1
|
Hart KA, Kimura S. Pharmacologic Interventions to Immunologic and Immune-Mediated Conditions in Horses. Vet Clin North Am Equine Pract 2024; 40:307-339. [PMID: 38852015 DOI: 10.1016/j.cveq.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2024] Open
Abstract
Immunomodulators can stimulate, suppress, or regulate one or many aspects of the immune response. Use of a variety of immunostimulants, immunosuppressors, and anti-inflammatory drugs are described in horses, but the evidence supporting their efficacy is variable. Corticosteroids and nonsteroidal anti-inflammatory drugs are the best characterized immunomodulators in horses, but further study is needed to fully define their ideal dosing protocols and indications and to characterize the efficacy of other immunomodulators in equine medicine.
Collapse
Affiliation(s)
- Kelsey A Hart
- Department of Large Animal Medicine, University of Georgia College of Veterinary Medicine, 2200 College Station Road, Athens, GA 30602, USA.
| | - Shune Kimura
- Department of Large Animal Medicine, University of Georgia College of Veterinary Medicine, 2200 College Station Road, Athens, GA 30602, USA
| |
Collapse
|
2
|
Kustrimovic N, Bombelli R, Baci D, Mortara L. Microbiome and Prostate Cancer: A Novel Target for Prevention and Treatment. Int J Mol Sci 2023; 24:ijms24021511. [PMID: 36675055 PMCID: PMC9860633 DOI: 10.3390/ijms24021511] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Growing evidence of the microbiome's role in human health and disease has emerged since the creation of the Human Microbiome Project. Recent studies suggest that alterations in microbiota composition (dysbiosis) may play an essential role in the occurrence, development, and prognosis of prostate cancer (PCa), which remains the second most frequent male malignancy worldwide. Current advances in biological technologies, such as high-throughput sequencing, transcriptomics, and metabolomics, have enabled research on the gut, urinary, and intra-prostate microbiome signature and the correlation with local and systemic inflammation, host immunity response, and PCa progression. Several microbial species and their metabolites facilitate PCa insurgence through genotoxin-mediated mutagenesis or by driving tumor-promoting inflammation and dysfunctional immunosurveillance. However, the impact of the microbiome on PCa development, progression, and response to treatment is complex and needs to be fully understood. This review addresses the current knowledge on the host-microbe interaction and the risk of PCa, providing novel insights into the intraprostatic, gut, and urinary microbiome mechanisms leading to PCa carcinogenesis and treatment response. In this paper, we provide a detailed overview of diet changes, gut microbiome, and emerging therapeutic approaches related to the microbiome and PCa. Further investigation on the prostate-related microbiome and large-scale clinical trials testing the efficacy of microbiota modulation approaches may improve patient outcomes while fulfilling the literature gap of microbial-immune-cancer-cell mechanistic interactions.
Collapse
Affiliation(s)
- Natasa Kustrimovic
- Center for Translational Research on Autoimmune and Allergic Disease—CAAD, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Raffaella Bombelli
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Denisa Baci
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
- Correspondence:
| |
Collapse
|
3
|
Kraaijvanger R, Veltkamp M. The Role of Cutibacterium acnes in Sarcoidosis: From Antigen to Treatable Trait? Microorganisms 2022; 10:1649. [PMID: 36014067 PMCID: PMC9415339 DOI: 10.3390/microorganisms10081649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022] Open
Abstract
Cutibacterium acnes (C. acnes, formerly Propionibacterium acnes) is considered to be a non-pathogenic resident of the human skin, as well as mucosal surfaces. However, it also has been demonstrated that C. acnes plays a pathogenic role in diseases such as acne vulgaris or implant infections after orthopedic surgery. Besides a role in infectious disease, this bacterium also seems to harbor immunomodulatory effects demonstrated by studies using C. acnes to enhance anti-tumor activity in various cancers or vaccination response. Sarcoidosis is a systemic inflammatory disorder of unknown causes. Cultures of C. acnes in biopsy samples of sarcoidosis patients, its presence in BAL fluid, tissue samples as well as antibodies against this bacterium found in serum of patients with sarcoidosis suggest an etiological role in this disease. In this review we address the antigenic as well as immunomodulatory potential of C. acnes with a focus on sarcoidosis. Furthermore, a potential role for antibiotic treatment in patients with sarcoidosis will be explored.
