1
|
Wu SK, Wang L, Wang F, Zhang J. Resveratrol improved mitochondrial biogenesis by activating SIRT1/PGC-1α signal pathway in SAP. Sci Rep 2024; 14:26216. [PMID: 39482340 PMCID: PMC11528064 DOI: 10.1038/s41598-024-76825-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024] Open
Abstract
NLRP3 inflammasomes- pyroptosis axis is activated by microcirculation dysfunction and touched off severe acute pancreatitis (SAP). Activation of PGC-1α can improve microcirculation dysfunction by promoting mitochondrial biogenesis. Resveratrol (RSV), one typical SIRT1 agonist, possesses the ability of alleviating SAP and activing PGC-1α. Therefore, the study was designated to explore whether the protective effect of RSV in SAP was though suppressing NLRP3 inflammasomes- pyroptosis axis via advancing SIRT1/PGC-1α-dependent mitochondrial biogenesis. The models of SAP were induced by treating with sodium taurodeoxycholate in rats and AR42J cells. The pathological injury, water content (dry/wet ratio) and microcirculation function of pancreas, activity of lipase and amylase were used to evaluate pancreatic damage. The expression of inflammatory cytokine was measured by ELISA and RT-PCR. The damage of mitochondrial was evaluated by measuring the changes in Mitochondrial Membrane Potential (ΔΨm), mitochondrial ROS, ATP content and MDA as well as relocation of mtDNA and the activity of SOD and GSH. The expressions of NLRP3 inflammasomes- pyroptosis axis proteins were detected by Western blotting as well as SIRT1/PGC-1α/NRF1/TFAM pathway protein. Moreover, the modification of PGC-1α was measured by co-immunoprecipitation. The results displayed that RSV can significantly improve the damage of pancreas and mitochondrial, decrease the expression of pro-inflammatory factor and the activation of NLRP3 inflammasomes- pyroptosis axis, promote the expression of an-inflammatory factor and the deacetylation of PGC-1α together with facilitating SIRT1/PGC-1α-mediating mitochondrial biogenesis. Therefore, the protective effect of RSV in SAP is though inactivation of NLRP3 inflammasomes- pyroptosis axis via promoting mitochondrial biogenesis in a SIRT1/PGC-1α-dependent manner.
Collapse
Affiliation(s)
- Shu-Kun Wu
- Division of Nephrology, Sichuan Provincial People's Hospital & Sichuan Academy of Sciences, University of Electronic Science and Technology, Chengdu, China
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Le Wang
- Division of Nephrology, Sichuan Provincial People's Hospital & Sichuan Academy of Sciences, University of Electronic Science and Technology, Chengdu, China
| | - Fang Wang
- Division of Nephrology, Sichuan Provincial People's Hospital & Sichuan Academy of Sciences, University of Electronic Science and Technology, Chengdu, China.
| | - Jiong Zhang
- Division of Nephrology, Sichuan Provincial People's Hospital & Sichuan Academy of Sciences, University of Electronic Science and Technology, Chengdu, China.
| |
Collapse
|
2
|
Hakami N. Integrating complementary and alternative medicine in surgical care: A narrative review. Medicine (Baltimore) 2024; 103:e40117. [PMID: 39465794 PMCID: PMC11479470 DOI: 10.1097/md.0000000000040117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/27/2024] [Indexed: 10/29/2024] Open
Abstract
Complementary and integrative medicine (CIM) is increasingly being integrated into preoperative, intraoperative, and postoperative phases to enhance patient outcomes, manage symptoms, and improve overall well-being. CIM encompasses a broad range of therapies and practices that are not typically part of conventional medical care, such as herbal and non-herbal medicine, yoga, acupuncture, meditation, chiropractic care, and dietary supplements. This review explores the existing evidence on the application, benefits, and challenges of CIM therapies and practices in surgical settings, highlighting the importance of integrating these therapies and approaches with conventional medical practices to enhance patient outcomes.
Collapse
Affiliation(s)
- Nasser Hakami
- Surgical Department, College of Medicine, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
3
|
Shan Y, Li J, Zhu A, Kong W, Ying R, Zhu W. Ginsenoside Rg3 ameliorates acute pancreatitis by activating the NRF2/HO‑1‑mediated ferroptosis pathway. Int J Mol Med 2022; 50:89. [PMID: 35582998 PMCID: PMC9162051 DOI: 10.3892/ijmm.2022.5144] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/01/2022] [Indexed: 12/02/2022] Open
Abstract
Acute pancreatitis (AP) is an inflammatory disorder that has been associated with systemic inflammatory response syndrome. Ginsenoside Rg3 is a major active component of Panax ginseng, which has been demonstrated to exert potent protective effects on hyperglycemia and diabetes. However, it remains to be determined whether Rg3 ameliorates AP. Thus, an in vitro AP cell model was established in the present study by exposing AR42J cells to cerulein (Cn). AR42J cell viability was increased in the Rg3‑treated group as compared with the Cn‑exposed group. Simultaneously, the number of dead AR42J cells was decreased in the Rg3‑treated group compared with the group treated with Cn only. Furthermore, following treatment with Rg3, the production of malondialdehyde (MDA) and ferrous ion (Fe2+) in the AR42J cells was reduced, accompanied by increased glutathione (GSH) levels. Western blot analysis revealed that the decrease in glutathione peroxidase 4 (GPX4) and cystine/glutamate transporter (xCT) levels induced by Cn were reversed by Rg3 treatment in the AR42J cells. Mice treated with Cn exhibited increased serum amylase levels, as well as increased levels of TNFα, IL‑6, IL‑1β, pancreatic MDA, reactive oxygen species (ROS) and Fe2+ production. Following Rg3 treatment, ROS accumulation and cell death were decreased in the pancreatic tissues compared with the AP group. Furthermore, in the pancreatic tissues of the AP model, the expression of nuclear factor‑erythroid factor 2‑related factor 2 (NRF2)/heme oxygenase 1 (HO‑1)/xCT/GPX4 was suppressed. In comparison, the NRF2/HO‑1/xCT/GPX4 pathway was activated in pancreatic tissues following Rg3 administration. Taken together, the present study, to the best of our knowledge, is the first to reveal a protective role for Rg3 in mice with AP by suppressing oxidative stress‑related ferroptosis and the activation of the NRF2/HO‑1 pathway.
Collapse
Affiliation(s)
- Yuqiang Shan
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Jiaotao Li
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Akao Zhu
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Wencheng Kong
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Rongchao Ying
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Weiming Zhu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
4
|
Liu X, Guan G, Cui X, Liu Y, Liu Y, Luo F. Systemic Immune-Inflammation Index (SII) Can Be an Early Indicator for Predicting the Severity of Acute Pancreatitis: A Retrospective Study. Int J Gen Med 2021; 14:9483-9489. [PMID: 34949937 PMCID: PMC8689009 DOI: 10.2147/ijgm.s343110] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective Systemic immune-inflammation index (SII) is a new systemic inflammatory prognostic indicator associated with outcomes in patients with different tumors. Studies have shown an association between SII and many chronic/acute inflammatory diseases. This study aimed at exploring whether SII can be used as an effective parameter for predicting the severity of acute pancreatitis (AP). Methods A total of 101 acute pancreatitis patients were enrolled in this study (mild acute pancreatitis (MAP): n = 73 and severe acute pancreatitis (SAP): n = 28). Patient demographics and SII were analyzed using the chi-square test, Student’s t-test, and Mann–Whitney U-test. A receiver operating characteristic curve was generated to test the potential of using neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR), and SII to predict AP’s severity. Logistic regression analysis was performed to determine major risk factors. Results Patients with SII value ≥2207.53 had a higher probability of having SAP (sensitivity = 92.9%, specificity = 87.7%, and AUC = 0.920), and SII was a significantly better predictive value than PLR and NLR. Logistic regression analysis results showed SII could differentiate MAP from SAP as a major risk factor. Conclusion This study has shown that SII is a potential indicator for predicting the severity of acute pancreatitis. The findings suggested that SII is more sensitive and specific than NLR and PLR in predicting the severity of acute pancreatitis.
