1
|
Radecke JO, Sprenger A, Stöckler H, Espeter L, Reichhardt MJ, Thomann LS, Erdbrügger T, Buschermöhle Y, Borgwardt S, Schneider TR, Gross J, Wolters CH, Lencer R. Normative tDCS over V5 and FEF reveals practice-induced modulation of extraretinal smooth pursuit mechanisms, but no specific stimulation effect. Sci Rep 2023; 13:21380. [PMID: 38049419 PMCID: PMC10695990 DOI: 10.1038/s41598-023-48313-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/24/2023] [Indexed: 12/06/2023] Open
Abstract
The neural networks subserving smooth pursuit eye movements (SPEM) provide an ideal model for investigating the interaction of sensory processing and motor control during ongoing movements. To better understand core plasticity aspects of sensorimotor processing for SPEM, normative sham, anodal or cathodal transcranial direct current stimulation (tDCS) was applied over visual area V5 and frontal eye fields (FEF) in sixty healthy participants. The identical within-subject paradigm was used to assess SPEM modulations by practice. While no specific tDCS effects were revealed, within- and between-session practice effects indicate plasticity of top-down extraretinal mechanisms that mainly affect SPEM in the absence of visual input and during SPEM initiation. To explore the potential of tDCS effects, individual electric field simulations were computed based on calibrated finite element head models and individual functional localization of V5 and FEF location (using functional MRI) and orientation (using combined EEG/MEG) was conducted. Simulations revealed only limited electric field target intensities induced by the applied normative tDCS montages but indicate the potential efficacy of personalized tDCS for the modulation of SPEM. In sum, results indicate the potential susceptibility of extraretinal SPEM control to targeted external neuromodulation (e.g., personalized tDCS) and intrinsic learning protocols.
Collapse
Affiliation(s)
- Jan-Ole Radecke
- Department of Psychiatry and Psychotherapy, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, 23562, Lübeck, Germany.
| | - Andreas Sprenger
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, 23562, Lübeck, Germany
- Department of Neurology, University of Lübeck, 23562, Lübeck, Germany
- Institute of Psychology II, University of Lübeck, 23562, Lübeck, Germany
| | - Hannah Stöckler
- Department of Psychiatry and Psychotherapy, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, 23562, Lübeck, Germany
| | - Lisa Espeter
- Department of Psychiatry and Psychotherapy, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, 23562, Lübeck, Germany
| | - Mandy-Josephine Reichhardt
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, 23562, Lübeck, Germany
- Institute of Psychology II, University of Lübeck, 23562, Lübeck, Germany
| | - Lara S Thomann
- Department of Psychiatry and Psychotherapy, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, 23562, Lübeck, Germany
| | - Tim Erdbrügger
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, 48149, Münster, Germany
| | - Yvonne Buschermöhle
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, 48149, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149, Münster, Germany
| | - Stefan Borgwardt
- Department of Psychiatry and Psychotherapy, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, 23562, Lübeck, Germany
| | - Till R Schneider
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Joachim Gross
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, 48149, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149, Münster, Germany
| | - Carsten H Wolters
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, 48149, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149, Münster, Germany
| | - Rebekka Lencer
- Department of Psychiatry and Psychotherapy, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, 23562, Lübeck, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149, Münster, Germany
- Institute for Translational Psychiatry, University of Münster, 48149, Münster, Germany
| |
Collapse
|
2
|
Schröder R, Keidel K, Trautner P, Radbruch A, Ettinger U. Neural mechanisms of background and velocity effects in smooth pursuit eye movements. Hum Brain Mapp 2022; 44:1002-1018. [PMID: 36331125 PMCID: PMC9875926 DOI: 10.1002/hbm.26127] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/30/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
Smooth pursuit eye movements (SPEM) are essential to guide behaviour in complex visual environments. SPEM accuracy is known to be degraded by the presence of a structured visual background and at higher target velocities. The aim of this preregistered study was to investigate the neural mechanisms of these robust behavioural effects. N = 33 participants performed a SPEM task with two background conditions (present and absent) at two target velocities (0.4 and 0.6 Hz). Eye movement and BOLD data were collected simultaneously. Both the presence of a structured background and faster target velocity decreased pursuit gain and increased catch-up saccade rate. Faster targets additionally increased position error. Higher BOLD response with background was found in extensive clusters in visual, parietal, and frontal areas (including the medial frontal eye fields; FEF) partially overlapping with the known SPEM network. Faster targets were associated with higher BOLD response in visual cortex and left lateral FEF. Task-based functional connectivity analyses (psychophysiological interactions; PPI) largely replicated previous results in the basic SPEM network but did not yield additional information regarding the neural underpinnings of the background and velocity effects. The results show that the presentation of visual background stimuli during SPEM induces activity in a widespread visuo-parieto-frontal network including areas contributing to cognitive aspects of oculomotor control such as medial FEF, whereas the response to higher target velocity involves visual and motor areas such as lateral FEF. Therefore, we were able to propose for the first time different functions of the medial and lateral FEF during SPEM.
