1
|
Gao Y, Yang L, Yao K, Wang Y, Shao W, Yang M, Zhang X, Wei Y, Ren W. Exploration of Genes Related to Intramuscular Fat Deposition in Xinjiang Brown Cattle. Genes (Basel) 2024; 15:1121. [PMID: 39336712 PMCID: PMC11430885 DOI: 10.3390/genes15091121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
The aim of this study was to investigate the differentially expressed genes associated with intramuscular fat deposition in the longissimus dorsi muscle of Xinjiang Brown Bulls. The longissimus dorsi muscles of 10 Xinjiang Brown Bulls were selected under the same feeding conditions. The intramuscular fat content of muscle samples was determined by the Soxhlet extraction method, for which 5 samples with high intramuscular fat content (HIMF group) and 5 samples with low intramuscular fat content (LIMF group) were selected. It was found that the intramuscular fat content of the HIMF group was 46.054% higher than that of the LIMF group. Muscle samples produced by paraffin sectioning were selected for morphological observation. It was found that the fat richness of the HIMF group was better than that of the LIMF group. Transcriptome sequencing technology was used to analyze the gene expression differences of longissimus dorsi muscle. Through in-depth analysis of the longissimus dorsi muscle by transcriptome sequencing technology, we screened a total of 165 differentially expressed genes. The results of Gene Ontology (GO) enrichment analysis showed that the differentially expressed genes in the two groups were mainly clustered in biological pathways related to carbohydrate metabolic processes, redox processes and oxidoreductase activities. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the differentially expressed genes were significantly clustered in 15 metabolic pathways, which mainly covered fatty acid metabolism (related to lipid metabolism and glucose metabolism), the pentose phosphate pathway, the Peroxisome Proliferator-Activated Receptor (PPAR) signaling pathway and other important metabolic processes. The three genes that were predominantly enriched in the glycolipid metabolic pathway by analysis were SCD5, CPT1C and FBP2, all of which directly or indirectly affect intramuscular fat deposition. In summary, the present study investigated the differences in gene expression between high and low intramuscular fat content in the longissimus dorsi muscle of Xinjiang Brown Bulls by transcriptome sequencing technology and revealed the related signaling pathways. Therefore, we hypothesized that SCD5, CPT1C and FBP2 were the key genes responsible for the significant differences in intramuscular fat content of the longissimus dorsi muscles in a population of Xinjiang Brown Bulls. We expect that these findings will provide fundamental support for subsequent studies exploring key genes affecting fat deposition characteristics in Xinjiang Brown Bulls.
Collapse
Affiliation(s)
- Yu Gao
- Xinjiang Key Laboratory of Meat and Milk Production Herbivore Nutrition, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Liang Yang
- Xinjiang Key Laboratory of Meat and Milk Production Herbivore Nutrition, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Kangyu Yao
- Xinjiang Key Laboratory of Meat and Milk Production Herbivore Nutrition, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yiran Wang
- Xinjiang Key Laboratory of Meat and Milk Production Herbivore Nutrition, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Wei Shao
- Xinjiang Key Laboratory of Meat and Milk Production Herbivore Nutrition, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Min Yang
- Xinjiang Key Laboratory of Meat and Milk Production Herbivore Nutrition, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xinyu Zhang
- Xinjiang Key Laboratory of Meat and Milk Production Herbivore Nutrition, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yong Wei
- Xinjiang Key Laboratory of Meat and Milk Production Herbivore Nutrition, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Wanping Ren
- Xinjiang Key Laboratory of Meat and Milk Production Herbivore Nutrition, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
2
|