Collapse
Affiliation(s)
- Raisa Kraaijvanger
- Interstitial Lung Diseases Centre of Excellence, Department of Pulmonology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands
| | - Marcel Veltkamp
- Interstitial Lung Diseases Centre of Excellence, Department of Pulmonology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands
- Division of Hearth and Lungs, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
4
|
Wu Y, Zhang G, Zhou M. Inhibitory and anti-inflammatory effects of two antimicrobial peptides moronecidin and temporin-1Dra against Propionibacterium acnes in vitro and in vivo. J Pept Sci 2020; 26:e3255. [PMID: 32567152 DOI: 10.1002/psc.3255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/20/2020] [Accepted: 05/10/2020] [Indexed: 12/30/2022]
Abstract
Proliferation of Propionibacterium acnes (P. acnes) is one of the main pathogenetic mechanisms of acne. Antimicrobial peptides with low-drug resistance and nonresidual are potential anti-acne agents. In this study, two antimicrobial peptides named temporin-1Dra and moronecidin were synthesized and tested their antimicrobial activity against P. acnes in vitro and in vivo. These two peptides inhibited the growth of Escherichia coli, Staphylococcus aureus, Candida albicans, and P. acnes. The minimal inhibitory concentrations (MICs) of temporin-1Dra and moronecidin to P. acnes were 30 and 10 μM, respectively. Both peptides exhibited strong resistance to heat and pH, but no obvious cytotoxicity to HaCaT cells. They also displayed persistent antimicrobial activities in the microbial challenge test. In the P. acnes-induced inflammation mouse model, moronecidin significantly decreased the ear swelling thickness in a concentration-dependent manner. At the 14th day after injection, 20 μg/day moronecidin reduced the ear swelling thickness to 46.15 ± 5.23% compared with the normal cream group. Tissue staining showed that moronecidin effectively reduced abscess and thickness of the dermis layer. Our results indicate that the antimicrobial peptide moronecidin could be developed as a potential natural anti-acne agent in the cosmetics or pharmaceutical industries.
Collapse
Affiliation(s)
- Yun Wu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Guangxian Zhang
- School of Fundamental Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Maojun Zhou
- Department of Oncology, Laboratory of Structural Biology, NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
5
|
Brüggemann H, Al-Zeer MA. Bacterial signatures and their inflammatory potentials associated with prostate cancer. APMIS 2020; 128:80-91. [PMID: 31990107 DOI: 10.1111/apm.13021] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
Chronic inflammation can create a microenvironment that can contribute to the formation of prostate pathologies. Far less well understood is the origin of inflammation in the prostate. One potential source is microbial infections of the prostate. This review summarizes recent findings regarding the presence of bacteria in the prostate and the dysbiosis of bacterial populations in the urinary tract and the gastrointestinal tract related to prostate cancer, thereby focusing on next-generation sequencing (NGS)-generated data. The current limitations regarding NGS-based detection methods and other difficulties in the quest for a microbial etiology for prostate cancer are discussed. We then focus on a few bacterial species, including Cutibacterium acnes and Escherichia coli that are often NGS-detected in prostatic tissue specimens, and discuss their possible contribution as initiator or enhancer of prostate inflammation and prostate carcinogenesis.
Collapse
Affiliation(s)
| | - Munir A Al-Zeer
- Institute of Biotechnology, Department of Applied Biochemistry, Technical University of Berlin, Berlin, Germany
| |
Collapse
|
6
|
Sfera A, Osorio C, Diaz EL, Maguire G, Cummings M. The Other Obesity Epidemic-Of Drugs and Bugs. Front Endocrinol (Lausanne) 2020; 11:488. [PMID: 32849279 PMCID: PMC7411001 DOI: 10.3389/fendo.2020.00488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic psychiatric patients with schizophrenia and related disorders are frequently treatment-resistant and may require higher doses of psychotropic drugs to remain stable. Prolonged exposure to these agents increases the risk of weight gain and cardiometabolic disorders, leading to poorer outcomes and higher medical cost. It is well-established that obesity has reached epidemic proportions throughout the world, however it is less known that its rates are two to three times higher in mentally ill patients compared to the general population. Psychotropic drugs have emerged as a major cause of weight gain, pointing to an urgent need for novel interventions to attenuate this unintended consequence. Recently, the gut microbial community has been linked to psychotropic drugs-induced obesity as these agents were found to possess antimicrobial properties and trigger intestinal dysbiosis, depleting Bacteroidetes phylum. Since germ-free animals exposed to psychotropics have not demonstrated weight gain, altered commensal flora composition is believed to be necessary and sufficient to induce dysmetabolism. Conversely, not only do psychotropics disrupt the composition of gut microbiota but the later alter the metabolism of the former. Here we review the role of gut bacterial community in psychotropic drugs metabolism and dysbiosis. We discuss potential biomarkers reflecting the status of Bacteroidetes phylum and take a closer look at nutritional interventions, fecal microbiota transplantation, and transcranial magnetic stimulation, strategies that may lower obesity rates in chronic psychiatric patients.