Collapse
Affiliation(s)
| | - Kristof Keidel
- Department of PsychologyUniversity of BonnBonnGermany,Department of FinanceThe University of MelbourneAustralia
| | - Peter Trautner
- Institute for Experimental Epileptology and Cognition ResearchUniversity of BonnBonnGermany
| | - Alexander Radbruch
- Clinic of NeuroradiologyUniversity HospitalBonnGermany,Clinical NeuroimagingGerman Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | | |
Collapse
|
3
|
Schröder R, Kasparbauer AM, Meyhöfer I, Steffens M, Trautner P, Ettinger U. Functional connectivity during smooth pursuit eye movements. J Neurophysiol 2020; 124:1839-1856. [PMID: 32997563 DOI: 10.1152/jn.00317.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Smooth pursuit eye movements (SPEM) hold the image of a slowly moving stimulus on the fovea. The neural system underlying SPEM primarily includes visual, parietal, and frontal areas. In the present study, we investigated how these areas are functionally coupled and how these couplings are influenced by target motion frequency. To this end, healthy participants (n = 57) were instructed to follow a sinusoidal target stimulus moving horizontally at two different frequencies (0.2 Hz, 0.4 Hz). Eye movements and blood oxygen level-dependent (BOLD) activity were recorded simultaneously. Functional connectivity of the key areas of the SPEM network was investigated with a psychophysiological interaction (PPI) approach. How activity in five eye movement-related seed regions (lateral geniculate nucleus, V1, V5, posterior parietal cortex, frontal eye fields) relates to activity in other parts of the brain during SPEM was analyzed. The behavioral results showed clear deterioration of SPEM performance at higher target frequency. BOLD activity during SPEM versus fixation occurred in a geniculo-occipito-parieto-frontal network, replicating previous findings. PPI analysis yielded widespread, partially overlapping networks. In particular, frontal eye fields and posterior parietal cortex showed task-dependent connectivity to large parts of the entire cortex, whereas other seed regions demonstrated more regionally focused connectivity. Higher target frequency was associated with stronger activations in visual areas but had no effect on functional connectivity. In summary, the results confirm and extend previous knowledge regarding the neural mechanisms underlying SPEM and provide a valuable basis for further investigations such as in patients with SPEM impairments and known alterations in brain connectivity.NEW & NOTEWORTHY This study provides a comprehensive investigation of blood oxygen level-dependent (BOLD) functional connectivity during smooth pursuit eye movements. Results from a large sample of healthy participants suggest that key oculomotor regions interact closely with each other but also with regions not primarily associated with eye movements. Understanding functional connectivity during smooth pursuit is important, given its potential role as an endophenotype of psychoses.
Collapse
Affiliation(s)
| | | | - Inga Meyhöfer
- Department of Psychology, University of Bonn, Bonn, Germany
| | - Maria Steffens
- Department of Psychology, University of Bonn, Bonn, Germany
| | - Peter Trautner
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany.,Core Facility MRI, Bonn Technology Campus, University of Bonn, Bonn, Germany
| | | |
Collapse
|
4
|
Morita K, Miura K, Kasai K, Hashimoto R. Eye movement characteristics in schizophrenia: A recent update with clinical implications. Neuropsychopharmacol Rep 2019; 40:2-9. [PMID: 31774633 PMCID: PMC7292223 DOI: 10.1002/npr2.12087] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 12/19/2022] Open
Abstract
Eye movements are indispensable for the collection of visual information in everyday life. Many findings regarding the neural basis of eye movements have been accumulated from neurophysiological and psychophysical studies. In the field of psychiatry, studies on eye movement characteristics in mental illnesses have been conducted since the early 1900s. Participants with schizophrenia are known to have characteristic eye movements during smooth pursuit, saccade control, and visual search. Recently, studies evaluating eye movement characteristics as biomarkers for schizophrenia have attracted considerable attention. In this article, we review the neurophysiological basis of eye movement control and eye movement characteristics in schizophrenia. Furthermore, we discuss the prospects for eye movements as biomarkers for mental illnesses.
