs did predict spelling performance in a limited manner for the skilled readers. These results advance our understanding of brain networks associated with spelling and add to the growing body of literature that describes the important and intricate connections between domain-specific networks and domain-general networks (i.e., resting states) in individuals with and without developmental disorders.
Collapse
|
8
|
Functional connectivity alterations associated with literacy difficulties in early readers. Brain Imaging Behav 2020; 15:2109-2120. [PMID: 33048291 DOI: 10.1007/s11682-020-00406-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2020] [Indexed: 10/23/2022]
Abstract
The link between literacy difficulties and brain alterations has been described in depth. Resting-state fMRI (rs-fMRI) has been successfully applied to the study of intrinsic functional connectivity (iFc) both in dyslexia and typically developing children. Most related studies have focused on the stages from late childhood into adulthood using a seed to voxel approach. Our study analyzes iFc in an early childhood sample using the multivariate pattern analysis. This facilitates a hypothesis-free analysis and the possible identification of abnormal functional connectivity patterns at a whole brain level. Thirty-four children with literacy difficulties (LD) (7.1 ± 0.69 yr.) and 30 typically developing children (TD) (7.43 ± 0.52 yr.) were selected. Functional brain connectivity was measured using an rs-fMRI acquisition. The LD group showed a higher iFc between the right middle frontal gyrus (rMFG) and the default mode network (DMN) regions, and a lower iFc between the rMFG and both the bilateral insular cortex and the supramarginal gyrus. These results are interpreted as a DMN on/off routine malfunction in the LD group, which suggests an alteration of the task control network regulating DMN activity. In the LD group, the posterior cingulate cortex also showed a lower iFc with both the middle temporal poles and the fusiform gyrus. This could be interpreted as a failure in the integration of information between brain regions that facilitate reading. Our results show that children with literacy difficulties have an altered functional connectivity in their reading and attentional networks at the beginning of the literacy acquisition. Future studies should evaluate whether or not these alterations could indicate a risk of developing dyslexia.
Collapse
|
9
|
Attout L, Ordonez Magro L, Szmalec A, Majerus S. The developmental neural substrates of Hebb repetition learning and their link with reading ability. Hum Brain Mapp 2020; 41:3956-3969. [PMID: 32573904 PMCID: PMC7469830 DOI: 10.1002/hbm.25099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 11/07/2022] Open
Abstract
Hebb repetition learning is a fundamental learning mechanism for sequential knowledge, such as language. However, still little is known about its development. This fMRI study examined the developmental neural substrates of Hebb repetition learning and its relation with reading abilities in a group of 49 children aged from 6 to 12 years. In the scanner, the children carried out an immediate serial recall task for syllable sequences of which some sequences were repeated several times over the course of the session (Hebb repetition sequences). The rate of Hebb repetition learning was associated with modulation of activity in the medial temporal lobe. Importantly, for the age range studied here, learning-related medial temporal lobe modulation was independent of the age of the children. Furthermore, we observed an association between regular and irregular word reading abilities and the neural substrates of Hebb repetition learning. This study suggests that the functional neural substrates of Hebb repetition learning do not undergo further maturational changes in school age children, possibly because they are sustained by implicit sequential learning mechanisms which are considered to be fully developed by that age. Importantly, the neural substrates of Hebb learning remain significant determinants of children's learning abilities, such as reading.
Collapse
Affiliation(s)
- Lucie Attout
- Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège, Belgium.,Fund for Scientific Research FNRS, Brussels, Belgium
| | - Laura Ordonez Magro
- Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Arnaud Szmalec
- Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium.,Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Steve Majerus
- Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège, Belgium.,Fund for Scientific Research FNRS, Brussels, Belgium
| |
Collapse
|
10
|
Assessing motor, visual and language function using a single 5-minute fMRI paradigm: three birds with one stone. Brain Imaging Behav 2019; 12:1775-1785. [PMID: 29480439 DOI: 10.1007/s11682-018-9848-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Clinical functional Magnetic Resonance Imaging (fMRI) requires inferences on localization of major brain functions at the individual subject level. We hypothesized that a single "triple use" task would satisfy sensitivity and reliability requirements for successfully assessing the motor, visual and language domain in this context. This was tested here by the application in a group of healthy adults, assessing sensitivity and reliability at the individual subject level, separately for each domain.Our "triple use" task consisted of 2 conditions (condition 1, assessing motor and visual domain, and condition 2, assessing the language domain), serving mutually as active/control. We included 20 healthy adult subjects. Random effect analyses showed activation in primary motor, visual and language regions, as expected. Less expected regions were activated both for the motor and visual domains. Further, reliability of primary activation patterns was very high across individual subjects, with activation seen in 70-100% of subjects in primary motor, visual, and left-lateralized language regions.These findings suggest the "triple use" task to be reliable at the individual subject's level to assess motor, visual and language domains in the clinical fMRI context. Benefits of such an approach include shortening of acquisition time, simplicity of the task for each domain, and using a visual stimulus. Following establishment of reliability in adults, the task may also be a valuable addition in the pediatric clinical fMRI context, where each of these factors is of high relevance.
