1
|
Wang Y, Zhang H, Zhan Y, Li Z, Li S, Guo S. Comprehensive in silico analysis of prognostic and immune infiltrates for FGFs in human ovarian cancer. J Ovarian Res 2024; 17:197. [PMID: 39385288 PMCID: PMC11465590 DOI: 10.1186/s13048-024-01496-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/14/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Fibroblast growth factors (FGFs) are cell signaling proteins that perform multiple biological processes in many biological processes (cell development, repair, and metabolism). The dynamics of tumor cells, such as angiogenesis, transformation, and proliferation, have a significant impact on neoplasia and are modulated by FGFs. FGFs' expression and prognostic significance in ovarian cancer (OC), however, remain unclear. METHODS Through a series of in silico analysis, we investigated the transcriptional, survival data, genetic variation, gene-gene interaction network, ferroptosis-related genes, and DNA methylation of FGFs in OC patients. RESULTS We discovered that while FGF18 expression levels were higher in OC tissues than in normal OC tissues, FGF2/7/10/17/22 expression levels were lower in the former, and that FGF1/19 expression was related to the tumor stage in OC patients. According to the survival analysis, the clinical prognosis of individuals with OC was associated with the aberrant expression of FGFs. The function of FGFs and their neighboring genes was mainly connected to the cellular response to FGF stimulus. There was a negative correlation between FGF expression and various immune cell infiltration. CONCLUSIONS This study clarifies the relationship between FGFs and OC, which might provide new insights into the choice of prognostic biomarkers of OC patients.
Collapse
Affiliation(s)
- Yu Wang
- Emergency Medicine Clinical Research Center, Beijing Chao-yang Hospital, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Capital Medical University, Beijing, 100020, P.R. China
| | - Haiyue Zhang
- Thrombosis research center, Beijing Jishuitan hospital, Capital Medical University, Beijing, China, Xicheng District, Beijing 100035, China
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Affiliated to Capital Medical University, Xicheng District, Beijing, China
| | - Yuanyuan Zhan
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100020, P.R. China
| | - Zhuoran Li
- Emergency Medicine Clinical Research Center, Beijing Chao-yang Hospital, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Capital Medical University, Beijing, 100020, P.R. China
| | - Sujing Li
- Department of Plastic Surgery, Zhengzhou First People's Hospital, Zhengzhou, China
| | - Shubin Guo
- Emergency Medicine Clinical Research Center, Beijing Chao-yang Hospital, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Capital Medical University, Beijing, 100020, P.R. China.
| |
Collapse
|
2
|
Kim YS, Lee HJ, Handoko GA, Kim J, Won M, Park JH, Ahn J. High-level production of keratinocyte growth factor 2 in Escherichia coli. Protein Expr Purif 2023; 204:106229. [PMID: 36641112 DOI: 10.1016/j.pep.2022.106229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023]
Abstract
Recombinant human keratinocyte growth factor 2 (KGF-2), also known as repifermin, is used in various therapeutic applications. However, KGF-2 production has not been optimized for facilitating large-scale production. Therefore, we attempted to attain high-level production of bioactive KGF-2. KGF-2 was fused with 6HFh8 (6HFh8-KGF-2) at the tobacco etch virus protease cleavage site. The 6HFh8-KGF-2 was expressed in Escherichia coli with high expression levels of approximately 33% and 20% of soluble protein in flask culture and 5 L fermentation, respectively. 6HFh8-KGF-2 was purified via nickel affinity chromatography. To maintain a stable form of KGF-2, the conditions of the cleavage reaction were optimized based on the isoelectric point. KGF-2 was purified via ion-exchange chromatography to high purity (>99%) with an optimal purification yield (91%). Circular dichroism spectroscopy demonstrated that purified KGF-2 had a secondary structure and thermal stability similar to that of commercial KGF-2. Bioactivity assays indicated that purified KGF-2 could induce MCF-7 cell proliferation in the same manner as commercial KGF-2. These results demonstrate that bioactive KGF-2 was overexpressed in E. coli and purified to high quality. Our findings indicated that bioactive KGF-2 can be produced in large quantities in E. coli.