Collapse
Affiliation(s)
- Adonis Sfera
- Psychiatry, Loma Linda University, Loma Linda, CA, United States
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
- *Correspondence: Adonis Sfera
| | - Carolina Osorio
- Department of Psychiatry, Loma Linda University, Loma Linda, CA, United States
| | - Eddie Lee Diaz
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Gerald Maguire
- Department of Psychiatry, University of California, Riverside, Riverside, CA, United States
| | - Michael Cummings
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| |
Collapse
|
7
|
Corvec S. Clinical and Biological Features of Cutibacterium (Formerly Propionibacterium) avidum, an Underrecognized Microorganism. Clin Microbiol Rev 2018; 31:e00064-17. [PMID: 29848774 PMCID: PMC6056840 DOI: 10.1128/cmr.00064-17] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The recent description of the genus Cutibacterium has altered the taxonomy of Propionibacterium species. These organisms still belong to the genera of the skin coryneform group, and the most-studied species remains Cutibacterium acnes. Cutibacterium avidum is also a known skin commensal. This underrecognized microorganism can, however, act as a pathogen after bacterial seeding and can be considered opportunistic, causing either superficial or deep/invasive infections. It can cause numerous infections, including but not limited to breast infections, skin abscesses, infective endocarditis, and device-related infections. The ecological niche of C. avidum is clearly different from that of other members of the genus: it is found in the axillary region or at wet sites rather than in dry, exposed areas, and the number of microorganisms increases during puberty. Historically, it has been used for its ability to modulate the immune response and for its antitumor properties. Conventional microbial culture methods and identification processes allow for its accurate identification and characterization. Thanks to the modern omics tools used for phylogenomic approaches, understanding C. avidum pathogenesis (including host-bacterium interactions and virulence factor characterization) is becoming easier, allowing for more thorough molecular characterization. These analyses have revealed that C. avidum causes diverse diseases mediated by multiple virulence factors. The recent genome approach has revealed specific genomic regions within this species that are involved in adherence and biofilm formation as well as fitness, survival, and defense functions. Numerous regions show the presence of phages and horizontal gene transfer. C. avidum remains highly sensitive to a broad spectrum of antibiotics, such as β-lactams, fluoroquinolones, macrolides, and rifampin, although erythromycin and clindamycin resistance has been described. A long-term treatment regimen with a combination of antibiotics is required to successfully eliminate the remaining adherent bacteria, particularly in the case of deep infections after debridement surgery.
Collapse
Affiliation(s)
- Stéphane Corvec
- CHU Nantes, Service de Bactériologie-Hygiène Hospitalière, Nantes, France
- CRCINA, INSERM, U1232, Université de Nantes, Nantes, France
| |
Collapse
|
8
|
Kwon HH, Suh DH. Recent progress in the research aboutPropionibacterium acnesstrain diversity and acne: pathogen or bystander? Int J Dermatol 2016; 55:1196-1204. [DOI: 10.1111/ijd.13282] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 11/10/2015] [Accepted: 12/05/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Hyuck Hoon Kwon
- Department of Dermatology; Seoul National University College of Medicine and Acne & Rosacea Research Laboratory, Seoul National University Hospital; Seoul Korea
| | - Dae Hun Suh
- Department of Dermatology; Seoul National University College of Medicine and Acne & Rosacea Research Laboratory, Seoul National University Hospital; Seoul Korea
| |
Collapse
|
9
|
Martín-Nalda A, Roca I, Fontecha CG, Fernández-Polo A, Barber I, Martinez-Gallo M, Soler-Palacin P. Chronic Recurrent Multifocal Osteomyelitis and Thalidomide in Chronic Granulomatous Disease. Pediatrics 2016; 138:peds.2015-4017. [PMID: 27436506 DOI: 10.1542/peds.2015-4017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/13/2016] [Indexed: 11/24/2022] Open
Abstract
