1
|
Nickelsen S, Grosse Darrelmann E, Seidlmayer L, Fink K, Britsch S, Duerschmied D, Scharf RE, Elsaesser A, Helbing T. Ferritin Levels on Hospital Admission Predict Hypoxic-Ischemic Encephalopathy in Patients After Out-of-Hospital Cardiac Arrest: A Prospective Observational Single-Center Study. J Intensive Care Med 2024; 39:1120-1130. [PMID: 38748543 DOI: 10.1177/08850666241252602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
AIM Out-of-hospital cardiac arrest (OHCA) is a major health concern in Western societies. Poor outcome after OHCA is determined by the extent of hypoxic-ischemic encephalopathy (HIE). Dysregulation of iron metabolism has prognostic relevance in patients with ischemic stroke and sepsis. The aim of this study was to determine whether serum iron parameters help to estimate outcomes after OHCA. METHODS In this prospective single-center study, 70 adult OHCA patients were analyzed. Serum ferritin, iron, transferrin (TRF), and TRF saturation (TRFS) were measured in blood samples drawn on day 0 (admission), day 2, day 4, and 6 months after the return of spontaneous circulation (ROSC). The association of 4 iron parameters with in-hospital mortality, neurological outcome (cerebral performance category [CPC]), and HIE was investigated by receiver operating characteristics and multivariate regression analyses. RESULTS OHCA subjects displayed significantly increased serum ferritin levels on day 0 and lowered iron, TRF, and TRFS on days 2 and 4 after ROSC, as compared to concentrations measured at a 6-month follow-up. Iron parameters were not associated with in-hospital mortality or neurological outcomes according to the CPC. Ferritin on admission was an independent predictor of features of HIE on cranial computed tomography and death due to HIE. CONCLUSION OHCA is associated with alterations in iron metabolism that persist for several days after ROSC. Ferritin on admission can help to predict HIE.
Collapse
Affiliation(s)
- Swantje Nickelsen
- Department of Cardiology, University Hospital Oldenburg, Carl von Ossietzky University, Oldenburg, Germany
| | - Eleonore Grosse Darrelmann
- Department of Cardiology, University Hospital Oldenburg, Carl von Ossietzky University, Oldenburg, Germany
| | - Lea Seidlmayer
- Department of Cardiology, University Hospital Oldenburg, Carl von Ossietzky University, Oldenburg, Germany
| | - Katrin Fink
- University Emergency Centre, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Simone Britsch
- Centre for Acute Cardiovascular Medicine Mannheim (DZKAM), Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Mannheim, Germany
- European Centre for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Daniel Duerschmied
- Centre for Acute Cardiovascular Medicine Mannheim (DZKAM), Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Mannheim, Germany
- European Centre for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ruediger E Scharf
- Centre for Acute Cardiovascular Medicine Mannheim (DZKAM), Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Mannheim, Germany
- European Centre for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Division of Experimental and Clinical Haemostasis, Haemotherapy, and Transfusion Medicine, and Haemophilia Comprehensive Care Centre, Institute of Transplantation Diagnostics and Cell Therapy, Heinrich Heine University Medical Centre, Düsseldorf, Germany
| | - Albrecht Elsaesser
- Department of Cardiology, University Hospital Oldenburg, Carl von Ossietzky University, Oldenburg, Germany
| | - Thomas Helbing
- Department of Cardiology, University Hospital Oldenburg, Carl von Ossietzky University, Oldenburg, Germany
- Centre for Acute Cardiovascular Medicine Mannheim (DZKAM), Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Mannheim, Germany
- European Centre for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
2
|
Struck EC, Belova T, Hsieh PH, Odeberg JO, Kuijjer ML, Dusart PJ, Butler LM. Global Transcriptome Analysis Reveals Distinct Phases of the Endothelial Response to TNF. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:117-129. [PMID: 38019121 PMCID: PMC10733583 DOI: 10.4049/jimmunol.2300419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/19/2023] [Indexed: 11/30/2023]
Abstract
The vascular endothelium acts as a dynamic interface between blood and tissue. TNF-α, a major regulator of inflammation, induces endothelial cell (EC) transcriptional changes, the overall response dynamics of which have not been fully elucidated. In the present study, we conducted an extended time-course analysis of the human EC response to TNF, from 30 min to 72 h. We identified regulated genes and used weighted gene network correlation analysis to decipher coexpression profiles, uncovering two distinct temporal phases: an acute response (between 1 and 4 h) and a later phase (between 12 and 24 h). Sex-based subset analysis revealed that the response was comparable between female and male cells. Several previously uncharacterized genes were strongly regulated during the acute phase, whereas the majority in the later phase were IFN-stimulated genes. A lack of IFN transcription indicated that this IFN-stimulated gene expression was independent of de novo IFN production. We also observed two groups of genes whose transcription was inhibited by TNF: those that resolved toward baseline levels and those that did not. Our study provides insights into the global dynamics of the EC transcriptional response to TNF, highlighting distinct gene expression patterns during the acute and later phases. Data for all coding and noncoding genes is provided on the Web site (http://www.endothelial-response.org/). These findings may be useful in understanding the role of ECs in inflammation and in developing TNF signaling-targeted therapies.
