1
|
Rzycki M, Drabik D. Multifaceted Activity of Fabimycin: Insights from Molecular Dynamics Studies on Bacterial Membrane Models. J Chem Inf Model 2024; 64:4204-4217. [PMID: 38733348 PMCID: PMC11134499 DOI: 10.1021/acs.jcim.4c00228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Membranes─cells' essential scaffolds─are valid molecular targets for substances with an antimicrobial effect. While certain substances, such as octenidine, have been developed to target membranes for antimicrobial purposes, the recently reported molecule, fabimycin (F2B)─a novel agent targeting drug-resistant Gram-negative bacteria─has not received adequate attention regarding its activity on membranes in the literature. The following study aims to investigate the effects of F2B on different bacterial membrane models, including simple planar bilayers and more complex bilayer systems that mimic the Escherichia coli shell equipped with double inner and outer bilayers. Our results show that F2B exhibited more pronounced interactions with bacterial membrane systems compared to the control PC system. Furthermore, we observed significant changes in local membrane property homeostasis in both the inner and outer membrane models, specifically in the case of lateral diffusion, membrane thickness, and membrane resilience (compressibility, tilt). Finally, our results showed that the effect of F2B differed in a complex system and a single membrane system. Our study provides new insights into the multifaceted activity of F2B, demonstrating its potential to disrupt bacterial membrane homeostasis, indicating that its activity extends the currently known mechanism of FabI enzyme inhibition. This disruption, coupled with the ability of F2B to penetrate the outer membrane layers, sheds new light on the behavior of this antimicrobial molecule. This highlights the importance of the interaction with the membrane, crucial in combating bacterial infections, particularly those caused by drug-resistant strains.
Collapse
Affiliation(s)
- Mateusz Rzycki
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland
| | - Dominik Drabik
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland
| |
Collapse
|
2
|
Vögele M, Köfinger J, Hummer G. Nanoporous Membranes of Densely Packed Carbon Nanotubes Formed by Lipid-Mediated Self-Assembly. ACS APPLIED BIO MATERIALS 2024; 7:528-534. [PMID: 36070609 PMCID: PMC10880049 DOI: 10.1021/acsabm.2c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022]
Abstract
Nanofiltration technology faces the competing challenges of achieving high fluid flux through uniformly narrow pores of a mechanically and chemically stable filter. Supported dense-packed 2D-crystals of single-walled carbon nanotube (CNT) porins with ∼1 nm wide pores could, in principle, meet these challenges. However, such CNT membranes cannot currently be synthesized at high pore density. Here, we use computer simulations to explore lipid-mediated self-assembly as a route toward densely packed CNT membranes, motivated by the analogy to membrane-protein 2D crystallization. In large-scale coarse-grained molecular dynamics (MD) simulations, we find that CNTs in lipid membranes readily self-assemble into large clusters. Lipids trapped between the CNTs lubricate CNT repacking upon collisions of diffusing clusters, thereby facilitating the formation of large ordered structures. Cluster diffusion follows the Saffman-Delbrück law and its generalization by Hughes, Pailthorpe, and White. On longer time scales, we expect the formation of close-packed CNT structures by depletion of the intervening shared annular lipid shell, depending on the relative strength of CNT-CNT and CNT-lipid interactions. Our simulations identify CNT length, diameter, and end functionalization as major factors for the self-assembly of CNT membranes.
Collapse
Affiliation(s)
- Martin Vögele
- Department
of Theoretical Biophysics, Max Planck Institute
of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany
| | - Jürgen Köfinger
- Department
of Theoretical Biophysics, Max Planck Institute
of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany
| | - Gerhard Hummer
- Department
of Theoretical Biophysics, Max Planck Institute
of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany
- Institute
for Biophysics, Goethe University Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| |
Collapse
|
3
|
Gul G, Faller R, Ileri-Ercan N. Coarse-grained modeling of polystyrene-modified CNTs and their interactions with lipid bilayers. Biophys J 2023; 122:1748-1761. [PMID: 37056052 PMCID: PMC10209035 DOI: 10.1016/j.bpj.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023] Open
Abstract
In the present work, we describe Martini3 coarse-grained models of polystyrene and carboxyl-terminated polystyrene functionalized carbon nanotubes (CNTs) and investigate their interactions with lipid bilayers with and without cholesterol (CHOL) using molecular dynamics simulations. By changing the polystyrene chain length and grafting density at the end ring of the CNTs at two different nanotube concentrations, we observe the translocation of nanoparticles as well as changes in the lipid bilayer properties. Our results show that all developed models passively diffuse into the membranes without causing any damage to the membrane integrity, although high concentrations of CNTs induce structural and elastic changes in lipid bilayers. In the presence of CHOL, increasing CNT concentration results in decreased rates of CHOL transmembrane motions. On the other hand, CNTs are prone to lipid and polystyrene blockage, which affects their equilibrated configurations, and tilting behavior within the membranes. Hence, we demonstrate that polystyrene-functionalized CNTs are promising drug-carrier agents. However, polystyrene chain length and grafting density are important factors to consider to enhance the efficiency of drug delivery.
