1
|
Zhong J, Pan W, Jiang S, Hu Y, Yang G, Zhang K, Xia Z, Chen B. Flue-cured tobacco intercropping with insectary floral plants improves rhizosphere soil microbial communities and chemical properties of flue-cured tobacco. BMC Microbiol 2024; 24:446. [PMID: 39497066 PMCID: PMC11533348 DOI: 10.1186/s12866-024-03597-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Continuous cropping of the same crop leads to land degradation. This is also called the continuous-cropping obstacle. Currently, intercropping tobacco with other crops can serve as an effective strategy to alleviate continuous cropping obstacles. RESULTS In this study, tobacco K326 and insectary floral plants were used as materials, and seven treatments of tobacco monoculture (CK), tobacco intercropped with Tagetes erecta, Vicia villosa, Fagopyrum esculentum, Lobularia maritima, Trifolium repens, and Argyranthemum frutescens respectively, were set up to study their effects on rhizosphere soil chemical properties and composition and structure of rhizosphere soil microbial community of tobacco. The 16 S rRNA gene and ITS amplicons were sequenced using Illumina high-throughput sequencing. tobacco/insectary floral plants intercropping can influence rhizosphere soil chemical properties, which also change rhizosphere microbial communities. The CK and treatment groups tobacco rhizosphere soil microorganisms had significantly different genera, such as tobacco intercropping with T. repens and A. frutescens significantly increased the number of Fusarium and intercropping T. erecta, V. villosa, L. maritima, T. repens, and A. frutescens significantly increased the number of Sphingomonas and unknown Gemmatimonadaceae. Additionally, intercropping T. erecta, V. villosa and L. maritima changed the rhizosphere fungal and bacteria community and composition of tobacco and the positive correlation between tobacco rhizosphere the genera of fungi and bacterial were greater than CK. The pathway of the carbohydrate metabolism, amino acid metabolism, and energy metabolism in rhizosphere bacteria were significantly decreased after continuous cropping. Fungal symbiotic trophic and saprophytic trophic were significantly increased after intercropping V. villosa, L. maritima and plant pathogen and animal pathogen were increased after intercropping T. repens and A. frutescens. Additionally, bacterial and fungal communities significantly correlated with soil chemical properties, respectively. CONCLUSION This study reveals that intercropping tobacco with insectary floral plants, particularly T. erecta, V. villosa, L. maritima and A. frutescens significantly affects soil chemical properties and alters rhizosphere microbial communities, increasing the abundance of certain microbial genera. Additionally, intercropping enhances pathways related to carbohydrate, amino acid, and energy metabolism in rhizosphere bacteria. These findings suggest that intercropping could provide a promising strategy to overcome challenges associated with continuous tobacco cropping by regulating the rhizosphere environment.
Collapse
Affiliation(s)
- Jin Zhong
- State Key Laboratory of Yunnan Biological Resources Protection and Utilization, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Wenze Pan
- State Key Laboratory of Yunnan Biological Resources Protection and Utilization, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Shenglan Jiang
- State Key Laboratory of Yunnan Biological Resources Protection and Utilization, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Yanxia Hu
- Yunnan Provincial Tobacco Company Dali State Branch, Dali, China
| | - Guangyuan Yang
- State Key Laboratory of Yunnan Biological Resources Protection and Utilization, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Ke Zhang
- State Key Laboratory of Yunnan Biological Resources Protection and Utilization, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Zhenyuan Xia
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China.
| | - Bin Chen
- State Key Laboratory of Yunnan Biological Resources Protection and Utilization, College of Plant Protection, Yunnan Agricultural University, Kunming, China.
| |
Collapse
|
2
|
Gao N, Wen H, Shang Z, Zou Y, Zhao W, He Y, Yang S, Zhang H, Qin J, Zhu S, Wang W. Macrogenomics reveal the effects of inter-cropping perilla on kiwifruit: impact on inter-root soil microbiota and gene expression of carbon, nitrogen, and phosphorus cycles in kiwifruit. Front Microbiol 2024; 15:1349305. [PMID: 38887707 PMCID: PMC11180754 DOI: 10.3389/fmicb.2024.1349305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Intercropping systems can improve soil fertility and health, however, soil microbial communities and functional genes related to carbon, nitrogen and phosphorus cycling under the intercropping system of mesquite and perilla have not been studied. Therefore, in the present study, different planting densities and varieties of Perilla frutescens (L.) Britt and kiwifruit were used for intercropping, and changes in soil microbial communities and carbon, nitrogen, and phosphorus cycling genes in kiwifruit inter-roots under inter-cropping conditions were investigated by macro-genome sequencing technology. The results showed that intercropping with Perill caused a decrease in most soil nutrients, soil enzyme activities, and had a significant impact on the microbial (bacteria and fungi) diversity. Inter-cropping increased the relative abundance of the dominant bacterial phylum "Proteobacteria" and "Actinobacteria" by 47 and 57%, respectively, but decreased the relative abundance of the dominant fungal phylum "Chordata" and "Streptophyta" by 11 and 20%, respectively, in the inter-root soil of kiwifruit, and had a significant impact on the microbial (bacteria and fungi) diversity. In addition, inter-cropping could greatly increase the inter-root soil carbon sequestration (PccA, korA/B/C/D, fhs, and rbcl/s), carbon degradation (abfD), organic nitrogen mineralization (GDH2), denitrification (napA/B, nirB, norB), organic phosphorus mineralization (phop, phn), and inorganic phosphorus solubilization (gcd, ppk) gene abundance. The gene co-occurrence network indicated that soil korB, nirB, and gnd key functional genes for carbon, nitrogen, and phosphorus cycling in kiwifruit inter-root soils and their expression was up-regulated in the inter-cropping group. Structural equation (SEM) further showed that soil total nitrogen, organic matter, total carbon and acid phosphatase had significant effects on microbial diversity (p < 0.05) and soil carbon cycling gene korB and phosphorus cycling gene purH (p < 0.001), while korB and purH had positive effects on kiwifruit quality. In conclusion, intercropping perilla in kiwifruit orchards changed the structure of bacterial and fungal communities in the inter-root soil of kiwifruit, but I believe that intercropping perilla stimulates carbon degradation, leading to carbon emission and serious loss of soil nutrients, and that prolonged intercropping may adversely affect the quality of kiwifruit, and thus its limitations should be noted in future studies.
Collapse
Affiliation(s)
- Ning Gao
- Guizhou Rapeseed Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
- Guizhou Minzu University, Guizhou, China
| | - He Wen
- Guizhou Minzu University, Guizhou, China
| | | | - Yifei Zou
- Guizhou Rapeseed Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Wei Zhao
- Guizhou Rapeseed Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Yun He
- Guizhou Rapeseed Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Sen Yang
- Guizhou Minzu University, Guizhou, China
| | - Heng Zhang
- Guizhou Minzu University, Guizhou, China
| | - Jiahao Qin
- Guizhou Minzu University, Guizhou, China
| | - Sixi Zhu
- Guizhou Rapeseed Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | | |
Collapse
|
3
|
Yang L, Wang C, He X, Liang H, Wu Q, Sun X, Liu M, Shen P. Multi-year crop rotation and quicklime application promote stable peanut yield and high nutrient-use efficiency by regulating soil nutrient availability and bacterial/fungal community. Front Microbiol 2024; 15:1367184. [PMID: 38827150 PMCID: PMC11140132 DOI: 10.3389/fmicb.2024.1367184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024] Open
Abstract
Diversifying cultivation management, including different crop rotation patterns and soil amendment, are effective strategies for alleviating the obstacles of continuous cropping in peanut (Arachis hypogaea L.). However, the peanut yield enhancement effect and temporal changes in soil chemical properties and microbial activities in response to differential multi-year crop rotation patterns and soil amendment remain unclear. In the present study, a multi-year localization experiment with the consecutive application of five different cultivation managements (including rotation with different crops under the presence or absence of external quicklime as soil amendment) was conducted to investigate the dynamic changes in peanut nutrient uptake and yield status, soil chemical property, microbial community composition and function. Peanut continuous cropping led to a reduction in peanut yield, while green manure-peanut rotation and wheat-maize-peanut rotation increased peanut yield by 40.59 and 81.95%, respectively. A combination of quicklime application increased yield by a further 28.76 and 24.34%. Alterations in cultivation management also strongly affected the soil pH, nutrient content, and composition and function of the microbial community. The fungal community was more sensitive than the bacterial community to cultivation pattern shift. Variation in bacterial community was mainly attributed to soil organic carbon, pH and calcium content, while variation in fungal community was more closely related to soil phosphorus content. Wheat-maize-peanut rotation combined with quicklime application effectively modifies the soil acidification environment, improves the soil fertility, reshapes the composition of beneficial and harmful microbial communities, thereby improving soil health, promoting peanut development, and alleviating peanut continuous cropping obstacles. We concluded that wheat-maize-peanut rotation in combination with quicklime application was the effective practice to improve the soil fertility and change the composition of potentially beneficial and pathogenic microbial communities in the soil, which is strongly beneficial for building a healthy soil micro-ecology, promoting the growth and development of peanut, and reducing the harm caused by continuous cropping obstacles to peanut.
Collapse
Affiliation(s)
- Liyu Yang
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetic & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Caibin Wang
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetic & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Xinhua He
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Haiyan Liang
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetic & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Qi Wu
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetic & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Xuewu Sun
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetic & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Miao Liu
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetic & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Pu Shen
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetic & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Qingdao, Shandong, China
| |
Collapse
|
4
|
Shen M, Wu L, Zhang Y, You R, Xiao J, Kang Y. Leaf litter from Cynanchum auriculatum Royle ex Wight leads to root rot outbreaks by Fusarium solani, hindering continuous cropping. FEMS Microbiol Ecol 2024; 100:fiae068. [PMID: 38684466 PMCID: PMC11099666 DOI: 10.1093/femsec/fiae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024] Open
Abstract
Cynanchum auriculatum Royle ex Wight (CA) is experiencing challenges with continuous cropping obstacle (CCO) due to soil-borne fungal pathogens. The leaf litter from CA is regularly incorporated into the soil after root harvesting, but the impact of this practice on pathogen outbreaks remains uncertain. In this study, a fungal strain D1, identified as Fusarium solani, was isolated and confirmed as a potential factor in CCO. Both leave extract (LE) and root extract (RE) were found to inhibit seed germination and the activities of plant defense-related enzymes. The combinations of extracts and D1 exacerbated these negative effects. Beyond promoting the proliferation of D1 in soil, the extracts also enhanced the hypha weight, spore number, and spore germination rate of D1. Compared to RE, LE exhibited a greater degree of promotion in the activities of pathogenesis-related enzymes in D1. Additionally, caffeic acid and ferulic acid were identified as potential active compounds. LE, particularly in combination with D1, induced a shift in the composition of fungal communities rather than bacterial communities. These findings indicate that the water extract of leaf litter stimulated the growth and proliferation of fungal strain D1, thereby augmenting its pathogenicity toward CA and ultimately contributing to the CCO process.
Collapse
Affiliation(s)
- Min Shen
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng, Jiangsu, 224007, China
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng Teachers University, Yancheng, 224007, China
| | - Limeng Wu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng, Jiangsu, 224007, China
| | - Yanzhou Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng, Jiangsu, 224007, China
| | - Ruiqiang You
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng, Jiangsu, 224007, China
| | - Jiaxin Xiao
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Yijun Kang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng, Jiangsu, 224007, China
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng Teachers University, Yancheng, 224007, China
| |
Collapse
|
5
|
Estrada R, Cosme R, Porras T, Reynoso A, Calderon C, Arbizu CI, Arone GJ. Changes in Bulk and Rhizosphere Soil Microbial Diversity Communities of Native Quinoa Due to the Monocropping in the Peruvian Central Andes. Microorganisms 2023; 11:1926. [PMID: 37630486 PMCID: PMC10458079 DOI: 10.3390/microorganisms11081926] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Quinoa (Chenopodium quinoa) is a highly nutritious crop that is resistant to adverse conditions. Due to the considerable increase in its commercial production in Andean soils, the plant is suffering the negative effects of monocropping, which reduces its yield. We used for the first time a high-throughput Illumina MiSeq sequencing approach to explore the composition, diversity, and functions of fungal and bacterial communities of the bulk and rhizosphere in soils of native C. quinoa affected by monocropping in the central Andes of Peru. The results showed that the bacterial and fungal community structure among the treatments was significantly changed by the monocropping and the types of soil (rhizosphere and bulk). Also, in soils subjected to monocropping, there was an increase in Actinobacteria and a decrease in Proteobacteria, and the reduction in the presence of Ascomycota and the increase in Basidiomycota. By alpha-diversity indices, lower values of bacteria and fungi were observed in the monoculture option compared to the soil not affected by monocropping, and sometimes significant differences were found between both. We detected differentially abundant phytopathogenic fungi and bacteria with growth-stimulating effects on plants. Also, we denoted a decrease in the abundance of the functional predictions in bacteria in the monocropped soils. This research will serve as a starting point to explore the importance and effects of microorganisms in degraded soils and their impact on the growth and quality of quinoa crops.
Collapse
Affiliation(s)
- Richard Estrada
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Av. La Molina 1981, Lima 15024, Peru; (R.E.); (T.P.); (A.R.)
| | - Roberto Cosme
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Av. La Molina 1981, Lima 15024, Peru; (R.E.); (T.P.); (A.R.)
| | - Tatiana Porras
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Av. La Molina 1981, Lima 15024, Peru; (R.E.); (T.P.); (A.R.)
| | - Auristela Reynoso
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Av. La Molina 1981, Lima 15024, Peru; (R.E.); (T.P.); (A.R.)
| | - Constatino Calderon
- Facultad de Agronomía, Universidad Nacional Agraria la Molina (UNALM), Av. La Molina s/n, Lima 15024, Peru
| | - Carlos I. Arbizu
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Av. La Molina 1981, Lima 15024, Peru; (R.E.); (T.P.); (A.R.)
- Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Cl. Higos Urco 342, Chachapoyas 01001, Peru
| | - Gregorio J. Arone
- Facultad de Ingeniería, Universidad Nacional de Barranca (UNAB), Av. Toribio Luzuriaga 376, Lima 15169, Peru;
| |
Collapse
|
6
|
Khan A, Wei Y, Adnan M, Ali I, Zhang M. Dynamics of rhizosphere bacterial communities and soil physiochemical properties in response to consecutive ratooning of sugarcane. Front Microbiol 2023; 14:1197246. [PMID: 37492263 PMCID: PMC10364612 DOI: 10.3389/fmicb.2023.1197246] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/19/2023] [Indexed: 07/27/2023] Open
Abstract
Ratooning in sugarcane often leads to soil problems such as degradation, acidification, and soil-borne diseases that negatively impact agriculture output and sustainability. Understanding the alteration in bacterial communities, activities, and their diversity connected to the plant and soil under consecutive ratooning still needs to be clarified. To address this gap, multidisciplinary approaches such as Illumina sequencing and measurement of soil nutrients and enzymes were used in this study to analyze soil samples in a field with three consecutive ratooning sugarcane crops. The results revealed a decline in crop yield and significant changes (P < 0.05) in soil nutrients and bacterial diversity. Ratooning resulted in an acidic environment that potentially affected soil nutrients and enzyme activity responsible for the cycling of carbon, nitrogen, and phosphorous. Non-metric dimensional scaling (NMDS) confirmed the effect of ratooning on soil attributes. Moreover, a positive correlation between soil physiochemical properties and soil enzymes was observed. Alpha diversity indices indicated greater bacterial diversity in ratooning sugarcane. Bacterial diversity varied throughout the ratooning crop, and significant (P < 0.05) changes in the relative abundance of specific phyla were observed. For example, the relative abundance of Proteobacteria was decreased, and Acidobacteria was increased. Furthermore, the relative abundance of bacterial phyla was strongly correlated with soil attributes (enzymes and nutrients). Additionally, ratooning results in the depletion or enrichment of important agriculture microbial genera such as Sphingomonas, Burkholderia, and Acidothermus (P < 0.05), respectively. In conclusion, ratooning led to soil acidification, decreased fertility, and altered microbial structure and activity. Thus, restraining soil acidity by means of liming or biofertilizers to maintain soil nutrients, enzymatic activities, and microbial structure could benefit plants and soil to help create a long-term eco-friendly sugarcane cropping system.
Collapse
Affiliation(s)
- Abdullah Khan
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- Department of Plant Protection, College of Agriculture, Guangxi University, Nanning, China
- Department of Plant Sciences, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Yibin Wei
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Muhammad Adnan
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Izhar Ali
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| | - Muqing Zhang
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- Department of Plant Protection, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
7
|
Ding W, Li J, Hu B, Chu G, Tao R. Response of abundance, diversity, and network of rhizosphere fungal community to monoculture of cut chrysanthemum. Appl Microbiol Biotechnol 2023; 107:3673-3685. [PMID: 37115253 DOI: 10.1007/s00253-023-12542-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023]
Abstract
The effects of different monoculture years on rhizosphere fungal communities (abundance, diversity, structure, and cooccurrence network) of cut chrysanthemum were determined. Three different monoculture years were (i) planting for only 1 year (Y1), (ii) continuous monoculture for 6 years (Y6), and (iii) continuous monoculture for 12 years (Y12). Compared to the Y1 treatment, the Y12 treatment significantly decreased the rhizosphere fungal gene copy numbers but increased the potential pathogen Fusarium oxysporum (P < 0.05). Both the Y6 and Y12 treatments significantly increased fungal diversity (Shannon and Simpson indices), but Y6 had great potential to enhance fungal richness (Chao1 index) relative to the Y12 treatment. Monoculture treatments decreased the relative abundance of Ascomycota but increased that of Mortierellomycota. Four ecological clusters (Modules 0, 3, 4, and 9) were observed in the fungal cooccurrence network across the Y1, Y6, and Y12 treatments, and only Module 0 was significantly enriched in the Y12 treatment and associated with soil properties (P < 0.05). RDA (redundancy analysis) and Mantel analysis showed that soil pH and soil nutrients (organic carbon, total nitrogen, and available phosphorus) were the key factors affecting fungal communities during monoculture of cut chrysanthemum. Overall, the changes in soil properties were responsible for shaping rhizospheric soil fungal communities in long-term rather than short-term monoculture systems. KEY POINTS: • Both short- and long-term monocultures reshaped the soil fungal community structure. • Long-term monoculture enhanced the network complexity of the fungal community. • Soil pH, C and N levels mainly drove modularization in the fungal community network.
Collapse
Affiliation(s)
- Wangying Ding
- Department of Environmental Science and Engineering, School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, People's Republic of China
| | - Jun Li
- Department of Environmental Science and Engineering, School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, People's Republic of China
| | - Baowei Hu
- Department of Environmental Science and Engineering, School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, People's Republic of China
| | - Guixin Chu
- Department of Environmental Science and Engineering, School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, People's Republic of China
| | - Rui Tao
- Department of Environmental Science and Engineering, School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, People's Republic of China.
| |
Collapse
|
8
|
Xu X, Zhou Y, Wang X, Jiang W, Qin L, Wang J, Yu H, Chen X, Shen X, Yin C, Mao Z. Effect of Hydrogen Peroxide on the Soil Microbial Community Structure and Growth of Malus hupehensis Rehd. Seedlings under Replant Conditions. ACS OMEGA 2023; 8:6411-6422. [PMID: 36844530 PMCID: PMC9947989 DOI: 10.1021/acsomega.2c06665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Apple replant disease (ARD) is common in apple production, which seriously affects the growth and development of apples. In this study, hydrogen peroxide with a bactericidal effect was used to treat the replanted soil, and the effects of different concentrations of hydrogen peroxide on replanted seedlings and soil microbiology were investigated in order to seek a green, clean way to control ARD. Five treatments were set up in this study: replanted soil (CK1), replanted soil with methyl bromide fumigation (CK2), replanted soil + 1.5% hydrogen peroxide (H1), replanted soil + 3.0% hydrogen peroxide (H2), and replanted soil + 4.5% hydrogen peroxide (H3). The results showed that hydrogen peroxide treatment improved replanted seedling growth and also inactivated a certain number of Fusarium, while the Bacillus, Mortierella, and Guehomyces also became more abundant in relative terms. The best results were obtained with replanted soil + 4.5% hydrogen peroxide (H3). Consequently, hydrogen peroxide applied to the soil can effectively prevent and control ARD.
Collapse
Affiliation(s)
- Xin Xu
- State
Key Laboratory of Crop Biology, College of Horticulture Science and
Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Yifan Zhou
- Huanghai
University, Qingdao, Shandong 266427, China
| | - Xiaoqi Wang
- State
Key Laboratory of Crop Biology, College of Horticulture Science and
Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Weitao Jiang
- State
Key Laboratory of Crop Biology, College of Horticulture Science and
Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Lei Qin
- State
Key Laboratory of Crop Biology, College of Horticulture Science and
Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Jian Wang
- State
Key Laboratory of Crop Biology, College of Horticulture Science and
Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Haijun Yu
- Haiyang
Fruit Industry Development Service Center, Yantai, Shandong 265199, China
| | - Xuesen Chen
- State
Key Laboratory of Crop Biology, College of Horticulture Science and
Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Xiang Shen
- State
Key Laboratory of Crop Biology, College of Horticulture Science and
Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Chengmiao Yin
- State
Key Laboratory of Crop Biology, College of Horticulture Science and
Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Zhiquan Mao
- State
Key Laboratory of Crop Biology, College of Horticulture Science and
Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| |
Collapse
|
9
|
The rhizospheric bacterial diversity of Fritillaria taipaiensis under single planting pattern over five years. Sci Rep 2022; 12:22544. [PMID: 36581656 PMCID: PMC9800406 DOI: 10.1038/s41598-022-26810-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/20/2022] [Indexed: 12/30/2022] Open
Abstract
Rhizospheric microorganisms can profoundly influence the nutritional status of soil and the growth of plant. To reveal the change on the bacterial diversity in the rhizosphere of Fritillaria taipaiensis under long-term single planting, the bacterial community structure in the rhizospheric soils of F. taipaiensis with different cultivation years from 1 to 5 were analyzed. The result showed the Chao1 and the ACE indices of the bacterial community had no significant difference among samples while the Shannon and Simpson indices declined with the cutivation year; the intra group beta diversity of the rhizospheric bacteria increased after a initial decline with the cultivation year; in the sample with 1 year of cultivation, the dominant bacterial genera were mainly the species that can improve the soil nutrient status and promote plant growth while with the increase of cultivation year, the dominant genera in samples then gradually reflected the pathogen accumulation and soil nutrient status deterioration; pH was the most significant factor affected by the bacterial community composition. These results indicated long term continuous cropping changed the bacterial community structure and soil nutritional status in the F. taipaiensis rhizospheric soils, which could badly affect its growth.
Collapse
|
10
|
Chen X, Zhang D, Li Y, Li H, Lou J, Li X, Wei M. Changes in rhizospheric microbiome structure and soil metabolic function in response to continuous cucumber cultivation. FEMS Microbiol Ecol 2022; 98:6807410. [PMID: 36341539 DOI: 10.1093/femsec/fiac129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/26/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
With the increasing reliance on intensive arable agriculture, analysis of the problems associated with continuous cropping has become a global research focus. Here, high-throughput sequencing and nontargeted metabolomics were used to evaluate the responses of soil microbial community structure and soil metabolic function to continuous cucumber cultivation (from 1 to 18 years of continuous cultivation) in greenhouses. Continuous cucumber cropping resulted in increased soil nutrient concentrations, but decreased concentrations of available nutrients. The abundance of several bacterial genera associated with nutrient cycling, such as Bacillus and Sphingomonas, was reduced by continuous cucumber cultivation. The abundance of several beneficial fungal genera, including pathogen antagonists (e.g. Chaetomium, Mortierella, Aspergillus, and Penicillium), were found to gradually decrease in response to the increased duration of continuous cropping. 3-amino-2-naphthoic acid and L-valine increased initially and then decreased as the cropping continued, which were related to fatty acid metabolism and amino acid biosynthesis. We also confirmed a close association between microbial community structure and soil metabolites. This study linked the changes in microbial community structure and metabolites in the rhizosphere soil and provided new insights into soil-microbial interactions in continuous cucumber culture systems.
Collapse
Affiliation(s)
- Xiaolu Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, 271018 Tai'an, China
| | - Dalong Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, 271018 Tai'an, China.,Scientific Observing and Experimental Starion of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, 271018 Tai'an, China
| | - Yiman Li
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, 271018 Tai'an, China
| | - Hengyu Li
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, 271018 Tai'an, China
| | - Jie Lou
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, 271018 Tai'an, China
| | - Xiaotian Li
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, 271018 Tai'an, China
| | - Min Wei
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, 271018 Tai'an, China.,Scientific Observing and Experimental Starion of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, 271018 Tai'an, China
| |
Collapse
|
11
|
Shi H, Lu L, Ye J, Shi L. Effects of Two Bacillus Velezensis Microbial Inoculants on the Growth and Rhizosphere Soil Environment of Prunus davidiana. Int J Mol Sci 2022; 23:13639. [PMID: 36362427 PMCID: PMC9657632 DOI: 10.3390/ijms232113639] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 06/12/2024] Open
Abstract
Microbial inoculants, as harmless, efficient, and environmentally friendly plant growth promoters and soil conditioners, are attracting increasing attention. In this study, the effects of Bacillus velezensis YH-18 and B. velezensis YH-20 on Prunus davidiana growth and rhizosphere soil bacterial community in continuously cropped soil were investigated by inoculation tests. The results showed that in a pot seedling experiment, inoculation with YH-18 and YH-20 resulted in a certain degree of increase in diameter growth, plant height, and leaf area at different time periods of 180 days compared with the control. Moreover, after 30 and 90 days of inoculation, the available nutrients in the soil were effectively improved, which protected the continuously cropped soil from acidification. In addition, high-throughput sequencing showed that inoculation with microbial inoculants effectively slowed the decrease in soil microbial richness and diversity over a one-month period. At the phylum level, Proteobacteria and Bacteroidetes were significantly enriched on the 30th day. At the genus level, Sphingomonas and Pseudomonas were significantly enriched at 15 and 30 days, respectively. These bacterial phyla and genera can effectively improve the soil nutrient utilization rate, antagonize plant pathogenic bacteria, and benefit the growth of plants. Furthermore, inoculation with YH-18 and inoculation with YH-20 resulted in similar changes in the rhizosphere microbiome. This study provides a basis for the short-term effect of microbial inoculants on the P. davidiana rhizosphere microbiome and has application value for promoting the cultivation and production of high-quality fruit trees.
Collapse
Affiliation(s)
| | | | - Jianren Ye
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | | |
Collapse
|
12
|
Kaur M, Li J, Zhang P, Yang HF, Wang L, Xu M. Agricultural soil physico-chemical parameters and microbial abundance and diversity under long-run farming practices: A greenhouse study. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1026771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The growth of agriculture led to indiscriminate use of synthetic pesticides or fertilizers and unsustainable crop management farming practices which can aggravate harmful impacts on the microbial population and physical and chemical characteristics of soil ecosystem. Based on this fact, the present study was planned to evaluate the effect of long run farming practices on different soil physico-chemical parameters and soil microbial abundance and diversity within different soil depth (0–20 cm and 20–40 cm) at Quzhou Experimental Station of China Agricultural University, Hebei, China during October and December, 2016. The effect of farming practices on soil microbial abundance and diversity was studied by phospho-lipid fatty acid (PLFA) and DNA high-throughput sequencing methods. The findings revealed that soil is neutral to slightly alkaline in nature with highest water content under organic farming (ORF) at 0–20 cm and least under conventional farming at 20–40 cm depth. It was found that the ORF significantly increased the contents of total organic carbon (TOC), total carbon (TC), ammonium nitrogen, available nitrogen (AN), total nitrogen (TN), total phosphorus (TP), and available phosphorus (AP) followed by low input and conventional farming modes in both October and December soil samples. The correlation analysis showed significantly (at p ≤ 0.05 and 0.01) strong positive relationship within different physical and chemical properties of the soil under study. ANOVA and MANOVA analysis indicated significant effect of interaction between soil depth and farming modes on soil parameters. PCA analysis showed the most significant correlation between most of the bacterial types (G + bacteria, G− bacteria, actinomycetes) and soil AP, total available nitrogen, TOC and soil WC. Pearson correlation analysis revealed a significant correlation between microbial phylum groups (Proteobacteria, Bacteroidetes, and Latescibacteria) and microbial class group (Alphaproteobacteria, Sphingobacteriia, Flavobacteriia) with most of the soil physicochemical properties.
Collapse
|
13
|
Chen G, Xue Y, Yu X, Li C, Hou Y, Zhu H, Jiang L, Zheng W, Feng Z, Li Y, Tang W, Zhao X, Zhang J, Zhang X. The Structure and Function of Microbial Community in Rhizospheric Soil of American Ginseng (Panax quinquefolius L.) Changed with Planting Years. Curr Microbiol 2022; 79:281. [PMID: 35934756 DOI: 10.1007/s00284-022-02941-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 06/17/2022] [Indexed: 11/30/2022]
Abstract
The changes of microbial communities of rhizospheric soil in different ages are speculated to cause soil-borne diseases and replanting problem in American ginseng (Panax quinquefolius L.) cultivation. This study analyzed the physicochemical properties and microbial communities of rhizospheric soil during the planting of American ginseng in the Wendeng area of Weihai, China. The water content and organic matter content of American ginseng rhizospheric soil decreased year by year. A decline in the diversity of bacteria and fungi was observed in the rhizospheric soils planting American ginseng compared with the traditional crop wheat in the control group. During the later planting stage, the abundances of Proteobacteria, Actinobacteria, and Basidiomycota were lower, whereas that of Acidobacteria, Firmicutes, and Mucoromycota were higher. Through the correlation analysis between environmental factors and microbial community, it was found that the content of soil phosphorus was significantly positively correlated with the root rot pathogen Fusarium. The results of functional prediction showed that the decrease of secondary metabolite synthesis of rhizospheric soil bacteria and the increase of plant pathogenic fungi may be the important reasons for the increase of diseases in the later stage of American ginseng planting. This study revealed the evolution of rhizosphere microbial community and function in the process of American ginseng planting, which is valuable for planting management.