Chronic granulomatous disease (CGD) is a primary immunodeficiency that leads to severe recurrent infection and inflammatory complications that are usually difficult to diagnose and treat. Several hyperinflammation mechanisms, such as decreased neutrophil apoptosis, toll-like receptor activation imbalance, Th17 cell induction, Nrf2 activity deficiency, and inflammasome activation, have been described in CGD patients However, there have been no reports of chronic recurrent multifocal osteomyelitis as an inflammatory complication in CGD, and the differential diagnosis of this condition with infectious osteomyelitis is challenging. Thalidomide has been used to treat several inflammatory manifestations in CGD patients with good clinical results. Here, we report the case of a previously asymptomatic 11-year-old boy who consulted for difficulty walking and pain at the back of the right thigh, with increased inflammatory markers. Multifocal bone involvement was seen on bone scintigraphy, and acute-phase reactants were elevated. On the basis of a suspected diagnosis of infectious osteomyelitis, broad-spectrum antibiotic therapy was started, with no clinical response. Bone biopsy and microbiological tests yielded negative results; at that point, chronic recurrent multifocal osteomyelitis was suspected. The patient was unresponsive to nonsteroidal antiinflammatory drugs and corticosteroids. Thalidomide was started, and within 6 months, clinical and radiologic resolution of the condition was achieved with no adverse effects. More than 1 year after stopping thalidomide, the patient remained free of symptoms and inflammatory parameters are within normal levels. Thalidomide has a favorable safety profile compared with other alternatives and could be considered a feasible therapeutic option for this type of condition in selected patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Mónica Martinez-Gallo
- Division of Immunology, Hospital Universitari Vall d'Hebron, Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | |
Collapse
|
10
|
Schupp JC, Tchaptchet S, Lützen N, Engelhard P, Müller-Quernheim J, Freudenberg MA, Prasse A. Immune response to Propionibacterium acnes in patients with sarcoidosis--in vivo and in vitro. BMC Pulm Med 2015. [PMID: 26204953 PMCID: PMC4513400 DOI: 10.1186/s12890-015-0070-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Propionibacterium acnes was found in lungs and lymph nodes of patients with sarcoidosis and may induce hypersensitivity type granuloma formation. Data regarding the immune response to P. acnes of European sarcoid patients are scarce. METHODS We assessed the total IgG and IgA amount and specific antibodies to P. acnes and to Staphylococcus aureus, serving as a control, in BAL fluid of 64 patients with sarcoidosis and of 21 healthy volunteers. In a subcohort of sarcoid patients and controls, TNF-α and GM-CSF production of BAL cells stimulated with heat-killed P. acnes were measured. RESULTS In sarcoid patients, the total IgG and IgA levels in BAL fluid were significantly elevated compared to healthy volunteers. IgG and IgA titres against P. acnes and S. aureus were increased in sarcoid patients, yet based on the total amount of antibodies, only antibodies directed against P. acnes were relatively and significantly increased. Furthermore, BAL cells of sarcoid patients produced significantly more TNF-α and GM-CSF upon stimulation with heat-killed P. acnes compared to controls. CONCLUSIONS Patients with sarcoidosis had elevated levels of specific antibodies against P. acnes which suggest contact with this bacterium in the past. Furthermore, BAL cells of sarcoid patients produced inflammatory cytokines (TNF-α and GM-CSF) upon stimulation with P. acnes indicating potential involvement of this pathogen in the pathogenesis of sarcoidosis in some patients.
Collapse
Affiliation(s)
- Jonas Christian Schupp
- Department of Pneumology, University Medical Centre, Albert-Ludwigs University, Killianstr. 5, 79106, Freiburg, Germany.
| | - Sandrine Tchaptchet
- Department of Developmental Immunology, Max Planck Institute of Immunobiology und Epigenetics, Freiburg, Germany.
| | - Niklas Lützen
- Department of Pneumology, University Medical Centre, Albert-Ludwigs University, Killianstr. 5, 79106, Freiburg, Germany. .,Department of Radiology, University Medical Centre, Freiburg, Germany.
| | - Peggy Engelhard
- Department of Pneumology, University Medical Centre, Albert-Ludwigs University, Killianstr. 5, 79106, Freiburg, Germany. .,Faculty of Biology, University of Freiburg, Freiburg, Germany.