Collapse
Affiliation(s)
- Young Su Kim
- Biotechnology Process Engineering Center, KRIBB, Cheongju, 20736, Republic of Korea
| | - Hye-Jeong Lee
- Biotechnology Process Engineering Center, KRIBB, Cheongju, 20736, Republic of Korea
| | - Gabriella Aphrodita Handoko
- Biotechnology Process Engineering Center, KRIBB, Cheongju, 20736, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, South Korea
| | - Jaehui Kim
- Biotechnology Process Engineering Center, KRIBB, Cheongju, 20736, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, South Korea
| | - Minho Won
- Biotechnology Process Engineering Center, KRIBB, Cheongju, 20736, Republic of Korea.
| | - Jung-Ho Park
- Bio-Evaluation Center, KRIBB, Cheongju, 20736, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, South Korea.
| | - Jungoh Ahn
- Biotechnology Process Engineering Center, KRIBB, Cheongju, 20736, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, South Korea.
| |
Collapse
|
3
|
Zhang Z, Qin Y, Ji S, Xu W, Liu M, Hu Q, Ye Z, Fan G, Yu X, Liu W, Xu X. FGFBP1-mediated crosstalk between fibroblasts and pancreatic cancer cells via FGF22/FGFR2 promotes invasion and metastasis of pancreatic cancer. Acta Biochim Biophys Sin (Shanghai) 2021; 53:997-1008. [PMID: 34117747 DOI: 10.1093/abbs/gmab074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Indexed: 11/12/2022] Open
Abstract
Fibroblast growth factor-binding protein 1 (FGFBP1) promotes fibroblast growth factor (FGF) activity by releasing FGFs from extracellular matrix storage. We previously reported that the tumor suppressor F-box and WD repeat domain-containing 7 suppresses FGFBP1 by reducing expression of c-Myc, which inhibits the proliferation and migration of pancreatic cancer cells. However, the potential mechanism by which FGFBP1 facilitates pancreatic ductal adenocarcinoma (PDAC) remains unexplored. In this study, we focused on the function of FGFBP1 in the interplay between cancer-associated fibroblasts (CAFs) and pancreatic cancer cells (PCCs). Decreased FGF22 expression was detected in CAFs co-cultured with PCCs with FGFBP1 abrogation, which was verified in the cell culture medium by enzyme-linked immunosorbent assay. Active cytokine FGF22 significantly facilitated the migration and invasion of PANC-1 and Mia PaCa-2 cells. The number of penetrating PCCs cocultured with CAFs with FGF22 abrogation was significantly less than that of the control group. Interestingly, higher expressions of FGF22 and fibroblast growth factor receptor 2 (FGFR2) were associated with worse prognosis of patients with PDAC and FGFR2, an independent prognostic marker of PDAC. The PANC-1 and Mia PaCa-2 cells with silenced FGFR2 showed weaker invasion and metastasis, even if these cells were simultaneously treated with cytokine FGF22. These results revealed that FGFBP1-mediated interaction between CAFs and PCCs via FGF22/FGFR2 facilitates the migration and invasion of PCCs. FGFR2 could act as a prognostic marker for patients with PDAC.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200031, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200031, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200031, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200031, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200031, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200031, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200031, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200031, China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200031, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200031, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200031, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200031, China
| | - Wenyan Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200031, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200031, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200031, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200031, China
| | - Mengqi Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200031, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200031, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200031, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200031, China
| | - Qiangsheng Hu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200031, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200031, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200031, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200031, China
| | - Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200031, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200031, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200031, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200031, China
| | - Guixiong Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200031, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200031, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200031, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200031, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200031, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200031, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200031, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200031, China
| | - Wensheng Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200031, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200031, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200031, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200031, China
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200031, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200031, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200031, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200031, China
| |
Collapse
|
4
|
Vitale G, Cozzolino A, Malandrino P, Minotta R, Puliani G, Saronni D, Faggiano A, Colao A. Role of FGF System in Neuroendocrine Neoplasms: Potential Therapeutic Applications. Front Endocrinol (Lausanne) 2021; 12:665631. [PMID: 33935975 PMCID: PMC8080021 DOI: 10.3389/fendo.2021.665631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022] Open
Abstract
Neuroendocrine neoplasms (NENs) are a heterogeneous group of tumors originating from neuroendocrine cells dispersed in different organs. Receptor tyrosine kinases are a subclass of tyrosine kinases with a relevant role in several cellular processes including proliferation, differentiation, motility and metabolism. Dysregulation of these receptors is involved in neoplastic development and progression for several tumors, including NENs. In this review, we provide an overview concerning the role of the fibroblast growth factor (FGF)/fibroblast growth factor receptor (FGFR) system in the development and progression of NENs, the occurrence of fibrotic complications and the onset of drug-resistance. Although no specific FGFR kinase inhibitors have been evaluated in NENs, several clinical trials on multitarget tyrosine kinase inhibitors, acting also on FGF system, showed promising anti-tumor activity with an acceptable and manageable safety profile in patients with advanced NENs. Future studies will need to confirm these issues, particularly with the development of new tyrosine kinase inhibitors highly selective for FGFR.