Collapse
Affiliation(s)
- Guozhong Chen
- School of Life Sciences, Ludong University, 186 Hongqi Road, Zhifu District, Yantai, 264025, Shandong, China.,Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Ji'nan, 250022, China
| | - Ying Xue
- School of Life Sciences, Ludong University, 186 Hongqi Road, Zhifu District, Yantai, 264025, Shandong, China.,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, 264025, China.,Shandong Breeding Environmental Control Engineering Laboratory, Yantai, 264000, Shandong, China
| | - Xin Yu
- School of Life Sciences, Ludong University, 186 Hongqi Road, Zhifu District, Yantai, 264025, Shandong, China.,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, 264025, China.,Shandong Breeding Environmental Control Engineering Laboratory, Yantai, 264000, Shandong, China.,Yantai Research Institute for Replacing Old Growth Drivers with New Ones, Yantai, China
| | - Chongwei Li
- School of Life Sciences, Ludong University, 186 Hongqi Road, Zhifu District, Yantai, 264025, Shandong, China
| | - Yuping Hou
- School of Life Sciences, Ludong University, 186 Hongqi Road, Zhifu District, Yantai, 264025, Shandong, China
| | - Hongwei Zhu
- School of Life Sciences, Ludong University, 186 Hongqi Road, Zhifu District, Yantai, 264025, Shandong, China.,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, 264025, China.,Shandong Breeding Environmental Control Engineering Laboratory, Yantai, 264000, Shandong, China.,Yantai Research Institute for Replacing Old Growth Drivers with New Ones, Yantai, China
| | - Linlin Jiang
- School of Life Sciences, Ludong University, 186 Hongqi Road, Zhifu District, Yantai, 264025, Shandong, China.,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, 264025, China.,Shandong Breeding Environmental Control Engineering Laboratory, Yantai, 264000, Shandong, China.,Yantai Research Institute for Replacing Old Growth Drivers with New Ones, Yantai, China
| | - Weibo Zheng
- School of Life Sciences, Ludong University, 186 Hongqi Road, Zhifu District, Yantai, 264025, Shandong, China.,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, 264025, China.,Shandong Breeding Environmental Control Engineering Laboratory, Yantai, 264000, Shandong, China
| | - Zhibin Feng
- School of Life Sciences, Ludong University, 186 Hongqi Road, Zhifu District, Yantai, 264025, Shandong, China
| | - Youzhi Li
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Ji'nan, 250022, China
| | - Wenli Tang
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Ji'nan, 250022, China
| | - Xiaoyu Zhao
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Ji'nan, 250022, China
| | - Jianlong Zhang
- School of Life Sciences, Ludong University, 186 Hongqi Road, Zhifu District, Yantai, 264025, Shandong, China. .,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, 264025, China. .,Shandong Breeding Environmental Control Engineering Laboratory, Yantai, 264000, Shandong, China. .,Yantai Research Institute for Replacing Old Growth Drivers with New Ones, Yantai, China.
| | - Xingxiao Zhang
- School of Life Sciences, Ludong University, 186 Hongqi Road, Zhifu District, Yantai, 264025, Shandong, China. .,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, 264025, China. .,Shandong Breeding Environmental Control Engineering Laboratory, Yantai, 264000, Shandong, China. .,Yantai Research Institute for Replacing Old Growth Drivers with New Ones, Yantai, China.
| |
Collapse
|
14
|
Gu X, Yang N, Zhao Y, Liu W, Li T. Long-term watermelon continuous cropping leads to drastic shifts in soil bacterial and fungal community composition across gravel mulch fields. BMC Microbiol 2022; 22:189. [PMID: 35918663 PMCID: PMC9344729 DOI: 10.1186/s12866-022-02601-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/18/2022] [Indexed: 12/15/2022] Open
Abstract
Despite the known influence of continuous cropping on soil microorganisms, little is known about the associated difference in the effects of continuous cropping on the community compositions of soil bacteria and fungi. Here, we assessed soil physicochemical property, as well as bacterial and fungal compositions across different years (Uncropped control, 1, 6, 11, 16, and 21 years) and in the watermelon system of a gravel mulch field in the Loess Plateau of China. Our results showed that long-term continuous cropping led to substantial shifts in soil bacterial and fungal compositions. The relative abundances of dominant bacterial and fungal genera (average relative abundance > 1.0%) significantly varied among different continuous cropping years (P < 0.05). Structural equation models demonstrated that continuous cropping alter soil bacterial and fungal compositions mainly by causing substantial variations in soil attributes. Variations in soil pH, nutrient, salinity, and moisture content jointly explained 73% and 64% of the variation in soil bacterial and fungal compositions, respectively. Variations in soil moisture content and pH caused by continuous cropping drove the shifts in soil bacterial and fungal compositions, respectively (Mantel R = 0.74 and 0.54, P < 0.01). Furthermore, the variation in soil bacterial and fungal composition showed significant correlation with watermelon yield reduction (P < 0.01). Together, long-term continuous cropping can alter soil microbial composition, and thereby influencing watermelon yield. Our findings are useful for alleviating continuous cropping obstacles and guiding agricultural production.
Collapse
Affiliation(s)
- Xin Gu
- School of Agriculture, Ningxia University, 750021, Yinchuan, China.
| | - Na Yang
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Yan Zhao
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Wenhui Liu
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Tingfeng Li
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| |
Collapse
|
15
|
Liu Y, Tian Y, Zhao X, Yue L, Uwaremwe C, Zhou Q, Wang Y, Zhang Y, Dun Z, Cui Z, Wang R. Identification of Pathogenic Fusarium spp. Responsible for Root Rot of Angelica sinensis and Characterization of Their Biological Enemies in Dingxi, China. PLANT DISEASE 2022; 106:1898-1910. [PMID: 35021867 DOI: 10.1094/pdis-06-21-1249-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Root rot is a serious disease in plantations of Angelica sinensis, severely reducing yield and quality and threatening sustainable production. Fusarium isolates (n = 32) were obtained from field samples of root rot tissue, leaves, and infected soil. Isolates were identified by comparison of the sequences of their internal transcribed spacer region and translation elongation factor 1-α to sequences of known species in the National Center for Biotechnology Information database. These Fusarium isolates include Fusarium tricinctum (43.75%), F. equiseti (31.25%), F. solani (9.37%), F. oxysporum (6.25%), F. acuminatum (6.25%), and F. incarnatum (3.12%). For pathogenicity testing under greenhouse conditions, seven isolates were selected based on a phylogenetic analysis, including four strains of F. tricinctum and one strain each of F. solani, F. oxysporum, and F. acuminatum. The seven isolates were all pathogenic but differed in their ability to infect: The four F. tricinctum strains were capable of causing root rot in A. sinensis at 100% incidence and were highly aggressive. Furthermore, the symptoms of root rot induced by those seven isolates were consistent with typical root rot cases in the field, but their disease severity varied. Observed histopathological preparations of F. tricinctum-infected seedlings and tissue slide results showed that this fungal species can penetrate epidermal cells and colonize the cortical cells where it induces necrosis and severe plasmolysis. Plate confrontation experiments showed that isolated rhizosphere bacteria inhibited the Fusarium pathogens that cause root rot in A. sinensis. Our results provide timely information about the use of biocontrol agents for suppression of root rot disease.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Tian
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Zhao
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Yue
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Constantine Uwaremwe
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qin Zhou
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Wang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yubao Zhang
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiheng Dun
- The General Station of Construction and Protection for the Cultivated Land and Quality of Gansu Province, Lanzhou 730000, China
| | - Zengtuan Cui
- The General Station of Construction and Protection for the Cultivated Land and Quality of Gansu Province, Lanzhou 730000, China
| | - Ruoyu Wang
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Wang R, Liu J, Jiang W, Ji P, Li Y. Metabolomics and Microbiomics Reveal Impacts of Rhizosphere Metabolites on Alfalfa Continuous Cropping. Front Microbiol 2022; 13:833968. [PMID: 35531271 PMCID: PMC9069006 DOI: 10.3389/fmicb.2022.833968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Alfalfa long-term continuous cropping (CC) can pose a serious threat to alfalfa production. However, the mechanism of alfalfa CC obstacle is unclear as of today. Our preliminary study showed that the main factors of CC obstacle were not the lack of nutrients or water in alfalfa rhizosphere soils. Further, we evaluated physic-chemical property, microbial population structure, and metabolite differences of alfalfa rhizosphere soils with CC for 1, 7, and 14 years based on analysis of metabolomics and microbiomics. Four phenolic acid metabolites, including p-coumaric acid, ferulic acid, vanillic acid, and p-hydroxybenzoic acid, were found to have significant differences among different CC years, which may be the key factors of CC obstacle. Among them, p-coumaric acid and ferulic acid could significantly decrease the germination rate of alfalfa seeds by 21.11 and 16.67% at the concentration of 100 μg/mL and the height (root length) of alfalfa seedlings by 21% (32.9%) and 13.72% (16.45%). Moreover, these metabolites could effectively promote the growth of some pathogenic fungi, causing alfalfa root rot. Among them, p-coumaric acid obviously and significantly aggravated the occurrence of alfalfa root rot. With the increase of CC years, soil microbial community changed from fungi to bacteria; fungi decreased by 10.83%, fungi increased by 8.08%, and beneficial microorganisms decreased with the increase of CC years. Field analysis and experimental verification showed that the above results were consistent with that of CC obstacle in the field. Among the key metabolites, the autotoxicity of p-coumaric acid was the strongest. This study fully proved that the continuous accumulation of autotoxic substances in alfalfa rhizosphere was the key factor causing alfalfa CC obstacles.
Collapse
Affiliation(s)
- Ruiting Wang
- Agricultural College, Northeast Agricultural University, Harbin, China
| | - Jinxin Liu
- Agricultural College, Northeast Agricultural University, Harbin, China
| | - Wanyi Jiang
- Agricultural College, Northeast Agricultural University, Harbin, China
| | - Pingsheng Ji
- Department of Plant Pathology, University of Georgia, Tifton, GA, United States
| | - Yonggang Li
- Agricultural College, Northeast Agricultural University, Harbin, China
| |
Collapse
|
17
|
Li H, Li C, Song X, Liu Y, Gao Q, Zheng R, Li J, Zhang P, Liu X. Impacts of continuous and rotational cropping practices on soil chemical properties and microbial communities during peanut cultivation. Sci Rep 2022; 12:2758. [PMID: 35177784 PMCID: PMC8854431 DOI: 10.1038/s41598-022-06789-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/07/2022] [Indexed: 01/16/2023] Open
Abstract
Long-term monocultures have severely inhibited the cultivation of Chinese peanut (Arachis hypogaea L.). In this study, the effects of continuous cropping on soil chemical properties and microbial communities were investigated in peanut fields that had been in crop rotation for 10 years and in monoculture for 10 years. The results found that long-term monoculture increased the activities of available potassium, available phosphorus, available nitrogen, soil organic matter, urease, acid phosphatase and catalase; while decreasing the activity of catalase. The diversity and abundance of soil bacteria and fungi is higher under continuous peanut cultivation. At the genus level, the relative abundance of potentially beneficial microflora genera was higher in the rhizosphere soil of rotational cropping than in continuous cropping, while the opposite was true for the relative abundance of potentially pathogenic fungal genera. Principal coordinates and cluster analysis indicated that continuous cropping altered the structure of the microbial community. The results of the functional predictions showed significant differences in the functioning of the rhizosphere microbial community between continuous and rotational cropping. In conclusion, long-term continuous cropping changed the chemical properties of the soil, altered the structure and function of the soil bacterial and fungal communities in peanut rhizosphere, which to some extent reduced the relative abundance of potentially beneficial microbial genera and increased the relative abundance of potentially pathogenic fungal genera, thus increasing the potential risk of soil-borne diseases and reducing the yield and quality of peanut. Therefore, in the actual production process, attention should be paid not only to the application of chemical fertilizers, but also to crop rotation and the application of microbial fertilizers.
Collapse
Affiliation(s)
- Huying Li
- College of Forestry, Shandong Agricultural University, No. 61, Daizong Street, Taian, 271018, Shandong, China.,State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Taian, 271018, China
| | - Chaohui Li
- College of Forestry, Shandong Agricultural University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Xin Song
- College of Forestry, Shandong Agricultural University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Yue Liu
- College of Forestry, Shandong Agricultural University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Qixiong Gao
- College of Forestry, Shandong Agricultural University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Rui Zheng
- College of Forestry, Shandong Agricultural University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Jintai Li
- College of Forestry, Shandong Agricultural University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Pengcheng Zhang
- College of Forestry, Shandong Agricultural University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Xunli Liu
- College of Forestry, Shandong Agricultural University, No. 61, Daizong Street, Taian, 271018, Shandong, China. .,State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Taian, 271018, China.
| |
Collapse
|
18
|
Fang H, Zheng K, Zhang J, Gu X, Zhao Y, Zheng Y, Wang Q. Differences in gene expression and endophytic bacterial diversity in Atractylodes macrocephala Koidz. rhizomes from different growth years. Can J Microbiol 2022; 68:353-366. [PMID: 35080442 DOI: 10.1139/cjm-2021-0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Atractylodes macrocephala Koidz. (AMK) is widely used owing to its pharmacological activity in traditional Chinese medicine (TCM). Here, we aimed to characterize the differentially expressed genes (DEGs) of one- and three-year growth (OYG and TYG) rhizomes of AMK combined with the endophytic bacterial diversity analysis using high-throughput RNA-sequencing. 114,572 unigenes were annotated in six public databases. 3570 DEGs revealed a clear difference, of which 936 and 2634 genes were up- and down-regulated, respectively. The results of KEGG pathway analysis indicated that DEGs corresponding to the terpenoid synthesis gene were downregulated in TYG rhizomes. 414,424 sequences corresponding to the 16S rRNA gene were divided into 1267 operational taxonomic units (OTUs). Moreover, the diversity of endophytic bacteria changed with species in OYG (773) and TYG (1201) rhizomes at OTU level, and Proteobacteria, Actinobacteria, and Bacteroidetes were the dominant phyla. Comparison of species differences among different growth years revealed that some species were significantly different, such as Actinomycetes, Variovorax, Cloacibacterium, etc. Interestingly, the decrease in the function-related metabolism of terpenoids and polyketides was found to be correlated the low expression of terpene synthesis genes in TYG rhizomes assessed using PICRUSt2. These data provide a scientific basis for elucidating the mechanism underlying metabolite accumulation and endophytic bacterial diversity in relation to the growth years in AMK.