Collapse
Affiliation(s)
- Kentaro Morita
- Department of Rehabilitation, University of Tokyo Hospital, Tokyo, Japan.,Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenichiro Miura
- Department of Pathology of Mental Diseases, National Center of Neurology and Psychiatry, National Institute of Mental Health, Tokyo, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Center of Neurology and Psychiatry, National Institute of Mental Health, Tokyo, Japan.,Osaka University, Osaka, Japan
| |
Collapse
|
5
|
Silberg JE, Agtzidis I, Startsev M, Fasshauer T, Silling K, Sprenger A, Dorr M, Lencer R. Free visual exploration of natural movies in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2019; 269:407-418. [PMID: 29305645 DOI: 10.1007/s00406-017-0863-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 12/28/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Eye tracking dysfunction (ETD) observed with standard pursuit stimuli represents a well-established biomarker for schizophrenia. How ETD may manifest during free visual exploration of real-life movies is unclear. METHODS Eye movements were recorded (EyeLink®1000) while 26 schizophrenia patients and 25 healthy age-matched controls freely explored nine uncut movies and nine pictures of real-life situations for 20 s each. Subsequently, participants were shown still shots of these scenes to decide whether they had explored them as movies or pictures. Participants were additionally assessed on standard eye-tracking tasks. RESULTS Patients made smaller saccades (movies (p = 0.003), pictures (p = 0.002)) and had a stronger central bias (movies and pictures (p < 0.001)) than controls. In movies, patients' exploration behavior was less driven by image-defined, bottom-up stimulus saliency than controls (p < 0.05). Proportions of pursuit tracking on movies differed between groups depending on the individual movie (group*movie p = 0.011, movie p < 0.001). Eye velocity on standard pursuit stimuli was reduced in patients (p = 0.029) but did not correlate with pursuit behavior on movies. Additionally, patients obtained lower rates of correctly identified still shots as movies or pictures (p = 0.046). CONCLUSION Our results suggest a restricted centrally focused visual exploration behavior in patients not only on pictures, but also on movies of real-life scenes. While ETD observed in the laboratory cannot be directly transferred to natural viewing conditions, these alterations support a model of impairments in motion information processing in patients resulting in a reduced ability to perceive moving objects and less saliency driven exploration behavior presumably contributing to alterations in the perception of the natural environment.
Collapse
Affiliation(s)
- Johanna Elisa Silberg
- Department of Psychiatry and Psychotherapy, University of Muenster, Albert-Schweitzer-Campus 1, Geb. A9, 48149, Muenster, Germany
| | - Ioannis Agtzidis
- Chair of Human-Machine Communication, Technical University Munich, Munich, Germany
| | - Mikhail Startsev
- Chair of Human-Machine Communication, Technical University Munich, Munich, Germany
| | - Teresa Fasshauer
- Department of Psychiatry and Psychotherapy, University of Muenster, Albert-Schweitzer-Campus 1, Geb. A9, 48149, Muenster, Germany
| | - Karen Silling
- Department of Psychiatry and Psychotherapy, University of Muenster, Albert-Schweitzer-Campus 1, Geb. A9, 48149, Muenster, Germany
| | - Andreas Sprenger
- Department of Neurology and Institute of Psychology II, University of Luebeck, Lübeck, Germany
| | - Michael Dorr
- Chair of Human-Machine Communication, Technical University Munich, Munich, Germany
| | - Rebekka Lencer
- Department of Psychiatry and Psychotherapy, University of Muenster, Albert-Schweitzer-Campus 1, Geb. A9, 48149, Muenster, Germany. .,Otto-Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany.
| |
Collapse
|
6
|
Blignaut P, van Rensburg EJ, Oberholzer M. Visualization and quantification of eye tracking data for the evaluation of oculomotor function. Heliyon 2019; 5:e01127. [PMID: 30705982 PMCID: PMC6348242 DOI: 10.1016/j.heliyon.2019.e01127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/30/2018] [Accepted: 01/04/2019] [Indexed: 12/03/2022] Open
Abstract
Oculomotor dysfunction may originate from physical, physiological or psychological causes and may be a marker for schizophrenia or other disorders. Observational tests for oculomotor dysfunction are easy to administer, but are subjective and transient, and it is difficult to quantify deviations. To date, video-based eye tracking systems have not provided a contextual overview of gaze data that integrates the eye video recording with the stimulus and gaze data together with quantitative feedback of metrics in relation to typical values. A system was developed with an interactive timeline to allow the analyst to scroll through a recording frame-by-frame while comparing data from three different sources. The visual and integrated nature of the analysis allows localisation and quantification of saccadic under- and overshoots as well as determination of the frequency and amplitude of catch-up and anticipatory saccades. Clinicians will be able to apply their expertise to diagnose disorders based on abnormal patterns in the gaze plots. They can use the line charts to quantify deviations from benchmark values for reaction time, saccadic accuracy and smooth pursuit gain. A clinician can refer to the eye video at any time to confirm that observed deviations originated from gaze behaviour and not from systemic errors.