Bahadoran Z, Mirmiran P, Ghasemi A. Adipose organ dysfunction and type 2 diabetes: Role of nitric oxide. Biochem Pharmacol 2024; 221:116043. [PMID: 38325496 DOI: 10.1016/j.bcp.2024.116043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/07/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Adipose organ, historically known as specialized lipid-handling tissue serving as the long-term fat depot, is now appreciated as the largest endocrine organ composed of two main compartments, i.e., subcutaneous and visceral adipose tissue (AT), madding up white and beige/brown adipocytes. Adipose organ dysfunction manifested as maldistribution of the compartments, hypertrophic, hypoxic, inflamed, and insulin-resistant AT, contributes to the development of type 2 diabetes (T2D). Here, we highlight the role of nitric oxide (NO·) in AT (dys)function in relation to developing T2D. The key aspects determining lipid and glucose homeostasis in AT depend on the physiological levels of the NO· produced via endothelial NO· synthases (eNOS). In addition to decreased NO· bioavailability (via decreased expression/activity of eNOS or scavenging NO·), excessive NO· produced by inducible NOS (iNOS) in response to hypoxia and AT inflammation may be a critical interfering factor diverting NO· signaling to the formation of reactive oxygen and nitrogen species, resulting in AT and whole-body metabolic dysfunction. Pharmacological approaches boosting AT-NO· availability at physiological levels (by increasing NO· production and its stability), as well as suppression of iNOS-NO· synthesis, are potential candidates for developing NO·-based therapeutics in T2D.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
A high carbohydrate and soda diet influences metabolic variables in Wistar rats. Life Sci 2022; 291:120295. [PMID: 34998837 DOI: 10.1016/j.lfs.2021.120295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 11/21/2022]
Abstract
AIMS High carbohydrate diet and carbonated soda consumption have individually been associated with metabolic dysfunction, with links to glucose and insulin homeostasis, affecting metabolic variables associated with feeding, satiety and adiposity. Our objective is to determine the combined effect of a high carbohydrate and carbonated soda diet on metabolic variables in male and female Wistar rats. MATERIALS AND METHODS Thirty-two female and male weanlings were equally divided into four dietary groups; Control, Soda, High Carbohydrate diet (HCD), and High Carbohydrate diet/Soda (HCD/Soda), and fed ad libitum for fourteen weeks. Bodyweight, thoracic circumference, abdominal circumference and glucose was determined; Insulin, leptin, adiponectin, Tumor Necrotic Factor (TNF)-α, Interleukin (IL)-6 and lipid profile were assayed and used to determine the metabolic effects. KEY FINDINGS Soda and HCD/Soda had increased body weight in male rats, while HCD-fed rats were reduced compared to respective controls. Abdominal circumference, total cholesterol and reduced HDL of Soda were elevated in both sexes. Although HCD/Soda groups had elevated abdominal circumference in both sexes, total cholesterol and reduced high-density lipoprotein (HDL) were both reduced in females. Insulin and malondialdehyde (MDA) concentrations in Soda-fed rats was significantly reduced, however, MDA was elevated in both sexes in HCD and HCD/Soda fed rats. Female HCD and HCD/Soda groups had a significant increase in glutathione (GSH) concentration and a significant reduction in catalase. TNF-α was increased in both Soda and HCD/Soda groups. SIGNIFICANCE The results of this study suggest that HCD and Soda consumption results in alteration in phenotype and variables impacting metabolism.
Collapse
|
4
|
Abstract
Leptin is a hormone primarily produced by the adipose tissue in proportion to the size of fat stores, with a primary function in the control of lipid reserves. Besides adipose tissue, leptin is also produced by other tissues, such as the stomach, placenta, and mammary gland. Altogether, leptin exerts a broad spectrum of short, medium, and long-term regulatory actions at the central and peripheral levels, including metabolic programming effects that condition the proper development and function of the adipose organ, which are relevant for its main role in energy homeostasis. Comprehending how leptin regulates adipose tissue may provide important clues to understand the pathophysiology of obesity and related diseases, such as type 2 diabetes, as well as its prevention and treatment. This review focuses on the physiological and long-lasting regulatory effects of leptin on adipose tissue, the mechanisms and pathways involved, its main outcomes on whole-body physiological homeostasis, and its consequences on chronic diseases.