Collapse
|
11
|
Nugiel T, Roe MA, Taylor WP, Cirino PT, Vaughn SR, Fletcher JM, Juranek J, Church JA. Brain activity in struggling readers before intervention relates to future reading gains. Cortex 2019; 111:286-302. [PMID: 30557815 PMCID: PMC6420828 DOI: 10.1016/j.cortex.2018.11.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/25/2018] [Accepted: 11/07/2018] [Indexed: 12/18/2022]
Abstract
Neural markers for reading-related changes in response to intervention could inform intervention plans by serving as a potential index of the malleability of the reading network in struggling readers. Of particular interest is the role of brain activation outside the reading network, especially in executive control networks important for reading comprehension. However, it is unclear whether any intervention-related executive control changes in the brain are specific to reading tasks or reflect more domain general changes. Brain changes associated with reading gains over time were compared for a sentence comprehension task as well as for a non-lexical executive control task (a behavioral inhibition task) in upper-elementary struggling readers, and in grade-matched non-struggling readers. Functional MRI scans were conducted before and after 16 weeks of reading intervention. Participants were grouped as improvers and non-improvers based on the consistency and size of post-intervention gains across multiple post-test measures. Engagement of the right fusiform during the reading task, both before and after intervention, was related to gains from remediation. Additionally, pre-intervention activation in regions that are part of the default-mode network (precuneus) and the fronto-parietal network (right posterior middle temporal gyrus) separated improvers and non-improvers from non-struggling readers. None of these differences were observed during the non-lexical inhibitory control task, indicating that the brain changes seen related to intervention outcome in struggling readers were specific to the reading process.
Collapse
Affiliation(s)
- Tehila Nugiel
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA.
| | - Mary Abbe Roe
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - W Patrick Taylor
- Department of Psychology, The University of Houston, Houston, TX, USA
| | - Paul T Cirino
- Department of Psychology, The University of Houston, Houston, TX, USA
| | - Sharon R Vaughn
- Meadows Center for Prevention of Educational Risk, The University of Texas at Austin, Austin, TX, USA
| | - Jack M Fletcher
- Department of Psychology, The University of Houston, Houston, TX, USA
| | - Jenifer Juranek
- Department of Pediatrics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jessica A Church
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA; Biomedical Imaging Center, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
12
|
Banfi C, Koschutnig K, Moll K, Schulte-Körne G, Fink A, Landerl K. White matter alterations and tract lateralization in children with dyslexia and isolated spelling deficits. Hum Brain Mapp 2018; 40:765-776. [PMID: 30267634 PMCID: PMC6492145 DOI: 10.1002/hbm.24410] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 09/12/2018] [Accepted: 09/19/2018] [Indexed: 01/18/2023] Open
Abstract
The present study investigated whether children with a typical dyslexia profile and children with isolated spelling deficits show a distinct pattern of white matter alteration compared with typically developing peers. Relevant studies on the topic are scarce, rely on small samples, and often suffer from the limitations of conventional tensor-based methods. The present Constrained Spherical Deconvolution study includes 27 children with typical reading and spelling skills, 21 children with dyslexia and 21 children with isolated spelling deficits. Group differences along major white matter tracts were quantified utilizing the Automated Fiber Quantification software and a lateralization index was calculated in order to investigate the structural asymmetry of the tracts. The two deficit groups mostly displayed different patterns of white matter alterations, located in the bilateral inferior longitudinal fasciculi, right superior longitudinal fasciculus, and cingulum for the group with dyslexia and in the left arcuate fasciculus for the group with isolated spelling deficits. The two deficit groups differed also with respect to structural asymmetry. Children with dyslexia did not show the typical leftward asymmetry of the arcuate fasciculus, whereas the group with isolated spelling deficits showed absent rightward asymmetry of the inferior fronto-occipital fasciculus. This study adds evidence to the notion that different profiles of combined or isolated reading and spelling deficits are associated with different neural signatures.