Collapse
Affiliation(s)
- Pieter Blignaut
- Department of Computer Science and Informatics, University of the Free State, South Africa
| | | | | |
Collapse
|
7
|
Abstract
Although the 45-dots calibration routine of a previous study ( 2) provided very good accuracy, it requires intense mental effort and the routine proved to be unsuccessful for young children who struggle to maintain concentration. The calibration procedures that are normally used for difficult-to-calibrate participants, such as autistic children and infants, do not suffice since they are not accurate enough and the reliability of research results might be jeopardised. Smooth pursuit has been used before for calibration and is applied in this paper as an alternative routine for participants who are difficult to calibrate with conventional routines. Gaze data is captured at regular intervals and many calibration targets are generated while the eyes are following a moving target. The procedure could take anything between 30 s and 60 s to complete, but since an interesting target and/or a conscious task may be used, participants are assisted to maintain concentration. It was proven that the accuracy that can be attained through calibration with a moving target along an even horizontal path is not significantly worse than the accura-cy that can be attained with a standard method of watching dots appearing in random order. The routine was applied successfully for a group of children with ADD, ADHD and learning abilities. This result is important as it provides for easier calibration - especially in the case of participants who struggle to keep their gaze focused and stable on a stationary target for long enough.
Collapse
|
8
|
Trillenberg P, Sprenger A, Talamo S, Herold K, Helmchen C, Verleger R, Lencer R. Visual and non-visual motion information processing during pursuit eye tracking in schizophrenia and bipolar disorder. Eur Arch Psychiatry Clin Neurosci 2017; 267:225-235. [PMID: 26816222 DOI: 10.1007/s00406-016-0671-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 01/11/2016] [Indexed: 11/29/2022]
Abstract
Despite many reports on visual processing deficits in psychotic disorders, studies are needed on the integration of visual and non-visual components of eye movement control to improve the understanding of sensorimotor information processing in these disorders. Non-visual inputs to eye movement control include prediction of future target velocity from extrapolation of past visual target movement and anticipation of future target movements. It is unclear whether non-visual input is impaired in patients with schizophrenia. We recorded smooth pursuit eye movements in 21 patients with schizophrenia spectrum disorder, 22 patients with bipolar disorder, and 24 controls. In a foveo-fugal ramp task, the target was either continuously visible or was blanked during movement. We determined peak gain (measuring overall performance), initial eye acceleration (measuring visually driven pursuit), deceleration after target extinction (measuring prediction), eye velocity drifts before onset of target visibility (measuring anticipation), and residual gain during blanking intervals (measuring anticipation and prediction). In both patient groups, initial eye acceleration was decreased and the ability to adjust eye acceleration to increasing target acceleration was impaired. In contrast, neither deceleration nor eye drift velocity was reduced in patients, implying unimpaired non-visual contributions to pursuit drive. Disturbances of eye movement control in psychotic disorders appear to be a consequence of deficits in sensorimotor transformation rather than a pure failure in adding cognitive contributions to pursuit drive in higher-order cortical circuits. More generally, this deficit might reflect a fundamental imbalance between processing external input and acting according to internal preferences.
Collapse
Affiliation(s)
| | - Andreas Sprenger
- Department of Neurology, University of Lübeck, Lübeck, Germany.,Institute of Psychology II, University of Lübeck, Lübeck, Germany
| | - Silke Talamo
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Kirsten Herold
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | | | - Rolf Verleger
- Department of Neurology, University of Lübeck, Lübeck, Germany.,Institute of Psychology II, University of Lübeck, Lübeck, Germany
| | - Rebekka Lencer
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany. .,Department of Psychiatry and Psychotherapy, University of Münster, Albert-Schweitzer-Campus 1, Geb. A9, 48149, Münster, Germany.
| |
Collapse
|
9
|
Steffens M, Becker B, Neumann C, Kasparbauer AM, Meyhöfer I, Weber B, Mehta MA, Hurlemann R, Ettinger U. Effects of ketamine on brain function during smooth pursuit eye movements. Hum Brain Mapp 2016; 37:4047-4060. [PMID: 27342447 PMCID: PMC6867533 DOI: 10.1002/hbm.23294] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/18/2016] [Accepted: 06/13/2016] [Indexed: 11/07/2022] Open
Abstract
The uncompetitive NMDA receptor antagonist ketamine has been proposed to model symptoms of psychosis. Smooth pursuit eye movements (SPEM) are an established biomarker of schizophrenia. SPEM performance has been shown to be impaired in the schizophrenia spectrum and during ketamine administration in healthy volunteers. However, the neural mechanisms mediating SPEM impairments during ketamine administration are unknown. In a counter-balanced, placebo-controlled, double-blind, within-subjects design, 27 healthy participants received intravenous racemic ketamine (100 ng/mL target plasma concentration) on one of two assessment days and placebo (intravenous saline) on the other. Participants performed a block-design SPEM task during functional magnetic resonance imaging (fMRI) at 3 Tesla field strength. Self-ratings of psychosis-like experiences were obtained using the Psychotomimetic States Inventory (PSI). Ketamine administration induced psychosis-like symptoms, during ketamine infusion, participants showed increased ratings on the PSI dimensions cognitive disorganization, delusional thinking, perceptual distortion and mania. Ketamine led to robust deficits in SPEM performance, which were accompanied by reduced blood oxygen level dependent (BOLD) signal in the SPEM network including primary visual cortex, area V5 and the right frontal eye field (FEF), compared to placebo. A measure of connectivity with V5 and FEF as seed regions, however, was not significantly affected by ketamine. These results are similar to the deviations found in schizophrenia patients. Our findings support the role of glutamate dysfunction in impaired smooth pursuit performance and the use of ketamine as a pharmacological model of psychosis, especially when combined with oculomotor biomarkers. Hum Brain Mapp 37:4047-4060, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- M Steffens