Collapse
Affiliation(s)
- Giovanni Vitale
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, Istituto Auxologico Italiano, IRCCS, Cusano Milanino, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Alessia Cozzolino
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Pasqualino Malandrino
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| | - Roberto Minotta
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | - Giulia Puliani
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- Oncological Endocrinology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Davide Saronni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Antongiulio Faggiano
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Annamaria Colao
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| |
Collapse
|
5
|
Xu YH, Zhu Y, Zhu YY, Wei H, Zhang NN, Qin JS, Zhu XL, Yu M, Li YF. Abnormalities in FGF family members and their roles in modulating depression-related molecules. Eur J Neurosci 2019; 53:140-150. [PMID: 31491043 DOI: 10.1111/ejn.14570] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/22/2019] [Accepted: 09/02/2019] [Indexed: 12/22/2022]
Abstract
The role of the fibroblast growth factor (FGF) system in depression has received considerable attention in recent years. To understand the role of this system, it is important to identify the specific members of the FGF family that have been implicated and the various mechanisms that they modulated. Here, we review the role of FGFs in depression and integrate evidence from clinical and basic research. These data suggest that changes in the FGF family are involved in depression and possibly in a wider range of psychiatric disorders. We analyse the abnormalities of FGF family members in depression and their roles in modulating depression-related molecules. The role of the FGF family in depression and related disorders needs to be studied in more detail.
Collapse
Affiliation(s)
- Yu-Hao Xu
- Department of Neurology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,Department of Neuroimaging laboratory, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yan Zhu
- Department of Neuroimaging laboratory, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.,Department of Radiology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yuan-Yuan Zhu
- Department of Neurology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,Department of Neuroimaging laboratory, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hong Wei
- Department of Neurology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,Department of Neuroimaging laboratory, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ning-Ning Zhang
- Department of Neuroimaging laboratory, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.,Department of Radiology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jia-Sheng Qin
- Department of Neuroimaging laboratory, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.,Department of Radiology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiao-Lan Zhu
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ming Yu
- Department of Neurology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yue-Feng Li
- Department of Neuroimaging laboratory, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.,Department of Radiology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
6
|
Zhang LL, Kwak H, Yin SJ, Lee BN, Chang YJ, Hahn MJ, Yang JM, Lee JR, Park YD. An OMICS-based study of the role of C3dg in keratinocytes: RNA sequencing, antibody-chip array, and bioinformatics approaches. Int J Biol Macromol 2019; 133:391-411. [DOI: 10.1016/j.ijbiomac.2019.04.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/06/2019] [Accepted: 04/06/2019] [Indexed: 01/01/2023]
|
7
|
Oka S, Hayashi M, Taguchi K, Hidaka M, Tsuzuki T, Sekiguchi M. ROS control in human iPS cells reveals early events in spontaneous carcinogenesis. Carcinogenesis 2019; 41:36-43. [DOI: 10.1093/carcin/bgz081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/03/2019] [Accepted: 04/28/2019] [Indexed: 12/12/2022] Open
Affiliation(s)
- Sugako Oka
- Frontier Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Michio Hayashi
- Section of Biochemistry, Fukuoka Dental College, Fukuoka, Japan
| | - Kenichi Taguchi
- Cancer Pathology Laboratory, Department of Cancer Biology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Masumi Hidaka
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Teruhisa Tsuzuki
- Frontier Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Mutsuo Sekiguchi
- Frontier Research Center, Fukuoka Dental College, Fukuoka, Japan
| |
Collapse
|
8
|
Liu HY, Zhao H, Li WX. Integrated Analysis of Transcriptome and Prognosis Data Identifies FGF22 as a Prognostic Marker of Lung Adenocarcinoma. Technol Cancer Res Treat 2019; 18:1533033819827317. [PMID: 30803369 PMCID: PMC6373997 DOI: 10.1177/1533033819827317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Lung adenocarcinoma is one of the most common cancers worldwide. However, the molecular mechanisms of lung adenocarcinoma development are still unclear. This study aimed to investigate the expression profiles of anti-lung cancer target genes in different cancer stages and to explore their functions in tumor development. Lung adenocarcinoma transcriptome and clinical data were downloaded from Genomic Data Commons Data Portal, and the anti-lung cancer target genes were retrieved from the Thomson Reuters Integrity database. The results showed that 16 anti-lung target genes were deregulated in all stages. Among these target genes, fibroblast growth factor 22 showed the most important role in transcription regulatory networks. Further analysis revealed that APC, BRIP1, and PTTG1 may regulate fibroblast growth factor 22 and subsequently influence MAPK signaling pathway, Rap1 signaling pathways, and other tumorigenic processes in all stages. Moreover, high fibroblast growth factor 22 expression leads to poor overall survival (hazard ratio = 1.55, P = .019). These findings provide valuable information for the pathological research and treatment of lung adenocarcinoma. Future studies are needed to verify these results.