Collapse
Affiliation(s)
- Chiara Banfi
- University of Graz, Institute of Psychology, Graz, Austria
| | | | - Kristina Moll
- Department of Child and Adolescent Psychiatry, Ludwig-Maximilians-University, Munich, Germany
| | - Gerd Schulte-Körne
- Department of Child and Adolescent Psychiatry, Ludwig-Maximilians-University, Munich, Germany
| | - Andreas Fink
- University of Graz, Institute of Psychology, Graz, Austria
| | - Karin Landerl
- University of Graz, Institute of Psychology, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| |
Collapse
|
13
|
González-Garrido AA, Alejandro Barrios F, Gómez-Velázquez FR, Zarabozo-Hurtado D. The supramarginal and angular gyri underlie orthographic competence in Spanish language. BRAIN AND LANGUAGE 2017; 175:1-10. [PMID: 28865283 DOI: 10.1016/j.bandl.2017.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 06/07/2023]
Abstract
Orthographic competence allows automatic word recognition and reading fluency. To elucidate how the orthographic competence in Spanish-speaking adults might affect the neurofunctional mechanisms of visual word recognition, 32 young adults equally divided in two groups (HSS: High Spelling Skills, and LSS: Low Spelling Skills) were evaluated using fMRI methods, while they performed an orthographic recognition task involving pseudohomophones. HSS achieved significantly more correct responses and lower reaction times than LSS. Interestingly, LSS showed greater activation in the left angular and supramarginal regions with increased bilateral activation pattern in the inferior frontal gyrus, and the anterior temporal and posterior parietal regions. In contrast, HSS showed a more left-lateralized pattern over these regions along with higher activation of the anterior cingulated gyrus for misspelled words. Results suggest that the differences found in cortical activation patterns might be explained by the higher degree of specialization for word recognition in HSS, a group of participants that due to their greater orthographic skills require less engagement of processing resources to succeed in the task.
Collapse
Affiliation(s)
- Andrés Antonio González-Garrido
- Instituto de Neurociencias (Universidad de Guadalajara), 44130, Mexico; O.P.D. Hospital Civil de Guadalajara, 44280, Mexico.
| | - Fernando Alejandro Barrios
- Universidad Nacional Autónoma de Mexico, Instituto de Neurobiología, Querétaro Qro, 76230, Mexico; Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, 02139 MA, United States
| | | | | |
Collapse
|
14
|
Forbes TA, Gallo V. All Wrapped Up: Environmental Effects on Myelination. Trends Neurosci 2017; 40:572-587. [PMID: 28844283 PMCID: PMC5671205 DOI: 10.1016/j.tins.2017.06.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/26/2017] [Indexed: 12/16/2022]
Abstract
To date, studies have demonstrated the dynamic influence of exogenous environmental stimuli on multiple regions of the brain. This environmental influence positively and negatively impacts programs governing myelination, and acts on myelinating oligodendrocyte (OL) cells across the human lifespan. Developmentally, environmental manipulation of OL progenitor cells (OPCs) has profound effects on the establishment of functional cognitive, sensory, and motor programs. Furthermore, central nervous system (CNS) myelin remains an adaptive entity in adulthood, sensitive to environmentally induced structural changes. Here, we discuss the role of environmental stimuli on mechanisms governing programs of CNS myelination under normal and pathological conditions. Importantly, we highlight how these extrinsic cues can influence the intrinsic power of myelin plasticity to promote functional recovery.