Collapse
Affiliation(s)
- Xingming Liu
- Department of General Surgery, The Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, People's Republic of China
| | - Guoxin Guan
- Department of General Surgery, The Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, People's Republic of China
| | - Xinye Cui
- Department of General Surgery, The Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, People's Republic of China
| | - Yaqing Liu
- Department of General Surgery, The Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, People's Republic of China
| | - Yinghan Liu
- Department of General Surgery, The Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, People's Republic of China
| | - Fuwen Luo
- Department of General Surgery, The Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, People's Republic of China
| |
Collapse
|
5
|
Wang J, Zou Y, Chang D, Hong DQ, Zhang J. Protective effect of Dachengqi decoction on the pancreatic microcirculatory system in severe acute pancreatitis by down-regulating HMGB-TLR-4-IL-23-IL-17A mediated neutrophil activation by targeting SIRT1. Gland Surg 2021; 10:3030-3044. [PMID: 34804889 DOI: 10.21037/gs-21-655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/14/2021] [Indexed: 12/27/2022]
Abstract
Background Dachengqi decoction (DCQD), one of classic prescription of Chinese herbal medicine has been widely used in clinic to treat severe acute pancreatitis (SAP). The damage of pancreatic microcirculation plays key pathogenesis of SAP. However, little is known about the molecular pharmacological activity of DCQD on pancreatic microcirculation in SAP. Methods Sodium taurodeoxycholate and cerulein were used to establish model of SAP in vitro and in vivo, respectively. The pancreatic pathological morphology, wet weight ratio, myeloperoxidase (MPO) activity, cell viability and microcirculatory function of the pancreas, as well as serum lipase and amylase expressions were evaluated. The expression levels of SIRT1, acety-HMGB1, TLR-4, HMGB1, IL-23, IL-17A, neutrophil chemokines (KC, LIX, and MIP-2), and inflammation-related factors (IL-6, IL-1β, and TNF-α), the translocation of HMGB1 and the interaction of SIRT-HMGB1 in the pancreas and serum were determined by ELISA real-time PCR, western blotting and immunoprecipitation. Results In vivo studies showed that DCQD or neutralizing antibody (anti-23p19 or anti-IL-17A) could all significantly decrease lipase, amylase activity, down-regulate the expression of CD68, Myeloperoxidase (MPO), wet/weight, IL-1β, IL-6, TNF-α, and neutrophil chemokines (KC, LIX, MIP-2), alleviate pathological injury and improve pancreatic microcirculatory function in rats with SAP. Furthermore, DCQD remarkably increased SIRT1 expression, promoted SIRT1 and HMGB1 combination, reduced HMGB1 translocation from nuclear to cytoplasm, and alleviated the expression of acetyl-HMGB1, HMGB1, IL-17A, TLR-4, and IL-23 in vitro and in vivo with SAP. However, the intervention with EX527 (SIRT1 inhibitor) or r-HMGB1 (recombinant HMGB1) obliviously reverses the above mentioned influence mentioned above of DCQD in SAP. In vitro, we confirmed that DCQD could decrease HMGB1 acetylation, migration, and release, and improve the decline of cell viability, SIRT1 expression and SIRI-HMGB1 combination induced by cerulean with promoting macrophage to release IL-23 by relying on the HMGB1/TLR-4 way. Conclusions DCQD treatment improves SAP-induced pancreatic microcirculatory dysfunction by inhibiting neutrophil-mediated inflammation via inactivating HMGB1-TLR-4-IL-23-IL-17A signaling by targeting SIRT1.
Collapse
Affiliation(s)
- Jia Wang
- General Practice Center, Sichuan Provincial People's Hospital & Sichuan Academy of Sciences, University of Electronic Science and Technology, Chengdu, China
| | - Yang Zou
- Division of Nephrology, Sichuan Provincial People's Hospital & Sichuan Academy of Sciences, University of Electronic Science and Technology, Chengdu, China
| | - Dan Chang
- Division of Nephrology, Sichuan Provincial People's Hospital & Sichuan Academy of Sciences, University of Electronic Science and Technology, Chengdu, China
| | - Da-Qing Hong
- Division of Nephrology, Sichuan Provincial People's Hospital & Sichuan Academy of Sciences, University of Electronic Science and Technology, Chengdu, China
| | - Jiong Zhang
- Division of Nephrology, Sichuan Provincial People's Hospital & Sichuan Academy of Sciences, University of Electronic Science and Technology, Chengdu, China
| |
Collapse
|
6
|
Traditional Chinese Medicine Formulas Alleviate Acute Pancreatitis: Pharmacological Activities and Mechanisms. Pancreas 2021; 50:1348-1356. [PMID: 35041332 DOI: 10.1097/mpa.0000000000001931] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Acute pancreatitis (AP) is a common clinical gastrointestinal disorder with a high mortality rate for severe AP and lacks effective clinical treatment, which leads to considerable comorbidity and financial burden. Traditional Chinese medicine (TCM) has had the unique advantage of treating AP for a long time in China. Clinically, TCM formulas such as Da-cheng-qi decoction, Chai-qin-cheng-qi decoction, Qing-yi decoction, Da-chai-hu decoction, and Da-huang-fu-zi decoction are widely administrated to AP patients. All of these TCM formulas can improve gastrointestinal function, regulate the inflammatory response, and enhance immunity, thus preventing complications, reducing the mortality rate and financial burden. This review will summarize the pharmacological activities and mechanisms of TCM formulas in alleviating AP.
Collapse
|
7
|
Da Cheng Qi Decoction Alleviates Cerulein-Stimulated AR42J Pancreatic Acinar Cell Injury via the JAK2/STAT3 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6657036. [PMID: 33927777 PMCID: PMC8053057 DOI: 10.1155/2021/6657036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/08/2021] [Accepted: 03/27/2021] [Indexed: 12/22/2022]
Abstract
Background Acute pancreatitis (AP) is a common acute abdomen inflammation, characterized by the dysregulation of digestive enzyme production and secretion. Many studies have shown that Da Cheng Qi Decoction (DCQD) is a secure, effective prescription on AP. In this study, cerulein-stimulated AR42J cells damage model was established to further explore the feasibility and underlying mechanism of DCQD as a potential inhibitor of JAK2/STAT3 pathway for the treatment of AP. Methods Cell viability of DCQD was measured using a cell counting Kit-8 assay. Pancreatic biochemical markers such as amylase, lipase, and C-reactive protein production were measured by assay kits, respectively. Cytokines (TNF-α, IL-6, IL-10, and IL-1β) were assayed by ELISA. Protein location and protein expression were detected by immunofluorescence staining and Western blotting, respectively. Gene expression was assessed by real-time PCR. For mechanistic analysis of the effect of DCQD on JAK2/STAT3 signaling pathway, selective JAK2 inhibitor (Fedratinib) and STAT3 inhibitor (Stattic) as well as STAT3 activator (Garcinone D) were used. Results DCQD protected cells by regulating cerulein-induced inflammation and reducing the secretion of pancreatic biochemical markers. Moreover, DCQD could not only inhibit the nuclear translocation of p-STAT3, but also decrease the mRNA expression of JAK2 and STAT3 as well as the ratio of p-JAK2/JAK2 and p-STAT3/STAT3 in protein level. Additionally, DCQD could regulate the mRNA and protein expression of JAK2/STAT3 downstream effectors, Bax and Bcl-XL. The activated effect of cerulein on JAK2/STAT3 pathway was also reversed by JAK2 inhibitor Fedratinib or STAT3 inhibitor Stattic. And the overexpression of JAK2/STAT3 pathway, via STAT3 activator Garcinone D, did exert damage on cells, which bore a resemblance to cerulein. Conclusion The activation of JAK2/STAT3 pathway may play a key role in the pathogenesis of cerulein-stimulated AR42J pancreatic acinar cell injury. DCQD could improve inflammatory cytokines and cell injury, which might be mediated by suppressing the activation of JAK2/STAT3 signaling pathway.