Collapse
Affiliation(s)
- Eike C. Struck
- Department of Clinical Medicine, The Arctic University of Norway, Tromsø, Norway
| | - Tatiana Belova
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | - Ping-Han Hsieh
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | - Jacob O. Odeberg
- Department of Clinical Medicine, The Arctic University of Norway, Tromsø, Norway
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology, Stockholm, Sweden
- The University Hospital of North Norway, Tromsø, Norway
- Coagulation Unit, Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Marieke L. Kuijjer
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Philip J. Dusart
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology, Stockholm, Sweden
- Clinical Chemistry and Blood Coagulation Research, Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Lynn M. Butler
- Department of Clinical Medicine, The Arctic University of Norway, Tromsø, Norway
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology, Stockholm, Sweden
- Clinical Chemistry and Blood Coagulation Research, Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
- Clinical Chemistry, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
3
|
Currie C, Bjerknes C, Myklebust TÅ, Framroze B. Assessing the Potential of Small Peptides for Altering Expression Levels of the Iron-Regulatory Genes FTH1 and TFRC and Enhancing Androgen Receptor Inhibitor Activity in In Vitro Prostate Cancer Models. Int J Mol Sci 2023; 24:15231. [PMID: 37894914 PMCID: PMC10607736 DOI: 10.3390/ijms242015231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Recent research highlights the key role of iron dyshomeostasis in the pathogenesis of prostate cancer (PCa). PCa cells are heavily dependent on bioavailable iron, which frequently results in the reprogramming of iron uptake and storage pathways. Although advanced-stage PCa is currently incurable, bioactive peptides capable of modulating key iron-regulatory genes may constitute a means of exploiting a metabolic adaptation necessary for tumor growth. Recent annual increases in PCa incidence have been reported, highlighting the urgent need for novel treatments. We examined the ability of LNCaP, PC3, VCaP, and VCaP-EnzR cells to form colonies in the presence of androgen receptor inhibitors (ARI) and a series of iron-gene modulating oligopeptides (FT-001-FT-008). The viability of colonies following treatment was determined with clonogenic assays, and the expression levels of FTH1 (ferritin heavy chain 1) and TFRC (transferrin receptor) were determined with quantitative polymerase chain reaction (PCR). Peptides and ARIs combined significantly reduced PCa cell growth across all phenotypes, of which two peptides were the most effective. Colony growth suppression generally correlated with the magnitude of concurrent increases in FTH1 and decreases in TFRC expression for all cells. The results of this study provide preliminary insight into a novel approach at targeting iron dysmetabolism and sensitizing PCa cells to established cancer treatments.
Collapse
Affiliation(s)
- Crawford Currie
- HBC Immunology Inc., 1455 Adams Drive, Suite, Menlo Park, CA 2043, USA;
- Hofseth Biocare, Keiser Wilhelmsgate 24, 6003 Ålesund, Norway;
| | - Christian Bjerknes
- Hofseth Biocare, Keiser Wilhelmsgate 24, 6003 Ålesund, Norway;
- Department for Health Sciences, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 6025 Ålesund, Norway
| | - Tor Åge Myklebust
- Department of Registration, Cancer Registry of Norway, 0379 Oslo, Norway;
- Department of Research and Innovation, Møre og Romsdal Hospital Trust, 6026 Ålesund, Norway
| | - Bomi Framroze
- HBC Immunology Inc., 1455 Adams Drive, Suite, Menlo Park, CA 2043, USA;
- GPH Biotech LLC, 1455 Adams Drive, Menlo Park, CA 94025, USA
| |
Collapse
|
4
|
Shesh BP, Connor JR. A novel view of ferritin in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188917. [PMID: 37209958 PMCID: PMC10330744 DOI: 10.1016/j.bbcan.2023.188917] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/13/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
Since its discovery more than 85 years ago, ferritin has principally been known as an iron storage protein. However, new roles, beyond iron storage, are being uncovered. Novel processes involving ferritin such as ferritinophagy and ferroptosis and as a cellular iron delivery protein not only expand our thinking on the range of contributions of this protein but present an opportunity to target these pathways in cancers. The key question we focus on within this review is whether ferritin modulation represents a useful approach for treating cancers. We discussed novel functions and processes of this protein in cancers. We are not limiting this review to cell intrinsic modulation of ferritin in cancers, but also focus on its utility in the trojan horse approach in cancer therapeutics. The novel functions of ferritin as discussed herein realize the multiple roles of ferritin in cell biology that can be probed for therapeutic opportunities and further research.
Collapse
Affiliation(s)
| | - James R Connor
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA, USA.
| |
Collapse
|
5
|
Zhang J, Liu L, Wei J, Wu X, Luo J, Wei H, Ning L, He Y. High expression level of the FTH1 gene is associated with poor prognosis in children with non-M3 acute myeloid leukemia. Front Oncol 2023; 12:1068094. [PMID: 36818670 PMCID: PMC9928996 DOI: 10.3389/fonc.2022.1068094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/29/2022] [Indexed: 02/04/2023] Open
Abstract
Acute myelogenous leukemia (AML) is a disease that severely affects the physical health of children. Thus, we aimed to identify biomarkers associated with AML prognosis in children. Using transcriptomics on an mRNA dataset from 27 children with non-M3 AML, we selected genes from among those with the top 5000 median absolute deviation (MAD) values for subsequent analysis which showed that two modules were associated with AML risk groups. Thus, enrichment analysis was performed using genes from these modules. A one-way Cox analysis was performed on a dataset of 149 non-M3 AML patients downloaded from the TCGA. This identified four genes as significant: FTH1, RCC2, ABHD17B, and IRAK1. Through survival analysis, FTH1 was identified as a key gene associated with AML prognosis. We verified the proliferative and regulatory effects of ferroptosis on MOLM-13 and THP-1 cells using Liproxstatin-1 and Erastin respectively by CCK-8 and flow cytometry assays. Furthermore, we assayed expression levels of FTH1 in MOLM-13 and THP-1 cells after induction and inhibition of ferroptosis by real-time quantitative PCR, which showed that upregulated FTH1 expression promoted proliferation and inhibited apoptosis in leukemia cells. In conclusion, high expression of FTH1 promoted proliferation and inhibited apoptosis of leukemic cells through the ferroptosis pathway and is thus a potential risk factor that affects the prognosis of non-M3 AML in children.