Collapse
Affiliation(s)
- Thomas A Forbes
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA; The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA.
| | - Vittorio Gallo
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA; The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA.
| |
Collapse
|
15
|
Nelson EE. Learning through the ages: How the brain adapts to the social world across development. COGNITIVE DEVELOPMENT 2017. [DOI: 10.1016/j.cogdev.2017.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Zou P, Conklin HM, Scoggins MA, Li Y, Li X, Jones MM, Palmer SL, Gajjar A, Ogg RJ. Functional MRI in medulloblastoma survivors supports prophylactic reading intervention during tumor treatment. Brain Imaging Behav 2016; 10:258-71. [PMID: 25967954 DOI: 10.1007/s11682-015-9390-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Development of reading skills is vulnerable to disruption in children treated for brain tumors. Interventions, remedial and prophylactic, are needed to mitigate reading and other learning difficulties faced by survivors. A functional magnetic resonance imaging (fMRI) study was conducted to investigate long-term effects of a prophylactic reading intervention administered during radiation therapy in children treated for medulloblastoma. The fMRI study included 19 reading-intervention (age 11.7 ± 0.6 years) and 21 standard-of-care (age 12.1 ± 0.6 years) medulloblastoma survivors, and 21 typically developing children (age 12.3 ± 0.6 years). The survivors were 2.5 [1.2, 5.4] years after completion of tumor therapies and reading-intervention survivors were 2.9 [1.6, 5.9] years after intervention. Five fMRI tasks (Rapid Automatized Naming, Continuous Performance Test using faces and letters, orthographic and phonological processing of letter pairs, implicit word reading, and story reading) were used to probe reading-related neural activation. Woodcock-Johnson Reading Fluency, Word Attack, and Sound Awareness subtests were used to evaluate reading abilities. At the time of fMRI, Sound Awareness scores were significantly higher in the reading-intervention group than in the standard-of-care group (p = 0.046). Brain activation during the fMRI tasks was detected in left inferior frontal, temporal, ventral occipitotemporal, and subcortical regions, and differed among the groups (p < 0.05, FWE). The pattern of group activation differences, across brain areas and tasks, was a normative trend in the reading-intervention group. Standardized reading scores and patterns of brain activation provide evidence of long-term effects of prophylactic reading intervention in children treated for medulloblastoma.
Collapse
Affiliation(s)
- Ping Zou
- Department of Radiological Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Heather M Conklin
- Department of Psychology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Matthew A Scoggins
- Department of Radiological Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Yimei Li
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xingyu Li
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Melissa M Jones
- Department of Radiological Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Shawna L Palmer
- Department of Psychology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Amar Gajjar
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Robert J Ogg
- Department of Radiological Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
17
|
Neurobiological Basis of Language Learning Difficulties. Trends Cogn Sci 2016; 20:701-714. [PMID: 27422443 PMCID: PMC4993149 DOI: 10.1016/j.tics.2016.06.012] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 06/18/2016] [Accepted: 06/20/2016] [Indexed: 12/24/2022]
Abstract
In this paper we highlight why there is a need to examine subcortical learning systems in children with language impairment and dyslexia, rather than focusing solely on cortical areas relevant for language. First, behavioural studies find that children with these neurodevelopmental disorders perform less well than peers on procedural learning tasks that depend on corticostriatal learning circuits. Second, fMRI studies in neurotypical adults implicate corticostriatal and hippocampal systems in language learning. Finally, structural and functional abnormalities are seen in the striatum in children with language disorders. Studying corticostriatal networks in developmental language disorders could offer us insights into their neurobiological basis and elucidate possible modes of compensation for intervention. Individuals with SLI and dyslexia have impaired or immature learning mechanisms; this hampers their extraction of structure in complex learning environments. These learning difficulties are not general or confined to language. Problems are specific to tasks that involve implicitly learning sequential structure or complex cue–outcome relationships. Such learning is thought to depend upon corticostriatal circuits. In language learning studies, the striatum is recruited when adults extract sequential information from auditory-verbal sequences and as they learn complex motor routines relevant for speech. Neuroimaging studies indicate striatal abnormalities in individuals with language disorders. There is a need to probe the integrity of neural learning systems in developmental language disorders using tasks relevant for language learning which place specific demands on the striatum/MTL.