| | - Joachim Müller-Quernheim
- Department of Pneumology, University Medical Centre, Albert-Ludwigs University, Killianstr. 5, 79106, Freiburg, Germany.
| | - Marina A Freudenberg
- Department of Pneumology, University Medical Centre, Albert-Ludwigs University, Killianstr. 5, 79106, Freiburg, Germany. .,Department of Developmental Immunology, Max Planck Institute of Immunobiology und Epigenetics, Freiburg, Germany.
| | - Antje Prasse
- Department of Pneumology, University Medical Centre, Albert-Ludwigs University, Killianstr. 5, 79106, Freiburg, Germany. .,Department of Pneumology, Medical School, Hannover, Germany.
| |
Collapse
|
11
|
Propionibacterium acnes Augments Antitumor, Anti-Angiogenesis and Immunomodulatory Effects of Melatonin on Breast Cancer Implanted in Mice. PLoS One 2015; 10:e0124384. [PMID: 25919398 PMCID: PMC4412818 DOI: 10.1371/journal.pone.0124384] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 03/01/2015] [Indexed: 01/11/2023] Open
Abstract
Breast cancer is one of the most invasive cancers with high mortality. The immune stimulating Propionibacterium acnes is a Gram positive bacterium that has the ability to cause inflammation and activate Th1-type cytokine immune response. Antitumor response was associated with the inflammation induced by P. acnes, but the antitumor effect of this bacterium was not evaluated in combination with other agents. The aim of this study was to test the antitumor potential of a combination of melatonin and P. acnes against breast cancer implanted in mice. Balb/C mice were transplanted with EMT6/P cell line and in vivo antitumor effect was assessed for P. acnes, melatonin, and a combination of melatonin and P. acnes. Tumor and organs sections were examined using hematoxylin/eosin staining protocol, and TUNEL colorimetric assay was used to detect apoptosis. The expression of vascular endothelial growth factor (VEGF) was measured in tumor sections and serum levels of INF-γ, and IL-4 were measured to evaluate the immune system function. To evaluate the toxicity of our combination, AST and ALT levels were measured in the serum of treated mice. The combination of melatonin and P. acnes has high efficiency in targeting breast cancer in mice. Forty percent of treated mice were completely cured using this combination and the combination inhibited metastasis of cancer cells to other organs. The combination therapy reduced angiogenesis, exhibited no toxicity, induced apoptosis, and stimulates strong Th1-type cytokine antitumor immune response. The combination of melatonin and P. acnes represents a promising option to treat breast cancer. However, carful preclinical and clinical evaluation is needed before considering this combination for human therapy.
Collapse
|
12
|
Propionibacterium acnes: from commensal to opportunistic biofilm-associated implant pathogen. Clin Microbiol Rev 2015; 27:419-40. [PMID: 24982315 DOI: 10.1128/cmr.00092-13] [Citation(s) in RCA: 420] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Propionibacterium acnes is known primarily as a skin commensal. However, it can present as an opportunistic pathogen via bacterial seeding to cause invasive infections such as implant-associated infections. These infections have gained more attention due to improved diagnostic procedures, such as sonication of explanted foreign materials and prolonged cultivation time of up to 14 days for periprosthetic biopsy specimens, and improved molecular methods, such as broad-range 16S rRNA gene PCR. Implant-associated infections caused by P. acnes are most often described for shoulder prosthetic joint infections as well as cerebrovascular shunt infections, fibrosis of breast implants, and infections of cardiovascular devices. P. acnes causes disease through a number of virulence factors, such as biofilm formation. P. acnes is highly susceptible to a wide range of antibiotics, including beta-lactams, quinolones, clindamycin, and rifampin, although resistance to clindamycin is increasing. Treatment requires a combination of surgery and a prolonged antibiotic treatment regimen to successfully eliminate the remaining bacteria. Most authors suggest a course of 3 to 6 months of antibiotic treatment, including 2 to 6 weeks of intravenous treatment with a beta-lactam. While recently reported data showed a good efficacy of rifampin against P. acnes biofilms, prospective, randomized, controlled studies are needed to confirm evidence for combination treatment with rifampin, as has been performed for staphylococcal implant-associated infections.