Collapse
Affiliation(s)
- Hong-Yan Liu
- 1 Department of Respiratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hui Zhao
- 1 Department of Respiratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wen-Xing Li
- 2 Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,3 Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
9
|
Deng Z, Deng S, Zhang MR, Tang MM. Fibroblast Growth Factors in Depression. Front Pharmacol 2019; 10:60. [PMID: 30804785 PMCID: PMC6370647 DOI: 10.3389/fphar.2019.00060] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/18/2019] [Indexed: 12/18/2022] Open
Abstract
Major depressive disorder (MDD) is one of the most serious diseases and now becomes a major public health problem in the world. The pathogenesis of depression remains poorly understood. Fibroblast growth factors (FGFs) belong to a large family of growth factors that are involved in brain development during early periods as well as maintenance and repair throughout adulthood. In recent years, studies have found a correlation between the members of the FGF system and depression. These signaling molecules may be expected to be biomarkers for the diagnosis and prognosis of MDD, and may provide new drug targets for the treatment of depression. Here, we reviewed the correlation between some members of the FGF system and depression.
Collapse
Affiliation(s)
- Zheng Deng
- Hospital Evaluation Office, Xiangya Hospital, Central South University, Changsha, China
| | - Sheng Deng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute of Hospital Pharmacy, Central South University, Changsha, China
| | - Mu-Rong Zhang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute of Hospital Pharmacy, Central South University, Changsha, China.,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Mi-Mi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute of Hospital Pharmacy, Central South University, Changsha, China
| |
Collapse
|
10
|
Tomic-Canic M, Wong LL, Smola H. The epithelialisation phase in wound healing: options to enhance wound closure. J Wound Care 2018; 27:646-658. [DOI: 10.12968/jowc.2018.27.10.646] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Majana Tomic-Canic
- Professor and Vice Chair of Research; Director, Wound Healing and Regenerative Medicine Research Program; Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, Florida, US
| | - Lulu L. Wong
- MD Candidate; Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, Florida, US
| | - Hans Smola
- Professor of Dermatology, Medical Director, PAUL HARTMANN AG, Heidenheim and Department of Dermatology, University of Cologne, Cologne, Germany
| |
Collapse
|
11
|
Yang H, Tian H, Cheng J, Zheng J, Wang D, Sun C, Fernig D, Chen T, Gong W, Wang S, Li X, Jiang C. Highly efficient production of functional recombinant human fibroblast growth factor 22 in E. coli and its protective effects on H 2O 2-lesioned L02 cells. Protein Expr Purif 2018; 152:114-121. [PMID: 29627393 DOI: 10.1016/j.pep.2018.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/04/2018] [Accepted: 04/04/2018] [Indexed: 11/19/2022]
Abstract
In the 22 member mammalian FGF family, FGF22 belongs to FGF7 subfamily, and its effects are largely confined to the brain and skin. To explore the functions of FGF22 on other tissues and develop a large-scale production of recombinant human FGF22 (rhFGF22) without a fusion tag, a plasmid encoding human FGF22 (pET3a-rhFGF22) was used to express rhFGF22 in E. coli BL21 (DE3) pLysS. A large amount of rhFGF22 inclusion body protein was obtained. A two-step denaturing method successfully solubilized rhFGF22, and it was refolded and then purified in one step via heparin affinity chromatography. A yield of 105 mg rhFGF22 with a purity of up to 95% was obtained from 100 g wet bacteria. It was found that the rhFGF22 had biological activity, since it effectively attenuated H2O2-induced human hepatic L02 cell death. Analysis by qRT-PCR and Western blot demonstrated that rhFGF22 protects L02 cells from H2O2-induced oxidative damage via suppression of mitochondrial apoptosis pathways. In conclusion, the strategy described in this paper may provide a novel means to solve the production of insoluble rhFGF22 and shine new light on its translational potential.