Collapse
Affiliation(s)
- Junlin Zhang
- First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liying Liu
- First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinshuang Wei
- First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaojing Wu
- First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jianming Luo
- First Affiliated Hospital of Guangxi Medical University, Nanning, China
- The Key Laboratory of Children’s Disease Research in Guangxi’s Colleges and Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Hongying Wei
- First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liao Ning
- First Affiliated Hospital of Guangxi Medical University, Nanning, China
- The Key Laboratory of Children’s Disease Research in Guangxi’s Colleges and Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yunyan He
- First Affiliated Hospital of Guangxi Medical University, Nanning, China
- The Key Laboratory of Children’s Disease Research in Guangxi’s Colleges and Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
6
|
Zhu L, You Y, Zhu M, Song Y, Zhang J, Hu J, Xu X, Xu X, Du Y, Ji J. Ferritin-Hijacking Nanoparticles Spatiotemporally Directing Endogenous Ferroptosis for Synergistic Anticancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2207174. [PMID: 36210735 DOI: 10.1002/adma.202207174] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Existing ferroptosis as an iron-dependent form of regulated cell death primarily relies on importing exogenous iron. However, the excessive employment of toxic materials may cause potential adverse effects on human health. Herein, a ferritin-hijacking nanoparticle (Ce6-PEG-HKN15 ) is fabricated, by conjugating the ferritin-homing peptide HKN15 with the photosensitizer chlorin e6 (Ce6) for endogenous ferroptosis without introducing Fenton-reactive metals. Once internalized, the designed Ce6-PEG-HKN15 NPs can specifically accumulate around ferritin. With laser irradiation, the activated Ce6 in nanoparticles potently generates reactive oxygen species (ROS) surrounding ferritin. Abundant ROS not only helps to destroy the iron storage protein and activate endogenous ferroptosis but also directly kill tumor cells. In turn, the released iron partially interacts with intracellular excess H2 O2 to produce O2 , thereby enhancing photodynamic therapy and further amplifying oxidative stress. Overall, this work highlights the possibility of endogenous ferroptosis via spatiotemporally destroying ferritin, offering a paradigm for synergistic ferroptosis-photodynamic antitumor therapy.
Collapse
Affiliation(s)
- Luwen Zhu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yuchan You
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Minxia Zhu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yanling Song
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jucong Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jiahao Hu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xinyi Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xiaoling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, P. R. China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jiansong Ji
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, P. R. China
| |
Collapse
|
7
|
Ali A, Shafarin J, Abu Jabal R, Aljabi N, Hamad M, Sualeh Muhammad J, Unnikannan H, Hamad M. Ferritin heavy chain (FTH1) exerts significant antigrowth effects in breast cancer cells by inhibiting the expression of c-MYC. FEBS Open Bio 2021; 11:3101-3114. [PMID: 34551213 PMCID: PMC8564339 DOI: 10.1002/2211-5463.13303] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/19/2021] [Accepted: 09/21/2021] [Indexed: 12/24/2022] Open
Abstract
Overexpression of ferritin heavy chain (FTH1) often associates with good prognosis in breast cancer (BCa), particularly in the triple‐negative subtype (triple‐negative breast cancer). However, the mechanism by which FTH1 exerts its possible tumor suppressor effects in BCa is not known. Here, we examined the bearing of FTH1 silencing or overexpression on several aspects of BCa cell growth in vitro. FTH1 silencing promoted cell growth and mammosphere formation, increased c‐MYC expression, and reduced cell sensitivity to chemotherapy. In contrast, FTH1 overexpression inhibited cell growth, decreased c‐MYC expression, and sensitized cancer cells to chemotherapy; silencing of c‐MYC recapitulated the effects of FTH1 overexpression. These findings show for the first time that FTH1 suppresses tumor growth by inhibiting the expression of key oncogenes, such as c‐MYC.
Collapse
Affiliation(s)
- Amjad Ali
- Research Institute for Medical and Health SciencesUniversity of SharjahUnited Arab Emirates
| | - Jasmin Shafarin
- Research Institute for Medical and Health SciencesUniversity of SharjahUnited Arab Emirates
| | - Rola Abu Jabal
- Department of Basic Medical SciencesCollege of MedicineUniversity of SharjahUnited Arab Emirates
| | - Nour Aljabi
- Department of Basic Medical SciencesCollege of MedicineUniversity of SharjahUnited Arab Emirates
| | - Mohamad Hamad
- Research Institute for Medical and Health SciencesUniversity of SharjahUnited Arab Emirates
- Department of Medical Laboratory SciencesCollege of Health SciencesUniversity of SharjahUnited Arab Emirates
| | - Jibran Sualeh Muhammad
- Research Institute for Medical and Health SciencesUniversity of SharjahUnited Arab Emirates
- Department of Basic Medical SciencesCollege of MedicineUniversity of SharjahUnited Arab Emirates
| | - Hema Unnikannan
- Research Institute for Medical and Health SciencesUniversity of SharjahUnited Arab Emirates
| | - Mawieh Hamad
- Research Institute for Medical and Health SciencesUniversity of SharjahUnited Arab Emirates
- Department of Medical Laboratory SciencesCollege of Health SciencesUniversity of SharjahUnited Arab Emirates
| |
Collapse
|
8
|
Radadiya PS, Thornton MM, Puri RV, Yerrathota S, Dinh-Phan J, Magenheimer B, Subramaniam D, Tran PV, Zhu H, Bolisetty S, Calvet JP, Wallace DP, Sharma M. Ciclopirox olamine induces ferritinophagy and reduces cyst burden in polycystic kidney disease. JCI Insight 2021; 6:141299. [PMID: 33784251 PMCID: PMC8119220 DOI: 10.1172/jci.insight.141299] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 03/24/2021] [Indexed: 01/21/2023] Open
Abstract
Despite the recent launch of tolvaptan, the search for safer polycystic kidney disease (PKD) drugs continues. Ciclopirox (CPX) or its olamine salt (CPX-O) is contained in a number of commercially available antifungal agents. CPX is also reported to possess anticancer activity. Several mechanisms of action have been proposed, including chelation of iron and inhibition of iron-dependent enzymes. Here, we show that CPX-O inhibited in vitro cystogenesis of primary human PKD cyst-lining epithelial cells cultured in a 3D collagen matrix. To assess the in vivo role of CPX-O, we treated PKD mice with CPX-O. CPX-O reduced the kidney-to-body weight ratios of PKD mice. The CPX-O treatment was also associated with decreased cell proliferation, decreased cystic area, and improved renal function. Ferritin levels were markedly elevated in cystic kidneys of PKD mice, and CPX-O treatment reduced renal ferritin levels. The reduction in ferritin was associated with increased ferritinophagy marker nuclear receptor coactivator 4, which reversed upon CPX-O treatment in PKD mice. Interestingly, these effects on ferritin appeared independent of iron. These data suggest that CPX-O can induce ferritin degradation via ferritinophagy, which is associated with decreased cyst growth progression in PKD mice. Most importantly these data indicate that CPX-O has the potential to treat autosomal dominant PKD.