Collapse
Affiliation(s)
- Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands. CIBER de Fisiopatología de La Obesidad Y Nutrición (CIBEROBN). Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Mariona Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands. CIBER de Fisiopatología de La Obesidad Y Nutrición (CIBEROBN). Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Catalina Amadora Pomar
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands. CIBER de Fisiopatología de La Obesidad Y Nutrición (CIBEROBN). Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Ana María Rodríguez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands. CIBER de Fisiopatología de La Obesidad Y Nutrición (CIBEROBN). Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands. CIBER de Fisiopatología de La Obesidad Y Nutrición (CIBEROBN). Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| |
Collapse
|
5
|
Recent Advances in Adipose Tissue Dysfunction and Its Role in the Pathogenesis of Non-Alcoholic Fatty Liver Disease. Cells 2021; 10:cells10123300. [PMID: 34943809 PMCID: PMC8699427 DOI: 10.3390/cells10123300] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity is a serious ongoing health problem that significantly increases the incidence of nonalcoholic fatty liver disease (NAFLD). During obesity, adipose tissue dysfunction is obvious and characterized by increased fat deposition (adiposity) and chronic low-grade inflammation. The latter has been implicated to critically promote the development and progression of NAFLD, whose advanced form non-alcoholic steatohepatitis (NASH) is considered one of the most common causes of terminal liver diseases. This review summarizes the current knowledge on obesity-related adipose dysfunction and its roles in the pathogenesis of hepatic steatosis and inflammation, as well as liver fibrosis. A better understanding of the crosstalk between adipose tissue and liver under obesity is essential for the development of new and improved preventive and/or therapeutic approaches for managing NAFLD.
Collapse
|
6
|
Oxidative, Reductive, and Nitrosative Stress Effects on Epigenetics and on Posttranslational Modification of Enzymes in Cardiometabolic Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8819719. [PMID: 33204398 PMCID: PMC7649698 DOI: 10.1155/2020/8819719] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023]
Abstract
Oxidative (OS), reductive (RS), and nitrosative (NSS) stresses produce carbonylation, glycation, glutathionylation, sulfhydration, nitration, and nitrosylation reactions. OS, RS, and NSS are interrelated since RS results from an overactivation of antioxidant systems and NSS is the result of the overactivation of the oxidation of nitric oxide (NO). Here, we discuss the general characteristics of the three types of stress and the way by which the reactions they induce (a) damage the DNA structure causing strand breaks or inducing the formation of 8-oxo-d guanosine; (b) modify histones; (c) modify the activities of the enzymes that determine the establishment of epigenetic cues such as DNA methyl transferases, histone methyl transferases, acetyltransferases, and deacetylases; (d) alter DNA reparation enzymes by posttranslational mechanisms; and (e) regulate the activities of intracellular enzymes participating in metabolic reactions and in signaling pathways through posttranslational modifications. Furthermore, the three types of stress may establish new epigenetic marks through these reactions. The development of cardiometabolic disorders in adult life may be programed since early stages of development by epigenetic cues which may be established or modified by OS, RS, and NSS. Therefore, the three types of stress participate importantly in mediating the impact of the early life environment on later health and heritability. Here, we discuss their impact on cardiometabolic diseases. The epigenetic modifications induced by these stresses depend on union and release of chemical residues on a DNA sequence and/or on amino acid residues in proteins, and therefore, they are reversible and potentially treatable.
Collapse
|
7
|
Martínez-Sánchez N. There and Back Again: Leptin Actions in White Adipose Tissue. Int J Mol Sci 2020; 21:ijms21176039. [PMID: 32839413 PMCID: PMC7503240 DOI: 10.3390/ijms21176039] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Leptin is a hormone discovered almost 30 years ago with important implications in metabolism. It is primarily produced by white adipose tissue (WAT) in proportion to the amount of fat. The discovery of leptin was a turning point for two principle reasons: on one hand, it generated promising expectations for the treatment of the obesity, and on the other, it changed the classical concept that white adipose tissue was simply an inert storage organ. Thus, adipocytes in WAT produce the majority of leptin and, although its primary role is the regulation of fat stores by controlling lipolysis and lipogenesis, this hormone also has implications in other physiological processes within WAT, such as apoptosis, browning and inflammation. Although a massive number of questions related to leptin actions have been answered, the necessity for further clarification facilitates constantly renewing interest in this hormone and its pathways. In this review, leptin actions in white adipose tissue will be summarized in the context of obesity.