- Department of Psychology, University of Bonn, Bonn, Germany
| | - B Becker
- Department of Psychiatry and Division of Medical Psychology, University of Bonn, Bonn, Germany
| | - C Neumann
- Department of Anesthesiology, University of Bonn, Bonn, Germany
| | | | - I Meyhöfer
- Department of Psychology, University of Bonn, Bonn, Germany
| | - B Weber
- Center for Economics and Neuroscience, University of Bonn, Bonn, Germany
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Department of NeuroCognition/Imaging, Life&Brain Research Center, Bonn, Germany
| | - M A Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - R Hurlemann
- Department of Psychiatry and Division of Medical Psychology, University of Bonn, Bonn, Germany
| | - U Ettinger
- Department of Psychology, University of Bonn, Bonn, Germany.
| |
Collapse
|
10
|
Neural effects of methylphenidate and nicotine during smooth pursuit eye movements. Neuroimage 2016; 141:52-59. [DOI: 10.1016/j.neuroimage.2016.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/13/2016] [Accepted: 07/06/2016] [Indexed: 12/11/2022] Open
|
11
|
Schwab S, Jost M, Altorfer A. Impaired top-down modulation of saccadic latencies in patients with schizophrenia but not in first-degree relatives. Front Behav Neurosci 2015; 9:44. [PMID: 25759644 PMCID: PMC4338814 DOI: 10.3389/fnbeh.2015.00044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/06/2015] [Indexed: 02/03/2023] Open
Abstract
Impaired eye movements have a long history in schizophrenia research and meet the criteria of a reliable biomarker. However, the effects of cognitive load and task difficulty on saccadic latencies (SL) are less understood. Recent studies showed that SL are strongly task dependent: SL are decreased in tasks with higher cognitive demand, and increased in tasks with lower cognitive demand. The present study investigates SL modulation in patients with schizophrenia and their first-degree relatives. A group of 13 patients suffering from ICD-10 schizophrenia, 10 first-degree relatives, and 24 control subjects performed two different types of visual tasks: a color task and a Landolt ring orientation task. We used video-based oculography to measure SL. We found that patients exhibited a similar unspecific SL pattern in the two different tasks, whereas controls and relatives exhibited 20–26% shorter average latencies in the orientation task (higher cognitive demand) compared to the color task (lower cognitive demand). Also, classification performance using support vector machines suggests that relatives should be assigned to the healthy controls and not to the patient group. Therefore, visual processing of different content does not modulate SL in patients with schizophrenia, but modulates SL in the relatives and healthy controls. The results reflect a specific oculomotor attentional dysfunction in patients with schizophrenia that is a potential state marker, possibly caused by impaired top-down disinhibition of the superior colliculus by frontal/prefrontal areas such as the frontal eye fields.
Collapse
Affiliation(s)
- Simon Schwab
- Department of Psychiatric Neurophysiology, University Hospital of Psychiatry, University of Bern , Bern , Switzerland
| | - Miriam Jost
- Department of Psychiatric Neurophysiology, University Hospital of Psychiatry, University of Bern , Bern , Switzerland
| | - Andreas Altorfer
- Department of Psychiatric Neurophysiology, University Hospital of Psychiatry, University of Bern , Bern , Switzerland
| |
Collapse
|
12
|
Meyhöfer I, Steffens M, Kasparbauer A, Grant P, Weber B, Ettinger U. Neural mechanisms of smooth pursuit eye movements in schizotypy. Hum Brain Mapp 2014; 36:340-53. [PMID: 25197013 DOI: 10.1002/hbm.22632] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/29/2014] [Accepted: 08/29/2014] [Indexed: 11/11/2022] Open
Abstract
Patients with schizophrenia as well as individuals with high levels of schizotypy are known to have deficits in smooth pursuit eye movements (SPEM). Here, we investigated, for the first time, the neural mechanisms underlying SPEM performance in high schizotypy. Thirty-one healthy participants [N = 19 low schizotypes, N = 12 high schizotypes (HS)] underwent functional magnetic resonance imaging at 3T with concurrent oculographic recording while performing a SPEM task with sinusoidal stimuli at two velocities (0.2 and 0.4 Hz). Behaviorally, a significant interaction between schizotypy group and velocity was found for frequency of saccades during SPEM, indicating impairments in HS in the slow but not the fast condition. On the neural level, HS demonstrated lower brain activation in different regions of the occipital lobe known to be associated with early sensory and attentional processing and motion perception (V3A, middle occipital gyrus, and fusiform gyrus). This group difference in neural activation was independent of target velocity. Together, these findings replicate the observation of altered pursuit performance in highly schizotypal individuals and, for the first time, identify brain activation patterns accompanying these performance changes. These posterior activation differences are compatible with evidence of motion processing deficits from the schizophrenia literature and, therefore, suggest overlap between schizotypy and schizophrenia both on cognitive-perceptual and neurophysiological levels. However, deficits in frontal motor areas observed during pursuit in schizophrenia were not seen here, suggesting the operation of additional genetic and/or illness-related influences in the clinical disorder.