Collapse
|
8
|
Yao JQ, Zhu L, Miao YF, Zhu L, Chen H, Yuan L, Hu J, Yi XL, Wu QT, Yang XJ, Wan MH, Tang WF. Optimal dosing time of Dachengqi decoction for protection of extrapancreatic organs in rats with experimental acute pancreatitis. World J Gastroenterol 2020; 26:3056-3075. [PMID: 32587448 PMCID: PMC7304110 DOI: 10.3748/wjg.v26.i22.3056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/26/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Acute pancreatitis (AP) is a pancreatic inflammatory disorder that is commonly complicated by extrapancreatic organ dysfunction. Dachengqi decoction (DCQD) has a potential role in protecting the extrapancreatic organs, but the optimal oral administration time remains unclear.
AIM To screen the appropriate oral administration time of DCQD for the protection of extrapancreatic organs based on the pharmacokinetics and pharmacodynamics of AP rats.
METHODS This study consisted of two parts. In the first part, 24 rats were divided into a sham-operated group and three model groups. The four groups were intragastrically administered with DCQD (10 g/kg) at 4 h, 4 h, 12 h, and 24 h postoperatively, respectively. Tail vein blood was taken at nine time points after administration, and then the rats were euthanized and the extrapancreatic organ tissues were immediately collected. Finally, the concentrations of the major DCQD components in all samples were detected. In the second part, 84 rats were divided into a sham-operated group, as well as 4 h, 12 h, and 24 h treatment groups and corresponding control groups (4 h, 12 h, and 24 h control groups). Rats in the treatment groups were intragastrically administered with DCQD (10 g/kg) at 4 h, 12 h, and 24 h postoperatively, respectively, and rats in the control groups were administered with normal saline at the same time points. Then, six rats from each group were euthanized at 4 h and 24 h after administration. Serum amylase and inflammatory mediators, and pathological scores of extrapancreatic organ tissues were evaluated.
RESULTS For part one, the pharmacokinetic parameters (C max, T max, T 1/2, and AUC 0 → t) of the major DCQD components and the tissue distribution of most DCQD components were better when administering DCQD at the later (12 h and 24 h) time points. For part two, delayed administration of DCQD resulted in lower IL-6 and amylase levels and relatively higher IL-10 levels, and pathological injury of extrapancreatic organ tissues was slightly less at 4 h after administration, while the results were similar between the treatment and corresponding control groups at 24 h after administration.
CONCLUSION Delayed administration of DCQD might reduce pancreatic exocrine secretions and ameliorate pathological injury in the extrapancreatic organs of AP rats, demonstrating that the late time is the optimal dosing time.
Collapse
Affiliation(s)
- Jia-Qi Yao
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Lin Zhu
- Digestive System Department, Sichuan Integrative Medicine Hospital, Chengdu 610041, Sichuan Province, China
| | - Yi-Fan Miao
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Lv Zhu
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Huan Chen
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ling Yuan
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jing Hu
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xiao-Lin Yi
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Qiu-Ting Wu
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xi-Jing Yang
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Mei-Hua Wan
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Wen-Fu Tang
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
9
|
Tang Q, Tian L, Gao C, Zhang K, Su N, Liu B, Zhai J, Liu S, Li Y. The efficacy and safety of Xuebijing injection as an adjunctive treatment for acute pancreatitis: Protocol for a systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore) 2020; 99:e18743. [PMID: 31977866 PMCID: PMC7004790 DOI: 10.1097/md.0000000000018743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Acute pancreatitis (AP) is one of the common diseases with increasing incidence in clinical surgery and other gastrointestinal-digestive departments. Despite the rapid development of modern medicine, the overall mortality rate of AP is still high. Xuebijing (XBJ) injection (a traditional Chinese patent medicine) is a potentially effective drug for AP. This study is designed to assess the efficacy and safety of XBJ injection for AP. METHODS We will extract data and assess methodological quality of included studies from 7 electronic databases from their inception to December 31, 2019. The primary outcomes include the mortality, surgical intervention, systemic inflammatory response syndrome (SIRS), local complications, systemic infections, gastrointestinal symptoms, and normal blood amylase recovery time. The statistical analysis will be performed using RevMan 5.3 software. RESULTS This study will provide high-quality evidence for the efficacy of XBJ injection as an adjuvant therapy for AP. CONCLUSION The study will provide the key evidence for clinical doctors and the development of clinical guidelines.
Collapse
Affiliation(s)
- Qilin Tang
- School of Basic Medical Sciences, Hebei University of Chinese Medicine, Hebei, 050200
| | - Lixin Tian
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617
| | - Chao Gao
- Department of General Surgery, Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052
| | - Kai Zhang
- Department of Acupuncture and Moxibustion, Tianjin Gong An Hospital, Tianjin, 300042
| | - Nan Su
- Department of Acupuncture and Moxibustion, Tianjin Gong An Hospital, Tianjin, 300042
| | - Baohong Liu
- Department of Acupuncture and Moxibustion, Tianjin Gong An Hospital, Tianjin, 300042
| | - Jingbo Zhai
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617
| | - Si Liu
- Tianjin Chase Sun Pharmaceutical Co., Ltd, Tianjin, 301700, China
| | - Yan Li
- Department of Acupuncture and Moxibustion, Tianjin Gong An Hospital, Tianjin, 300042
| |
Collapse
|
10
|
Liu Y, Wang X, Xu X, Qin W, Sun B. Carbon monoxide releasing molecule‑2 (CORM‑2)‑liberated CO ameliorates acute pancreatitis. Mol Med Rep 2019. [PMID: 31059081 DOI: 10.3892/mmr.2019.10173/html] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
The purpose of the present study was to investigate the effect of carbon monoxide (CO) released from CO‑releasing molecule 2 (CORM‑2) on mice with acute pancreatitis (AP). To perform the investigation, a mouse AP model was established using caerulein. The mice were treated with or without CORM‑2. The survival rate of the mice in the different groups was analyzed, and serum amylase and lipase levels were measured to assess the degree of pancreatic injury. The severity of AP was also evaluated by histological examination, and histopathological scoring of the pancreatic damage was performed. Pancreatic cell apoptosis was analyzed using a terminal deoxynucleotidyl‑transferase‑mediated dUTP nick end labelling assay. The function of the lung and liver was also assessed in the present study. Furthermore, the role of CORM‑2 on oxidative stress, intercellular adhesion molecule 1 (ICAM‑1) and vascular cell adhesion molecule 1 (VCAM‑1) expression, pro‑inflammatory cytokine production, and nuclear factor (NF)‑κB activation in the pancreas of AP mice was determined. The results demonstrated that CORM‑2 reduced the mortality, pancreatic damage, and lung and liver injury of AP mice. CORM‑2 administration also reduced systemic and localized inflammatory cell factors. Furthermore, treatment with CORM‑2 inhibited the expression of ICAM‑1 and VCAM‑1, and the activation of NF‑κB and phosphorylated inhibitor of NF‑κB subunit α, in the pancreas of AP mice. These results indicated that CO released from CORM‑2 exerted protective effects on AP mice, and the beneficial effects were likely due to inhibition of NF‑κB pathway activation.