Collapse
|
18
|
Semenkovich K, Patel PP, Pollock AB, Beach KA, Nelson S, Masterson JJ, Hershey T, Arbeláez AM. Academic abilities and glycaemic control in children and young people with Type 1 diabetes mellitus. Diabet Med 2016; 33:668-73. [PMID: 26173465 PMCID: PMC4713372 DOI: 10.1111/dme.12854] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/07/2015] [Indexed: 12/11/2022]
Abstract
AIMS To determine if children and young people aged < 23 years with Type 1 diabetes differ in academic ability from age-matched control subjects without Type 1 diabetes and whether academic scores are related to glycaemic control. METHODS Using a cross-sectional study design, we administered cognitive and academic tests (Woodcock-Johnson III Spatial Relations, General Information, Letter-Word Recognition, Calculation and Spelling tests) to young people with Type 1 diabetes (n=61) and control subjects (n=26) aged 9-22 years. The groups did not differ in age or gender. Participants with Type 1 diabetes had a disease duration of 5-17.7 years. History of glycaemic control (HbA1c , diabetic ketoacidosis and severe hypoglycaemic episodes) was obtained via medical records and interviews. RESULTS The participants with Type 1 diabetes had a lower mean estimated verbal intelligence (IQ) level compared with those in the control group (P=0.04). Greater exposure to hyperglycaemia over time was associated with lower spelling abilities within the group with Type 1 diabetes (P=0.048), even after controlling for age, gender, socio-economic status, blood glucose level at time of testing and verbal IQ (P=0.01). History of severe hypoglycaemia or ketoacidosis was not associated with differences in academic abilities. CONCLUSIONS In children and young people, Type 1 diabetes was associated with a lower verbal IQ. Moreover, increased exposure to hyperglycaemia was associated with lower spelling performance. These results imply that hyperglycaemia can affect cognitive function and/or learning processes that may affect academic achievement.
Collapse
Affiliation(s)
- K Semenkovich
- Departments of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - P P Patel
- Departments of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - A B Pollock
- Department of Occupational Therapy, Washington University School of Medicine, St. Louis, MO, USA
| | - K A Beach
- Departments of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - S Nelson
- Department of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - J J Masterson
- Department of Communication Sciences and Disorders, Missouri State University, Springfield, MO, USA
| | - T Hershey
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - A M Arbeláez
- Departments of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
19
|
Ullman MT, Pullman MY. A compensatory role for declarative memory in neurodevelopmental disorders. Neurosci Biobehav Rev 2015; 51:205-22. [PMID: 25597655 PMCID: PMC4359651 DOI: 10.1016/j.neubiorev.2015.01.008] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 12/17/2014] [Accepted: 01/08/2015] [Indexed: 11/20/2022]
Abstract
Most research on neurodevelopmental disorders has focused on their abnormalities. However, what remains intact may also be important. Increasing evidence suggests that declarative memory, a critical learning and memory system in the brain, remains largely functional in a number of neurodevelopmental disorders. Because declarative memory remains functional in these disorders, and because it can learn and retain numerous types of information, functions, and tasks, this system should be able to play compensatory roles for multiple types of impairments across the disorders. Here, we examine this hypothesis for specific language impairment, dyslexia, autism spectrum disorder, Tourette syndrome, and obsessive-compulsive disorder. We lay out specific predictions for the hypothesis and review existing behavioral, electrophysiological, and neuroimaging evidence. Overall, the evidence suggests that declarative memory indeed plays compensatory roles for a range of impairments across all five disorders. Finally, we discuss diagnostic, therapeutic and other implications.
Collapse
Affiliation(s)
- Michael T Ullman
- Brain and Language Laboratory, Department of Neuroscience, Georgetown University, Box 571464, Washington, DC 20057-1464, United States.
| | - Mariel Y Pullman
- Brain and Language Laboratory, Department of Neuroscience, Georgetown University, Box 571464, Washington, DC 20057-1464, United States
| |
Collapse
|
20
|
Motor skill learning is associated with diffusion characteristics of white matter in individuals with chronic stroke. J Neurol Phys Ther 2015; 38:151-60. [PMID: 23934017 DOI: 10.1097/npt.0b013e3182a3d353] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND PURPOSE Imaging advances allow investigation of white matter after stroke; a growing body of literature has shown links between diffusion-based measures of white matter microstructure and motor function. However, the relationship between these measures and motor skill learning has not been considered in individuals with stroke. The aim of this study was to investigate the relationships between posttraining white matter microstructural status, as indexed by diffusion tensor imaging within the ipsilesional posterior limb of the internal capsule (PLIC), and learning of a novel motor task in individuals with chronic stroke. METHODS A total of 13 participants with chronic stroke and 9 healthy controls practiced a visuomotor pursuit task across 5 sessions. Change in motor behavior associated with learning was indexed by comparing baseline performance with a delayed retention test. Fractional anisotropy (FA) indexed at the retention test was the primary diffusion tensor imaging-derived outcome measure. RESULTS In individuals with chronic stroke, we discovered an association between posttraining ipsilesional PLIC FA and the magnitude of change associated with motor learning; hierarchical multiple linear regression analyses revealed that the combination of age, time poststroke, and ipsilesional PLIC FA posttraining was associated with motor learning-related change (R = 0.649; P = 0.02). Baseline motor performance was not related to posttraining ipsilesional PLIC FA. DISCUSSION AND CONCLUSIONS Diffusion characteristics of posttraining ipsilesional PLIC were linked to the magnitude of change in skilled motor behavior. These results imply that the microstructural properties of regional white matter indexed by diffusion behavior may be an important factor to consider when determining potential response to rehabilitation in persons with stroke. VIDEO ABSTRACT AVAILABLE (see Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A59) for more insights from the authors.