Collapse
Affiliation(s)
- Inga Meyhöfer
- Department of Psychology, University of Bonn, Bonn, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Franco JG, de Pablo J, Gaviria AM, Sepúlveda E, Vilella E. Smooth pursuit eye movements and schizophrenia: literature review. ARCHIVOS DE LA SOCIEDAD ESPANOLA DE OFTALMOLOGIA 2014; 89:361-367. [PMID: 24954020 DOI: 10.1016/j.oftal.2014.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/27/2013] [Accepted: 02/09/2014] [Indexed: 06/03/2023]
Abstract
OBJECTIVE To review the scientific literature about the relationship between impairment on smooth pursuit eye movements and schizophrenia. METHODS Narrative review that includes historical articles, reports about basic and clinical investigation, systematic reviews, and meta-analysis on the topic. RESULTS Up to 80% of schizophrenic patients have impairment of smooth pursuit eye movements. Despite the diversity of test protocols, 65% of patients and controls are correctly classified by their overall performance during this pursuit. The smooth pursuit eye movements depend on the ability to anticipate the target's velocity and the visual feedback, as well as on learning and attention. The neuroanatomy implicated in smooth pursuit overlaps to some extent with certain frontal cortex zones associated with some clinical and neuropsychological characteristics of the schizophrenia, therefore some specific components of smooth pursuit anomalies could serve as biomarkers of the disease. Due to their sedative effect, antipsychotics have a deleterious effect on smooth pursuit eye movements, thus these movements cannot be used to evaluate the efficacy of the currently available treatments. CONCLUSION Standardized evaluation of smooth pursuit eye movements on schizophrenia will allow to use specific aspects of that pursuit as biomarkers for the study of its genetics, psychopathology, or neuropsychology.
Collapse
Affiliation(s)
- J G Franco
- Hospital Universitari Institut Pere Mata. Universitat Rovira i Virgili, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Institut d'Investigació Sanitària Pere Virgili, IISPV, Reus, Tarragona, España.
| | - J de Pablo
- Hospital Universitari Institut Pere Mata. Universitat Rovira i Virgili, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Institut d'Investigació Sanitària Pere Virgili, IISPV, Reus, Tarragona, España
| | - A M Gaviria
- Hospital Universitari Institut Pere Mata. Universitat Rovira i Virgili, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Institut d'Investigació Sanitària Pere Virgili, IISPV, Reus, Tarragona, España
| | - E Sepúlveda
- Hospital Universitari Institut Pere Mata. Universitat Rovira i Virgili, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Institut d'Investigació Sanitària Pere Virgili, IISPV, Reus, Tarragona, España
| | - E Vilella
- Hospital Universitari Institut Pere Mata. Universitat Rovira i Virgili, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Institut d'Investigació Sanitària Pere Virgili, IISPV, Reus, Tarragona, España
| |
Collapse
|
14
|
Bolding MS, Lahti AC, White D, Moore C, Gurler D, Gawne TJ, Gamlin PD. Vergence eye movements in patients with schizophrenia. Vision Res 2014; 102:64-70. [PMID: 25088242 PMCID: PMC4180079 DOI: 10.1016/j.visres.2014.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/22/2014] [Accepted: 07/23/2014] [Indexed: 11/16/2022]
Abstract
Previous studies have shown that smooth pursuit eye movements are impaired in patients with schizophrenia. However, under normal viewing conditions, targets move not only in the frontoparallel plane but also in depth, and tracking them requires both smooth pursuit and vergence eye movements. Although previous studies in humans and non-human primates suggest that these two eye movement subsystems are relatively independent of one another, to our knowledge, there have been no prior studies of vergence tracking behavior in patients with schizophrenia. Therefore, we have investigated these eye movements in patients with schizophrenia and in healthy controls. We found that patients with schizophrenia exhibited substantially lower gains compared to healthy controls during vergence tracking at all tested speeds (e.g. 0.25 Hz vergence tracking mean gain of 0.59 vs. 0.86). Further, consistent with previous reports, patients with schizophrenia exhibited significantly lower gains than healthy controls during smooth pursuit at higher target speeds (e.g. 0.5 Hz smooth pursuit mean gain of 0.64 vs. 0.73). In addition, there was a modest (r≈0.5), but significant, correlation between smooth pursuit and vergence tracking performance in patients with schizophrenia. Our observations clearly demonstrate substantial vergence tracking deficits in patients with schizophrenia. In these patients, deficits for smooth pursuit and vergence tracking are partially correlated suggesting overlap in the central control of smooth pursuit and vergence eye movements.