Collapse
Affiliation(s)
- Huiyong Fang
- Hebei University of Chinese Medicine, 441322, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China.,Hebei University of Chinese Medicine, 441322, College of Pharmacy, Shijiazhuang, College of Pharmacy, China;
| | - Kaiyan Zheng
- Hebei University of Chinese Medicine, 441322, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China.,Hebei University of Chinese Medicine, 441322, College of Pharmacy, Shijiazhuang, China;
| | - Jianyun Zhang
- Hebei University of Chinese Medicine, 441322, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China, 050200.,Hebei University of Chinese Medicine, 441322, College of Pharmacy, Shijiazhuang, China, 050200;
| | - Xian Gu
- Hebei University of Chinese Medicine, 441322, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China.,Hebei University of Chinese Medicine, 441322, College of Pharmacy, Shijiazhuang, China;
| | - Yanyun Zhao
- Hebei University of Chinese Medicine, 441322, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China.,Hebei University of Chinese Medicine, 441322, College of Pharmacy, Shijiazhuang, China;
| | - Yuguang Zheng
- Hebei Chemical and Pharmaceutical College, 118457, Shijiazhuang, Hebei, China.,Hebei University of Chinese Medicine, 441322, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China;
| | - Qian Wang
- Hebei University of Chinese Medicine, 441322, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China.,Hebei University of Chinese Medicine, 441322, College of Pharmacy, Shijiazhuang, China;
| |
Collapse
|
19
|
Zhang M, Liu Y, Wei Q, Gou J. Effects of short-term application of Moutai lees biochar on nutrients and fungal community structure in yellow soil of Guizhou. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67404-67413. [PMID: 34254242 DOI: 10.1007/s11356-021-15001-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
In order to realize the utilization of Moutai lees and the improvement of soil fertility of yellow soil in Guizhou, a field experiment was carried out to study the effects of short-term application of Moutai lees biochar on nutrients and fungal community structure diversity of yellow soil. The results showed that the application of Moutai lees biochar increased the pH, soil organic matter (SOM), total nitrogen (TN), ammonium nitrogen (NH4+-N), nitrate nitrogen (NO3--N), available phosphorus (AP), and available potassium (AK), while the microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) were reduced. The application of biochar significantly reduced the number of fungal OTU and community diversity. The application of biochar increased the relative abundances of Chytridiomycota and Mortierellomycota, while the relative abundance of Ascomycota was significantly reduced. Redundancy analysis (RDA) suggested that SOM, NH4+-N and NO3--N were the key factors correlated with changes in microbial community structure. Overall, the short-term application of lees biochar can not only improve the nutrient content of yellow soil, but also change the structure and diversity of soil fungal communities. More importantly, Moutai lees biochar can reduce the relative abundance of some pathogenic fungi and play the role of inhibiting the growth and reproduction of harmful plant pathogens.
Collapse
Affiliation(s)
- Meng Zhang
- Institute of Soil and Fertilizer, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, People's Republic of China
| | - Yanling Liu
- Institute of Soil and Fertilizer, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, People's Republic of China
| | - Quanquan Wei
- Institute of Soil and Fertilizer, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, People's Republic of China
| | - Jiulan Gou
- Institute of Soil and Fertilizer, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, People's Republic of China.
| |
Collapse
|
20
|
Continuous Sugarcane Planting Negatively Impacts Soil Microbial Community Structure, Soil Fertility, and Sugarcane Agronomic Parameters. Microorganisms 2021; 9:microorganisms9102008. [PMID: 34683329 PMCID: PMC8537732 DOI: 10.3390/microorganisms9102008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 01/28/2023] Open
Abstract
Continuous planting has a negative impact on sugarcane plant growth and reduces global sugarcane crop production, including in China. The response of soil bacteria, fungal, and arbuscular mycorrhizae (AM) fungal communities to continuous sugarcane cultivation has not been thoroughly documented. Using MiSeq sequencing technology, we analyzed soil samples from sugarcane fields with 1, 10, and 30 years of continuous cropping to see how monoculture time affected sugarcane yield, its rhizosphere soil characteristics and microbiota. The results showed that continuous sugarcane planting reduced sugarcane quality and yield. Continuous sugarcane planting for 30 years resulted in soil acidification, as well as C/N, alkali hydrolyzable nitrogen, organic matter, and total sulfur content significantly lower than in newly planted fields. Continuous sugarcane planting affected soil bacterial, fungal, and AM fungal communities, according to PCoA and ANOSIM analysis. Redundancy analysis (RDA) results showed that bacterial, fungal, and AM fungal community composition were strongly associated with soil properties and attributes, e.g., soil AN, OM, and TS were critical environmental factors in transforming the bacterial community. The LEfSe analysis revealed bacterial families (e.g., Gaiellaceae, Pseudomonadaceae, Micromonosporaceae, Nitrosomonadaceae, and Methyloligellaceae) were more prevalent in the newly planted field than in continuously cultivated fields (10 and 30 years), whereas Sphingomonadaceae, Coleofasciculaceae, and Oxyphotobacteria were depleted. Concerning fungal families, the newly planted field was more dominated than the continuously planted field (30 years) with Mrakiaceae and Ceratocystidaceae, whereas Piskurozymaceae, Trimorphomycetaceae, Lachnocladiaceae, and Stigmatodisc were significantly enriched in the continuously planted fields (10 and 30 years). Regarding AMF families, Diversisporaceae was considerably depleted in continuously planted fields (10 and 30 years) compared to the newly planted field. These changes in microbial composition may ultimately lead to a decrease in sugarcane yield and quality in the monoculture system, which provides a theoretical basis for the obstruction mechanism of the continuous sugarcane planting system. However, continuous planting obstacles remain uncertain and further need to be coupled with root exudates, soil metabolomics, proteomics, nematodes, and other exploratory methods.
Collapse
|
21
|
Tayyab M, Yang Z, Zhang C, Islam W, Lin W, Zhang H. Sugarcane monoculture drives microbial community composition, activity and abundance of agricultural-related microorganisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:48080-48096. [PMID: 33904129 DOI: 10.1007/s11356-021-14033-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/16/2021] [Indexed: 05/28/2023]
Abstract
Sugarcane monoculture (SM) often leads to soil problems, like soil acidification, degradation, and soil-borne diseases, which ultimately pose a negative impact on agricultural productivity and sustainability. Understanding the change in microbial communities' composition, activities, and functional microbial taxa associated with the plant and soil under SM is unclear. Using multidisciplinary approaches such as Illumina sequencing, measurements of soil properties, and enzyme activities, we analyzed soil samples from three sugarcane fields with different monoculture histories (1-, 2-, and 4-year cultivation times, respectively). We observed that SM induced soil acidity and had adverse effects on soil fertility, i.e., soil organic matter (OM), total nitrogen (TN), total carbon (TC), and available potassium (AK), as well as enzyme activities indicative for carbon, phosphorus, and nitrogen cycles. Non-metric multidimensional scaling (NMDS) analysis showed that SM time greatly affected soil attribute patterns. We observed strong correlation among soil enzymes activities and soil physiochemical properties (soil pH, OM, and TC). Alpha diversity analysis showed a varying response of the microbes to SM time. Bacterial diversity increased with increasing oligotrophs (e.g., Acidobacteria and Chloroflexi), while fungal diversity decreased with reducing copiotrophs (e.g., Ascomycota). β-Diversity analysis showed that SM time had a great influence on soil microbial structure and soil properties, which led to the changes in major components of microbial structure (soil pH, OM, TC, bacteria and soil pH; TC, fungi). Additionally, SM time significantly stimulated (four bacterial and ten fungal) and depleted (12 bacterial and three fungal) agriculturally and ecologically important microbial genera that were strongly and considerably correlated with soil characteristics (soil pH, OM, TC, and AK). In conclusion, SM induces soil acidity, reduces soil fertility, shifts microbial structure, and reduces its activity. Furthermore, most beneficial bacterial genera decreased significantly due to SM, while beneficial fungal genera showed a reverse trend. Therefore, mitigating soil acidity, improving soil fertility, and soil enzymatic activities, including improved microbial structure with beneficial service to plants and soil, can be an effective measure to develop a sustainable sugarcane cropping system.
Collapse
Affiliation(s)
- Muhammad Tayyab
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agro-ecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Ziqi Yang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Caifang Zhang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Waqar Islam
- College of Geography, Fujian Normal University, Fuzhou, 350007, China
| | - Wenxiong Lin
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Fujian Provincial Key Laboratory of Agro-ecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, 35002, China.
| | - Hua Zhang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
22
|
Effects of Different Continuous Cropping Years on Bacterial Community and Diversity of Cucumber Rhizosphere Soil in Solar-Greenhouse. Curr Microbiol 2021; 78:2380-2390. [PMID: 33871692 DOI: 10.1007/s00284-021-02485-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
The rhizosphere soils from 1, 3, 5, and 7 years of cucumber continuous cropping in solar-greenhouse were used as the research objects. The region of bacterial 16S rRNA was analyzed by Illumina MiSeq high-throughput sequencing technology. The effect of continuous cropping years on the microbial community structure and diversity in cucumber soil in the greenhouse was investigated. The physical and chemical properties of soil and the activities of urease and catalase were determined. The results showed that cucumber crop succession for different years affected the community composition of the bacteria at the phylum level, and the abundance of Proteobacteria, Chloroflexi, Gemmatimonadetes, Patescibacteria and Firmicutes gradually increased, while Actinobacteria in the soil significantly decreased. Among the top 15 significantly different genera, with the extension of successive years, the relative abundance of most genera in bacteria decreased after a small increase in year 3. The diversity results indicated that soil samples from continuous cropping for 7 years had the lowest community diversity. PICRUSt analysis showed a decreasing trend in soil bacterial function as the cucumber crop succession age increased. In environmental factor clustering analysis, the soil bacterial community was significantly correlated with pH, available nitrogen (AN), soil urease (SUR) and available phosphorus (AP), and the effect on the bacterial community was expressed as SUR > AP > AN > pH.
Collapse
|
23
|
Pang Z, Dong F, Liu Q, Lin W, Hu C, Yuan Z. Soil Metagenomics Reveals Effects of Continuous Sugarcane Cropping on the Structure and Functional Pathway of Rhizospheric Microbial Community. Front Microbiol 2021; 12:627569. [PMID: 33746921 PMCID: PMC7973049 DOI: 10.3389/fmicb.2021.627569] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/08/2021] [Indexed: 12/25/2022] Open
Abstract
The continuous cropping of plants can result in the disruption of the soil microbial community and caused significant declines in yields. However, there are few reports on the effects of continuous cropping of sugarcane on the microbial community structure and functional pathway. In the current study, we analyzed the structural and functional changes of microbial community structure in the rhizospheric soil of sugarcane in different continuous cropping years using Illumina Miseq high-throughput sequencing and metagenomics analysis. We collected rhizosphere soils from fields of no continuous cropping history (NCC), 10 years of continuous cropping (CC10), and 30 years of continuous cropping (CC30) periods in the Fujian province. The results demonstrated that continuous sugarcane cropping resulted in significant changes in the physicochemical properties of soil and the composition of soil bacterial and fungal communities. With the continuous cropping, the crop yield dramatically declined from NCC to CC30. Besides, the redundancy analysis (RDA) of the dominant bacterial and fungal phyla and soil physicochemical properties revealed that the structures of the bacterial and fungal communities were mainly driven by pH and TS. Analysis of potential functional pathways during the continuous cropping suggests that different KEGG pathways were enriched in different continuous cropping periods. The significant reduction of bacteria associated with rhizospheric soil nitrogen and sulfur cycling functions and enrichment of pathogenic bacteria may be responsible for the reduction of effective nitrogen and total sulfur content in rhizospheric soil of continuous sugarcane as well as the reduction of sugarcane yield and sugar content. Additionally, genes related to nitrogen and sulfur cycling were identified in our study, and the decreased abundance of nitrogen translocation genes and AprAB and DsrAB in the dissimilatory sulfate reduction pathway could be the cause of declined biomass. The findings of this study may provide a theoretical basis for uncovering the mechanism of obstacles in continuous sugarcane cropping and provide better guidance for sustainable development of the sugarcane.
Collapse
Affiliation(s)
- Ziqin Pang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, China
- Province and Ministry Co-sponsored Collaborative Innovation Center of Sugar Industry, Nanning, China
| | - Fei Dong
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiang Liu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenxiong Lin
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chaohua Hu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhaonian Yuan
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, China
- Province and Ministry Co-sponsored Collaborative Innovation Center of Sugar Industry, Nanning, China
| |
Collapse
|
24
|
Soil Microbiome Manipulation Gives New Insights in Plant Disease-Suppressive Soils from the Perspective of a Circular Economy: A Critical Review. SUSTAINABILITY 2020. [DOI: 10.3390/su13010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review pays attention to the newest insights on the soil microbiome in plant disease-suppressive soil (DSS) for sustainable plant health management from the perspective of a circular economy that provides beneficial microbiota by recycling agro-wastes into the soil. In order to increase suppression of soil-borne plant pathogens, the main goal of this paper is to critically discuss and compare the potential use of reshaped soil microbiomes by assembling different agricultural practices such as crop selection; land use and conservative agriculture; crop rotation, diversification, intercropping and cover cropping; compost and chitosan application; and soil pre-fumigation combined with organic amendments and bio-organic fertilizers. This review is seen mostly as a comprehensive understanding of the main findings regarding DSS, starting from the oldest concepts to the newest challenges, based on the assumption that sustainability for soil quality and plant health is increasingly viable and supported by microbiome-assisted strategies based on the next-generation sequencing (NGS) methods that characterize in depth the soil bacterial and fungal communities. This approach, together with the virtuous reuse of agro-wastes to produce in situ green composts and organic bio-fertilizers, is the best way to design new sustainable cropping systems in a circular economy system. The current knowledge on soil-borne pathogens and soil microbiota is summarized. How microbiota determine soil suppression and what NGS strategies are available to understand soil microbiomes in DSS are presented. Disturbance of soil microbiota based on combined agricultural practices is deeply considered. Sustainable soil microbiome management by recycling in situ agro-wastes is presented. Afterwards, how the resulting new insights can drive the progress in sustainable microbiome-based disease management is discussed.