Collapse
Affiliation(s)
- Gulsah Gul
- Department of Chemical Engineering, Bogazici University, Istanbul, Turkey; Department of Chemical Engineering, University of California, Davis, Davis, California
| | - Roland Faller
- Department of Chemical Engineering, University of California, Davis, Davis, California
| | - Nazar Ileri-Ercan
- Department of Chemical Engineering, Bogazici University, Istanbul, Turkey.
| |
Collapse
|
4
|
Gul G, Faller R, Ileri-Ercan N. Polystyrene-modified carbon nanotubes: Promising carriers in targeted drug delivery. Biophys J 2022; 121:4271-4279. [PMID: 36230001 PMCID: PMC9703093 DOI: 10.1016/j.bpj.2022.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/28/2022] [Accepted: 10/11/2022] [Indexed: 12/14/2022] Open
Abstract
To design drug-delivery agents for therapeutic and diagnostic applications, understanding the mechanisms by which covalently functionalized carbon nanotubes penetrate and interact with cell membranes is of great importance. Here, we report all-atom molecular dynamics results from polystyrene and carboxyl-terminated polystyrene-modified carbon nanotubes and show their translocation behavior across a model lipid bilayer together with their potential to deliver a molecule of the drug ibuprofen into the cell. Our results indicate that functionalized carbon nanotubes are internalized by the membrane in hundreds of nanoseconds and that drug loading increases the internalization speed further. Both loaded and unloaded tubes cross the closest leaflet of the bilayer by nonendocytic pathways, and for the times studied, the drug molecule remains trapped inside the pristine tube while remaining attached at the end of polystyrene-modified tube. On the other hand, carboxyl-terminated polystyrene functionalization allows the drug to be completely released into the lower leaflet of the bilayer without imposing damage to the membrane. This study shows that polystyrene functionalization is a promising alternative and facilitates drug delivery as a benchmark case.
Collapse
Affiliation(s)
- Gulsah Gul
- Department of Chemical Engineering, Bogazici University, Bebek, Istanbul, Turkey; Department of Chemical Engineering, University of California, Davis, Davis, California
| | - Roland Faller
- Department of Chemical Engineering, University of California, Davis, Davis, California
| | - Nazar Ileri-Ercan
- Department of Chemical Engineering, Bogazici University, Bebek, Istanbul, Turkey.
| |
Collapse
|
5
|
Antonucci A, Reggente M, Roullier C, Gillen AJ, Schuergers N, Zubkovs V, Lambert BP, Mouhib M, Carata E, Dini L, Boghossian AA. Carbon nanotube uptake in cyanobacteria for near-infrared imaging and enhanced bioelectricity generation in living photovoltaics. NATURE NANOTECHNOLOGY 2022; 17:1111-1119. [PMID: 36097045 DOI: 10.1038/s41565-022-01198-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
The distinctive properties of single-walled carbon nanotubes (SWCNTs) have inspired the development of many novel applications in the field of cell nanobiotechnology. However, studies thus far have not explored the effect of SWCNT functionalization on transport across the cell walls of prokaryotes. We explore the uptake of SWCNTs in Gram-negative cyanobacteria and demonstrate a passive length-dependent and selective internalization of SWCNTs decorated with positively charged biomolecules. We show that lysozyme-coated SWCNTs spontaneously penetrate the cell walls of a unicellular strain and a multicellular strain. A custom-built spinning-disc confocal microscope was used to image the distinct near-infrared SWCNT fluorescence within the autofluorescent cells, revealing a highly inhomogeneous distribution of SWCNTs. Real-time near-infrared monitoring of cell growth and division reveal that the SWCNTs are inherited by daughter cells. Moreover, these nanobionic living cells retained photosynthetic activity and showed an improved photo-exoelectrogenicity when incorporated into bioelectrochemical devices.