Collapse
Affiliation(s)
- Mark S Bolding
- Department of Radiology, University of Alabama at Birmingham, 619 19th Street South, GSB 315, Birmingham, AL 35294-0017, USA; Department of Vision Sciences, University of Alabama at Birmingham, 1530 3rd Avenue South, WORB 186, Birmingham, AL 35294-0017, USA
| | - Adrienne C Lahti
- Department of Psychiatry, University of Alabama at Birmingham, 1530 3rd Avenue South, SC 501, Birmingham, AL 35294-0017, USA
| | - David White
- Department of Psychiatry, University of Alabama at Birmingham, 1530 3rd Avenue South, SC 501, Birmingham, AL 35294-0017, USA
| | - Claire Moore
- Department of Radiology, University of Alabama at Birmingham, 619 19th Street South, GSB 315, Birmingham, AL 35294-0017, USA
| | - Demet Gurler
- Department of Radiology, University of Alabama at Birmingham, 619 19th Street South, GSB 315, Birmingham, AL 35294-0017, USA
| | - Timothy J Gawne
- Department of Vision Sciences, University of Alabama at Birmingham, 1530 3rd Avenue South, WORB 186, Birmingham, AL 35294-0017, USA
| | - Paul D Gamlin
- Department of Ophthalmology, 1103 Shelby Building, 1825 University Blvd., University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
15
|
Abstract
Abnormal smooth pursuit eye movements in patients with schizophrenia are often considered a consequence of impaired motion perception. Here we used a novel motion prediction task to assess the effects of abnormal pursuit on perception in human patients. Schizophrenia patients (n = 15) and healthy controls (n = 16) judged whether a briefly presented moving target ("ball") would hit/miss a stationary vertical line segment ("goal"). To relate prediction performance and pursuit directly, we manipulated eye movements: in half of the trials, observers smoothly tracked the ball; in the other half, they fixated on the goal. Strict quality criteria ensured that pursuit was initiated and that fixation was maintained. Controls were significantly better in trajectory prediction during pursuit than during fixation, their performance increased with presentation duration, and their pursuit gain and perceptual judgments were correlated. Such perceptual benefits during pursuit may be due to the use of extraretinal motion information estimated from an efference copy signal. With an overall lower performance in pursuit and perception, patients showed no such pursuit advantage and no correlation between pursuit gain and perception. Although patients' pursuit showed normal improvement with longer duration, their prediction performance failed to benefit from duration increases. This dissociation indicates relatively intact early visual motion processing, but a failure to use efference copy information. Impaired efference function in the sensory system may represent a general deficit in schizophrenia and thus contribute to symptoms and functional outcome impairments associated with the disorder.
Collapse
|
16
|
Schwab S, Würmle O, Razavi N, Müri RM, Altorfer A. Eye-head coordination abnormalities in schizophrenia. PLoS One 2013; 8:e74845. [PMID: 24040351 PMCID: PMC3769305 DOI: 10.1371/journal.pone.0074845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 08/08/2013] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Eye-movement abnormalities in schizophrenia are a well-established phenomenon that has been observed in many studies. In such studies, visual targets are usually presented in the center of the visual field, and the subject's head remains fixed. However, in every-day life, targets may also appear in the periphery. This study is among the first to investigate eye and head movements in schizophrenia by presenting targets in the periphery of the visual field. METHODOLOGY/PRINCIPAL FINDINGS Two different visual recognition tasks, color recognition and Landolt orientation tasks, were presented at the periphery (at a visual angle of 55° from the center of the field of view). Each subject viewed 96 trials, and all eye and head movements were simultaneously recorded using video-based oculography and magnetic motion tracking of the head. Data from 14 patients with schizophrenia and 14 controls were considered. The patients had similar saccadic latencies in both tasks, whereas controls had shorter saccadic latencies in the Landolt task. Patients performed more head movements, and had increased eye-head offsets during combined eye-head shifts than controls. CONCLUSIONS/SIGNIFICANCE Patients with schizophrenia may not be able to adapt to the two different tasks to the same extent as controls, as seen by the former's task-specific saccadic latency pattern. This can be interpreted as a specific oculomotoric attentional dysfunction and may support the hypothesis that schizophrenia patients have difficulties determining the relevance of stimuli. Patients may also show an uneconomic over-performance of head-movements, which is possibly caused by alterations in frontal executive function that impair the inhibition of head shifts. In addition, a model was created explaining 93% of the variance of the response times as a function of eye and head amplitude, which was only observed in the controls, indicating abnormal eye-head coordination in patients with schizophrenia.