Collapse
|
25
|
Yao Y, Yao X, An L, Bai Y, Xie D, Wu K. Rhizosphere Bacterial Community Response to Continuous Cropping of Tibetan Barley. Front Microbiol 2020; 11:551444. [PMID: 33329420 PMCID: PMC7734106 DOI: 10.3389/fmicb.2020.551444] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 11/05/2020] [Indexed: 01/22/2023] Open
Abstract
Long-term continuous cropping influences the nutrient of soil and microbiome of the rhizosphere, resulting in the yield decrease of crops. Tibetan barley is a dominant cereal crop cultivated at high altitudes in Tibet. Its growth and yield are negatively affected by continuous cropping; however, the response of the rhizosphere microbial community to continuous cropping remains poorly understood. To address this question, we investigated the bacterial community structure and conducted predictive functional profiling on rhizosphere soil from Tibetan barley monocropped for 2–6 years. The results revealed that long-term continuous cropping markedly decreased total nitrogen and available nitrogen in rhizosphere soil. Illumina high-throughput sequencing of 16S rRNA genes indicated that the bacterial community was altered by continuous cropping; operational taxonomic units (OTUs), Shannon index, and Faith Phylogenetic Diversity decreased with increasing monocropping duration. Relative abundances of family Pseudomonadaceae, Cytophagaceae, and Nocardioidaceae were significantly increased, while those of Chitinophagaceae and Sphingomonadaceae were significantly decreased (all p < 0.05). Besides, continuous cropping significantly increased the abundance of bacteria associated with chemoheterotrophy, aromatic compound degradation, and nitrate reduction (p < 0.05). Generalized boosted regression model analysis indicated that total nitrogen was the most important contributor to the bacterial community diversity, indicating their roles in shaping the rhizosphere bacterial community during continuous cropping. Overall, continuous cropping had a significant impact on the structure of bacterial communities in rhizosphere soil of Tibetan barley, and these results will improve our understanding of soil bacterial community regulation and soil health maintenance in Tibetan barley farm systems.
Collapse
Affiliation(s)
- Youhua Yao
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, China.,Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, China.,Qinghai Subcenter of National Hulless Barley Improvement, Xining, China
| | - Xiaohua Yao
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, China.,Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, China.,Qinghai Subcenter of National Hulless Barley Improvement, Xining, China
| | - Likun An
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, China.,Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, China.,Qinghai Subcenter of National Hulless Barley Improvement, Xining, China
| | - Yixiong Bai
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, China.,Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, China.,Qinghai Subcenter of National Hulless Barley Improvement, Xining, China
| | - Deqing Xie
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, China.,Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, China.,Qinghai Subcenter of National Hulless Barley Improvement, Xining, China
| | - Kunlun Wu
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, China.,Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, China.,Qinghai Subcenter of National Hulless Barley Improvement, Xining, China
| |
Collapse
|
26
|
Soonvald L, Loit K, Runno-Paurson E, Astover A, Tedersoo L. Characterising the effect of crop species and fertilisation treatment on root fungal communities. Sci Rep 2020; 10:18741. [PMID: 33127926 PMCID: PMC7603395 DOI: 10.1038/s41598-020-74952-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/09/2020] [Indexed: 11/09/2022] Open
Abstract
Information about the root mycobiome may improve the overall quality of the plants and contribute to a valuable strategy to enhance sustainable agriculture. Therefore, we assessed differences in fungal community diversity and composition in the roots of potato, wheat and barley grown under mineral nitrogen fertilisation at five rates, with and without farmyard manure amendment. The same factorial combination of treatments has been used since 1989. Species richness and diversity, as well as community composition, of different fungal guilds were characterised using Illumina MiSeq sequencing of the ITS2 region. Crop species was the main factor determining overall fungal richness and diversity, with wheat showing the highest, and potato the lowest, richness and diversity. Pathogen diversity indices were highest in wheat plots amended with farmyard manure, whereas the lowest values were observed for potato roots. Fertilisation treatments and the interaction between crop species and fertilisation had the strongest impact on arbuscular mycorrhiza and saprotroph diversity. Crop species also determined the composition of the overall fungal community and that of fungal guilds, whereas fertilisation treatment had only a minor effect. This study highlights crop species as the main driver in shaping root fungal diversity and composition under the same environmental conditions.
Collapse
Affiliation(s)
- Liina Soonvald
- Chair of Plant Health, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia.
| | - Kaire Loit
- Chair of Plant Health, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia
- Chair of Soil Science, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia
| | - Eve Runno-Paurson
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia
| | - Alar Astover
- Chair of Soil Science, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia
| | - Leho Tedersoo
- Institute of Ecology and Earth Sciences, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| |
Collapse
|
27
|
Abstract
The continuous cropping (CC) of major agricultural, horticultural, and industrial crops is an established practice worldwide, though it has significant soil health-related concerns. However, a combined review of the effects of CC on soil health indicators, in particular omics ones, remains missing. The CC may negatively impact multiple biotic and abiotic indicators of soil health, fertility, and crop yield. It could potentially alter the soil biotic indicators, which include but are not limited to the composition, abundance, diversity, and functioning of soil micro- and macro-organisms, microbial networks, enzyme activities, and soil food web interactions. Moreover, it could also alter various soil abiotic (physicochemical) properties. For instance, it could increase the accumulation of toxic metabolites, salts, and acids, reduce soil aggregation and alter the composition of soil aggregate-size classes, decrease mineralization, soil organic matter, active carbon, and nutrient contents. All these alterations could accelerate soil degradation. Meanwhile, there is still a great need to develop quantitative ranges in soil health indicators to mechanistically predict the impact of CC on soil health and crop yield gaps. Following ecological principles, we strongly highlight the significance of inter-, mixture-, and rotation-cropping with cover crops to sustain soil health and agricultural production.
Collapse
|
28
|
Frąc M, Lipiec J, Usowicz B, Oszust K, Brzezińska M. Structural and functional microbial diversity of sandy soil under cropland and grassland. PeerJ 2020; 8:e9501. [PMID: 32953254 PMCID: PMC7474522 DOI: 10.7717/peerj.9501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Background Land use change significantly alters soil organic carbon content and the microbial community. Therefore, in the present study, the effect of changing cropland to grassland on structural and functional soil microbial diversity was evaluated. The specific aims were (i) to identify the most prominent members of the fungal communities and their relevant ecological guild groups; (ii) to assess changes in the diversity of ammonia-oxidizing archaea; (iii) to determine the relationships between microbial diversity and selected physical and chemical properties. Methods We investigated microbial diversity and activity indicators, bulk density and the water-holding capacity of sandy soil under both cropland and 25-year-old grassland (formerly cropland) in Trzebieszów, in the Podlasie Region, Poland. Microbial diversity was assessed by: the relative abundance of ammonia-oxidizing archaea, fungal community composition and functional diversity. Microbial activity was assessed by soil enzyme (dehydrogenase, β-glucosidase) and respiration tests. Results It was shown that compared to cropland, grassland has a higher soil organic carbon content, microbial biomass, basal respiration, rate of enzyme activity, richness and diversity of the microbial community, water holding capacity and the structure of the fungal and ammonia-oxidizing archaea communities was also altered. The implications of these results for soil quality and soil health are also discussed. The results suggest that grassland can have a significant phytosanitary capacity with regard to ecosystem services, due to the prominent presence of beneficial and antagonistic microbes. Moreover, the results also suggest that grassland use may improve the status of soil organic carbon and nitrogen dynamics, thereby increasing the relative abundance of fungi and ammonia-oxidizing archaea.
Collapse
Affiliation(s)
- Magdalena Frąc
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| | - Jerzy Lipiec
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| | - Bogusław Usowicz
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| | - Karolina Oszust
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| | | |
Collapse
|
29
|
Li M, Chen Z, Qian J, Wei F, Zhang G, Wang Y, Wei G, Hu Z, Dong L, Chen S. Composition and function of rhizosphere microbiome of Panax notoginseng with discrepant yields. Chin Med 2020; 15:85. [PMID: 32793300 PMCID: PMC7418314 DOI: 10.1186/s13020-020-00364-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/03/2020] [Indexed: 11/21/2022] Open
Abstract
Background Panax notoginseng is a highly valuable medicinal plant. Reduced P. notoginseng yield is a common and serious problem that arises in a continuous cropping system. Variation in the composition and function of soil microbial community is considered the primary cause of yield reduction. Methods This study used shotgun metagenomic sequencing approaches to describe the taxonomic and functional features of P. notoginseng rhizosphere microbiome and screen microbial taxa and functional traits related to yields. Results At the family and genus level, a total of 43 families and 45 genera (relative abundance > 0.1%) were obtained, and the correlation with the yield of P. notoginseng was further analyzed. Nitrosomonadaceae, Xanthomonadaceae, Mycobacterium and Arthrobacter that were enriched in soils with higher yields were positively correlated with P. notoginseng yields, thereby suggesting that they might increase yields. Negative correlation coefficients indicated that Xanthobacteraceae, Caulobacteraceae, Oxalobacteraceae, Chitinophagaceae, Sphingomonas, Hyphomicrobium, Variovorax and Phenylobacterium might be detrimental to P. notoginseng growth. A total of 85 functional traits were significantly (P < 0.05) correlated with P. notoginseng yields. Functional traits, likely steroid biosynthesis and MAPK signaling pathway were positively correlated with P. notoginseng yields. In contrast, functional traits, such as bacterial secretion system, ABC transporters, metabolism of xenobiotics by cytochrome P450 and drug metabolism–cytochrome P450, were negatively associated with yields. Conclusions This study describes an overview of the rhizosphere microbiome of P. notoginseng with discrepant yields and identifies the taxa and functional traits related to yields. Our results provide valuable information to guide the isolation and culture of potentially beneficial microorganisms and to utilize the power of the microbiome to increase plant yields in a continuous cropping system.
Collapse
Affiliation(s)
- Mengzhi Li
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065 China.,Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Institute of Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Zhongjian Chen
- Institute of Sanqi Research, Wenshan University, Wenshan, 663000 China.,Wenshan Miaoxiang Notoginseng Technology, Co., Ltd, Wenshan, 663000 China
| | - Jun Qian
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Institute of Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing, 100700 China.,College of Pharmaceutical Science, Dali University, Dali, 671000 China
| | - Fugang Wei
- Wenshan Miaoxiang Notoginseng Technology, Co., Ltd, Wenshan, 663000 China
| | - Guozhuang Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Institute of Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Yong Wang
- Institute of Sanqi Research, Wenshan University, Wenshan, 663000 China
| | - Guangfei Wei
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Institute of Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Zhigang Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065 China
| | - Linlin Dong
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Institute of Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Shilin Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065 China.,Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Institute of Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing, 100700 China
| |
Collapse
|
30
|
Shi G, Sun H, Calderón-Urrea A, Jia X, Yang H, Su G. Soil Fungal Diversity Loss and Appearance of Specific Fungal Pathogenic Communities Associated With the Consecutive Replant Problem (CRP) in Lily. Front Microbiol 2020; 11:1649. [PMID: 32760386 PMCID: PMC7373732 DOI: 10.3389/fmicb.2020.01649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 06/25/2020] [Indexed: 02/03/2023] Open
Abstract
Edible lily (Lilium davidii var. unicolor) has economic value in China, particularly in Gansu Province, due to its uses as food and in gardening. Edible lily is usually cultivated in a long-term continuous monoculture resulting in the so-called consecutive replant problem (CRP), which is associated with severe soil degradation and significant yield and quality losses. This study was conducted to investigate the fungal community structure and specific fungal members related to lily's CRPs using metabarcoding analysis. Fungal diversity of rhizosphere soil was analyzed by high-throughput DNA sequencing (Miseq) of samples collected in fields at 0, 3, 6, and 9 replant years (L0, L3, L6, and L9, respectively). The results show that long-term replanting significantly decreased both soil fungal diversity and abundance at the OTUs levels. Furthermore, replanting altered the soil microbial communities, where 4 to 5 years of replanting is a key transition period for substantial change of fungal community structure, resulting in new fungal community structures in L6 and L9 compared to in L0 and L3. The fungal diversity loss and fungal community structure simplification contributes to the negative effect of replanting in lily, and after 6 years of replanting, accumulation of highly abundant pathogenic fungal genera and depletion of the putative plant-beneficial fungal genera exacerbate the lily CRP. In addition, changes in the soil physiochemical properties strongly contributes to the new structure of fungal communities, and the genera Cryptococcus and Guehomyces could be regarded as potential indicators to monitor and manage sustainable soil health in the lily cropping system.
Collapse
Affiliation(s)
- Guiying Shi
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Hongqiang Sun
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Alejandro Calderón-Urrea
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
- Department of Biology, College of Science and Mathematics, California State University, Fresno, Fresno, CA, United States
| | - Xixia Jia
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Hongyu Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Guoli Su
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
31
|
Li J, Chen X, Li S, Zuo Z, Zhan R, He R. Variations of rhizospheric soil microbial communities in response to continuous Andrographis paniculata cropping practices. BOTANICAL STUDIES 2020; 61:18. [PMID: 32542518 PMCID: PMC7295922 DOI: 10.1186/s40529-020-00295-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/06/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Changes of soil microbial communities are one of the main factors of continuous cropping problem. Andrographis paniculata has been reported to have replant problem in cultivation. However, little is known about the variations of rhizosphere soil microbial communities of A. paniculata under a continuous cropping system. Here, Illumina MiSeq was used to investigate the shifts of rhizospheric bacterial and fungal communities after continuous cropping of A. paniculata. RESULTS The bacterial diversity increased whereas the fungal diversity decreased in rhizosphere soil after consecutive A. paniculata monoculture; and the soil microbial community structure differed between newly plant soil and continuous cropped soil. Taxonomic analyses further revealed that the bacterial phyla Proteobacteria, Acidobacteria and Bacteroidetes and the fungal phyla Zygomycota, Ascomycota and Cercozoa were the dominant phyla across all soil samples. The relative abundance of phyla Acidobacteria and Zygomycota were significantly increased after continuous cropping. Additionally, the most abundant bacterial genus Pseudolabrys significantly decreased, while the predominant fungal genus Mortierella increased considerably in abundance after continuous cropping. CONCLUSIONS Our results revealed the changes on diversity and composition of bacterial and fungal communities in rhizospheric soil under continuous cropping of A. paniculata. These data contributed to the understanding of soil micro-ecological environments in the rhizosphere of A. paniculata.