Collapse
Affiliation(s)
- Huanhuan Yang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035 Zhejiang, China
| | - Haishan Tian
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035 Zhejiang, China
| | - Jiliang Cheng
- Department of Pharmacy, Ningbo Kangning Hospital, Ningbo, Zhejiang 315201, China
| | - Jie Zheng
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035 Zhejiang, China
| | - Dezhong Wang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035 Zhejiang, China
| | - Changye Sun
- Xinxiang Medical University, Xinxiang 453000, China
| | - David Fernig
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035 Zhejiang, China; College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035 Zhejiang, China; Department of Biochemistry, Institute of Integrative Biology, Univeristy of Liverpool, L69 7ZB, UK
| | - Taotao Chen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035 Zhejiang, China
| | - Weiyue Gong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035 Zhejiang, China
| | - Shen Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035 Zhejiang, China
| | - Xiaokun Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035 Zhejiang, China; Wenzhou Biomedical Innovation Center, Wenzhou University, Wenzhou, 325035 Zhejiang, China.
| | - Chao Jiang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035 Zhejiang, China; College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035 Zhejiang, China; Wenzhou Biomedical Innovation Center, Wenzhou University, Wenzhou, 325035 Zhejiang, China.
| |
Collapse
|
12
|
The Role of Fibroblast Growth Factor-Binding Protein 1 in Skin Carcinogenesis and Inflammation. J Invest Dermatol 2017; 138:179-188. [PMID: 28864076 DOI: 10.1016/j.jid.2017.07.847] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 07/23/2017] [Accepted: 07/27/2017] [Indexed: 01/28/2023]
Abstract
Fibroblast growth factor-binding protein 1 (FGFBP1) is a secreted chaperone that mobilizes paracrine-acting FGFs, stored in the extracellular matrix, and presents them to their cognate receptors. FGFBP1 enhances FGF signaling including angiogenesis during cancer progression and is upregulated in various cancers. Here we evaluated the contribution of endogenous FGFBP1 to a wide range of organ functions as well as to skin pathologies using Fgfbp1-knockout mice. Relative to wild-type littermates, knockout mice showed no gross pathologies. Still, in knockout mice a significant thickening of the epidermis associated with a decreased transepidermal water loss and increased proinflammatory gene expression in the skin was detected. Also, skin carcinogen challenge by 7,12-dimethylbenz[a]anthracene/12-O-tetradecanoyl-phorbol-13-acetate resulted in delayed and reduced papillomatosis in knockout mice. This was paralleled by delayed healing of skin wounds and reduced angiogenic sprouting in subcutaneous matrigel plugs. Heterozygous green fluorescent protein (GFP)-knock-in mice revealed rapid induction of gene expression during papilloma induction and during wound healing. Examination of wild-type skin grafted onto Fgfbp1 GFP-knock-in reporter hosts and bone marrow transplants from the GFP-reporter model into wild-type hosts revealed that circulating Fgfbp1-expressing cells migrate into healing wounds. We conclude that tissue-resident and circulating Fgfbp1-expressing cells modulate skin carcinogenesis and inflammation.
Collapse
|
13
|
Nam K, Lee KW, Chung O, Yim HS, Cha SS, Lee SW, Jun J, Cho YS, Bhak J, Magalhães JPD, Lee JH, Jeong JY. Analysis of the FGF gene family provides insights into aquatic adaptation in cetaceans. Sci Rep 2017; 7:40233. [PMID: 28074842 PMCID: PMC5225608 DOI: 10.1038/srep40233] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/02/2016] [Indexed: 11/23/2022] Open
Abstract
Cetacean body structure and physiology exhibit dramatic adaptations to their aquatic environment. Fibroblast growth factors (FGFs) are a family of essential factors that regulate animal development and physiology; however, their role in cetacean evolution is not clearly understood. Here, we sequenced the fin whale genome and analysed FGFs from 8 cetaceans. FGF22, a hair follicle-enriched gene, exhibited pseudogenization, indicating that the function of this gene is no longer necessary in cetaceans that have lost most of their body hair. An evolutionary analysis revealed signatures of positive selection for FGF3 and FGF11, genes related to ear and tooth development and hypoxia, respectively. We found a D203G substitution in cetacean FGF9, which was predicted to affect FGF9 homodimerization, suggesting that this gene plays a role in the acquisition of rigid flippers for efficient manoeuvring. Cetaceans utilize low bone density as a buoyancy control mechanism, but the underlying genes are not known. We found that the expression of FGF23, a gene associated with reduced bone density, is greatly increased in the cetacean liver under hypoxic conditions, thus implicating FGF23 in low bone density in cetaceans. Altogether, our results provide novel insights into the roles of FGFs in cetacean adaptation to the aquatic environment.