Collapse
Affiliation(s)
| | | | - Rajni V. Puri
- Department of Internal Medicine
- Jared Grantham Kidney Institute
| | | | | | - Brenda Magenheimer
- Jared Grantham Kidney Institute
- Department of Biochemistry and Molecular Biology
| | | | - Pamela V. Tran
- Jared Grantham Kidney Institute
- Department of Anatomy and Cell Biology, and
| | - Hao Zhu
- Jared Grantham Kidney Institute
- Department of Clinical Laboratory Sciences, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Subhashini Bolisetty
- Department of Internal Medicine, School of Medicine, University of Alabama at Birmingham, Alabama, USA
| | - James P. Calvet
- Jared Grantham Kidney Institute
- Department of Biochemistry and Molecular Biology
| | | | | |
Collapse
|
9
|
Di Sanzo M, Quaresima B, Biamonte F, Palmieri C, Faniello MC. FTH1 Pseudogenes in Cancer and Cell Metabolism. Cells 2020; 9:E2554. [PMID: 33260500 PMCID: PMC7760355 DOI: 10.3390/cells9122554] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022] Open
Abstract
Ferritin, the principal intracellular iron-storage protein localized in the cytoplasm, nucleus, and mitochondria, plays a major role in iron metabolism. The encoding ferritin genes are members of a multigene family that includes some pseudogenes. Even though pseudogenes have been initially considered as relics of ancient genes or junk DNA devoid of function, their role in controlling gene expression in normal and transformed cells has recently been re-evaluated. Numerous studies have revealed that some pseudogenes compete with their parental gene for binding to the microRNAs (miRNAs), while others generate small interference RNAs (siRNAs) to decrease functional gene expression, and still others encode functional mutated proteins. Consequently, pseudogenes can be considered as actual master regulators of numerous biological processes. Here, we provide a detailed classification and description of the structural features of the ferritin pseudogenes known to date and review the recent evidence on their mutual interrelation within the complex regulatory network of the ferritin gene family.
Collapse
Affiliation(s)
- Maddalena Di Sanzo
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (M.D.S.); (B.Q.); (F.B.)
| | - Barbara Quaresima
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (M.D.S.); (B.Q.); (F.B.)
| | - Flavia Biamonte
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (M.D.S.); (B.Q.); (F.B.)
| | - Camillo Palmieri
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (M.D.S.); (B.Q.); (F.B.)
| | - Maria Concetta Faniello
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (M.D.S.); (B.Q.); (F.B.)
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
10
|
Moreira AC, Mesquita G, Gomes MS. Ferritin: An Inflammatory Player Keeping Iron at the Core of Pathogen-Host Interactions. Microorganisms 2020; 8:microorganisms8040589. [PMID: 32325688 PMCID: PMC7232436 DOI: 10.3390/microorganisms8040589] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
Abstract
Iron is an essential element for virtually all cell types due to its role in energy metabolism, nucleic acid synthesis and cell proliferation. Nevertheless, if free, iron induces cellular and organ damage through the formation of free radicals. Thus, iron levels must be firmly controlled. During infection, both host and microbe need to access iron and avoid its toxicity. Alterations in serum and cellular iron have been reported as important markers of pathology. In this regard, ferritin, first discovered as an iron storage protein, has emerged as a biomarker not only in iron-related disorders but also in inflammatory diseases, or diseases in which inflammation has a central role such as cancer, neurodegeneration or infection. The basic research on ferritin identification and functions, as well as its role in diseases with an inflammatory component and its potential as a target in host-directed therapies, are the main considerations of this review.
Collapse
Affiliation(s)
- Ana C. Moreira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (G.M.); (M.S.G.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- Correspondence:
| | - Gonçalo Mesquita
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (G.M.); (M.S.G.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Maria Salomé Gomes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (G.M.); (M.S.G.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
11
|
Brown RAM, Richardson KL, Kabir TD, Trinder D, Ganss R, Leedman PJ. Altered Iron Metabolism and Impact in Cancer Biology, Metastasis, and Immunology. Front Oncol 2020; 10:476. [PMID: 32328462 PMCID: PMC7160331 DOI: 10.3389/fonc.2020.00476] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022] Open
Abstract
Iron is an essential nutrient that plays a complex role in cancer biology. Iron metabolism must be tightly controlled within cells. Whilst fundamental to many cellular processes and required for cell survival, excess labile iron is toxic to cells. Increased iron metabolism is associated with malignant transformation, cancer progression, drug resistance and immune evasion. Depleting intracellular iron stores, either with the use of iron chelating agents or mimicking endogenous regulation mechanisms, such as microRNAs, present attractive therapeutic opportunities, some of which are currently under clinical investigation. Alternatively, iron overload can result in a form of regulated cell death, ferroptosis, which can be activated in cancer cells presenting an alternative anti-cancer strategy. This review focuses on alterations in iron metabolism that enable cancer cells to meet metabolic demands required during different stages of tumorigenesis in relation to metastasis and immune response. The strength of current evidence is considered, gaps in knowledge are highlighted and controversies relating to the role of iron and therapeutic targeting potential are discussed. The key question we address within this review is whether iron modulation represents a useful approach for treating metastatic disease and whether it could be employed in combination with existing targeted drugs and immune-based therapies to enhance their efficacy.