Collapse
Affiliation(s)
- Junren Li
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, 510006, People's Republic of China
| | - Xiuzhen Chen
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, 510006, People's Republic of China
| | - Simin Li
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, 510006, People's Republic of China
| | - Zimei Zuo
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, 510006, People's Republic of China
| | - Ruoting Zhan
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, 510006, People's Republic of China
| | - Rui He
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
32
|
Chen M, Liu H, Yu S, Wang M, Pan L, Chen N, Wang T, Chi X, Du B. Long-term continuously monocropped peanut significantly changed the abundance and composition of soil bacterial communities. PeerJ 2020; 8:e9024. [PMID: 32377450 PMCID: PMC7194089 DOI: 10.7717/peerj.9024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/30/2020] [Indexed: 12/22/2022] Open
Abstract
Soil sickness is the progressive loss of soil quality due to continuous monocropping. The bacterial populations are critical to sustaining agroecosystems, but their responses to long-term peanut monocropping have not been determined. In this study, based on a previously constructed gradient of continuous monocropped plots, we tracked the detailed feedback responses of soil bacteria to short- and long-term continuous monocropping of four different peanut varieties using high-throughput sequencing techniques. The analyses showed that soil samples from 1- and 2-year monocropped plots were grouped into one class, and samples from the 11- and 12-year plots were grouped into another. Long-term consecutive monocropping could lead to a general loss in bacterial diversity and remarkable changes in bacterial abundance and composition. At the genera level, the dominant genus Bacillus changed in average abundance from 1.49% in short-term monocropping libraries to 2.96% in the long-term libraries. The dominant species Bacillus aryabhattai and Bacillus funiculus and the relatively abundant species Bacillus luciferensis and Bacillus decolorationis all showed increased abundance with long-term monocropping. Additionally, several other taxa at the genus and species level also presented increased abundance with long-term peanut monocropping; however, several taxa showed decreased abundance. Comparing analyses of predicted bacterial community functions showed significant changes at different KEGG pathway levels with long-term peanut monocropping. Combined with our previous study, this study indicated that bacterial communities were obviously influenced by the monocropping period, but less influenced by peanut variety and growth stage. Some bacterial taxa with increased abundance have functions of promoting plant growth or degrading potential soil allelochemicals, and should be closely related with soil remediation and may have potential application to relieve peanut soil sickness. A decrease in diversity and abundance of bacterial communities, especially beneficial communities, and simplification of bacterial community function with long-term peanut monocropping could be the main cause of peanut soil sickness.
Collapse
Affiliation(s)
- Mingna Chen
- College of Life Sciences, Shandong Key Laboratory of Agricultural Microbiology, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Taian, China.,Shandong Peanut Research Institute, Qingdao, China
| | - Hu Liu
- College of Life Sciences, Shandong Key Laboratory of Agricultural Microbiology, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Taian, China
| | - Shanlin Yu
- Shandong Peanut Research Institute, Qingdao, China
| | - Mian Wang
- Shandong Peanut Research Institute, Qingdao, China
| | - Lijuan Pan
- Shandong Peanut Research Institute, Qingdao, China
| | - Na Chen
- Shandong Peanut Research Institute, Qingdao, China
| | - Tong Wang
- Shandong Peanut Research Institute, Qingdao, China
| | - Xiaoyuan Chi
- Shandong Peanut Research Institute, Qingdao, China
| | - Binghai Du
- College of Life Sciences, Shandong Key Laboratory of Agricultural Microbiology, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Taian, China
| |
Collapse
|
33
|
Chen M, Zhang J, Liu H, Wang M, Pan L, Chen N, Wang T, Jing Y, Chi X, Du B. Long-term continuously monocropped peanut significantly disturbed the balance of soil fungal communities. J Microbiol 2020; 58:563-573. [PMID: 32329018 DOI: 10.1007/s12275-020-9573-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 01/30/2023]
Abstract
Balancing soil microbial diversity and abundance is critical to sustaining soil health, and understanding the dynamics of soil microbes in a monocropping system can help determine how continuous monocropping practices induce soil sickness mediated by microorganisms. This study used previously constructed gradient continuous monocropping plots and four varieties with different monocropping responses were investigated. The feedback responses of their soil fungal communities to short-term and long-term continuous monocropping were tracked using high-throughput sequencing techniques. The analyses indicated that soil samples from 1 and 2 year monocropped plots were grouped into one class, and samples from the 11 and 12 year plots were grouped into another, regardless of variety. At the species level, the F. solani, Fusarium oxysporum, Neocosmospora striata, Acrophialophora levis, Aspergillus niger, Aspergillus corrugatus, Thielavia hyrcaniae, Emericellopsis minima, and Scedosporium aurantiacum taxa showed significantly increased abundances in the long-term monocropping libraries compared to the short-term cropping libraries. In contrast, Talaromyces flavus, Talaromyces purpureogenus, Mortierella alpina, Paranamyces uniporus, and Volutella citrinella decreased in the long-term monocropping libraries compared to the short-term libraries. This study, combined with our previous study, showed that fungal community structure was significantly affected by the length of the monocropping period, but peanut variety and growth stages were less important. The increase in pathogen abundances and the decrease in beneficial fungi abundances seem to be the main cause for the yield decline and poor growth of long-term monocultured peanut. Simplification of fungal community diversity could also contribute to peanut soil sickness under long-term monocropping. Additionally, the different responses of peanut varieties to monocropping may be related to variations in their microbial community structure.
Collapse
Affiliation(s)
- Mingna Chen
- Shandong Peanut Research Institute, Qingdao, P. R. China
- College of Life Sciences, Shandong Key Laboratory of Agricultural Microbiology, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Taian, P. R. China
| | | | - Hu Liu
- College of Life Sciences, Shandong Key Laboratory of Agricultural Microbiology, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Taian, P. R. China
| | - Mian Wang
- Shandong Peanut Research Institute, Qingdao, P. R. China
| | - LiJuan Pan
- Shandong Peanut Research Institute, Qingdao, P. R. China
| | - Na Chen
- Shandong Peanut Research Institute, Qingdao, P. R. China
| | - Tong Wang
- Shandong Peanut Research Institute, Qingdao, P. R. China
| | - Yu Jing
- Shandong Peanut Research Institute, Qingdao, P. R. China
| | - Xiaoyuan Chi
- Shandong Peanut Research Institute, Qingdao, P. R. China.
| | - Binghai Du
- College of Life Sciences, Shandong Key Laboratory of Agricultural Microbiology, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Taian, P. R. China.
| |
Collapse
|
34
|
Tang X, Zhong R, Jiang J, He L, Huang Z, Shi G, Wu H, Liu J, Xiong F, Han Z, Tang R, He L. Cassava/peanut intercropping improves soil quality via rhizospheric microbes increased available nitrogen contents. BMC Biotechnol 2020; 20:13. [PMID: 32111197 PMCID: PMC7049180 DOI: 10.1186/s12896-020-00606-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/21/2020] [Indexed: 01/06/2023] Open
Abstract
Background Intercropping, an essential cultivation pattern in modern agricultural systems, increases crop yields and soil quality. Cassava and peanut intercropping systems exhibit advantages in solar utilization and cadmium absorption, etc. However, the inner mechanisms need to be elucidated. In this study, Illumina MiSeq platform was used to reveal the rhizospheric microbes and soil quality in cassava/peanut intercropping systems, and the results provided a reference for the application of this method in studying other intercropping systems. Results Both intercropping cassava/peanut (IP) and intercropping peanut/cassava (IC) systems significantly increased available N, available K, pH value, and urease activity, comparing with that in monocropping cassava (MC) and monocropping peanut (MP) system. However, there were few effects on the total N, total P, total K, available P, organic matter, protease activity, catalase activity, sucrase activity, and acid phosphatase activity. Both IP and MP soils contained more bacteria and fungi than those in the IC and MC soils, which were mainly made of Proteobacteria and Actinobacteria. Intercropping remarkably increased the number of Nitrospirae in IP and IC soils comparing those in MC and MP soils. Redundancy analysis (RDA) revealed that the abundances of DA101, Pilimelia, and Ramlibacter were positively correlated to the soil quality. These results suggest that intercropping enhances the available nitrogen content of soil through increasing the quantity of rhizospheric microbes, especially that of DA101 and Pilimelia. Conclusions The cassava/peanut intercropping system improves soil quality through increasing the available nitrogen content and abundance of DA101, Pilimelia, and Ramlibacter in the soil.
Collapse
Affiliation(s)
- Xiumei Tang
- Agricultural College of Guangxi University, Nanning, 530005, Guangxi, China. .,Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China.
| | - Ruichun Zhong
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Jing Jiang
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Liangqiong He
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Zhipeng Huang
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Guoying Shi
- Microbiology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Haining Wu
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Jing Liu
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Faqian Xiong
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Zhuqiang Han
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Ronghua Tang
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China.
| | - Longfei He
- Agricultural College of Guangxi University, Nanning, 530005, Guangxi, China.
| |
Collapse
|
35
|
Variations in Growth, Physiology, and Antioxidative Defense Responses of Two Tomato (Solanum lycopersicum L.) Cultivars after Co-Infection of Fusarium oxysporum and Meloidogyne incognita. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10020159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The soil-borne fungus Fusarium oxysporum (Fo) and the nematode Meloidogyne incognita (Mi) are destructive pathogens that cause substantial yield losses to tomato (Solanum lycopersicum L.) crops worldwide. The present study sought to elucidate the physiological, biochemical, and cytological responses of tomato cultivars (Gailing maofen 802 and Zhongza 09) by root invasion of Fo (1 × 105 CFUmL−1) and Mi (1500 second-stage juveniles (J2) alone and in combination after 14 days. Results revealed that combined inoculation of Fo and Mi significantly increased disease intensity, electrolyte leakage, and hydrogen peroxide and malondialdehyde contents; and decreased photosynthetic capacity and enzyme activity in both cultivars as compared to their solo inoculation. Increasing the disease intensity reduced the maximum morphological traits, such as shoot length, total dry weight, and total chlorophyll contents, in G. maofen 802 (by 32%, 54.2%, and 52.3%, respectively) and Zhongza 09 (by 18%, 32%, and 21%, respectively) as compared to the control. Others factors were also reduced in G. maofen 802 and Zhongza 09, such as photosynthetic capacity (by 70% and 57%, respectively), stomatal conductance (by 86% and 70%, respectively), photochemical quantum yield of photosystem II (YII) (by 36.6% and 29%, respectively), and electron transport rate (by 17.7% and 10%, respectively), after combined inoculation of Fo and Mi. Furthermore, the combined infestation of Fo and Mi resulted in reduced activity of plant-defense-related antioxidants in G. maofen 802 compared with their single application or control. However, these antioxidants were highly up-regulated in Zhongza 09 (by 59%–93%), revealing the induction of tolerance against studied pathogens. The transmission electron microscopy (TEM) results further demonstrated that root cells of Zhongza 09 had unique tetrahedral crystal-like structures in the membrane close to mitochondria under all treatments except control. Therefore, it is concluded that Mi caused severe root damage, suppressed plant growth, depleted antioxidants, and caused high generation of ROS in the presence of Fo as compared to its solo inoculation. Tolerant cultivars adopted different mechanistic strategies at the structural and cellular levels to tolerate the Mi and Fo stresses.
Collapse
|
36
|
Li Y, Fang F, Wei J, Wu X, Cui R, Li G, Zheng F, Tan D. Humic Acid Fertilizer Improved Soil Properties and Soil Microbial Diversity of Continuous Cropping Peanut: A Three-Year Experiment. Sci Rep 2019; 9:12014. [PMID: 31427666 PMCID: PMC6700118 DOI: 10.1038/s41598-019-48620-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 08/07/2019] [Indexed: 11/09/2022] Open
Abstract
Although humic acid has been demonstrated to improve the quality of some soil types, the long-term effects of humic acid on soil under continuous cropping peanut are not fully understood. This study aimed to investigate the continuous effects of humic acid on the physicochemical properties, microbial diversity, and enzyme activities of soil under continuous cropping peanut. In this study, a three-year consecutive experiment of cropping peanut was conducted in the North China Plain. In addition to the equal nitrogen, phosphorus, and potassium inputs, humic acid treatment was applied with inorganic fertilizers. Compared with control experiments, humic acid increased the yield and quality of continuous cropping peanut. To elucidate the mechanism of humic acid affecting the soil quality, various soil quality indicators were evaluated and compared in this study. It was found that humic acid increased soil nutrient contents, including the total soil nitrogen, total phosphorus, total potassium, available nitrogen, available phosphorus, available potassium, and organic matter contents, which exhibited the maximum effect in the third year. Meanwhile, the urease, sucrase, and phosphatase activities in the soil significantly increased after treated with humic acid, of which the maturity period increased most significantly. The same results were observed for three consecutive years. Microbial diversity varied considerably according to the high throughput sequencing analysis. Specifically, the number of bacteria decreased while that of fungi increased after humic acid treatment. The abundance of Firmicutes in bacteria, Basidiomycota, and Mortierellomycota in fungi all increased, which have been reported as being beneficial to plant growth. In contrast, the abundance of Ascomycota in fungi was reduced, and most of the related genera identified are pathogenic to plants. In conclusion, humic acid improved the yield and quality of continuous cropping peanut because of improved physicochemical properties, enzymatic activities, and microbial diversity of soil, which is beneficial for alleviating the obstacles of continuous cropping peanut.
Collapse
Affiliation(s)
- Yan Li
- Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Ji'nan, 250100, China. .,Key Laboratory of Wastes Matrix Utilization, Ministry of Agriculture, Ji'nan, 250100, China. .,Shandong Provincial Key Laboratory of Plant Nutrition and Fertilizer, Ji'nan, 250100, China.
| | - Feng Fang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Ji'nan, 250100, China
| | - Jianlin Wei
- Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Ji'nan, 250100, China
| | - Xiaobin Wu
- Shandong Rice Research Institute/Hydrobiology Research Center, Shandong Academy of Agricultural Sciences, Ji'nan, 250100, China
| | - Rongzong Cui
- Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Ji'nan, 250100, China
| | - Guosheng Li
- Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Ji'nan, 250100, China
| | - Fuli Zheng
- Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Ji'nan, 250100, China
| | - Deshui Tan
- Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Ji'nan, 250100, China. .,Key Laboratory of Wastes Matrix Utilization, Ministry of Agriculture, Ji'nan, 250100, China.
| |
Collapse
|
37
|
Lin Y, Ye Y, Wu C, Yang J, Hu Y, Shi H. Comprehensive assessment of paddy soil quality under land consolidation: a novel perspective of microbiology. PeerJ 2019; 7:e7351. [PMID: 31367489 PMCID: PMC6657742 DOI: 10.7717/peerj.7351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 06/25/2019] [Indexed: 11/24/2022] Open
Abstract
Soil quality assessment is an important means to demonstrate how effective land consolidation is. However, the existing assessment system is not sufficient to reflect actual soil quality. So, the purpose of this study is to integrate abiological and biological indicators into a comprehensive assessment to evaluate the paddy soil quality under different land consolidation practices. Soil samples were collected from 35 paddy sites under different land consolidation practices including land merging, land leveling (LL), ditch construction (DC) and application of organic fertilizer (AO). A total of 10 paddy sites were selected under conventional tillage (CT) from non-land consolidation area as a control group in Y county, China. The results indicated that soil organic matter (OM), total nitrogen (TN), available phosphorus, bacterial functional diversity (BFD), bacterial and fungal abundances were significantly improved. Fields under LL, among all the land consolidation practices, might still face the risk of land degradation caused by low TN, OM and microbial diversity. High microbial biomass, BFD and OM were significantly higher in fields under AO in nutrient cycle. According to the results of comprehensive assessment, the samples with severe heavy metal contamination and low microbial diversity were generally concentrated in CT. These results indicated that land consolidation was an efficient technique to improve soil quality and could achieve higher quality of agricultural products.