Collapse
Affiliation(s)
- Kiwoong Nam
- INRA, UMR 1333 Diversité, Génomes &Interactions Microorganismes-Insectes, 2 place E. Bataillon, 34095 Montpellier, France.,Université Montpellier, 2 place E. Bataillon, 34095 Montpellier, France
| | - Kyeong Won Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Haeanro 787, Ansan 15627, Republic of Korea
| | - Oksung Chung
- Personal Genomics Institute, Genome Research Foundation, Osong 28160, Republic of Korea
| | - Hyung-Soon Yim
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Haeanro 787, Ansan 15627, Republic of Korea.,Department of Marine Biotechnology, Korea University of Science and Technology, Daejeon 306-350, Republic of Korea
| | - Sun-Shin Cha
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Sae-Won Lee
- Biomedical Research Institute and IRICT, Seoul National University Hospital, Seoul 110-744, Republic of Korea
| | - JeHoon Jun
- Personal Genomics Institute, Genome Research Foundation, Osong 28160, Republic of Korea
| | - Yun Sung Cho
- Personal Genomics Institute, Genome Research Foundation, Osong 28160, Republic of Korea.,The Genomics Institute, Biomedical Engineering Department, UNIST, Ulsan 44919, Republic of Korea
| | - Jong Bhak
- Personal Genomics Institute, Genome Research Foundation, Osong 28160, Republic of Korea.,The Genomics Institute, Biomedical Engineering Department, UNIST, Ulsan 44919, Republic of Korea.,Geromics, Ulsan 44919, Republic of Korea
| | - João Pedro de Magalhães
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Jung-Hyun Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Haeanro 787, Ansan 15627, Republic of Korea.,Department of Marine Biotechnology, Korea University of Science and Technology, Daejeon 306-350, Republic of Korea
| | - Jae-Yeon Jeong
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Haeanro 787, Ansan 15627, Republic of Korea.,Department of Marine Biotechnology, Korea University of Science and Technology, Daejeon 306-350, Republic of Korea
| |
Collapse
|
14
|
Zhou WY, Zheng H, Du XL, Yang JL. Characterization of FGFR signaling pathway as therapeutic targets for sarcoma patients. Cancer Biol Med 2016; 13:260-8. [PMID: 27458533 PMCID: PMC4944539 DOI: 10.20892/j.issn.2095-3941.2015.0102] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The fibroblast growth factor receptor (FGFR) family plays important roles in regulating cell growth, proliferation, survival, differentiation and angiogenesis. Deregulation of the FGF/FGFR signaling pathway has been associated with multiple development syndromes and cancers, and thus therapeutic strategies targeting FGFs and FGFR in human cancer are currently being explored. However, few studies on the FGF/FGFR pathway have been conducted in sarcoma, which has a poor outcome with traditional treatments such as surgery, chemotherapy, and radiotherapy. Hence, in the present review, we provide an overview of the role of the FGF/FGFR pathway signal in sarcoma and FGFR inhibitors, which might be new targets for the treatment of sarcomas according to recent research.
Collapse
Affiliation(s)
| | - Hong Zheng
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xiao-Ling Du
- Department of Diagnostics, Tianjin Medical University, Tianjin 300061, China
| | | |
Collapse
|
15
|
Hydrogen-Rich Water Intake Accelerates Oral Palatal Wound Healing via Activation of the Nrf2/Antioxidant Defense Pathways in a Rat Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:5679040. [PMID: 26798423 PMCID: PMC4699099 DOI: 10.1155/2016/5679040] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/11/2015] [Indexed: 12/17/2022]
Abstract
The wound healing process attempts to restore the integrity and function of the injured tissue. Additionally, proinflammatory cytokines, growth factors, and oxidative stress play important roles in wound healing. The aim of this study was to determine whether hydrogen-rich water intake induces the activation of the Nrf2/antioxidant defense pathway in rat palatal tissue, thereby reducing systemic oxidative stress and proinflammatory cytokine levels and promoting healing-associated genes. A circular excisional wound was created in the oral palatal region, and the wound healing process was observed. The rats were divided into two experimental groups in which either hydrogen-rich water or distilled water was consumed. In the drinking hydrogen-rich water, the palatal wound healing process was accelerated compared to that in the control group. As molecular hydrogen upregulated the Nrf2 pathway, systemic oxidative stresses were decreased by the activation of antioxidant activity. Furthermore, hydrogen-rich water intake reduced proinflammatory cytokine levels and promoted the expression of healing-associated factors in rat palatal tissue. In conclusion, hydrogen-rich water intake exhibited multiple beneficial effects through activation of the Nrf2/antioxidant defense pathway. The results of this study support the hypothesis that oral administration of hydrogen-rich water benefits the wound healing process by decreasing oxidative stress and inflammatory responses.