Collapse
Affiliation(s)
- Rikki A. M. Brown
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
- UWA Medical School, University of Western Australia, Perth, WA, Australia
| | - Kirsty L. Richardson
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
| | - Tasnuva D. Kabir
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
| | - Debbie Trinder
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
- UWA Medical School, University of Western Australia, Perth, WA, Australia
| | - Ruth Ganss
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
| | - Peter J. Leedman
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
- UWA Medical School, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
12
|
Droll SH, Sheng Hsu YM, Drake SK, Kim A, Wang W, Calvo KR, Cao Z, Hu TY, Zhao Z. Differential processing of high-molecular-weight kininogen during normal pregnancy. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 1:e8552. [PMID: 31412146 PMCID: PMC7018535 DOI: 10.1002/rcm.8552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/18/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Studies identified kininogen as a potential biomarker of preeclampsia, a major cause of adverse maternal outcomes. High-molecular-weight kininogen (HK) and its activated form participate in numerous pathways associated with establishing and maintaining pregnancy. However, dynamic changes in HK and naturally occurring HK-derived peptides during the natural course of pregnancy are largely unknown. METHODS Longitudinal serum samples during the course of normal pregnancy (trimesters T1, T2, T3) from 60 pregnant women were analyzed by western blot with an anti-HK antibody. Circulating peptides in longitudinal serum specimens derived from 50 participants were enriched using nanoporous silica thin films. Peptides were identified by liquid chromatography/tandem mass spectrometry (LC/MS/MS) and database searching. Relative quantification was performed using MaxQuant and in-house scripts. Normality was evaluated by either ANOVA or Friedman tests with p < 0.05 for statistical significance. RESULTS Western blotting revealed that HK significantly decreased during normal pregnancy (T1 vs T2, p < 0.05; T1 vs T3, p < 0.0001). A 100 kDa intermediate increased during pregnancy (T1 vs T2, p < 0.005; T1 vs T3, p < 0.01). Moreover, the heavy chain (T1 vs T2, p < 0.0001; T1 vs T3, p < 0.0001; T2 vs T3, p < 0.01) and light chain (T1 vs T2, p < 0.0001; T1 vs T3, p < 0.0001; T2 vs T3, p < 0.05) significantly increased during pregnancy. LC/MS/MS analysis identified 180 kininogen-1 peptides, of which 167 mapped to domain 5 (D5). Seventy-three peptides with ten or more complete data sets were included for further analysis. Seventy peptides mapped to D5, and 3, 24, and 43 peptides showed significant decrease, no trend, and significant increase, respectively, during pregnancy. CONCLUSIONS This study demonstrates dynamic changes in HK and naturally occurring HK-derived peptides during pregnancy. Our study sheds light on the gestational changes of HK and its peptides for further validation of them as potential biomarkers for pregnancy-related complications.
Collapse
Affiliation(s)
- Stephenie H. Droll
- Chemistry Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, 20892 MD, USA
- IBiS - Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208-3500
| | - Yen-Michael Sheng Hsu
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Steven K. Drake
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Ashley Kim
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| | - Weixin Wang
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, 20892 MD, USA
| | - Katherine R. Calvo
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, 20892 MD, USA
| | - Zheng Cao
- Department of Laboratory Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Tony Y Hu
- Virginia G. Piper Biodesign Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University; School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281
| | - Zhen Zhao
- Chemistry Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, 20892 MD, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
13
|
|
14
|
Indication of quantum mechanical electron transport in human substantia nigra tissue from conductive atomic force microscopy analysis. Biosystems 2019; 179:30-38. [PMID: 30826349 DOI: 10.1016/j.biosystems.2019.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/28/2019] [Accepted: 02/05/2019] [Indexed: 12/18/2022]
Abstract
Neuromelanin and ferritin in dopamine neurons of the substantia nigra have a distribution and density that is similar to disordered arrays of quantum dots in photovoltaic devices, which have been experimentally shown to conduct electric energy using quantum mechanical electron transport mechanisms. Conductive atomic force microscopy tests were performed on human substantia nigra tissue at room temperature, to determine whether evidence of electron transport is present. The test results presented here provide evidence of quantum mechanical electron transport from ferritin and neuromelanin at levels that may be sufficient to cause or contribute to generation of action potentials.
Collapse
|
15
|
Zhao H, Zhao X, Lei T, Zhang M. Screening, identification of prostate cancer urinary biomarkers and verification of important spots. Invest New Drugs 2019; 37:935-947. [PMID: 30610587 DOI: 10.1007/s10637-018-0709-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/05/2018] [Indexed: 12/18/2022]
Abstract
Prostate-specific antigen (PSA) has been widely used as the unique serum biomarker for the diagnosis of prostate cancer (PCa). When PSA is moderately increased (e.g., 4-10 ng/ml), it is difficult to differentiate benign prostatic hyperplasia (BPH) from cancer. The diagnostic test (i.e., prostate biopsy) is invasive, adding pain and economic burden to the patient. Urine samples are more convenient, non-invasive and readily available than blood. We sought to determine whether ferritin might be the potential urinary biomarker in prostate cancer diagnosis. Using two-dimensional electrophoresis (2DE) followed by mass spectrometry (MS), differentially expressed urinary proteins among patients with PCa, BPH and normal controls were obtained. The ferritin heavy chain (FTH) gene, ferritin light chain (FTL) gene and protein expression of BPH-1 cells and PC-3 cells were analyzed by real-time quantitative PCR and Western blotting, respectively. Stable FTH or FTL silenced cell lines were generated by small hairpin(sh) RNA lentiviral transfection. The function of the cell lines was evaluated by the colony formation assay, transwell assay, and flow cytometry. Compared with BPH and normal controls, 15 overexpressed proteins, including FTH and FTL, were identified in the urine of the PCa group. FTH and FTL were also highly expressed in PC-3 cell lines compared with BPH-1 cells. FTH-silenced cells showed reduced cell proliferation, migration and increased cell apoptosis. FTL-silenced cells showed increased proliferation and migration abilities. There are differences in urinary proteins among patients with PCa, BPH and normal controls. FTH and FTL play different roles in PCa cells and are potential biomarkers for PCa.