Collapse
Affiliation(s)
- Simon Schwab
- Department of Psychiatric Neurophysiology, University Hospital of Psychiatry and University of Bern, Bern, Switzerland
- Center for Cognition, Learning and Memory, University of Bern, Bern, Switzerland
- * E-mail:
| | - Othmar Würmle
- Department of Psychiatric Neurophysiology, University Hospital of Psychiatry and University of Bern, Bern, Switzerland
| | - Nadja Razavi
- Department of Psychiatric Neurophysiology, University Hospital of Psychiatry and University of Bern, Bern, Switzerland
| | - René M. Müri
- Center for Cognition, Learning and Memory, University of Bern, Bern, Switzerland
- Perception and Eye Movement Laboratory, Departments of Neurology and Clinical Research, Inselspital and University of Bern, Bern, Switzerland
| | - Andreas Altorfer
- Department of Psychiatric Neurophysiology, University Hospital of Psychiatry and University of Bern, Bern, Switzerland
| |
Collapse
|
17
|
Egaña JI, Devia C, Mayol R, Parrini J, Orellana G, Ruiz A, Maldonado PE. Small Saccades and Image Complexity during Free Viewing of Natural Images in Schizophrenia. Front Psychiatry 2013; 4:37. [PMID: 23730291 PMCID: PMC3657715 DOI: 10.3389/fpsyt.2013.00037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 05/05/2013] [Indexed: 11/22/2022] Open
Abstract
In schizophrenia, patients display dysfunctions during the execution of simple visual tasks such as antisaccade or smooth pursuit. In more ecological scenarios, such as free viewing of natural images, patients appear to make fewer and longer visual fixations and display shorter scanpaths. It is not clear whether these measurements reflect alterations in their proficiency to perform basic eye movements, such as saccades and fixations, or are related to high-level mechanisms, such as exploration or attention. We utilized free exploration of natural images of different complexities as a model of an ecological context where normally operative mechanisms of visual control can be accurately measured. We quantified visual exploration as Euclidean distance, scanpaths, saccades, and visual fixation, using the standard SR-Research eye tracker algorithm (SR). We then compared this result with a computation that includes microsaccades (EM). We evaluated eight schizophrenia patients and corresponding healthy controls (HC). Next, we tested whether the decrement in the number of saccades and fixations, as well as their increment in duration reported previously in schizophrenia patients, resulted from the increasing occurrence of undetected microsaccades. We found that when utilizing the standard SR algorithm, patients displayed shorter scanpaths as well as fewer and shorter saccades and fixations. When we employed the EM algorithm, the differences in these parameters between patients and HC were no longer significant. On the other hand, we found that image complexity plays an important role in exploratory behaviors, demonstrating that this factor explains most of differences between eye-movement behaviors in schizophrenia patients. These results help elucidate the mechanisms of visual motor control that are affected in schizophrenia and contribute to the finding of adequate markers for diagnosis and treatment for this condition.
Collapse
Affiliation(s)
- Jose Ignacio Egaña
- Laboratorio de Neurosistemas, Programa de Fisiología y Biofísica, Facultad de Medicina, Universidad de ChileSantiago, Chile
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de ChileSantiago, Chile
- Departamento de Anestesiología y Reanimación, Hospital Clínico Universidad de ChileSantiago, Chile
| | - Christ Devia
- Laboratorio de Neurosistemas, Programa de Fisiología y Biofísica, Facultad de Medicina, Universidad de ChileSantiago, Chile
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de ChileSantiago, Chile
| | - Rocío Mayol
- Laboratorio de Neurosistemas, Programa de Fisiología y Biofísica, Facultad de Medicina, Universidad de ChileSantiago, Chile
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de ChileSantiago, Chile
| | - Javiera Parrini
- Departamento de Psiquiatría y Salud Mental, Campus Oriente, Facultad de Medicina, Universidad de ChileSantiago, Chile
| | - Gricel Orellana
- Departamento de Psiquiatría y Salud Mental, Campus Oriente, Facultad de Medicina, Universidad de ChileSantiago, Chile
| | - Aida Ruiz
- Departamento de Psiquiatría y Salud Mental, Campus Norte, Facultad de Medicina, Universidad de ChileSantiago, Chile
| | - Pedro E. Maldonado
- Laboratorio de Neurosistemas, Programa de Fisiología y Biofísica, Facultad de Medicina, Universidad de ChileSantiago, Chile
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de ChileSantiago, Chile
| |
Collapse
|