Collapse
|
16
|
FGF10: A multifunctional mesenchymal-epithelial signaling growth factor in development, health, and disease. Cytokine Growth Factor Rev 2015; 28:63-9. [PMID: 26559461 DOI: 10.1016/j.cytogfr.2015.10.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 10/19/2015] [Indexed: 12/15/2022]
Abstract
The FGF family comprises 22 members with diverse functions in development and health. FGF10 specifically activates FGFR2b in a paracrine manner with heparan sulfate as a co-factor. FGF10and FGFR2b are preferentially expressed in the mesenchyme and epithelium, respectively. FGF10 is a mesenchymal signaling molecule in the epithelium. FGF10 knockout mice die shortly after birth due to the complete absence of lungs as well as fore- and hindlimbs. FGF10 is also essential for the development of multiple organs. The phenotypes of Fgf10 knockout mice are very similar to those of FGFR2b knockout mice, indicating that FGF10 acts as a ligand that is specific to FGFR2b in mouse multi-organ development. FGF10 also plays roles in epithelial-mesenchymal transition, the repair of tissue injury, and embryonic stem cell differentiation. In humans, FGF10 loss-of-function mutations result in inherited diseases including aplasia of lacrimal and salivary gland, lacrimo-auriculo-dento-digital syndrome, and chronic obstructive pulmonary disease. FGF10 is also involved in the oncogenicity of pancreatic and breast cancers. Single nucleotide polymorphisms in FGF10 are also potential risk factors for limb deficiencies, cleft lip and palate, and extreme myopia. These findings indicate that FGF10 is a crucial paracrine signal from the mesenchyme to epithelium for development, health, and disease.
Collapse
|
17
|
Wang J, Wang Z, Yao Y, Wu J, Tang X, Gu T, Li G. The fibroblast growth factor-2 arrests Mycobacterium avium sp. paratuberculosis growth and immunomodulates host response in macrophages. Tuberculosis (Edinb) 2015; 95:505-14. [DOI: 10.1016/j.tube.2015.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 03/28/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
|
18
|
Ronca R, Giacomini A, Rusnati M, Presta M. The potential of fibroblast growth factor/fibroblast growth factor receptor signaling as a therapeutic target in tumor angiogenesis. Expert Opin Ther Targets 2015; 19:1361-77. [PMID: 26125971 DOI: 10.1517/14728222.2015.1062475] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Fibroblast growth factors (FGFs) are endowed with a potent pro-angiogenic activity. Activation of the FGF/FGF receptor (FGFR) system occurs in a variety of human tumors. This may lead to neovascularization, supporting tumor progression and metastatic dissemination. Thus, a compelling biologic rationale exists for the development of anti-FGF/FGFR agents for the inhibition of tumor angiogenesis in cancer therapy. AREAS COVERED A comprehensive search on PubMed was performed to identify studies on the role of the FGF/FGFR system in angiogenesis. Endothelial FGFR signaling, the pro-angiogenic function of canonical FGFs, and their role in human tumors are described. In addition, experimental approaches aimed at the identification and characterization of nonselective and selective FGF/FGFR inhibitors and their evaluation in clinical trials are summarized. EXPERT OPINION Different approaches can be envisaged to inhibit the FGF/FGFR system, a target for the development of 'two-compartment' anti-angiogenic/anti-tumor agents, including FGFR selective and nonselective small-molecule tyrosine kinase inhibitors, anti-FGFR antibodies, and FGF ligand traps. Further studies are required to define the correlation between tumor vascularization and activation of the FGF/FGFR system and for the identification of cancer patients more likely to benefit from anti-FGF/FGFR treatments. In addition, advantages and disadvantages about the use of selective versus non-selective FGF inhibitors remain to be elucidated.