Collapse
Affiliation(s)
- Huijun Zhao
- Department of Clinical Laboratory, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Haidian District, Beijing, 100038, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, 100038, China
| | - Xuhong Zhao
- Department of Clinical Laboratory, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Haidian District, Beijing, 100038, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, 100038, China
- Department of Clinical Laboratory, Peking University Ninth School of Clinical Medicine, Beijing, 100038, China
| | - Ting Lei
- Department of Clinical Laboratory, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Haidian District, Beijing, 100038, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, 100038, China
- Department of Clinical Laboratory, Peking University Ninth School of Clinical Medicine, Beijing, 100038, China
| | - Man Zhang
- Department of Clinical Laboratory, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Haidian District, Beijing, 100038, China.
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, 100038, China.
- Department of Clinical Laboratory, Peking University Ninth School of Clinical Medicine, Beijing, 100038, China.
| |
Collapse
|
16
|
Tingting H, Di S, Xiaoping C, Xiaohong W, Dong H. High preoperative serum ferritin predicted poor prognosis in non-metastatic colorectal cancer. Saudi Med J 2017; 38:268-275. [PMID: 28251222 PMCID: PMC5387903 DOI: 10.15537/smj.2017.3.16110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Objectives: To validate the prognostic significance of preoperative serum iron metabolism parameters in non-metastatic colorectal cancer patients treated with curative resection. Methods: We conducted a prospective cohort study in the Department of Surgical Oncology, WuXi 4th People’s Hospital, WuxiChina, between March 2010 and September 2013. The relationships of serum iron metabolism parameters with other variables were examined. The prognostic significance was evaluated using the Kaplan Meier curve and Cox proportional hazards regression model. Results: Five hundred and fourteen patients were eligible for analysis. The levels of the 3 iron metabolism parameters were interdependent. Hemoglobin level was positively correlated with serum iron and transferrin, and was negatively correlated with ferritin. Compared with peri-neural invasion (PNI)-negative patients, PNI-positive patients had higher serum iron (p=0.03) and ferritin levels (p=0.01). Compared with patients with the lowest quartile level of ferritin, patients with the highest quartile level of ferritin had a 2.21 (95% CI: 1.18-4.14) fold increased mortality risk in the univariate and 2.56 (95% CI: 1.10-5.96) in the multivariate Cox proportional hazards models. When stratified by TNM stages, it was only in stage III patients that serum ferritin remained statistically prognostically significant. Conclusions: Preoperative serum ferritin appeared as an independent adverse risk factor in non-metastatic colorectal cancer.
Collapse
Affiliation(s)
- Hong Tingting
- Department of Medical Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, People Republic of China. E-mail.
| | | | | | | | | |
Collapse
|
17
|
Mignogna C, Barca I, Di Vito A, Puleo F, Malara N, Giudice A, Giudice M, Barni T, Donato G, Cristofaro MG. Extravascular type of intravascular papillary endothelial hyperplasia mimicking parotid gland neoplasia and the possible role of ferritin in the pathogenesis: A case report. Mol Clin Oncol 2016; 6:193-196. [PMID: 28357092 DOI: 10.3892/mco.2016.1117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/09/2016] [Indexed: 01/30/2023] Open
Abstract
Intravascular papillary endothelial hyperplasia (IPEH) is defined as a vascular lesion characterized by extensive proliferation of vascular endothelial cells. This lesion was first described by Pierre Masson in 1923 as intravascular hemangioendothelioma. The most frequent sites of involvement are the skin and subcutis. IPEH comprises ~2% of the vascular tumors of the skin and subcutaneous tissue and it has a predilection for the head, neck, trunk and the extremities. The diagnosis is based on histopathology. We herein present the second case of Masson's tumor of the parotid gland described in literature. The patient was a 70-year-old female. Magnetic resonance imaging revealed an irregular lesion with smooth margins, initially considered to be compatible with pleomorphic adenoma. Immunohistochemical analysis revealed positivity of the tumor cells for ferritin heavy and light chains, vimentin and CD31. The aim of the present study was to emphasize the immunohistochemical characteristics and briefly discuss the potential role of ferritin in the pathogenesis of IPEH.
Collapse
Affiliation(s)
- Chiara Mignogna
- Department of Health Science, Magna Græcia University, I-88100 Catanzaro, Italy
| | - Ida Barca
- Department of Experimental and Clinical Medicine, Magna Græcia University, I-88100 Catanzaro, Italy
| | - Anna Di Vito
- Department of Experimental and Clinical Medicine, Magna Græcia University, I-88100 Catanzaro, Italy
| | - Francesca Puleo
- Department of Health Science, Magna Græcia University, I-88100 Catanzaro, Italy
| | - Natalia Malara
- Department of Health Science, Magna Græcia University, I-88100 Catanzaro, Italy
| | - Amerigo Giudice
- Department of Health Science, Magna Græcia University, I-88100 Catanzaro, Italy
| | - Mario Giudice
- Department of Experimental and Clinical Medicine, Magna Græcia University, I-88100 Catanzaro, Italy
| | - Tullio Barni
- Department of Experimental and Clinical Medicine, Magna Græcia University, I-88100 Catanzaro, Italy
| | - Giuseppe Donato
- Department of Health Science, Magna Græcia University, I-88100 Catanzaro, Italy
| | - Maria Giulia Cristofaro
- Department of Experimental and Clinical Medicine, Magna Græcia University, I-88100 Catanzaro, Italy
| |
Collapse
|
18
|
Li L, Zhang L, Knez M. Comparison of two endogenous delivery agents in cancer therapy: Exosomes and ferritin. Pharmacol Res 2016; 110:1-9. [DOI: 10.1016/j.phrs.2016.05.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/07/2016] [Accepted: 05/03/2016] [Indexed: 12/21/2022]
|
19
|
Abstract
Ferritins, the main intracellular iron storage proteins, have been studied for over 60 years, mainly focusing on the mammalian ones. This allowed the elucidation of the structure of these proteins and the mechanisms regulating their iron incorporation and mineralization. However, ferritin is present in most, although not all, eukaryotic cells, comprising monocellular and multicellular invertebrates and vertebrates. The aim of this review is to provide an update on the general properties of ferritins that are common to various eukaryotic phyla (except plants), and to give an overview on the structure, function and regulation of ferritins. An update on the animal models that were used to characterize H, L and mitochondrial ferritins is also provided. The data show that ferritin structure is highly conserved among different phyla. It exerts an important cytoprotective function against oxidative damage and plays a role in innate immunity, where it also contributes to prevent parenchymal tissue from the cytotoxicity of pro-inflammatory agonists released by the activation of the immune response activation. Less clear are the properties of the secretory ferritins expressed by insects and molluscs, which may be important for understanding the role played by serum ferritin in mammals.