Collapse
|
8
|
Monteiro L, Pereira JADS, Palhinha L, Moraes-Vieira PMM. Leptin in the regulation of the immunometabolism of adipose tissue-macrophages. J Leukoc Biol 2019; 106:703-716. [PMID: 31087711 DOI: 10.1002/jlb.mr1218-478r] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/19/2019] [Accepted: 04/26/2019] [Indexed: 01/03/2025] Open
Abstract
Obesity is a pandemic disease affecting around 15% of the global population. Obesity is a major risk factor for other conditions, such as type 2 diabetes and cardiovascular diseases. The adipose tissue is the main secretor of leptin, an adipokine responsible for the regulation of food intake and energy expenditure. Obese individuals become hyperleptinemic due to increased adipogenesis. Leptin acts through the leptin receptor and induces several immunometabolic changes in different cell types, including adipocytes and Mϕs. Adipose tissue resident Mϕs (ATMs) are the largest leukocyte population in the adipose tissue and these ATMs are in constant contact with the excessive leptin levels secreted in obese conditions. Leptin activates both the JAK2-STAT3 and the PI3K-AKT-mTOR pathways. The activation of these pathways leads to intracellular metabolic changes, with increased glucose uptake, upregulation of glycolytic enzymes, and disruption of mitochondrial function, as well as immunologic alterations, such as increased phagocytic activity and proinflammatory cytokines secretion. Here, we discuss the immunometabolic effects of leptin in Mϕs and how hyperleptinemia can contribute to the low-grade systemic inflammation in obesity.
Collapse
Affiliation(s)
- Lauar Monteiro
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Sao Paulo, Brazil
| | - Jéssica Aparecida da Silva Pereira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Sao Paulo, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Lohanna Palhinha
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Manoel M Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Sao Paulo, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
9
|
Palhinha L, Liechocki S, Hottz ED, Pereira JADS, de Almeida CJ, Moraes-Vieira PMM, Bozza PT, Maya-Monteiro CM. Leptin Induces Proadipogenic and Proinflammatory Signaling in Adipocytes. Front Endocrinol (Lausanne) 2019; 10:841. [PMID: 31920961 PMCID: PMC6923660 DOI: 10.3389/fendo.2019.00841] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Leptin is an adipokine with well-known effects on the central nervous system including the induction of energy expenditure and satiety. Leptin also has major relevance when activating immune cells and modulating inflammatory response. In obesity, increases in white adipose tissue accumulation and leptin levels are accompanied by hypothalamic resistance to leptin. Even though the adipose tissue is a leptin-rich environment, the local actions of leptin regarding adipogenesis were not thoroughly investigated until now. Here we evaluate the contributions of leptins direct signaling in preadipocytes and adipose tissue-derived stromal cells (ASCs) for adipogenesis. Methods: Adipocytes were differentiated from the murine lineage of preadipocytes 3T3-L1 or ASCs from subcutaneous and visceral (retroperitoneal) fat depots from C57Bl/6J mice. Differentiating cells were treated with leptin in addition to or in replacement of insulin. The advance of adipogenesis was assessed by the expression and secretion of adipogenesis- and lipogenesis-related proteins by Western blot and immunoenzimatic assays, and the accumulation of lipid droplets by fluorescence microscopy. Results: Leptin treatment in 3T3-L1 preadipocytes or ASCs increased the production of the adipogenesis- and lipogenesis-related proteins PLIN1, CAV-1, PPARγ, SREBP1C, and/or adiponectin at earlier stages of differentiation. In 3T3-L1 preadipocytes, we found that leptin induced lipid droplets' formation in an mTOR-dependent manner. Also, leptin induced a proinflammatory cytokine profile in 3T3-L1 and ASCs, modulating the production of TNF-α, IL-10, and IL-6. Since insulin is considered an essential factor for preadipocyte differentiation, we asked whether leptin would support adipogenesis in the absence of insulin. Importantly, leptin induced the formation of lipid droplets and the expression of adipogenesis-related proteins independently of insulin during the differentiation of 3T3-L1 cells and ASCs. Conclusions: Our results demonstrate that leptin induces intracellular signaling in preadipocytes and adipocytes promoting adipogenesis and modulating the secretion of inflammatory mediators. Also, leptin restores adipogenesis in the absence of insulin. These findings contribute to the understanding of the local signaling of leptin in precursor and mature adipose cells. The proadipogenic role of leptin unraveled here may be of especial relevance during obesity, when its central signaling is defective.