Collapse
Affiliation(s)
- Roberto Ronca
- a University of Brescia, Department of Molecular and Translational Medicine , Brescia, Italy +39 030 371 7311 ;
| | - Arianna Giacomini
- a University of Brescia, Department of Molecular and Translational Medicine , Brescia, Italy +39 030 371 7311 ;
| | - Marco Rusnati
- a University of Brescia, Department of Molecular and Translational Medicine , Brescia, Italy +39 030 371 7311 ;
| | - Marco Presta
- a University of Brescia, Department of Molecular and Translational Medicine , Brescia, Italy +39 030 371 7311 ;
| |
Collapse
|
19
|
Ornitz DM, Itoh N. The Fibroblast Growth Factor signaling pathway. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2015; 4:215-66. [PMID: 25772309 PMCID: PMC4393358 DOI: 10.1002/wdev.176] [Citation(s) in RCA: 1422] [Impact Index Per Article: 142.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/23/2014] [Accepted: 01/08/2015] [Indexed: 12/13/2022]
Abstract
The signaling component of the mammalian Fibroblast Growth Factor (FGF) family is comprised of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors (FGFRs). Interaction of FGF ligands with their signaling receptors is regulated by protein or proteoglycan cofactors and by extracellular binding proteins. Activated FGFRs phosphorylate specific tyrosine residues that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK, PI3K-AKT, PLCγ, and STAT intracellular signaling pathways. Four structurally related intracellular non-signaling FGFs interact with and regulate the family of voltage gated sodium channels. Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning. FGFs also have roles in adult tissues where they mediate metabolic functions, tissue repair, and regeneration, often by reactivating developmental signaling pathways. Consistent with the presence of FGFs in almost all tissues and organs, aberrant activity of the pathway is associated with developmental defects that disrupt organogenesis, impair the response to injury, and result in metabolic disorders, and cancer. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of MedicineSt. Louis, MO, USA
- *
Correspondence to:
| | - Nobuyuki Itoh
- Graduate School of Pharmaceutical Sciences, Kyoto UniversitySakyo, Kyoto, Japan
| |
Collapse
|
20
|
Su N, Jin M, Chen L. Role of FGF/FGFR signaling in skeletal development and homeostasis: learning from mouse models. Bone Res 2014; 2:14003. [PMID: 26273516 PMCID: PMC4472122 DOI: 10.1038/boneres.2014.3] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 11/29/2013] [Accepted: 12/03/2013] [Indexed: 01/06/2023] Open
Abstract
Fibroblast growth factor (FGF)/fibroblast growth factor receptor (FGFR) signaling plays essential roles in bone development and diseases. Missense mutations in FGFs and FGFRs in humans can cause various congenital bone diseases, including chondrodysplasia syndromes, craniosynostosis syndromes and syndromes with dysregulated phosphate metabolism. FGF/FGFR signaling is also an important pathway involved in the maintenance of adult bone homeostasis. Multiple kinds of mouse models, mimicking human skeleton diseases caused by missense mutations in FGFs and FGFRs, have been established by knock-in/out and transgenic technologies. These genetically modified mice provide good models for studying the role of FGF/FGFR signaling in skeleton development and homeostasis. In this review, we summarize the mouse models of FGF signaling-related skeleton diseases and recent progresses regarding the molecular mechanisms, underlying the role of FGFs/FGFRs in the regulation of bone development and homeostasis. This review also provides a perspective view on future works to explore the roles of FGF signaling in skeletal development and homeostasis.
Collapse
Affiliation(s)
- Nan Su
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University , Chongqing, 400042, China
| | - Min Jin
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University , Chongqing, 400042, China
| | - Lin Chen
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University , Chongqing, 400042, China
| |
Collapse
|
21
|
Coleman SJ, Chioni AM, Ghallab M, Anderson RK, Lemoine NR, Kocher HM, Grose RP. Nuclear translocation of FGFR1 and FGF2 in pancreatic stellate cells facilitates pancreatic cancer cell invasion. EMBO Mol Med 2014; 6:467-81. [PMID: 24503018 PMCID: PMC3992074 DOI: 10.1002/emmm.201302698] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Pancreatic cancer is characterised by desmoplasia, driven by activated pancreatic stellate cells (PSCs). Over-expression of FGFs and their receptors is a feature of pancreatic cancer and correlates with poor prognosis, but whether their expression impacts on PSCs is unclear. At the invasive front of human pancreatic cancer, FGF2 and FGFR1 localise to the nucleus in activated PSCs but not cancer cells. In vitro, inhibiting FGFR1 and FGF2 in PSCs, using RNAi or chemical inhibition, resulted in significantly reduced cell proliferation, which was not seen in cancer cells. In physiomimetic organotypic co-cultures, FGFR inhibition prevented PSC as well as cancer cell invasion. FGFR inhibition resulted in cytoplasmic localisation of FGFR1 and FGF2, in contrast to vehicle-treated conditions where PSCs with nuclear FGFR1 and FGF2 led cancer cells to invade the underlying extra-cellular matrix. Strikingly, abrogation of nuclear FGFR1 and FGF2 in PSCs abolished cancer cell invasion. These findings suggest a novel therapeutic approach, where preventing nuclear FGF/FGFR mediated proliferation and invasion in PSCs leads to disruption of the tumour microenvironment, preventing pancreatic cancer cell invasion.
Collapse
Affiliation(s)
- Stacey J Coleman
- Centre for Tumour Biology Barts Cancer Institute - a CRUK Centre of Excellence, Queen Mary University of London, London, UK
| | | | | | | | | | | | | |
Collapse
|
22
|
The roles of receptor tyrosine kinases and their ligands in the wound repair process. Semin Cell Dev Biol 2012; 23:963-70. [DOI: 10.1016/j.semcdb.2012.09.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 09/27/2012] [Indexed: 01/22/2023]
|