Collapse
|
20
|
Loboda A, Jozkowicz A, Dulak J. HO-1/CO system in tumor growth, angiogenesis and metabolism - Targeting HO-1 as an anti-tumor therapy. Vascul Pharmacol 2015; 74:11-22. [PMID: 26392237 DOI: 10.1016/j.vph.2015.09.004] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/02/2015] [Accepted: 09/16/2015] [Indexed: 02/08/2023]
Abstract
Heme oxygenase-1 (HO-1, hmox-1) catalyzes the rate-limiting step in the heme degradation processes. Out of three by-products of HO-1 activity, biliverdin, iron ions and carbon monoxide (CO), the latter was mostly shown to mediate many beneficial HO-1 effects, including protection against oxidative injury, regulation of apoptosis, modulation of inflammation as well as contribution to angiogenesis. Mounting evidence suggests that HO-1/CO systemmay be of special benefit in protection inmany pathological conditions, like atherosclerosis or myocardial infarction. By contrast, the augmented expression of HO-1 in tumor tissues may have detrimental effect as HO-1 accelerates the formation of tumor neovasculature and provides the selective advantage for tumor cells to overcome the increased oxidative stress during tumorigenesis and during treatment. The inhibition of HO-1 has been proposed as an anti-cancer therapy, however, because of non-specific effects of known HO-1 inhibitors, the discovery of ideal drug lowering HO-1 expression/activity is still an open question. Importantly, in several types of cancer HO-1/CO system exerts opposite activities, making the possible treatment more complicated. All together indicates the complex role for HO-1/CO in various in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Agnieszka Loboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| |
Collapse
|
21
|
Sobers CJ, Wood SE, Mrksich M. A gene expression-based comparison of cell adhesion to extracellular matrix and RGD-terminated monolayers. Biomaterials 2015; 52:385-94. [PMID: 25818445 PMCID: PMC4379455 DOI: 10.1016/j.biomaterials.2015.02.045] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 02/03/2015] [Accepted: 02/06/2015] [Indexed: 01/08/2023]
Abstract
This work uses global gene expression analysis to compare the extent to which model substrates presenting peptide adhesion motifs mimic the use of conventional extracellular matrix protein coated substrates for cell culture. We compared the transcriptional activities of genes in cells that were cultured on matrix-coated substrates with those cultured on self-assembled monolayers presenting either a linear or cyclic RGD peptide. Cells adherent to cyclic RGD were most similar to those cultured on native ECM, while cells cultured on monolayers presenting the linear RGD peptide had transcriptional activities that were more similar to cells cultured on the uncoated substrates. This study suggests that biomaterials presenting the cyclic RGD peptide are substantially better mimics of extracellular matrix than are uncoated materials or materials presenting the common linear RGD peptide.
Collapse
Affiliation(s)
- Courtney J Sobers
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA; Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA
| | - Sarah E Wood
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Milan Mrksich
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA; Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA; Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
22
|
Huhn AJ, Parsonage D, Horita DA, Torti FM, Torti SV, Hollis T. The high-molecular-weight kininogen domain 5 is an intrinsically unstructured protein and its interaction with ferritin is metal mediated. Protein Sci 2014; 23:1013-22. [PMID: 24810540 DOI: 10.1002/pro.2486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/06/2014] [Accepted: 05/06/2014] [Indexed: 12/30/2022]
Abstract
High-molecular-weight kininogen domain 5 (HK5) is an angiogenic modulator that is capable of inhibiting endothelial cell proliferation, migration, adhesion, and tube formation. Ferritin can bind to a histidine-glycine-lysine-rich region within HK5 and block its antiangiogenic effects. However, the molecular intricacies of this interaction are not well understood. Analysis of the structure of HK5 using circular dichroism and nuclear magnetic resonance [(1) H, (15) N]-heteronuclear single quantum coherence determined that HK5 is an intrinsically unstructured protein, consistent with secondary structure predictions. Equilibrium binding studies using fluorescence anisotropy were used to study the interaction between ferritin and HK5. The interaction between the two proteins is mediated by metal ions such as Co(2+) , Cd(2+) , and Fe(2+) . This metal-mediated interaction works independently of the loaded ferrihydrite core of ferritin and is demonstrated to be a surface interaction. Ferritin H and L bind to HK5 with similar affinity in the presence of metals. The ferritin interaction with HK5 is the first biological function shown to occur on the surface of ferritin using its surface-bound metals.