Collapse
|
13
|
Proteome analysis of human sebaceous follicle infundibula extracted from healthy and acne-affected skin. PLoS One 2014; 9:e107908. [PMID: 25238151 PMCID: PMC4169578 DOI: 10.1371/journal.pone.0107908] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 08/23/2014] [Indexed: 12/15/2022] Open
Abstract
Acne vulgaris is a very common disease of the pilosebaceous unit of the human skin. The pathological processes of acne are not fully understood. To gain further insight sebaceous follicular casts were extracted from 18 healthy and 20 acne-affected individuals by cyanoacrylate-gel biopsies and further processed for mass spectrometry analysis, aiming at a proteomic analysis of the sebaceous follicular casts. Human as well as bacterial proteins were identified. Human proteins enriched in acne and normal samples were detected, respectively. Normal follicular casts are enriched in proteins such as prohibitins and peroxiredoxins which are involved in the protection from various stresses, including reactive oxygen species. By contrast, follicular casts extracted from acne-affected skin contained proteins involved in inflammation, wound healing and tissue remodeling. Among the most distinguishing proteins were myeloperoxidase, lactotransferrin, neutrophil elastase inhibitor and surprisingly, vimentin. The most significant biological process among all acne-enriched proteins was ‘response to a bacterium’. Identified bacterial proteins were exclusively from Propionibacterium acnes. The most abundant P. acnes proteins were surface-exposed dermatan sulphate adhesins, CAMP factors, and a so far uncharacterized lipase in follicular casts extracted from normal as well as acne-affected skin. This is a first proteomic study that identified human proteins together with proteins of the skin microbiota in sebaceous follicular casts.
Collapse
|
14
|
Critical role of myeloid differentiation factor 88 in necrotizing enterocolitis. Pediatr Res 2014; 75:707-15. [PMID: 24614801 DOI: 10.1038/pr.2014.39] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 12/21/2013] [Indexed: 02/05/2023]
Abstract
BACKGROUND The importance of toll-like receptor 4 in necrotizing enterocolitis (NEC) has been intensively studied, but its downstream signaling and the potential regulatory mechanisms remain unidentified. Our study focused on the role of myeloid differentiation factor 88 (MyD88), the first downstream adaptor of toll-like receptor 4 inflammatory and apoptotic signaling in the pathogenesis of NEC. METHODS MyD88 knockout (MyD88(-/-)-Ko) mice and lentivirus-mediated stable MyD88-knockdown cell line (IEC-6) were used. NEC was induced by formula gavage, cold, hypoxia, combined with lipopolysaccharide (LPS) in vivo, or LPS stimulation in vitro. NEC was evaluated by histology and multiple inflammatory cytokines. Enterocyte apoptosis was evaluated by terminal-deoxynucleoitidyl transferase-mediated nick end labeling (TUNEL) or Annexin analysis. Inflammatory or apoptotic molecules including NF-κB, Toll/IL-1R domain-containing adaptor-inducing IFN-β, interferon regulatory factor 3, Bax, Bcl-2, and caspases were examined by quantitative real-time PCR (qRT-PCR). RESULTS In the MyD88-Ko group, NEC severity and intestinal enterocyte apoptosis rate were reduced, the expression of NF-κB, caspases, and Bax, were all downregulated, while Toll/IL-1R domain-containing adaptor-inducing IFN-β and were upregulated, and antiapoptotic gene Bcl-2 remained stable. Cytokine levels of interleukin (IL)-6, IL-1β, and tumor necrosis factor-α (TNF-α) were also all decreased. CONCLUSION MyD88-dependent signaling is the prevailing inflammatory and apoptotic signaling in toll-like receptor 4 downstream signaling; MyD88-Ko resulted in reduced inflammatory severity and apoptosis, though MyD88-independent signaling can also be activated, but is of less dominant for the development of NEC.
Collapse
|
15
|
Autoinflammatory bone disorders: update on immunologic abnormalities and clues about possible triggers. Curr Opin Rheumatol 2014; 25:658-64. [PMID: 23917160 DOI: 10.1097/bor.0b013e328363eb08] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW To provide an update on the genetics and immunologic basis of autoinflammatory bone disorders including chronic recurrent multifocal osteomyelitis including the monogenic forms of the disease. RECENT FINDINGS Ongoing research in murine, canine and human models of sterile bone inflammation has solidified the hypothesis that sterile bone inflammation can be genetically driven. Mutations in Pstpip2, LPIN2 and IL1RN have been identified in monogenic autoinflammatory bone disorders that have allowed more detailed dissection of the immunologic defects that can produce sterile osteomyelitis. Recent studies in murine chronic multifocal osteomyelitis, deficiency of the interleukin-1 receptor antagonist (DIRA), Majeed syndrome and SAPHO syndrome reveal abnormalities in innate immune system function. IL-1 pathway dysregulation is present in several of these disorders and blocking IL-1 therapeutically has resulted in control of disease in DIRA, Majeed syndrome and in some cases of SAPHO and CRMO. Basic research demonstrates the importance of the innate immune system in disease pathogenesis and offers clues about potential disease triggers. SUMMARY Research and clinical data produced over the last several years support the important role of innate immunity in sterile osteomyelitis. Based on what has been learned in the monogenic autoinflammatory bone disorders, IL-1 is emerging as an important pathway in the development of sterile bone inflammation.