Collapse
Affiliation(s)
- Yaoben Lin
- Land Academy for National Development, Zhejiang University, Hangzhou, Zhejiang, China.,Land Ecological Restoration Engineering Technology Research Center of Shandong Province, Binzhou, Shandong, China
| | - Yanmei Ye
- Land Academy for National Development, Zhejiang University, Hangzhou, Zhejiang, China.,Land Ecological Restoration Engineering Technology Research Center of Shandong Province, Binzhou, Shandong, China
| | - Cifang Wu
- Land Academy for National Development, Zhejiang University, Hangzhou, Zhejiang, China.,Land Ecological Restoration Engineering Technology Research Center of Shandong Province, Binzhou, Shandong, China
| | - Jianhui Yang
- China Institute of Regulation Research, Zhejiang University of Finance & Economics, Hangzhou, Zhejiang, China
| | - Yiming Hu
- Land Academy for National Development, Zhejiang University, Hangzhou, Zhejiang, China.,Land Ecological Restoration Engineering Technology Research Center of Shandong Province, Binzhou, Shandong, China
| | - Haokun Shi
- Land Academy for National Development, Zhejiang University, Hangzhou, Zhejiang, China.,Land Ecological Restoration Engineering Technology Research Center of Shandong Province, Binzhou, Shandong, China
| |
Collapse
|
38
|
Li H, Wang J, Liu Q, Zhou Z, Chen F, Xiang D. Effects of consecutive monoculture of sweet potato on soil bacterial community as determined by pyrosequencing. J Basic Microbiol 2018; 59:181-191. [PMID: 30288775 DOI: 10.1002/jobm.201800304] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/13/2018] [Accepted: 09/11/2018] [Indexed: 11/11/2022]
Abstract
Soil bacteria play key roles in determining soil health and plant growth. In this study, four sweet potato fields that had been consecutively monocultured for 1, 2, 3, and 4 years were used to investigate the effect of monoculture on soil physicochemical properties and soil bacterial communities. The results revealed that continuous cropping led to a significant decline in soil pH, soil organic carbon, and soil bacterial abundance. Miseq pyrosequencing analysis of 16S rRNA genes revealed that Proteobacteria and Bacteroidetes were the main phyla in the sweet potato monoculture soils, comprising up to 66.24% of the total sequences. The relative abundances of beneficial bacteria, including Actinobacteria, Gemmatimonadetes, Firmicutes, Xanthomonadaceae, Rhodospirillaceae, and Syntrophobacteraceae, as well as their subgroups at the genus and operational taxonomic unit (OTU) levels, decreased considerably as the number of continuous cropping years increased. In contrast, the number of potentially pathogenic bacteria, such as Acidobacteria, Sphingomonadaceae, and Pedobacter accumulated with increasing years. The results also showed the alterations to the bacterial community in the sweet potato monoculture soils were mainly driven by soil pH and soil organic matter. Overall, the decline in soil quality after successive sweet potato monoculture can be attributed to the imbalance in soil properties and soil microbes, including the decrease in soil pH and soil organic carbon, and the enrichment of pathogenic bacteria at the expense of plant-beneficial bacteria.
Collapse
Affiliation(s)
- Huan Li
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
| | - Jinqiang Wang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
| | - Qing Liu
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
| | - Zhengfeng Zhou
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
| | - Falin Chen
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Dan Xiang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
39
|
Zhu S, Wang Y, Xu X, Liu T, Wu D, Zheng X, Tang S, Dai Q. Potential use of high-throughput sequencing of soil microbial communities for estimating the adverse effects of continuous cropping on ramie (Boehmeria nivea L. Gaud). PLoS One 2018; 13:e0197095. [PMID: 29750808 PMCID: PMC5947917 DOI: 10.1371/journal.pone.0197095] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 04/26/2018] [Indexed: 01/09/2023] Open
Abstract
Ramie (Boehmeria nivea L. Gaud) fiber, one of the most important natural fibers, is extracted from stem bark. Continuous cropping is the main obstacle to ramie stem growth and a major cause of reduced yields. Root-associated microbes play crucial roles in plant growth and health. In this study, we investigated differences between microbial communities in the soil of healthy and continuously cropped ramie plants, and sought to identify potential mechanisms whereby these communities could counteract the problems posed by continuous cropping. Paired-end Illumina MiSeq analysis of 16S rRNA and ITS gene amplicons was employed to study bacterial and fungal communities. Long-term monoculture of ramie significantly decreased fiber yields and altered soil microbial communities. Our findings revealed how microbial communities and functional diversity varied according to the planting year and plant health status. Soil bacterial diversity increased with the period of ramie monoculture, whereas no significant differences were observed for fungi. Sequence analyses revealed that Firmicutes, Proteobacteria, and Acidobacteria were the most abundant bacterial phyla. Firmicutes abundance decreased with the period of ramie monoculture and correlated positively with the stem length, stem diameter, and fiber yield. The Actinobacteria, Chloroflexi, and Zygomycota phyla exhibited a significant (P < 0.05) negative correlation with yields during continuous cultivation. Some Actinobacteria members showed reduced microbial diversity, which prevented continuous ramie cropping. Ascomycota, Zygomycota, and Basidiomycota were the main fungal phyla. The relatively high abundance of Bacillus observed in healthy ramie may contribute to disease suppression, thereby promoting ramie growth. In summary, soil weakness and increased disease in ramie plants after long-term continuous cropping can be attributed to changes in soil microbes, a reduction in beneficial microbes, and an accumulation of harmful microbes.
Collapse
Affiliation(s)
- Siyuan Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, P.R. China
- * E-mail: (SZ); (QD)
| | - Yanzhou Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, P.R. China
| | - Xiaomin Xu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, P.R. China
| | - Touming Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, P.R. China
| | - Duanqing Wu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, P.R. China
| | - Xia Zheng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, P.R. China
| | - Shouwei Tang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, P.R. China
| | - Qiuzhong Dai
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, P.R. China
- * E-mail: (SZ); (QD)
| |
Collapse
|
40
|
Huang Y, Xiao X, Huang H, Jing J, Zhao H, Wang L, Long XE. Contrasting beneficial and pathogenic microbial communities across consecutive cropping fields of greenhouse strawberry. Appl Microbiol Biotechnol 2018; 102:5717-5729. [PMID: 29704041 DOI: 10.1007/s00253-018-9013-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 02/26/2018] [Accepted: 04/05/2018] [Indexed: 01/25/2023]
Abstract
Soil weakness across consecutive cropping fields can be partially explained by the changes in microbial community diversity and structure. Succession patterns and co-occurrence mechanisms of bacteria and fungi, especially beneficial or pathogenic memberships in continuous cropping strawberry fields and their response to edaphic factors remained unclear. In this study, Illumina sequencing of bacterial 16S ribosomal RNA and fungal internal transcribed spacer genes was applied in three time-course (1, 5, and 10 years) fields across spring and winter. Results showed that the richness and diversity of bacterial and fungal communities increased significantly (p < 0.05) in 1-year field and decreased afterwards across two seasons. Network analysis revealed beneficial bacterial and fungal genus (Bacillus and Trichoderma) dominated under 1-year field whereas Fusarium accumulated under 10-year field at either season. Moreover, Trichoderma harzianum and Bacillus subtilis that have been reported to effectively control Fusarium wilt in strawberries accumulated significantly under 1-year field. Canonical correspondence analysis showed that beneficial bacterial Rhodospirillales and Rhizobiales and fungal Glomerales accumulated in 1-year field and their distributions were significantly affected by soil pH, microbial biomass C (MBC), and moisture. On the contrary, fungal pathogenic species Fusarium oxysporum strongly increased under 10-year field at the winter sample and the abundance was positively (p < 0.01) correlated with soil moisture. Our study suggested that the potential of microcosm under 1-year field stimulates the whole microbial diversity and favors different beneficial taxa across two seasons. Soil pH, moisture, and MBC were the most important edaphic factors leading to contrasting beneficial and pathogenic memberships across consecutive strawberry cropping fields.
Collapse
Affiliation(s)
- Ying Huang
- Laboratory for Agricultural Wastes Treatment and Recycling, Circular Agriculture Research Center, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Xuanwu District, Nanjing, 210014, Jiangsu Province, China.,Nanjing Institute of Agricultural Sciences in Jiangsu Hilly Area, No.6 Xianyin South Road, Qixia District, Nanjing, 210046, Jiangsu Province, China
| | - Xu Xiao
- Nanjing Institute of Agricultural Sciences in Jiangsu Hilly Area, No.6 Xianyin South Road, Qixia District, Nanjing, 210046, Jiangsu Province, China
| | - Hongying Huang
- Laboratory for Agricultural Wastes Treatment and Recycling, Circular Agriculture Research Center, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Xuanwu District, Nanjing, 210014, Jiangsu Province, China.
| | - Jinquan Jing
- Nanjing Institute of Agricultural Sciences in Jiangsu Hilly Area, No.6 Xianyin South Road, Qixia District, Nanjing, 210046, Jiangsu Province, China
| | - Hejuan Zhao
- Nanjing Institute of Agricultural Sciences in Jiangsu Hilly Area, No.6 Xianyin South Road, Qixia District, Nanjing, 210046, Jiangsu Province, China
| | - Lin Wang
- Nanjing Institute of Agricultural Sciences in Jiangsu Hilly Area, No.6 Xianyin South Road, Qixia District, Nanjing, 210046, Jiangsu Province, China
| | - Xi-En Long
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
| |
Collapse
|
41
|
Long-Term Coffee Monoculture Alters Soil Chemical Properties and Microbial Communities. Sci Rep 2018; 8:6116. [PMID: 29666454 PMCID: PMC5904153 DOI: 10.1038/s41598-018-24537-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 04/06/2018] [Indexed: 01/16/2023] Open
Abstract
Long-term monoculture severely inhibits coffee plant growth, decreases its yield and results in serious economic losses in China. Here, we selected four replanted coffee fields with 4, 18, 26 and 57 years of monoculture history in Hainan China to investigate the influence of continuous cropping on soil chemical properties and microbial communities. Results showed long-term monoculture decreased soil pH and organic matter content and increased soil EC. Soil bacterial and fungal richness decreased with continuous coffee cropping. Principal coordinate analysis suggested monoculture time was a major determinant of bacterial and fungal community structures. Relative abundances of bacterial Proteobacteria, Bacteroidetes and Nitrospira and fungal Ascomycota phyla decreased over time. At genus level, potentially beneficial microbes such as Nitrospira and Trichoderma, significantly declined over time and showed positive relationships with coffee plant growth in pots. In conclusion, continuous coffee cropping decreased soil pH, organic matter content, potentially beneficial microbes and increased soil EC, which might lead to the poor growth of coffee plants in pots and decline of coffee yields in fields. Thus, developing sustainable agriculture to improve soil pH, organic matter content, microbial activity and reduce the salt stress under continuous cropping system is important for coffee production in China.
Collapse
|
42
|
Song X, Pan Y, Li L, Wu X, Wang Y. Composition and diversity of rhizosphere fungal community in Coptis chinensis Franch. continuous cropping fields. PLoS One 2018. [PMID: 29538438 PMCID: PMC5851603 DOI: 10.1371/journal.pone.0193811] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In this study, effects of continuous cropping on soil properties, enzyme activities, and relative abundance, community composition and diversity of fungal taxa were investigated. Rhizosphere soil from field continuously cropped for one-year, three-year and five-year by Coptis chinensis Franch. was collected and analyzed. Illumina high-throughput sequencing analysis showed that continuous cropping of C. chinensis resulted in a significant and continuous decline in the richness and diversity of soil fungal population. Ascomycota, Zygomycota, Basidiomycota, and Glomeromycota were the dominant phyla of fungi detected in rhizosphere soil. Fungal genera such as Phoma, Volutella, Pachycudonia, Heterodermia, Gibberella, Cladosporium, Trichocladium, and Sporothrix, were more dominant in continuously cropped samples for three-year and five-year compared to that for one-year. By contrast, genera, such as Zygosaccharomyces, Pseudotaeniolina, Hydnum, Umbelopsis, Humicola, Crustoderma, Psilocybe, Coralloidiomyces, Mortierella, Polyporus, Pyrenula, and Monographella showed higher relative abundance in one-year samples than that in three-year and five-year samples. Cluster analysis of the fungal communities from three samples of rhizosphere soil from C. chinensis field revealed that the fungal community composition, diversity, and structure were significantly affected by the continuous cropping. Continuous cropping of C. chinensis also led to significant declines in soil pH, urease, and catalase activities. Redundancy analysis showed that the soil pH had the most significant effect on soil fungal population under continuous cropping of C. chinensis.
Collapse
Affiliation(s)
- Xuhong Song
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-center of National Resource, Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
| | - Yuan Pan
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-center of National Resource, Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
| | - Longyun Li
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-center of National Resource, Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
- * E-mail:
| | - Xiaoli Wu
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-center of National Resource, Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
| | - Yu Wang
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-center of National Resource, Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
| |
Collapse
|
43
|
Wang M, Chen M, Yang Z, Chen N, Chi X, Pan L, Wang T, Yu S, Guo X. Influence of Peanut Cultivars and Environmental Conditions on the Diversity and Community Composition of Pod Rot Soil Fungi in China. MYCOBIOLOGY 2017; 45:392-400. [PMID: 29371808 PMCID: PMC5780372 DOI: 10.5941/myco.2017.45.4.392] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/09/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Abstract
Peanut yield and quality are seriously affected by pod rot pathogens worldwide, especially in China in recent years. The goals of this study are to analyze the structure of fungal communities of peanut pod rot in soil in three peanut cultivars and the correlation of pod rot with environmental variables using 454 pyrosequencing. A total of 46,723 internal transcribed spacer high-quality sequences were obtained and grouped into 1,706 operational taxonomic units at the 97% similarity cut-off level. The coverage, rank abundance, and the Chao 1 and Shannon diversity indices of the operational taxonomic units were analyzed. Members of the phylum Ascomycota were dominant, such as Fusarium, Chaetomium, Alternaria, and Sordariomycetes, followed by Basidiomycota. The results of the heatmap and redundancy analysis revealed significant variation in the composition of the fungal community among the three cultivar samples. The environmental conditions in different peanut cultivars may also influence on the structure of the fungal community. The results of this study suggest that the causal agent of peanut pod rot may be more complex, and cultivars and environmental conditions are both important contributors to the community structure of peanut pod rot fungi.