Collapse
Affiliation(s)
- Yishu Liu
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Xu Wang
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Xiaohan Xu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Weiting Qin
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Bingwei Sun
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| |
Collapse
|
11
|
Hu Y, Dai J, Zong G, Xiao J, Guo X, Dai Y, Lu Z, Wan R. Restoration of p53 acetylation by HDAC inhibition permits the necrosis/apoptosis switch of pancreatic ainar cell during experimental pancreatitis in mice. J Cell Physiol 2019; 234:21988-21998. [PMID: 31058328 DOI: 10.1002/jcp.28761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/07/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Yangyang Hu
- Shanghai Key Laboratory of Pancreatic Disease, Department of Gastroenterology, Shanghai General Hospital Shanghai Jiaotong University School of Medicine Shanghai China
| | - Juanjuan Dai
- Shanghai Key Laboratory of Pancreatic Disease, Department of Gastroenterology, Shanghai General Hospital Shanghai Jiaotong University School of Medicine Shanghai China
| | - Guanzhao Zong
- Shanghai Key Laboratory of Pancreatic Disease, Department of Gastroenterology, Shanghai General Hospital Shanghai Jiaotong University School of Medicine Shanghai China
| | - Jingbo Xiao
- Shanghai Key Laboratory of Pancreatic Disease, Department of Gastroenterology, Shanghai General Hospital Shanghai Jiaotong University School of Medicine Shanghai China
| | - Xingya Guo
- Shanghai Key Laboratory of Pancreatic Disease, Department of Gastroenterology, Shanghai General Hospital Shanghai Jiaotong University School of Medicine Shanghai China
| | - Yiqi Dai
- Shanghai Key Laboratory of Pancreatic Disease, Department of Gastroenterology, Shanghai General Hospital Shanghai Jiaotong University School of Medicine Shanghai China
| | - Zhanjun Lu
- Shanghai Key Laboratory of Pancreatic Disease, Department of Gastroenterology, Shanghai General Hospital Shanghai Jiaotong University School of Medicine Shanghai China
| | - Rong Wan
- Shanghai Key Laboratory of Pancreatic Disease, Department of Gastroenterology, Shanghai General Hospital Shanghai Jiaotong University School of Medicine Shanghai China
| |
Collapse
|
12
|
Zhao D, Ge H, Ma B, Xue D, Zhang W, Li Z, Sun H. The interaction between ANXA2 and lncRNA Fendrr promotes cell apoptosis in caerulein-induced acute pancreatitis. J Cell Biochem 2019; 120:8160-8168. [PMID: 30474876 DOI: 10.1002/jcb.28097] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/29/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Annexin A2 (ANXA2) plays a crucial role in acute pancreatitis (AP). However, its potential mechanism remains unclear. METHODS In the present study, we used caerulein-treated AR42J rat pancreatic acinar cells as cell model of AP to investigate the potential functions of ANXA2 and its predicted long noncoding RNA (lncRNA) FOXF1 adjacent noncoding developmental regulatory RNA (lncRNA Fendrr). Cell apoptosis was evaluated by flow cytometry using annexinV-fluorescein isothiocyanate/propidium iodide staining. The expressions of ANAX2 and lncRNA Fendrr were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Furthermore, Western blot analysis was performed to determine the protein levels of ANXA2, Bcl-2, and Bax. The association between lncRNA Fendrr and ANXA2 was disclosed by RNA pull-down, RNA immunoprecipitation, and electrophoretic mobility shift assays. RESULTS ANXA2 was elevated in caerulein-induced AP model and promoted apoptosis of AR42J cells. LncRNA Fendrr was also upregulated in AP cell model and directly bound ANXA2 protein. Further studies indicated that the interaction between ANXA2 and lncRNA Fendrr contributed to the apoptosis of AR42J cells in AP cell model. CONCLUSION Our study demonstrated that ANXA2 promoted AP progression via interacting with lncRNA Fendrr in vitro, which will provide a novel insight into the therapeutic target for AP.
Collapse
Affiliation(s)
- Dali Zhao
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huajun Ge
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Biao Ma
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dongbo Xue
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Weihui Zhang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhituo Li
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haijun Sun
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
13
|
Liu Y, Wang X, Xu X, Qin W, Sun B. Carbon monoxide releasing molecule‑2 (CORM‑2)‑liberated CO ameliorates acute pancreatitis. Mol Med Rep 2019; 19:5142-5152. [PMID: 31059081 PMCID: PMC6522929 DOI: 10.3892/mmr.2019.10173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 11/23/2018] [Indexed: 12/25/2022] Open
Abstract
The purpose of the present study was to investigate the effect of carbon monoxide (CO) released from CO-releasing molecule 2 (CORM-2) on mice with acute pancreatitis (AP). To perform the investigation, a mouse AP model was established using caerulein. The mice were treated with or without CORM-2. The survival rate of the mice in the different groups was analyzed, and serum amylase and lipase levels were measured to assess the degree of pancreatic injury. The severity of AP was also evaluated by histological examination, and histopathological scoring of the pancreatic damage was performed. Pancreatic cell apoptosis was analyzed using a terminal deoxynucleotidyl-transferase-mediated dUTP nick end labelling assay. The function of the lung and liver was also assessed in the present study. Furthermore, the role of CORM-2 on oxidative stress, intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) expression, pro-inflammatory cytokine production, and nuclear factor (NF)-κB activation in the pancreas of AP mice was determined. The results demonstrated that CORM-2 reduced the mortality, pancreatic damage, and lung and liver injury of AP mice. CORM-2 administration also reduced systemic and localized inflammatory cell factors. Furthermore, treatment with CORM-2 inhibited the expression of ICAM-1 and VCAM-1, and the activation of NF-κB and phosphorylated inhibitor of NF-κB subunit α, in the pancreas of AP mice. These results indicated that CO released from CORM-2 exerted protective effects on AP mice, and the beneficial effects were likely due to inhibition of NF-κB pathway activation.
Collapse
Affiliation(s)
- Yishu Liu
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Xu Wang
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Xiaohan Xu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Weiting Qin
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Bingwei Sun
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| |
Collapse
|
14
|
Zhang YM, Zhu L, Zhao XL, Chen H, Kang HX, Zhao JL, Wan MH, Li J, Zhu L, Tang WF. Optimal timing for the oral administration of Da-Cheng-Qi decoction based on the pharmacokinetic and pharmacodynamic targeting of the pancreas in rats with acute pancreatitis. World J Gastroenterol 2017; 23:7098-7109. [PMID: 29093618 PMCID: PMC5656457 DOI: 10.3748/wjg.v23.i39.7098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/27/2017] [Accepted: 09/13/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To identify the optimal oral dosing time of Da-Cheng-Qi decoction (DCQD) in rats with acute pancreatitis (AP) based on the pharmacokinetic and pharmacodynamic parameters.
METHODS First, 24 male Sprague-Dawley rats were divided into a sham-operated group [NG(a)] and three model groups [4hG(a), 12hG(a) and 24hG(a)]. The NG(a) and model groups were administered DCQD (10 g/kg.BW) intragastrically at 4 h, 4 h, 12 h and 24 h, respectively, after AP models induced by 3% sodium taurocholate. Plasma samples were collected from the tails at 10 min, 20 min, 40 min, 1 h, 2 h, 4 h, 8 h, 12 h and 24 h after a single dosing with DCQD. Plasma and pancreatic tissue concentrations of the major components of DCQD were determined by high-performance liquid chromatography tandem mass spectroscopy. The pharmacokinetic parameters and serum amylase were detected and compared. Second, rats were divided into a sham-operated group [NG(b)] and three treatment groups [4hG(b), 12hG(b) and 24hG(b)] with three corresponding control groups [MG(b)s]. Blood and pancreatic tissues were collected 24 h after a single dosing with DCQD. Serum amylase, inflammatory cytokines and pathological scores of pancreatic tissues were detected and compared.
RESULTS The concentrations of emodin, naringin, honokiol, naringenin, aloe-emodin, chrysophanol and rheochrysidin in the 12hG(a) group were higher than those in the 4hG(a) group in the pancreatic tissues (P < 0.05). The area under the plasma concentration-time curve from time 0 to the time of the last measurable concentration values (AUC0→t) for rhein, chrysophanol, magnolol and naringin in the 12hG(a) group were larger than those in the 4hG(a) or 24hG(a) groups. The 12hG(a) group had a higher Cmax than the other two model groups. The IL-10 levels in the 12hG(b) and 24hG(b) groups were higher than in the MG(b)s (96.55 ± 7.84 vs 77.46 ± 7.42, 251.22 ± 16.15 vs 99.72 ± 4.7 respectively, P < 0.05), while in the 24hG(b) group, the IL-10 level was higher than in the other two treatment groups (251.22 ± 16.15 vs 154.41 ± 12.09/96.55 ± 7.84, P < 0.05). The IL-6 levels displayed a decrease in the 4hG(b) and 12hG(b) groups compared to the MG(b)s (89.99 ± 4.61 vs 147.91 ± 4.36, 90.82 ± 5.34 vs 171.44 ± 13.43, P < 0.05).