Collapse
Affiliation(s)
- Lohanna Palhinha
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Sally Liechocki
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Eugenio D. Hottz
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- Laboratory of Glycoconjugates Analysis, Department of Biochemistry, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
| | - Jéssica Aparecida da Silva Pereira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
- Post-Graduate Program in Immunology, Institute of Biological Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Cecília J. de Almeida
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Pedro Manoel M. Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
- Post-Graduate Program in Immunology, Institute of Biological Sciences, University of Sao Paulo, São Paulo, Brazil
- Experimental Medicine Research Cluster, EMRC, University of Cammpinas, Campinas, Brazil
| | - Patrícia T. Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Clarissa Menezes Maya-Monteiro
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- *Correspondence: Clarissa Menezes Maya-Monteiro ;
| |
Collapse
|
10
|
Adedeji TG, Fasanmade A, Olapade-Olaopa E. Multigenerational effects of dietary macronutrient intake on the metabolic phenotype of male Wistar rats. Nutrition 2018; 58:125-133. [PMID: 30391691 DOI: 10.1016/j.nut.2018.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 06/10/2018] [Accepted: 06/21/2018] [Indexed: 01/19/2023]
Abstract
OBJECTIVES Gene-nutrient interactions are implicated in metabolic phenotypes like metabolic syndrome. The aim of this study was to examine the effects of diet-induced metabolic phenotypes in rats and investigate the effects of these phenotypes in three successive generations. METHODS Three generations of rats were fed on different diets and mated. Blood glucose, adiposity, lipid profile, insulin, adipocytokines, ghrelin, and corticosterone concentrations were determined in F0, F1, and F2 generations using standard methods. RESULTS In comparison with control across generations, glucose (32%), triacylglycerols (52%), and insulin (10%) were significantly elevated in the high-fat diet (HFD)-fed rats; total cholesterol was higher in HFD and high-carbohydrate diet (HCD)-fed groups; whereas high density lipoprotein was higher in the HFD rats but lower in the HPD rats. Adipocytokines were significantly higher in the HCD and HFD groups but lower in the high-protein diet group, whereas ghrelin only declined in HFD rats. CONCLUSION This study revealed that different dietary macronutrients induced distinctive metabolic phenotypes, which had variable effects in different generations.
Collapse
|
11
|
Abstract
Interactions between the brain and distinct adipose depots have a key role in maintaining energy balance, thereby promoting survival in response to metabolic challenges such as cold exposure and starvation. Recently, there has been renewed interest in the specific central neuronal circuits that regulate adipose depots. Here, we review anatomical, genetic and pharmacological studies on the neural regulation of adipose function, including lipolysis, non-shivering thermogenesis, browning and leptin secretion. In particular, we emphasize the role of leptin-sensitive neurons and the sympathetic nervous system in modulating the activity of brown, white and beige adipose tissues. We provide an overview of advances in the understanding of the heterogeneity of the brain regulation of adipose tissues and offer a perspective on the challenges and paradoxes that the community is facing regarding the actions of leptin on this system.