Collapse
|
21
|
Barquero LA, Davis N, Cutting LE. Neuroimaging of reading intervention: a systematic review and activation likelihood estimate meta-analysis. PLoS One 2014; 9:e83668. [PMID: 24427278 PMCID: PMC3888398 DOI: 10.1371/journal.pone.0083668] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 11/06/2013] [Indexed: 01/02/2023] Open
Abstract
A growing number of studies examine instructional training and brain activity. The purpose of this paper is to review the literature regarding neuroimaging of reading intervention, with a particular focus on reading difficulties (RD). To locate relevant studies, searches of peer-reviewed literature were conducted using electronic databases to search for studies from the imaging modalities of fMRI and MEG (including MSI) that explored reading intervention. Of the 96 identified studies, 22 met the inclusion criteria for descriptive analysis. A subset of these (8 fMRI experiments with post-intervention data) was subjected to activation likelihood estimate (ALE) meta-analysis to investigate differences in functional activation following reading intervention. Findings from the literature review suggest differences in functional activation of numerous brain regions associated with reading intervention, including bilateral inferior frontal, superior temporal, middle temporal, middle frontal, superior frontal, and postcentral gyri, as well as bilateral occipital cortex, inferior parietal lobules, thalami, and insulae. Findings from the meta-analysis indicate change in functional activation following reading intervention in the left thalamus, right insula/inferior frontal, left inferior frontal, right posterior cingulate, and left middle occipital gyri. Though these findings should be interpreted with caution due to the small number of studies and the disparate methodologies used, this paper is an effort to synthesize across studies and to guide future exploration of neuroimaging and reading intervention.
Collapse
Affiliation(s)
- Laura A. Barquero
- Department of Special Education, Peabody College, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Nicole Davis
- Department of Special Education, Peabody College, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Kennedy Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee, United States of America
| | - Laurie E. Cutting
- Department of Special Education, Peabody College, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Kennedy Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee, United States of America
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| |
Collapse
|
22
|
Wang S, Young KM. White matter plasticity in adulthood. Neuroscience 2013; 276:148-60. [PMID: 24161723 DOI: 10.1016/j.neuroscience.2013.10.018] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 01/24/2023]
Abstract
CNS white matter is subject to a novel form of neural plasticity which has been termed "myelin plasticity". It is well established that oligodendrocyte generation and the addition of new myelin internodes continue throughout normal adulthood. These new myelin internodes maybe required for the de novo myelination of previously unmyelinated axons, myelin sheath replacement, or even myelin remodeling. Each process could alter axonal conduction velocity, but to what end? We review the changes that occur within the white matter over the lifetime, the known regulators and mediators of white matter plasticity in the mature CNS, and the physiological role this plasticity may play in CNS function.
Collapse
Affiliation(s)
- S Wang
- Menzies Research Institute Tasmania, University of Tasmania, Hobart 7000, Australia
| | - K M Young
- Menzies Research Institute Tasmania, University of Tasmania, Hobart 7000, Australia.