CONCLUSION Late-time dosing may have higher concentrations of the most major components of DCQD, with better pharmacokinetics and pharmacodynamics of anti-inflammation than early-time dosing, which showed the late time to be the optimal dosing time of DCQD for AP.
Collapse
Affiliation(s)
- Yu-Mei Zhang
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Lin Zhu
- Digestive System Department, Sichuan Integrative Medicine Hospital, Chengdu 610041, Sichuan Province, China
| | - Xian-Lin Zhao
- Department of Integrative Medicine, Chengdu Integrated TCM and Western Medicine Hospital, Chengdu 610016, Sichuan Province, China
| | - Huan Chen
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Hong-Xin Kang
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jian-Lei Zhao
- Department of Pharmacology, School of Preclinical and Forensic Medicine, West China Medical Center, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Mei-Hua Wan
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Juan Li
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Lv Zhu
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Wen-Fu Tang
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
15
|
Xiang H, Zhang Q, Qi B, Tao X, Xia S, Song H, Qu J, Shang D. Chinese Herbal Medicines Attenuate Acute Pancreatitis: Pharmacological Activities and Mechanisms. Front Pharmacol 2017; 8:216. [PMID: 28487653 PMCID: PMC5403892 DOI: 10.3389/fphar.2017.00216] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/06/2017] [Indexed: 12/12/2022] Open
Abstract
Acute pancreatitis (AP) is a commonly occurring gastrointestinal disorder. An increase in the annual incidence of AP has been observed, and it causes acute hospitalization and high mortality. The diagnosis and treatment guidelines for AP recommend conservative medical treatments focused on reducing pancreatic secretion and secondary injury, as a primary therapeutic approach. Unfortunately, the existing treatment options have limited impact on the incidence and severity of AP due to the complex and multifaceted pathological process of this disease. In recent decades, Chinese herbal medicines (CHMs) have been used as efficient therapeutic agents to attenuate AP in Asian countries. Despite early cell culture, animal models, and clinical trials, CHMs are capable of interacting with numerous molecular targets participating in the pathogenesis of AP; however, comprehensive, up-to-date communication in this field is not yet available. This review focuses on the pharmacological activities of CHMs against AP in vitro and in vivo and the underlying mechanisms. A computational prediction of few selected and promising plant-derived molecules (emodin, baicalin, resveratrol, curcumin, ligustrazine, and honokiol) to target numerous proteins or networks involved in AP was initially established based on a network pharmacology simulation. Moreover, we also summarized some potential toxic natural products for pancreas in order to more safe and reasonable medication. These breakthrough findings may have important implications for innovative drug research and the future development of treatments for AP.
Collapse
Affiliation(s)
- Hong Xiang
- College (Institute) of Integrative Medicine, Dalian Medical UniversityDalian, China
| | - Qingkai Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Bing Qi
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Xufeng Tao
- College of Pharmacy, Dalian Medical UniversityDalian, China
| | - Shilin Xia
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Huiyi Song
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Jialin Qu
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Dong Shang
- College (Institute) of Integrative Medicine, Dalian Medical UniversityDalian, China.,Department of General Surgery, The First Affiliated Hospital of Dalian Medical UniversityDalian, China
| |
Collapse
|
16
|
Anchi P, Khurana A, Bale S, Godugu C. The Role of Plant-derived Products in Pancreatitis: Experimental and Clinical Evidence. Phytother Res 2017; 31:591-623. [DOI: 10.1002/ptr.5792] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Pratibha Anchi
- Department of Regulatory Toxicology; National Institute of Pharmaceutical Education and Research (NIPER), Balanagar; Hyderabad Telangana India
| | - Amit Khurana
- Department of Regulatory Toxicology; National Institute of Pharmaceutical Education and Research (NIPER), Balanagar; Hyderabad Telangana India
| | - Swarna Bale
- Department of Regulatory Toxicology; National Institute of Pharmaceutical Education and Research (NIPER), Balanagar; Hyderabad Telangana India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology; National Institute of Pharmaceutical Education and Research (NIPER), Balanagar; Hyderabad Telangana India
| |
Collapse
|
17
|
Cai Y, Shen Y, Xu G, Tao R, Yuan W, Huang Z, Zhang D. TRAM1 protects AR42J cells from caerulein-induced acute pancreatitis through ER stress-apoptosis pathway. In Vitro Cell Dev Biol Anim 2016; 52:530-6. [DOI: 10.1007/s11626-016-0011-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 02/17/2016] [Indexed: 12/31/2022]
|
18
|
Formula Compatibility Identification of Dachengqi Decoction Based on the Effects of Absorbed Components in Cerulein-Injured Pancreatic AR42J Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:3198549. [PMID: 27123032 PMCID: PMC4830714 DOI: 10.1155/2016/3198549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/19/2016] [Accepted: 01/28/2016] [Indexed: 02/05/2023]
Abstract
Objective. To identify the herbal formula compatibility law based on the effects of the absorbed components from DCQD on the cerulein-injured AR42J cells. Methods. AR42J cells were pretreated for 30 min with or without the different concentrations of the absorbed components from DCQD individually or in combination or DCQD and coincubated with cerulein (10 nM) for a further 24 h. Cell viability, lactate dehydrogenase (LDH) release, and the levels of apoptosis and necrosis were measured. Results. Compared to DCQD, the individual or combination components partially protected cerulein-injured AR42J cells by increasing cell viability, reducing LDH release, and promoting apoptosis. Rhein, naringin, and honokiol were the main absorbed components from DCQD in cerulein-induced pancreatitis. Moreover, rhein in combination with naringin and honokiol had synergistic effects in protecting cerulein-injured AR42J cells and was better than the individual or the pairwise combination of the three components. Conclusions. The ten effective components from DCQD may elicit similar protective effects as DCQD on cerulein-induced pancreatitis. The principle of the formula compatibility of DCQD may be identified based on the effects of its absorbed components in cerulein-injured AR42J cells.
Collapse
|
19
|
Zhou HX, Han B, Hou LM, An TT, Jia G, Cheng ZX, Ma Y, Zhou YN, Kong R, Wang SJ, Wang YW, Sun XJ, Pan SH, Sun B. Protective Effects of Hydrogen Gas on Experimental Acute Pancreatitis. PLoS One 2016; 11:e0154483. [PMID: 27115738 PMCID: PMC4845997 DOI: 10.1371/journal.pone.0154483] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/14/2016] [Indexed: 12/24/2022] Open
Abstract
Acute pancreatitis (AP) is an inflammatory disease mediated by damage to acinar cells and pancreatic inflammation. In patients with AP, subsequent systemic inflammatory responses and multiple organs dysfunction commonly occur. Interactions between cytokines and oxidative stress greatly contribute to the amplification of uncontrolled inflammatory responses. Molecular hydrogen (H2) is a potent free radical scavenger that not only ameliorates oxidative stress but also lowers cytokine levels. The aim of the present study was to investigate the protective effects of H2 gas on AP both in vitro and in vivo. For the in vitro assessment, AR42J cells were treated with cerulein and then incubated in H2-rich or normal medium for 24 h, and for the in vivo experiment, AP was induced through a retrograde infusion of 5% sodium taurocholate into the pancreatobiliary duct (0.1 mL/100 g body weight). Wistar rats were treated with inhaled air or 2% H2 gas and sacrificed 12 h following the induction of pancreatitis. Specimens were collected and processed to measure the amylase and lipase activity levels; the myeloperoxidase activity and production levels; the cytokine mRNA expression levels; the 8-hydroxydeoxyguanosine, malondialdehyde, and glutathione levels; and the cell survival rate. Histological examinations and immunohistochemical analyses were then conducted. The results revealed significant reductions in inflammation and oxidative stress both in vitro and in vivo. Furthermore, the beneficial effects of H2 gas were associated with reductions in AR42J cell and pancreatic tissue damage. In conclusion, our results suggest that H2 gas is capable of ameliorating damage to the pancreas and AR42J cells and that H2 exerts protective effects both in vitro and in vivo on subjects with AP. Thus, the results obtained indicate that this gas may represent a novel therapy agent in the management of AP.