Collapse
Affiliation(s)
- Mian Wang
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian 271018, China
- Shandong Peanut Research Institute, Qingdao 266100, China
| | - Mingna Chen
- Shandong Peanut Research Institute, Qingdao 266100, China
| | - Zhen Yang
- Shandong Peanut Research Institute, Qingdao 266100, China
| | - Na Chen
- Shandong Peanut Research Institute, Qingdao 266100, China
| | - Xiaoyuan Chi
- Shandong Peanut Research Institute, Qingdao 266100, China
| | - Lijuan Pan
- Shandong Peanut Research Institute, Qingdao 266100, China
| | - Tong Wang
- Shandong Peanut Research Institute, Qingdao 266100, China
| | - Shanlin Yu
- Shandong Peanut Research Institute, Qingdao 266100, China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
44
|
Dong L, Xu J, Zhang L, Yang J, Liao B, Li X, Chen S. High-throughput sequencing technology reveals that continuous cropping of American ginseng results in changes in the microbial community in arable soil. Chin Med 2017; 12:18. [PMID: 28680459 PMCID: PMC5496220 DOI: 10.1186/s13020-017-0139-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 06/22/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND American ginseng (Panax quinquefolius L.) is renowned worldwide for its eutherapeutic effects. The replantation of American ginseng usually fails due to problems associated with continuous cropping. An imbalance in the microbial community is thought to be responsible for this, but the overall changes in microbial communities under a continuous cropping system are unclear. METHODS This study used quantitative polymerase chain reaction combined with high-throughput sequencing methods to confirm changes in a microbial community under continuous cropping of American ginseng. RESULTS Copy numbers of bacteria and fungi significantly declined by 47.7 and 45.5%, respectively, upon American ginseng cropping over 3 years. A total of 66,391 classified sequences were obtained from high-throughput sequencing analyses of 16S and 18S rRNA in six soil samples. A decline in bacterial diversity and an increase in fungal diversity were observed in the continuous cropping soils of American ginseng compared to those of traditional crops. Compared with soils used for traditional crops, the relative abundance of bacterial and fungal groups changed in soils subjected to continuous cropping with American ginseng. CONCLUSIONS Our results revealed that the diversity and composition of soil bacterial and fungal communities changed in the continuous cropping of American ginseng compared to those of traditional crops. Those data provided comprehensive insight into microbial communities at the agro-ecosystem scale and contributed to the understanding of micro-ecological environments in the rhizosphere of medicinal plants.
Collapse
Affiliation(s)
- Linlin Dong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Lianjuan Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Juan Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Baosheng Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Xiwen Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| |
Collapse
|
45
|
Dong L, Xu J, Feng G, Li X, Chen S. Soil bacterial and fungal community dynamics in relation to Panax notoginseng death rate in a continuous cropping system. Sci Rep 2016; 6:31802. [PMID: 27549984 PMCID: PMC4994099 DOI: 10.1038/srep31802] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 07/26/2016] [Indexed: 11/25/2022] Open
Abstract
Notoginseng (Panax notoginseng), a valuable herbal medicine, has high death rates in continuous cropping systems. Variation in the soil microbial community is considered the primary cause of notoginseng mortality, although the taxa responsible for crop failure remains unidentified. This study used high-throughput sequencing methods to characterize changes in the microbial community and screen microbial taxa related to the death rate. Fungal diversity significantly decreased in soils cropped with notoginseng for three years. The death rate and the fungal diversity were significantly negatively correlated, suggesting that fungal diversity might be a potential bioindicator of soil health. Positive correlation coefficients revealed that Burkholderiales, Syntrophobacteraceae, Myrmecridium, Phaeosphaeria, Fusarium, and Phoma were better adapted to colonization of diseased plants. The relative abundance of Fusarium oxysporum (R = 0.841, P < 0.05) and Phaeosphaeria rousseliana (R = 0.830, P < 0.05) were positively associated with the death rate. F. oxysporum was a pathogen of notoginseng root-rot that caused seedling death. Negative correlation coefficients indicated that Thermogemmatisporaceae, Actinosynnemataceae, Hydnodontaceae, Herpotrichiellaceae, and Coniosporium might be antagonists of pathogens, and the relative abundance of Coniosporium perforans was negatively correlated with the death rate. Our findings provide a dynamic overview of the microbial community and present a clear scope for screening beneficial microbes and pathogens of notoginseng.
Collapse
Affiliation(s)
- Linlin Dong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guangquan Feng
- Wenshan Prefecture Sanqi Science and Technology Research Institute, Sanqi Research department, Yunnan province 663000, China
| | - Xiwen Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
46
|
Lu D, Jin H, Yang X, Zhang D, Yan Z, Li X, Zhao Y, Han R, Qin B. Characterization of rhizosphere and endophytic fungal communities from roots of Stipa purpurea in alpine steppe around Qinghai Lake. Can J Microbiol 2016; 62:643-56. [PMID: 27348421 DOI: 10.1139/cjm-2015-0857] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stipa purpurea is among constructive endemic species in the alpine steppe on the Qinghai-Xizang Plateau. To reveal the fungal community structure and diversity in the rhizosphere and roots of this important grass and to analyze the potential influence of different habitats on the structure of fungal communities, we explored the root endophyte and the directly associated rhizosphere communities of S. purpurea by using internal transcribed spacer rRNA cloning and sequencing methods. We found that the roots of S. purpurea are associated with a diverse consortium of Basidiomycota (59.8%) and Ascomycota (38.5%). Most fungi obtained from rhizosphere soil in S. purpurea have been identified as Ascomycetes, while the high proportion detected in roots were basidiomycetous endophytes. The species richness, diversity, and evenness of fungal assemblages were higher in roots than in the rhizosphere soil. Fungi inhabiting the rhizosphere and roots of S. purpurea are significantly different, and the rhizosphere and endophyte communities are largely independent with little overlap in the dominant phyla or operational taxonomic units. Taken together, these results suggested that a wide variety of fungal communities are associated with the roots and rhizosphere soil of S. purpurea and that the fungal assemblages are strongly influenced by different habitats.
Collapse
Affiliation(s)
- Dengxue Lu
- a Institute of Biology, Gansu Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Hui Jin
- b Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Xiaoyan Yang
- b Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Denghong Zhang
- c College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Centers for Grazing land Ecosystem Sustainability, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Zhiqiang Yan
- b Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Xiuzhuang Li
- b Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Yuhui Zhao
- a Institute of Biology, Gansu Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Rongbing Han
- a Institute of Biology, Gansu Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Bo Qin
- b Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
47
|
Xiong W, Zhao Q, Xue C, Xun W, Zhao J, Wu H, Li R, Shen Q. Comparison of Fungal Community in Black Pepper-Vanilla and Vanilla Monoculture Systems Associated with Vanilla Fusarium Wilt Disease. Front Microbiol 2016; 7:117. [PMID: 26903995 PMCID: PMC4746283 DOI: 10.3389/fmicb.2016.00117] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/22/2016] [Indexed: 11/13/2022] Open
Abstract
Long-term vanilla monocropping often results in the occurrence of vanilla Fusarium wilt disease, seriously affecting its production all over the world. In the present study, vanilla exhibited significantly less Fusarium wilt disease in the soil of a long-term continuously cropped black pepper orchard. The entire fungal communities of bulk and rhizosphere soils between the black pepper-vanilla system (i.e., vanilla cropped in the soil of a continuously cropped black pepper orchard) and vanilla monoculture system were compared through the deep pyrosequencing. The results showed that the black pepper-vanilla system revealed a significantly higher fungal diversity than the vanilla monoculture system in both bulk and rhizosphere soils. The UniFrac-weighted PCoA analysis revealed significant differences in bulk soil fungal community structures between the two cropping systems, and fungal community structures were seriously affected by the vanilla root system. In summary, the black pepper-vanilla system harbored a lower abundance of Fusarium oxysporum in the vanilla rhizosphere soil and increased the putatively plant-beneficial fungal groups such as Trichoderma and Penicillium genus, which could explain the healthy growth of vanilla in the soil of the long-term continuously cropped black pepper field. Thus, cropping vanilla in the soil of continuously cropped black pepper fields for maintaining the vanilla industry is executable and meaningful as an agro-ecological system.
Collapse
Affiliation(s)
- Wu Xiong
- National Engineering Research Center for Organic-based Fertilizers, Jiangsu Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural UniversityNanjing, China
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural ScienceWanning, China
| | - Qingyun Zhao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural ScienceWanning, China
| | - Chao Xue
- National Engineering Research Center for Organic-based Fertilizers, Jiangsu Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural UniversityNanjing, China
| | - Weibing Xun
- National Engineering Research Center for Organic-based Fertilizers, Jiangsu Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural UniversityNanjing, China
| | - Jun Zhao
- National Engineering Research Center for Organic-based Fertilizers, Jiangsu Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural UniversityNanjing, China
| | - Huasong Wu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural ScienceWanning, China
| | - Rong Li
- National Engineering Research Center for Organic-based Fertilizers, Jiangsu Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural UniversityNanjing, China
| | - Qirong Shen
- National Engineering Research Center for Organic-based Fertilizers, Jiangsu Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
48
|
Ma HY, Yang B, Wang HW, Yang QY, Dai CC. Application of Serratia marcescens RZ-21 significantly enhances peanut yield and remediates continuously cropped peanut soil. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:245-253. [PMID: 25640613 DOI: 10.1002/jsfa.7087] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 10/17/2014] [Accepted: 01/08/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Continuous cropping practices cause a severe decline in peanut yield. The aim of this study was to investigate the remediation effect of Serratia marcescens on continuously cropped peanut soil. A pot experiment was conducted under natural conditions to determine peanut agronomic indices, soil microorganism characteristics, soil enzyme activities and antagonism ability to typical pathogens at different growth stages. Four treatments were applied to red soil as follows: an active fermentation liquor of S. marcescens (RZ-21), an equivalent sterilized fermentation liquor (M), an equivalent fermentation medium (P) and distilled water (CK). RESULTS S. marcescens significantly inhibited the two typical plant pathogens Fusarium oxysporum A1 and Ralstonia solanacearum B1 and reduced their populations in rhizosphere soil. The RZ-21 treatment significantly increased peanut yield, vine dry weight, root nodules and taproot length by 62.3, 33, 72 and 61.4% respectively, followed by the M treatment. The P treatment also increased root nodules and root length slightly. RZ-21 also enhanced the activities of soil urease, sucrase and hydrogen peroxidase at various stages. In addition, RZ-21 and M treatments increased the average population of soil bacteria and decreased the average population of fungi in the three critical peanut growth stages, except for M in the case of the fungal population at flowering, thus balancing the structure of the soil microorganism community. CONCLUSION This is the first report of S. marcescens being applied to continuously cropped peanut soil. The results suggest that S. marcescens RZ-21 has the potential to improve the soil environment and agricultural products and thus allow the development of sustainable management practices.
Collapse
Affiliation(s)
- Hai-Yan Ma
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Bo Yang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Hong-Wei Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Qi-Yin Yang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
49
|
Bai L, Cui J, Jie W, Cai B. Analysis of the community compositions of rhizosphere fungi in soybeans continuous cropping fields. Microbiol Res 2015; 180:49-56. [PMID: 26505311 DOI: 10.1016/j.micres.2015.07.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 07/10/2015] [Accepted: 07/21/2015] [Indexed: 01/10/2023]
Abstract
We used rhizosphere soil sampled from one field during zero year and two years of continuous cropping of high-protein soybean to analyze the taxonomic community compositions of fungi during periods of high-incidence of root rot. Our objectives were to identify the dominant pathogens in order to provide a theoretical basis for the study of pathogenesis as well as control tactics for soybean root rot induced by continuous cropping. A total of 17,801 modified internal transcribed spacer (ITS) sequences were obtained from three different soybean rhizosphere soil samples after zero year and 1 or 2 years of continuous cropping using 454 high-throughput sequencing. The dominant eumycote fungal were identified to be Ascomycota and Basidiomycota in the three soil samples. Continuous cropping of soybean affected the diversity of fungi in rhizosphere soils and increased the abundance of Thelebolus and Mortierellales significantly. Thanatephorus, Fusarium, and Alternaria were identified to be the dominant pathogenic fungal genera in rhizosphere soil from continuously cropped soybean fields.
Collapse
Affiliation(s)
- Li Bai
- College of Life Science, Heilongjiang University, Harbin 150080, China; Food and Environmental Engineering Department, East University of Heilongjiang, Harbin 150086, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, China
| | - Jiaqi Cui
- College of Life Science, Heilongjiang University, Harbin 150080, China; Food and Environmental Engineering Department, East University of Heilongjiang, Harbin 150086, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, China
| | - Weiguang Jie
- College of Life Science, Heilongjiang University, Harbin 150080, China; Food and Environmental Engineering Department, East University of Heilongjiang, Harbin 150086, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, China
| | - Baiyan Cai
- College of Life Science, Heilongjiang University, Harbin 150080, China; Food and Environmental Engineering Department, East University of Heilongjiang, Harbin 150086, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, China.
| |
Collapse
|
50
|
Chen L, Xu J, Feng Y, Wang J, Yu Y, Brookes PC. Responses of soil microeukaryotic communities to short-term fumigation-incubation revealed by MiSeq amplicon sequencing. Front Microbiol 2015; 6:1149. [PMID: 26539178 PMCID: PMC4611156 DOI: 10.3389/fmicb.2015.01149] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/05/2015] [Indexed: 11/25/2022] Open
Abstract
In soil microbiology, there is a “paradox” of soil organic carbon (SOC) mineralization, which is that even though chloroform fumigation destroys majority of the soil microbial biomass, SOC mineralization continues at the same rate as in the non-fumigated soil during the incubation period. Soil microeukaryotes as important SOC decomposers, however, their community-level responses to chloroform fumigation are not well understood. Using the 18S rRNA gene amplicon sequencing, we analyzed the composition, diversity, and C-metabolic functions of a grassland soil and an arable soil microeukaryotic community in response to fumigation followed by a 30-day incubation. The grassland and arable soil microeukaryotic communities were dominated by the fungal Ascomycota (80.5–93.1% of the fungal sequences), followed by the protistan Cercozoa and Apicomplexa. In the arable soil fungal community, the predominance of the class Sordariomycetes was replaced by the class Eurotiomycetes after fumigation at days 7 and 30 of the incubation. Fumigation changed the microeukaryotic α-diversity in the grassland soil at days 0 and 7, and β-diversity in the arable soil at days 7 and 30. Network analysis indicated that after fumigation fungi were important groups closely related to other taxa. Most phylotypes (especially Sordariomycetes, Dothideomycetes, Coccidia, and uncultured Chytridiomycota) were inhibited, and only a few were positively stimulated by fumigation. Despite the inhibited Sordariomycetes, the fumigated communities mainly consisted of Eurotiomycetes and Sordariomycetes (21.9 and 36.5% relative frequency, respectively), which are able to produce hydrolytic enzymes associated with SOC mineralization. Our study suggests that fumigation not only decreases biomass size, but modulates the composition and diversity of the soil microeukaryotic communities, which are capable of driving SOC mineralization by release of hydrolytic enzymes during short-term fumigation-incubation.
Collapse
Affiliation(s)
- Lin Chen
- Institute of Soil and Water Resources and Environmental Science, Zhejiang University Hangzhou, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, Zhejiang University Hangzhou, China
| | - Youzhi Feng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences Nanjing, China
| | - Juntao Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing, China
| | - Yongjie Yu
- College of Applied Meteorology, Nanjing University of Information Science and Technology Nanjing, China
| | - Philip C Brookes
- Institute of Soil and Water Resources and Environmental Science, Zhejiang University Hangzhou, China
| |
Collapse
|