Collapse
|
16
|
González-Sánchez E, Corral MJ, Mohamed Fawzi E, Rodríguez-Bertos A, Alunda JM, Cuquerella M. LPS and inactivated Propionibacterium acnes elicit a partially protective response in primary infections of Heligmosomoides polygyrus. Vet Parasitol 2014; 203:231-6. [PMID: 24636785 DOI: 10.1016/j.vetpar.2014.02.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 01/14/2014] [Accepted: 02/12/2014] [Indexed: 01/31/2023]
Abstract
Intestinal helminth infections are common and of paramount economic importance in domestic animals. Available chemotherapy is limited and anthelmintic resistance is widespread in some hosts. This scenario favors the exploration of alternative methods of control, among them immune modulators. The effect of Escherichia coli LPS+Propionibacterium acnes on a primary infection of Heligmosomoides polygyrus (Trichostongyloidea) in mice has been tested. Nematode infection induced a rise of specific IgG1, both serum and intestinal, and a significant reduction in the unspecific (ConA) lymphoproliferative response. Treatment with the immune modulator (days -2, 0, 7 and 14 post infection) elicited an apparent delay of larval intramucosal development. Moreover cumulative nematode egg shedding in treated mice was significantly lower (p=0.0041). Preliminary results point toward the interest of immune modulators to control intestinal helminths.
Collapse
Affiliation(s)
- Elena González-Sánchez
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Spain
| | - María-Jesús Corral
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Spain
| | - Elshaima Mohamed Fawzi
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Spain
| | - Antonio Rodríguez-Bertos
- Department of Medicine and Surgery, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Spain
| | - José M Alunda
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Spain.
| | - Montserrat Cuquerella
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Spain
| |
Collapse
|
17
|
Specific humoral immune response induced by propionibacterium acnes can prevent Actinobacillus pleuropneumoniae infection in mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:407-16. [PMID: 24429068 DOI: 10.1128/cvi.00667-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Porcine contagious pleuropneumonia, caused by Actinobacillus pleuropneumoniae, has a major impact on economics, ecology, and animal welfare in the pig-rearing industry. Propionibacterium acnes, a facultative anaerobic Gram-positive corynebacterium, exists widely in normal healthy adult animals. We have shown previously that P. acnes can prevent A. pleuropneumoniae infections in mice and pigs. To elucidate the mechanism of this effect and to identify novel A. pleuropneumoniae vaccines, the role of anti-P. acnes antibodies in preventing infection was analyzed by indirect immunofluorescence and opsonophagocytosis assays in vitro. The role of the specific humoral immune response induced by P. acnes was confirmed in a B cell depletion mouse model. The survival rates of mice challenged with A. pleuropneumoniae exhibited a highly significant positive rank correlation with the levels of anti-P. acnes antibodies. The specific antibodies induced by P. acnes had the ability to combine with A. pleuropneumoniae and increase opsonization of A. pleuropneumoniae for phagocytosis. Furthermore, analysis in the murine B cell depletion model confirmed that the humoral immune response induced by P. acnes played an important role in resistance to A. pleuropneumoniae infection. In this study, we further elucidated the reasons that P. acnes can prevent A. pleuropneumoniae infection, which provides useful evidence for the development of heterologous vaccines for the control of porcine contagious pleuropneumonia.