Collapse
Affiliation(s)
- Hao-xin Zhou
- Department of Emergency Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Bing Han
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Li-Min Hou
- Department of Emergency Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Ting-Ting An
- Department of Abdominal Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Guang Jia
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Zhuo-Xin Cheng
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Yong Ma
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Yi-Nan Zhou
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Rui Kong
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Shuang-Jia Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Yong-Wei Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Xue-Jun Sun
- Department of Diving Medicine, Second Military Medical University, Shanghai, People’s Republic of China
| | - Shang-Ha Pan
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
- * E-mail:
| |
Collapse
|
20
|
Sun FL, Li HP, Teng YS, Shang D. Therapeutic effects of rat bone marrow-derived mesenchymal stem cells combined with Dachengqi decoction in rats with severe acute pancreatitis. Shijie Huaren Xiaohua Zazhi 2015; 23:4167-4176. [DOI: 10.11569/wcjd.v23.i26.4167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the therapeutic effects of mesenchymal stem cells (MSCs) combined with Dachengqi decoction (DcqD) in rats with severe acute pancreatitis (SAP) and to explore the underlying mechanism.
METHODS: Sixty male Sprague-Dawley rats were randomly divided into sham-operated (SO), model-control (MC), MSCs-treatment (1.0 × 106 MSCs; MSC group), DcqD-treatment (1 mL/100 g; DD group), and MSCs-plus-DcqD-treatment (MSCDD group) groups (n = 12). SAP was induced in rats by retrograde infusion of 1.5% sodium deoxycholate into the biliopancreatic duct. Isolation and culture of MSCs were performed by Percoll density gradient centrifugation and plastic adherence separating. Ahead of infusion, MSCs were labelled with DAPI via the tail vein. After 24 h of administration, distribution of MSCS in vivo was observed by fluorescence microscopy. Neutrophil apoptosis was identified by flow cytometry. Serum levels of amylase, lipase, tumour necrosis factor-α (TNF-α), interleukin (IL)-6, IL-10 and blood CD4+CD25+ regulatory T cells (CD4+CD25+Tregs) percentages were determined. Mortality, pathological changes in the pancreas, and histological scores were assessed.
RESULTS: The mortality rate of SAP rats was significantly lower in the treatment groups. Under a fluorescence microscope, the lumen tissue in the pancreatic sections of the MSC group exhibited bright blue fluorescence, whereas that in the MC group did not. Compared with the MC group, the MSC, DD and MSCDD groups had a significant decrease in TNF-α, IL-6, amylase, and lipase (P < 0.05). IL-10 and CD4+CD25+Tregs percentage were significantly higher in the MSCDD group than in the SAP, MSC and DD groups. However, there was no significant difference between the MSCDD and SO groups in IL-10 or CD4+CD25+Tregs percentage (P > 0.05). The pancreatic pathological changes and histopathologic scores were attenuated in the treatment groups, especially in the MSCDD group.
CONCLUSION: The combined therapy proved to be more effective than either MSC or DD alone and may cause synergistic effects in the early stage of SAP. The potential mechanisms that might account for the favourable effects include participating in injured pancreas repair, switching from neutrophils or acinar cell necrosis to apoptosis and inhibiting over-inflammatory reaction.
Collapse
|
21
|
Choudhury S, Ghosh S, Gupta P, Mukherjee S, Chattopadhyay S. Inflammation-induced ROS generation causes pancreatic cell death through modulation of Nrf2/NF-κB and SAPK/JNK pathway. Free Radic Res 2015; 49:1371-83. [PMID: 26189548 DOI: 10.3109/10715762.2015.1075016] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic pancreatitis is characterized by progressive loss of exocrine and endocrine functions of the pancreas and is considered to be the single most important cause for development of pancreatic cancer. Recent evidence suggests that inflammation and oxidative stress play pivotal roles in the development of clinical conditions like pancreatitis, type 2 diabetes mellitus, and metabolic syndrome. Nonetheless, molecular signaling pathways linking inflammation, oxidative stress, and pancreatic cell death are not yet well defined. In this study, bacterial lipopolysaccharide (LPS) was used (injected twice a week for three weeks) to emulate a chronic systemic inflammatory state in experimental Swiss albino mice. Using this model, we traced the genesis of inflammation-induced pancreatic dysfunction and mapped the signaling events which contribute to the induction of this state. Histopathological studies revealed the appearance of cell injuries and increased collagen content in LPS-exposed group, indicative of fibrosis. Assays for intraperitoneal glucose tolerance, insulin levels, and insulin receptor mRNA expression signified inflammation-induced insulin insensitivity. For the first time we present evidence that cellular inflammation and subsequent oxidative stress modulate the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)/NF-E2-related factor 2 or Nuclear factor (erythroid-derived 2)-like 2 pathway and initiates pancreatic cell death by activation of stress-responsive Rho/stress-activated protein kinase or SAPK/Jun-N-terminal kinase (JNK) pathway. Scavenging of intracellular reactive oxygen species (ROS) by a standard antioxidant N-acetyl cysteine led to pancreatic cell survival. The data obtained strongly indicates that the LPS/toll-like receptor-4 or TLR-4/ROS/NF-κB pathway is critically involved in the initiation of inflammation, oxidative stress, and pancreatic cell death and might prove to be an excellent choice as a target for novel therapeutic strategies in the management of metabolic disorders.
Collapse
Affiliation(s)
- S Choudhury
- a Department of Physiology , University of Calcutta , Kolkata , India
| | - S Ghosh
- a Department of Physiology , University of Calcutta , Kolkata , India
| | - P Gupta
- a Department of Physiology , University of Calcutta , Kolkata , India
| | - S Mukherjee
- a Department of Physiology , University of Calcutta , Kolkata , India
| | - S Chattopadhyay
- a Department of Physiology , University of Calcutta , Kolkata , India.,b Centre for Research in Nanoscience and Nanotechnology, University of Calcutta , Kolkata , India
| |
Collapse
|
22
|
Hu YY, Zhou CH, Dou WH, Feng H, Wang SF. TUNEL staining combined with cell morphologic characteristics for identifying acinar cell death mode in rats with acute pancreatitis. Shijie Huaren Xiaohua Zazhi 2015; 23:3259-3264. [DOI: 10.11569/wcjd.v23.i20.3259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To detect acinar cell death in rats with acute pancreatitis (AP) by TdT-mediated dUTP nick labeling (TUNEL) staining and to study the correlation between the morphology of TUNEL positive cells and their death modes.
METHODS: Acute necrotizing pancreatitis (ANP) was induced in rats by injection of 4% sodium taurocholate in the pancreaticobiliary duct, and the pathological changes in pancreatic tissue were observed. Pancreatic tissue sections were stained by TUNEL, and the morphological changes of TUNEL positive cells were evaluated under a light microscope.
RESULTS: Compared to the sham operated group, the pancreas of ANP rats exhibited typical pathological changes of AP, and had a large number of TUNEL positive acinar cells. The TUNEL positive cells showed various morphologic characteristics, which included the manifestations of both apoptosis and necrosis. The apoptotic morphology was characterized by nuclear condensation and karyorrhexis followed by the formation of apoptotic bodies, while necrotic cells demonstrated nuclear swelling, karyolysis and cytoplasmic vacuolization. There were significant differences between the morphologic characteristics of the two cell death modes.
CONCLUSION: TUNEL staining itself cannot well differentiate the apoptosis and necrosis of acinar cells in AP. However, when combined with the morphologic characteristics of TUNEL positive cells, TUNEL staining can preliminarily identify the two modes of cell death.