Collapse
Affiliation(s)
- Annissa J Huhn
- Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina; Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | | | | | | | | | |
Collapse
|
23
|
Yang A, Dai J, Xie Z, Colman RW, Wu Q, Birge RB, Wu Y. High molecular weight kininogen binds phosphatidylserine and opsonizes urokinase plasminogen activator receptor-mediated efferocytosis. THE JOURNAL OF IMMUNOLOGY 2014; 192:4398-408. [PMID: 24688027 DOI: 10.4049/jimmunol.1302590] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Phagocytosis of apoptotic cells (efferocytosis) is essential for regulation of immune responses and tissue homeostasis and is mediated by phagocytic receptors. In this study, we found that urokinase plasminogen activator receptor (uPAR) plays an important role in internalization of apoptotic cells and also characterized the underlying mechanisms. In a flow cytometry-based phagocytic assay, uPAR-deficient macrophages displayed significant defect in internalization but not tethering of apoptotic cells. When uPAR-deficient mice were challenged with apoptotic cells, they exhibited pronounced splenomegaly resulting from accumulation of abundant apoptotic cells in spleen. Overexpression of uPAR in HEK-293 cells enhanced efferocytosis, which was inhibited by Annexin V and phosphatidylserine (PS) liposome, suggesting that uPAR-mediated efferocytosis is dependent on PS. In serum lacking high m.w. kininogen (HK), a uPAR ligand, uPAR-mediated efferocytosis was significantly attenuated, which was rescued by replenishment of HK. As detected by flow cytometry, HK selectively bound to apoptotic cells, but not viable cells. In purified systems, HK was specifically associated with PS liposome. HK binding to apoptotic cells induced its rapid cleavage to the two-chain form of HK (HKa) and bradykinin. Both the H chain and L chain of HKa were associated with PS liposome and apoptotic cells. HKa has higher binding affinity than HK to uPAR. Overexpression of Rac1/N17 cDNA inhibited uPAR-mediated efferocytosis. HK plus PS liposome stimulated a complex formation of CrkII with p130Cas and Dock-180 and Rac1 activation in uPAR-293 cells, but not in control HEK-293 cells. Thus, uPAR mediates efferocytosis through HK interaction with PS on apoptotic cells and activation of the Rac1 pathway.
Collapse
Affiliation(s)
- Aizhen Yang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital, Soochow University, Suzhou 215006, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Alkhateeb AA, Connor JR. The significance of ferritin in cancer: anti-oxidation, inflammation and tumorigenesis. Biochim Biophys Acta Rev Cancer 2013; 1836:245-54. [PMID: 23891969 DOI: 10.1016/j.bbcan.2013.07.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/09/2013] [Accepted: 07/18/2013] [Indexed: 12/16/2022]
Abstract
The iron storage protein ferritin has been continuously studied for over 70years and its function as the primary iron storage protein in cells is well established. Although the intracellular functions of ferritin are for the most part well-characterized, the significance of serum (extracellular) ferritin in human biology is poorly understood. Recently, several lines of evidence have demonstrated that ferritin is a multi-functional protein with possible roles in proliferation, angiogenesis, immunosuppression, and iron delivery. In the context of cancer, ferritin is detected at higher levels in the sera of many cancer patients, and the higher levels correlate with aggressive disease and poor clinical outcome. Furthermore, ferritin is highly expressed in tumor-associated macrophages which have been recently recognized as having critical roles in tumor progression and therapy resistance. These characteristics suggest ferritin could be an attractive target for cancer therapy because its down-regulation could disrupt the supportive tumor microenvironment, kill cancer cells, and increase sensitivity to chemotherapy. In this review, we provide an overview of the current knowledge on the function and regulation of ferritin. Moreover, we examine the literature on ferritin's contributions to tumor progression and therapy resistance, in addition to its therapeutic potential.
Collapse
Affiliation(s)
- Ahmed A Alkhateeb
- Department of Neurosurgery, The Pennsylvania State University Hershey Medical Center, Hershey, PA, USA
| | | |
Collapse
|
25
|
Abstract
Iron is an essential nutrient that facilitates cell proliferation and growth. However, iron also has the capacity to engage in redox cycling and free radical formation. Therefore, iron can contribute to both tumour initiation and tumour growth; recent work has also shown that iron has a role in the tumour microenvironment and in metastasis. Pathways of iron acquisition, efflux, storage and regulation are all perturbed in cancer, suggesting that reprogramming of iron metabolism is a central aspect of tumour cell survival. Signalling through hypoxia-inducible factor (HIF) and WNT pathways may contribute to altered iron metabolism in cancer. Targeting iron metabolic pathways may provide new tools for cancer prognosis and therapy.
Collapse
Affiliation(s)
- Suzy V Torti
- Departments of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA.
| | | |
Collapse
|
26
|
Ferritin stimulates breast cancer cells through an iron-independent mechanism and is localized within tumor-associated macrophages. Breast Cancer Res Treat 2013; 137:733-44. [PMID: 23306463 DOI: 10.1007/s10549-012-2405-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 12/29/2012] [Indexed: 10/27/2022]
Abstract
Tumor-associated macrophages play a critical role in breast tumor progression; however, it is still unclear what effector molecular mechanisms they employ to impact tumorigenesis. Ferritin is the primary intracellular iron storage protein and is also abundant in circulation. In breast cancer patients, ferritin is detected at higher levels in both serum and tumor lysates, and its increase correlates with poor clinical outcome. In this study, we comprehensively examined the distribution of ferritin in normal and malignant breast tissue at different stages in tumor development. Decreased ferritin expression in cancer cells but increased infiltration of ferritin-rich CD68-positive macrophages was observed with increased tumor histological grade. Interestingly, ferritin stained within the stroma surrounding tumors suggesting local release within the breast. In cell culture, macrophages, but not breast cancer cells, were capable of ferritin secretion, and this secretion was further increased in response to pro-inflammatory cytokines. We next examined the possible functional significance of extracellular ferritin in a breast cancer cell culture model. Ferritin stimulated the proliferation of the epithelial breast cancer cell lines MCF7 and T47D. Moreover, this proliferative effect was independent of the iron content of ferritin and did not increase intracellular iron levels in cancer cells indicating a novel iron-independent function for this protein. Together, these findings suggest that the release of ferritin by infiltrating macrophages in breast tumors may represent an inflammatory effector mechanism by which ferritin directly stimulates tumorigenesis.
Collapse
|