Collapse
Affiliation(s)
- Alessandra Antonucci
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Melania Reggente
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Charlotte Roullier
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alice J Gillen
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nils Schuergers
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Vitalijs Zubkovs
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Center for Electronics and Microtechnology (CSEM), Landquart, Switzerland
| | - Benjamin P Lambert
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Mohammed Mouhib
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Elisabetta Carata
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Luciana Dini
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, CNR Nanotec, Lecce, Italy
| | - Ardemis A Boghossian
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
6
|
Chetyrkina MR, Fedorov FS, Nasibulin AG. In vitro toxicity of carbon nanotubes: a systematic review. RSC Adv 2022; 12:16235-16256. [PMID: 35733671 PMCID: PMC9152879 DOI: 10.1039/d2ra02519a] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/19/2022] [Indexed: 12/20/2022] Open
Abstract
Carbon nanotube (CNT) toxicity-related issues provoke many debates in the scientific community. The controversial and disputable data about toxicity doses, proposed hazard effects, and human health concerns significantly restrict CNT applications in biomedical studies, laboratory practices, and industry, creating a barrier for mankind in the way of understanding how exactly the material behaves in contact with living systems. Raising the toxicity question again, many research groups conclude low toxicity of the material and its potential safeness at some doses for contact with biological systems. To get new momentum for researchers working on the intersection of the biological field and nanomaterials, i.e., CNT materials, we systematically reviewed existing studies with in vitro toxicological data to propose exact doses that yield toxic effects, summarize studied cell types for a more thorough comparison, the impact of incubation time, and applied toxicity tests. Using several criteria and different scientific databases, we identified and analyzed nearly 200 original publications forming a "golden core" of the field to propose safe doses of the material based on a statistical analysis of retrieved data. We also differentiated the impact of various forms of CNTs: on a substrate and in the form of dispersion because in both cases, some studies demonstrated good biocompatibility of CNTs. We revealed that CNTs located on a substrate had negligible impact, i.e., 90% of studies report good viability and cell behavior similar to control, therefore CNTs could be considered as a prospective conductive substrate for cell cultivation. In the case of dispersions, our analysis revealed mean values of dose/incubation time to be 4-5 μg mL-1 h-1, which suggested the material to be a suitable candidate for further studies to get a more in-depth understanding of its properties in biointerfaces and offer CNTs as a promising platform for fundamental studies in targeted drug delivery, chemotherapy, tissue engineering, biosensing fields, etc. We hope that the present systematic review will shed light on the current knowledge about CNT toxicity, indicate "dark" spots and offer possible directions for the subsequent studies based on the demonstrated here tabulated and statistical data of doses, cell models, toxicity tests, viability, etc.
Collapse
Affiliation(s)
| | - Fedor S Fedorov
- Skolkovo Institute of Science and Technology Nobel Str. 3 143026 Moscow Russia
| | - Albert G Nasibulin
- Skolkovo Institute of Science and Technology Nobel Str. 3 143026 Moscow Russia
- Aalto University FI-00076 15100 Espoo Finland
| |
Collapse
|
7
|
Kalathingal M, Sumikama T, Oiki S, Saito S. Vectorial insertion of a β-helical peptide into membrane: a theoretical study on polytheonamide B. Biophys J 2021; 120:4786-4797. [PMID: 34555359 DOI: 10.1016/j.bpj.2021.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022] Open
Abstract
Spontaneous unidirectional, or vectorial, insertion of transmembrane peptides is a fundamental biophysical process for toxin and viral actions. Polytheonamide B (pTB) is a potent cytotoxic peptide with a β6.3-helical structure. Previous experimental studies revealed that the pTB inserts into the membrane in a vectorial fashion and forms a channel with its single molecular length long enough to span the membrane. Also, molecular dynamics simulation studies demonstrated that the pTB is prefolded in aqueous solution. These are unique features of pTB because most of the peptide toxins form channels through oligomerization of transmembrane helices. Here, we performed all-atom molecular dynamics simulations to examine the dynamic mechanism of the vectorial insertion of pTB, providing underlying elementary processes of the membrane insertion of a prefolded single transmembrane peptide. We find that the insertion of pTB proceeds with only the local lateral compression of the membrane in three successive phases: "landing," "penetration," and "equilibration" phases. The free energy calculations using the replica-exchange umbrella sampling simulations present an energy cost of 4.3 kcal/mol at the membrane surface for the membrane insertion of pTB from bulk water. The trajectories of membrane insertion revealed that the insertion process can occur in two possible pathways, namely "trapped" and "untrapped" insertions; in some cases, pTB is trapped in the upper leaflet during the penetration phase. Our simulations demonstrated the importance of membrane anchoring by the hydrophobic N-terminal blocking group in the landing phase, leading to subsequent vectorial insertion.