Collapse
|
23
|
Tissue Pharmacology of Da-Cheng-Qi Decoction in Experimental Acute Pancreatitis in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015. [PMID: 26199633 PMCID: PMC4493295 DOI: 10.1155/2015/283175] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objectives. The Chinese herbal medicine Da-Cheng-Qi Decoction (DCQD) can ameliorate the severity of acute pancreatitis (AP). However, the potential pharmacological mechanism remains unclear. This study explored the potential effective components and the pharmacokinetic characteristics of DCQD in target tissue in experimental acute pancreatitis in rats. Methods. Acute pancreatitis-like symptoms were first induced in rats and then they were given different doses of DCQD (6 g/kg, 12 g/kg, and 24 g/kg body weight) orally. Tissue drug concentration, tissue pathological score, and inflammatory mediators in pancreas, intestine, and lung tissues of rats were examined after 24 hours, respectively. Results. Major components of DCQD could be found in target tissues and their concentrations increased in conjunction with the intake dose of DCQD. The high-dose compounds showed maximal effect on altering levels of anti-inflammatory (interleukin-4 and interleukin-10) and proinflammatory markers (tumor necrosis factor α and interleukin-6) and ameliorating the pathological damage in target tissues (P < 0.05). Conclusions. DCQD could alleviate pancreatic, intestinal, and lung injury by altering levels of inflammatory cytokines in AP rats with tissue distribution of its components.
Collapse
|
24
|
Pardalis V, Palli E, Lambropoulou M, Tsigalou C, Anagnostoulis S, Garoufalis G, Bolanaki H, Simopoulos C, Karayiannakis AJ. Expression of Fas (CD95/APO-1) and Fas ligand (FasL) in experimentally-induced acute pancreatitis. J INVEST SURG 2014; 27:65-72. [PMID: 24665842 DOI: 10.3109/08941939.2013.837563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Acinar cell death is a crucial event in acute pancreatitis (AP) and may occur either by apoptosis or necrosis. The aim of this study was to investigate the expression of the apoptosis associated proteins Fas and FasL in experimentally induced severe AP. METHODS AP was induced in 30 rats by injecting 0.2 ml of 4.5% sodium taurocholate solution into the biliopancreatic duct. Sham operated animals (n = 30) and 10 normal controls were used for comparisons. Animals were killed at 6, 12, 24, 48, 72 hr and 1 week after operation (five animals at each time point) and both serum and pancreatic tissue were obtained. The severity of AP was graded by morphological evaluation and by measuring serum amylase levels. Acinar cell apoptosis was detected by the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) assay. Tissue expressions of Fas and FasL were evaluated by immunohistochemistry. RESULTS Sodium taurocholate injection resulted in severe acute necrotizing pancreatitis as early as six hr after taurocholate infusion with gradually increasing severity and a peak at 72 hr, and a significant increase of serum amylase at 6 and 12 hr. Apoptotic acinar cells were observed between 48 and 72 hr. The expression of both Fas and FasL in pancreatic tissue was induced in comparison with normal controls. Fas expression in AP was higher and statistically significant at 24 hr whereas FasL expression was consistently lower with a statistical significance observed at 12 hr when compared to sham-operated animals suggesting Fas upregulation and FasL downregulation in this model of AP. CONCLUSIONS Induction and sequential changes in the expressions of Fas and FasL occur during taurocholate induced severe AP in rats and their temporal modulation might associate with acinar cell death by apoptosis.
Collapse
Affiliation(s)
- Vassilios Pardalis
- 1Second Department of Surgery, Democritus University of Thrace, Medical School, Alexandroupolis, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Park JM, Lee S, Chung MK, Kwon SH, Kim EH, Ko KH, Kwon CI, Hahm KB. Antioxidative phytoceuticals to ameliorate pancreatitis in animal models: An answer from nature. World J Gastroenterol 2014; 20:16570-16581. [PMID: 25469025 PMCID: PMC4248200 DOI: 10.3748/wjg.v20.i44.16570] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/10/2014] [Accepted: 05/14/2014] [Indexed: 02/06/2023] Open
Abstract
Despite enthusiastic efforts directed at elucidating critical underlying mechanisms towards the identification of novel therapeutic targets for severe acute pancreatitis (SAP), the disease remains without a specific therapy to be executed within the first hours to days after onset of symptoms. Although earlier management for SAP should aim to either treat organ failure or reduce infectious complications, the current standard of care for the general management of AP in the first hours to days after onset of symptoms include intravenous fluid replacement, nutritional changes, and the use of analgesics with a close monitoring of vital signs. Furthermore, repeated evaluation of severity is very important, as the condition is particularly unstable in the early stages. In cases where biliary pancreatitis is accompanied by acute cholangitis or in cases where biliary stasis is suspected, an early endoscopic retrograde cholangiopancreatography is recommended. However, practice guidelines regarding the treatment of pancreatitis are suboptimal. In chronic pancreatitis, conservative management strategies include lifestyle modifications and dietary changes followed by analgesics and pancreatic enzyme supplementation. Recently, attention has been focused on phytoceuticals or antioxidants as agents that could surpass the limitations associated with currently available therapies. Because oxidative stress has been shown to play an important role in the pathogenesis of pancreatitis, antioxidants alone or combined with conventional therapy may improve oxidative-stress-induced organ damage. Interest in phytoceuticals stems from their potential use as simple, accurate tools for pancreatitis prognostication that could replace older and more tedious methods. Therefore, the use of antioxidative nutrition or phytoceuticals may represent a new direction for clinical research in pancreatitis. In this review article, recent advances in the understanding of the pathogenesis of pancreatitis are discussed and the paradigm shift underway to develop phytoceuticals and antioxidants to treat it is introduced. Despite the promise of studies evaluating the effects of antioxidants/phytoceuticals in pancreatitis, translation to the clinic has thus far been disappointing. However, it is expected that continued research will provide solid evidence to justify the use of antioxidative phytoceuticals in the treatment of pancreatitis.
Collapse
|
26
|
Early oral refeeding based on hunger in moderate and severe acute pancreatitis: a prospective controlled, randomized clinical trial. Nutrition 2014; 31:171-5. [PMID: 25441594 DOI: 10.1016/j.nut.2014.07.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 06/16/2014] [Accepted: 07/08/2014] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Early enteral nutrition is beneficial for acute pancreatitis (AP), but the optimal timing and criteria remain unclear. The aim of this study was to explore the feasibility and safety of early oral refeeding (EORF) based on hunger in patients with moderate or severe AP. METHODS In a prospective, single-center, controlled, randomized clinical trial (ChiCTR-TRC-12002994), eligible patients with moderate or severe AP were randomized to either EORF or conventional oral refeeding (CORF). Patients in the EORF group restarted an oral diet when they felt hungry, regardless of laboratory parameters. Those in the CORF group restarted an oral diet only when clinical and laboratory symptoms had resolved. Clinical outcomes were compared between the two groups. RESULTS In all, 146 eligible patients with moderate or severe AP were included and randomized to the EORF (n = 70) or CORF (n = 76) group. There were eight dropouts after randomization (three in EORF group; five in CORF group). The groups had similar baseline characteristics. The total length of hospitalization (13.7 ± 5.4 d versus 15.7 ± 6.2 d; P = 0.0398) and duration of fasting (8.3 ± 3.9 d versus 10.5 ± 5.1 d; P = 0.0047) were shorter in the EORF group than in the CORF group. There was no difference in the number of adverse events or complications between the two groups. The mean blood glucose level after oral refeeding was higher in the EORF group than in the CORF group (P = 0.0030). CONCLUSIONS This controlled, randomized clinical trial confirmed the effectiveness and feasibility of EORF based on hunger in patients with moderate or severe AP. EORF could shorten the length of hospitalization in patients with moderate or severe AP.