Collapse
Affiliation(s)
- Alexandre Caron
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Syann Lee
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joel K. Elmquist
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Laurent Gautron
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
12
|
Jankovic A, Korac A, Buzadzic B, Stancic A, Otasevic V, Ferdinandy P, Daiber A, Korac B. Targeting the NO/superoxide ratio in adipose tissue: relevance to obesity and diabetes management. Br J Pharmacol 2017; 174:1570-1590. [PMID: 27079449 PMCID: PMC5446578 DOI: 10.1111/bph.13498] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 12/21/2022] Open
Abstract
Insulin sensitivity and metabolic homeostasis depend on the capacity of adipose tissue to take up and utilize excess glucose and fatty acids. The key aspects that determine the fuel-buffering capacity of adipose tissue depend on the physiological levels of the small redox molecule, nitric oxide (NO). In addition to impairment of NO synthesis, excessive formation of the superoxide anion (О2•- ) in adipose tissue may be an important interfering factor diverting the signalling of NO and other reactive oxygen and nitrogen species in obesity, resulting in metabolic dysfunction of adipose tissue over time. Besides its role in relief from superoxide burst, enhanced NO signalling may be responsible for the therapeutic benefits of different superoxide dismutase mimetics, in obesity and experimental diabetes models. This review summarizes the role of NO in adipose tissue and highlights the effects of NO/О2•- ratio 'teetering' as a promising pharmacological target in the metabolic syndrome. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- Aleksandra Jankovic
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”University of BelgradeBelgradeSerbia
| | - Aleksandra Korac
- Faculty of Biology, Center for Electron MicroscopyUniversity of BelgradeBelgradeSerbia
| | - Biljana Buzadzic
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”University of BelgradeBelgradeSerbia
| | - Ana Stancic
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”University of BelgradeBelgradeSerbia
| | - Vesna Otasevic
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”University of BelgradeBelgradeSerbia
| | - Péter Ferdinandy
- Department of Pharmacology and PharmacotherapySemmelweis UniversityBudapestHungary
- Pharmahungary GroupSzegedHungary
| | - Andreas Daiber
- Center for Cardiology ‐ Cardiology 1, Molecular CardiologyUniversity Medical CenterMainzGermany
| | - Bato Korac
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”University of BelgradeBelgradeSerbia
| |
Collapse
|
13
|
Cowens KR, Simpson S, Thomas WK, Carey GB. Polybrominated Diphenyl Ether (PBDE)-Induced Suppression of Phosphoenolpyruvate Carboxykinase (PEPCK) Decreases Hepatic Glyceroneogenesis and Disrupts Hepatic Lipid Homeostasis. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:1437-49. [PMID: 26692069 DOI: 10.1080/15287394.2015.1098580] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Polybrominated diphenyl ethers (PBDE) are a class of flame-retardant chemicals that leach into the environment and enter the human body. PBDE have been shown to suppress activity of phosphoenolpyruvate carboxykinase (PEPCK), a key enzyme in fatty acid esterification via hepatic glyceroneogenesis. The objective of this investigation was to assess hepatic glyceroneogenesis and lipid metabolism in PBDE-treated rats. Male, weanling Wistar rats were gavaged daily for 28 d with 14 mg/kg body weight of either DE-71, a commercial PBDE mixture (treated), or corn oil (control). After a 48-h fast, rats were euthanized, blood was obtained, and livers were excised. Suppression of hepatic PEPCK activity by 40% was noted. Serum ketone bodies were elevated by 27% in treated rats compared to controls, while hepatic glyceroneogenesis as measured by (14)C-pyruvate incorporation into triglycerides was 41% lower in explants from treated rats compared to controls. Liver lipid content was 29% lower in treated animals compared to controls. Taken together, these findings suggest that DE-71-induced inhibition of hepatic PEPCK activity alters lipid metabolism by redirecting fatty acids away from esterification and storage toward ketone synthesis.