| |
Collapse
|
23
|
Feldstein Ewing SW, Chung T. Neuroimaging mechanisms of change in psychotherapy for addictive behaviors: emerging translational approaches that bridge biology and behavior. PSYCHOLOGY OF ADDICTIVE BEHAVIORS 2013; 27:329-35. [PMID: 23815447 PMCID: PMC3864922 DOI: 10.1037/a0031491] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Research on mechanisms of behavior change provides an innovative method to improve treatment for addictive behaviors. An important extension of mechanisms of change research involves the use of translational approaches, which examine how basic biological (i.e., brain-based mechanisms) and behavioral factors interact in initiating and sustaining positive behavior change as a result of psychotherapy. Articles in this special issue include integrative conceptual reviews and innovative empirical research on brain-based mechanisms that may underlie risk for addictive behaviors and response to psychotherapy from adolescence through adulthood. Review articles discuss hypothesized mechanisms of change for cognitive and behavioral therapies, mindfulness-based interventions, and neuroeconomic approaches. Empirical articles cover a range of addictive behaviors, including use of alcohol, cigarettes, marijuana, cocaine, and pathological gambling and represent a variety of imaging approaches including fMRI, magneto-encephalography, real-time fMRI, and diffusion tensor imaging. Additionally, a few empirical studies directly examine brain-based mechanisms of change, whereas others examine brain-based indicators as predictors of treatment outcome. Finally, two commentaries discuss craving as a core feature of addiction, and the importance of a developmental approach to examining mechanisms of change. Ultimately, translational research on mechanisms of behavior change holds promise for increasing understanding of how psychotherapy may modify brain structure and functioning and facilitate the initiation and maintenance of positive treatment outcomes for addictive behaviors.
Collapse
Affiliation(s)
- Sarah W Feldstein Ewing
- University Honors College/University of New Mexico Center on Alcoholism, Substance Abuse, and Addiction, Albuquerque, NM 87131, USA.
| | | |
Collapse
|
24
|
Bishop DVM. Research Review: Emanuel Miller Memorial Lecture 2012 - neuroscientific studies of intervention for language impairment in children: interpretive and methodological problems. J Child Psychol Psychiatry 2013; 54:247-59. [PMID: 23278309 PMCID: PMC3593170 DOI: 10.1111/jcpp.12034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Our ability to look at structure and function of a living brain has increased exponentially since the early 1970s. Many studies of developmental disorders now routinely include a brain imaging or electrophysiological component. Amid current enthusiasm for applications of neuroscience to educational interventions, we need to pause to consider what neuroimaging data can tell us. Images of brain activity are seductive, and have been used to give credibility to commercial interventions, yet we have only a limited idea of what the brain bases of language disorders are, let alone how to alter them. SCOPE AND FINDINGS A review of six studies of neuroimaging correlates of language intervention found recurring methodological problems: lack of an adequate control group, inadequate power, incomplete reporting of data, no correction for multiple comparisons, data dredging and failure to analyse treatment effects appropriately. In addition, there is a tendency to regard neuroimaging data as more meaningful than behavioural data, even though it is behaviour that interventions aim to alter. CONCLUSION In our current state of knowledge, it would be better to spend research funds doing well-designed trials of behavioural treatment to establish which methods are effective, rather than rushing headlong into functional imaging studies of unproven treatments.
Collapse
Affiliation(s)
- D V M Bishop
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
| |
Collapse
|
25
|
Gebauer D, Fink A, Filippini N, Johansen-Berg H, Reishofer G, Koschutnig K, Kargl R, Purgstaller C, Fazekas F, Enzinger C. Differences in integrity of white matter and changes with training in spelling impaired children: a diffusion tensor imaging study. Brain Struct Funct 2012; 217:747-60. [PMID: 22198594 PMCID: PMC3672831 DOI: 10.1007/s00429-011-0371-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 12/06/2011] [Indexed: 01/18/2023]
Abstract
While the functional correlates of spelling impairment have been rarely investigated, to our knowledge no study exists regarding the structural characteristics of spelling impairment and potential changes with interventions. Using diffusion tensor imaging at 3.0 T, we here therefore sought to investigate (a) differences between children with poor spelling abilities (training group and waiting group) and controls, and (b) the effects of a morpheme-based spelling intervention in children with poor spelling abilities on DTI parameters. A baseline comparison of white matter indices revealed significant differences between controls and spelling-impaired children, mainly located in the right hemisphere (superior corona radiata (SCR), posterior limb of internal capsule, superior longitudinal fasciculus). After 5 weeks of training, spelling ability improved in the training group, along with increases in fractional anisotropy and decreases of radial diffusivity in the right hemisphere compared to controls. In addition, significantly higher decreases of mean diffusivity in the right SCR for the spelling-impaired training group compared to the waiting group were observed. Our results suggest that spelling impairment is associated with differences in white-matter integrity in the right hemisphere. We also provide first indications that white matter changes occur during successful training, but this needs to be more specifically addressed in future research.
Collapse
Affiliation(s)
- D Gebauer
- Department of Neurology, Medical University of Graz, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|