Collapse
|
27
|
Zhao X, Li J, Zhu S, Liu Y, Zhao J, Wan M, Tang W. Rhein induces a necrosis-apoptosis switch in pancreatic acinar cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2014; 2014:404853. [PMID: 24959186 PMCID: PMC4053146 DOI: 10.1155/2014/404853] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/05/2014] [Accepted: 04/23/2014] [Indexed: 02/05/2023]
Abstract
Objectives. The Chinese herbal medicine Da-Cheng-Qi decoction can regulate a necrosis-apoptosis switch in injured pancreatic acinar cells. This study investigated the effects of rhein, a component of this medicine, on a necrosis-apoptosis switch in pancreatic rat AR42J cells. Methods. Cerulein-treated AR42J cells were used. After pretreatment with 479, 119.8, or 29.9 μ g/L rhein, cells were cocultured with rhein and cerulein (10(-8) M) for 4, 8, or 16 h. Apoptosis and necrosis were examined using annexin V and propidium iodide costaining. Mitochondria-dependent apoptosis-associated proteins were examined using enzyme-linked immunosorbent assays and western blotting. Results. Few cells died in untreated samples. The number was significantly higher in 16-h-cerulein-treated samples and treatment with 479 μ g/L rhein most effectively increased the apoptotic-to-necrotic cell ratio (P < 0.05). In cerulein-treated cells, rhein increased the concentrations of p53, cytochrome C, and caspase-3, and increased the Bax/Bcl-2 ratio in a time- and dose-dependent manner, with the maximum effect in cells treated with 479 μ g/L rhein for 16 h (P < 0.05). Conclusions. Rhein induces the necrosis-apoptosis switch in injured pancreatic acinar cells in a time- and dose-dependent manner. Mitochondria-dependent apoptosis signaling pathways might play an important role in this effect.
Collapse
Affiliation(s)
- Xianlin Zhao
- Pancreatic Diseases Research Group, Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Juan Li
- Pancreatic Diseases Research Group, Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shifeng Zhu
- Pancreatic Diseases Research Group, Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yiling Liu
- Pancreatic Diseases Research Group, Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jianlei Zhao
- Pancreatic Diseases Research Group, Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meihua Wan
- Pancreatic Diseases Research Group, Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenfu Tang
- Pancreatic Diseases Research Group, Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
28
|
Pharmacokinetic and pharmacodynamic comparison of chinese herbal ointment liu-he-dan and micron liu-he-dan ointment in rats with acute pancreatitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:389576. [PMID: 24693322 PMCID: PMC3947679 DOI: 10.1155/2014/389576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 12/05/2013] [Accepted: 12/26/2013] [Indexed: 02/05/2023]
Abstract
Aim. To compare the pharmacokinetics and pharmacodynamics of herbal ointment Liu-He-Dan (LHD) and micron LHD (MLHD) in rats with acute pancreatitis (AP). Methods. Twenty rats were allocated into normal, AP, LHD, and MLHD groups. LHD or MLHD was applied on rats' abdomens. Plasma levels of emodin, rhein, aloe emodin, physcion, and chrysophanol were determined by high performance liquid chromatography-mass spectrometry-mass spectrometry (HPLC-MS-MS) at different time points, and the pharmacokinetic parameters were calculated. Serum amylase, TNF- α , IL-6, and IL-10 levels, and the pancreatic pathological scores were determined at 48 h after LHD or MLHD treatment. Results. T 1/2 α and area under the curve (AUC) of emodin in the MLHD group were lower than those in the LHD group, while T 1/2 α and AUC of aloe emodin in the MLHD group were higher than those in the LHD group (P < 0.05). T 1/2 α and T max of physcion in the MLHD group were significantly shorter than those in the LHD group (P < 0.05). Compared with the AP group, the amylase, malondialdehyde (MDA), TNF- α , and IL-6 levels decreased significantly after three days of treatment in LHD and MLHD groups, while the levels of superoxide dismutase (SOD), TNF- α , and the pancreatic pathological score, were similar. The pharmacodynamic parameters between the LHD and MLHD groups were similar. Conclusion. MLHD had better pharmacokinetics than, and similar pharmacodynamics to, LHD in the management of rats with AP, which indicated that MLHD might be substituted for LHD in the treatment of AP and thus reduce the amount of medicinal herbs used.
Collapse
|
29
|
Xie KL, Liu J, Pan G, Hu WM, Wan MH, Tang WF, Liu XB, Wu H. Pancreatic injuries in earthquake victims: what have we learnt? Pancreatology 2013; 13:605-9. [PMID: 24280577 DOI: 10.1016/j.pan.2013.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 10/05/2013] [Accepted: 10/08/2013] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To analyze the clinical characteristic and management of patients with pancreatic injuries from the Wen-Chuan and Lu-Shan earthquakes. METHODS We retrospectively reviewed 39,784 patients from the Wen-Chuan earthquake and 1489 from the Lu-Shan earthquake. The demographics, clinical data, treatment strategies, and outcomes of patients with pancreatic injuries were recorded and compared between survivors of the two earthquakes. RESULTS Pancreatic injury occurred only in a small proportion (0.2%) in patients with trauma on admission, and most (61%) patients had Grades I-II pancreatic injuries. Blunt trauma was the leading cause of pancreatic trauma. Most patients (95%) suffered multiple injuries, of which chest injuries (61%) were the most common. Elevated serum amylase levels were observed in 50 (86%) of 58 patients, and computed tomography (CT) identified pancreatic injuries in 32 (80%) of 40 patients. A significantly higher rate (p = 0.043) of pancreatic complication was present in patients with Grade III and IV injuries (38%) than in those with Grade I and II injuries (18%). Forty patients were initially treated by conservative management with 6 (15%) requiring delayed operations. Four (67%) pancreatic complications and 2 (33%) deaths occurred in patients with delayed operations. CONCLUSIONS Repeated serum amylase analysis, CT, and laparoscopic exploration were reliable diagnostic modalities to diagnose pancreatic injury. Conservative management was safe in patients with Grade I and II injuries. Delayed operation, especially for Grade III patients, resulted in increased morbidity and mortality.
Collapse
Affiliation(s)
- Kun-Lin Xie
- Department of Hepato-Biliary-Pancreato Surgery, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu 610041, Sichuan, China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Zhao J, Tang W, Wang J, Xiang J, Gong H, Chen G. Pharmacokinetic and pharmacodynamic studies of four major phytochemical components of Da-Cheng-Qi decoction to treat acute pancreatitis. J Pharmacol Sci 2013; 122:118-27. [PMID: 23739595 DOI: 10.1254/jphs.13037fp] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The medicinal herb formulation Da-Cheng-Qi decoction (DCQD) has been shown to ameliorate the severity of acute pancreatitis by regulating an apoptosis-necrosis switch in cells. The active components responsible for this effect and their detailed mechanism of action remain unclear. Here we determine the pharmacokinetic characteristics of the four most abundant compounds in DCQD using a rat model of severe acute pancreatitis. Acute pancreatitis-like symptoms were first induced in rats and then they were given DCQD orally. Rhein was found in rat serum at much higher levels than magnolol, hesperidin, or naringin, even though it was the least abundant of the four compounds in the DCQD. We also examined pharmacodynamics in AR42J cells stimulated with 10(-8) M cerulein as a cellular model of acute pancreatitis. After pretreating AR42J cells with individual compounds and then exposing them to cerulein, we determined cell viability, levels of apoptosis and necrosis, and numbers of cells positive for reactive oxygen species (ROS). Pretreatment with any of the four DCQD compounds increased cell viability and the apoptosis index, while also reducing necrosis and ROS generation. The compounds showed maximal effect in AR42J cells around the same time that they showed maximum serum concentration in rats. Although all four components appear to play a role in an apoptosis-necrosis cellular switch in vitro, rhein may be the most bioactive DCQD ingredient.
Collapse
Affiliation(s)
- Jianlei Zhao
- Department of Pharmacology, School of Preclinical and Forensic Medicine, West China Medical Center, Sichuan University, Chengdu, China.
| | | | | | | | | | | |
Collapse
|