Collapse
Affiliation(s)
- Kylie R Cowens
- a Department of Molecular, Cellular, and Biomedical Sciences , University of New Hampshire , Durham , New Hampshire , USA
| | - Stephen Simpson
- a Department of Molecular, Cellular, and Biomedical Sciences , University of New Hampshire , Durham , New Hampshire , USA
| | - W Kelley Thomas
- a Department of Molecular, Cellular, and Biomedical Sciences , University of New Hampshire , Durham , New Hampshire , USA
| | - Gale B Carey
- a Department of Molecular, Cellular, and Biomedical Sciences , University of New Hampshire , Durham , New Hampshire , USA
| |
Collapse
|
14
|
Joffin N, Jaubert AM, Durant S, Bastin J, De Bandt JP, Cynober L, Moinard C, Coumoul X, Forest C, Noirez P. Citrulline reduces glyceroneogenesis and induces fatty acid release in visceral adipose tissue from overweight rats. Mol Nutr Food Res 2014; 58:2320-30. [PMID: 25271764 DOI: 10.1002/mnfr.201400507] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/15/2014] [Accepted: 09/21/2014] [Indexed: 12/21/2022]
Abstract
SCOPE High-fat diet (HFD) increases visceral adipose tissue (AT). Our aim was to evaluate whether citrulline (CIT) affected nonesterified fatty acid (NEFA) metabolism in AT from HFD-fed rats. METHODS AND RESULTS Rats were fed for 8 weeks with either a control diet (CD) or HFD. Retroperitoneal AT explants were exposed to 2.5 mmol/L CIT for 24 h. We analyzed lipolysis, beta-oxidation, glyceroneogenesis, and the expression of the key associated enzymes. CIT doubled NEFA release selectively in HFD AT. Phosphorylation of hormone-sensitive lipase was upregulated 50 and 100% by CIT in CD and HFD AT, respectively. Under CIT, beta-oxidation increased similarly whatever the diet, whereas glyceroneogenesis, which permits NEFA re-esterification, was downregulated 50 and 80% in CD and HFD AT, respectively. In the latter, the important decrease in re-esterification probably explains the rise of NEFA release. A pretreatment with the nitric oxide synthase inhibitor N ω-nitro-l-arginine methyl ester abolished CIT effects. CONCLUSION These results demonstrate direct lipolytic and antiglyceroneogenic effects of CIT on CD and HFD AT. The selective CIT-mediated NEFA release from HFD AT was probably the consequence of the drastic decrease in glyceroneogenesis and nitric oxide was a mediator of CIT effects. These results provide evidence for a direct action of CIT on AT to reduce overweight.
Collapse
Affiliation(s)
- Nolwenn Joffin
- Université Paris Descartes, Sorbonne Paris Cité, France; Institut National de la Santé et de la Recherche Médicale UMR-S 1124, Faculté des Sciences Fondamentales et Biomédicales, Pharmacologie Toxicologie et Signalisation Cellulaire, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Harris RBS. Direct and indirect effects of leptin on adipocyte metabolism. Biochim Biophys Acta Mol Basis Dis 2013; 1842:414-23. [PMID: 23685313 DOI: 10.1016/j.bbadis.2013.05.009] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/18/2013] [Accepted: 05/06/2013] [Indexed: 12/22/2022]
Abstract
Leptin is hypothesized to function as a negative feedback signal in the regulation of energy balance. It is produced primarily by adipose tissue and circulating concentrations correlate with the size of body fat stores. Administration of exogenous leptin to normal weight, leptin responsive animals inhibits food intake and reduces the size of body fat stores whereas mice that are deficient in either leptin or functional leptin receptors are hyperphagic and obese, consistent with a role for leptin in the control of body weight. This review discusses the effect of leptin on adipocyte metabolism. Because adipocytes express leptin receptors there is the potential for leptin to influence adipocyte metabolism directly. Adipocytes also are insulin responsive and receive sympathetic innervation, therefore leptin can also modify adipocyte metabolism indirectly. Studies published to date suggest that direct activation of adipocyte leptin receptors has little effect on cell metabolism in vivo, but that leptin modifies adipocyte sensitivity to insulin to inhibit lipid accumulation. In vivo administration of leptin leads to a suppression of lipogenesis, an increase in triglyceride hydrolysis and an increase in fatty acid and glucose oxidation. Activation of central leptin receptors also contributes to the development of a catabolic state in adipocytes, but this may vary between different fat depots. Leptin reduces the size of white fat depots by inhibiting cell proliferation both through induction of inhibitory circulating factors and by contributing to sympathetic tone which suppresses adipocyte proliferation. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.
Collapse
Affiliation(s)
- Ruth B S Harris
- Department of Physiology, Medical College of Georgia, Georgia Regents University, USA.
| |
Collapse
|