Collapse
|
18
|
Dubaniewicz A. Microbial and human heat shock proteins as 'danger signals' in sarcoidosis. Hum Immunol 2013; 74:1550-8. [PMID: 23993988 DOI: 10.1016/j.humimm.2013.08.275] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/02/2013] [Accepted: 08/10/2013] [Indexed: 10/26/2022]
Abstract
In the light of the Matzinger's model of immune response, human heat shock proteins (HSPs) as main 'danger signals' (tissue damage-associated molecular patterns-DAMPs) or/and microbial HSPs as pathogen-associated molecular patterns (PAMPs) recognized by pattern recognition receptors (PRR), may induce sarcoid granuloma by both infectious and non-infectious factors in genetically different predisposed host. Regarding infectious causes of sarcoid models, low-virulence strains of, e.g. mycobacteria and propionibacteria recognized through changed PRR and persisting in altered host phagocytes, generate increased release of both human and microbial HSPs with their molecular and functional homology. High chronic spread of human and microbial HSPs altering cytokines, co-stimulatory molecules, and Tregs expression, apoptosis, oxidative stress, induces the autoimmunity, considered in sarcoidosis. Regarding non-infectious causes of sarcoidosis, human HSPs may be released at high levels during chronic low-grade exposure to misfolding amyloid precursor protein in stressed cells, phagocyted metal fumes, pigments with/without aluminum in tattoos, and due to heat shock in firefighters. Therefore, human HSPs as DAMPs and/or microbial HSPs as PAMPs produced as a result of non-infectious and infectious factors may induce different models of sarcoidosis, depending on the genetic background of the host. The number/expression of PRRs/ligands may influence the occurrence of sarcoidosis in particular organs.
Collapse
Affiliation(s)
- Anna Dubaniewicz
- Department of Pneumology, Medical University of Gdansk, Debinki 7 St., 80-211 Gdansk, Poland.
| |
Collapse
|
19
|
Beylot C, Auffret N, Poli F, Claudel JP, Leccia MT, Del Giudice P, Dreno B. Propionibacterium acnes: an update on its role in the pathogenesis of acne. J Eur Acad Dermatol Venereol 2013; 28:271-8. [PMID: 23905540 DOI: 10.1111/jdv.12224] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/03/2013] [Indexed: 12/30/2022]
Abstract
In recent years, significant progress has been made in the understanding of the pathophysiological mechanisms of acne and the role of Propionibacterium acnes. With this review, the authors aim to provide an update on the current understanding of the role of P. acnes in the development of acne lesions and analysing the potential implications for future treatments. A total of 188 articles published between January 1980 and March 2013 were searched using key words such as acne, P. acnes, microbiology, Corynebacterium acnes, acne vulgaris, pathogenesis, antibiotic, vaccination and a combination of those key words. From those articles, 77 were analysed in depth. Recent data confirm that P. acnes has a strong proinflammatory activity and targets molecules involved in the innate cutaneous immunity, keratinocytes and sebaceous glands of the pilosebaceous follicle and leads to the development of comedones. Furthermore, the profile of its different strains may differ between healthy subjects and acne patients. The better understanding of the role of P. acnes may allow for new perspectives in the treatment of acne. Novel therapies should target molecules implicated in the activation of innate immunity, including toll-like receptors, protease-activated receptors and topical antimicrobial peptides; the latter may be an alternative to topical antibiotics and thus a solution for limiting bacterial resistance induced by topical macrolides. Vaccines may also be promising. However, the most appropriate candidate remains to be selected.
Collapse
|
20
|
Paillot R. A systematic review of the immune-modulators Parapoxvirus ovis and Propionibacterium acnes for the prevention of respiratory disease and other infections in the horse. Vet Immunol Immunopathol 2013; 153:1-9. [PMID: 23481655 DOI: 10.1016/j.vetimm.2013.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 11/29/2022]
Abstract
Inactivated Parapoxvirus ovis (iPPVO) and Propionibacterium acnes (P. acnes) are currently used in equine medicine as immune-modulators for prophylactic treatment or adjunct to conventional therapy in order to improve immune defences, to prevent or treat infectious diseases. Their mode of action relies on a non-antigen specific interaction with the innate and/or adaptive immune responses. iPPVO stimulates and regulates cytokine secretion by leucocytes, while P. acnes acts primarily through the activation of macrophages. This report aims to describe their activity as immune-modulators and to summarise the scientific literature and reports available about their use in horses, particularly in the prevention or treatment of equine respiratory diseases. This systematic review regroups articles published in peer-review journals, clinical trials reports, conference proceedings and other information made available in the last 2 decades.
Collapse
Affiliation(s)
- R Paillot
- Animal Health Trust, Centre for Preventive Medicine, Lanwades Park, Newmarket, Suffolk CB8 7UU, UK.
| |
Collapse
|