Collapse
Affiliation(s)
- Mahroof Kalathingal
- School of Physical Sciences, The Graduate University for Advanced Studies, Okazaki, Japan
| | - Takashi Sumikama
- PRESTO, JST, Kawaguchi, Japan; Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Shigetoshi Oiki
- Biomedical Imaging Research Center, University of Fukui, Fukui, Japan.
| | - Shinji Saito
- School of Physical Sciences, The Graduate University for Advanced Studies, Okazaki, Japan; Institute for Molecular Science, Okazaki, Japan.
| |
Collapse
|
8
|
Lucherelli MA, Qian X, Weston P, Eredia M, Zhu W, Samorì P, Gao H, Bianco A, von dem Bussche A. Boron Nitride Nanosheets Can Induce Water Channels Across Lipid Bilayers Leading to Lysosomal Permeabilization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103137. [PMID: 34553436 DOI: 10.1002/adma.202103137] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/17/2021] [Indexed: 06/13/2023]
Abstract
While the interaction between 2D materials and cells is of key importance to the development of nanomedicines and safe applications of nanotechnology, still little is known about the biological interactions of many emerging 2D materials. Here, an investigation of how hexagonal boron nitride (hBN) interacts with the cell membrane is carried out by combining molecular dynamics (MD), liquid-phase exfoliation, and in vitro imaging methods. MD simulations reveal that a sharp hBN wedge can penetrate a lipid bilayer and form a cross-membrane water channel along its exposed polar edges, while a round hBN sheet does not exhibit this behavior. It is hypothesized that such water channels can facilitate cross-membrane transport, with important consequences including lysosomal membrane permeabilization, an emerging mechanism of cellular toxicity that involves the release of cathepsin B and generation of radical oxygen species leading to cell apoptosis. To test this hypothesis, two types of hBN nanosheets, one with a rhomboidal, cornered morphology and one with a round morphology, are prepared, and human lung epithelial cells are exposed to both materials. The cornered hBN with lateral polar edges results in a dose-dependent cytotoxic effect, whereas round hBN does not cause significant toxicity, thus confirming our premise.
Collapse
Affiliation(s)
- Matteo Andrea Lucherelli
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Xuliang Qian
- School of Engineering, Brown University, Providence, RI 02912, USA
- School of Mechanical and Aerospace Engineering, College of Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 639798, Singapore
| | - Paula Weston
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA
| | - Matilde Eredia
- University of Strasbourg, CNRS, ISIS, Strasbourg, 67000, France
| | - Wenpeng Zhu
- School of Engineering, Brown University, Providence, RI 02912, USA
- School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS, Strasbourg, 67000, France
| | - Huajian Gao
- School of Engineering, Brown University, Providence, RI 02912, USA
- School of Mechanical and Aerospace Engineering, College of Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 639798, Singapore
- Institute of High Performance Computing, A*STAR, Singapore, 138632, Singapore
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Annette von dem Bussche
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA
| |
Collapse
|
9
|
Almeida ER, Dos Santos HF, Capriles PVSZ. Carbon nanohorns as nanocontainers for cisplatin: insight into their interaction with the plasma membranes of normal and breast cancer cells. Phys Chem Chem Phys 2021; 23:16376-16389. [PMID: 34318822 DOI: 10.1039/d1cp02015c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cisplatin (cddp)-based chemotherapy is one of the most effective therapeutic alternatives for breast cancer treatment, the most common form of cancer, despite the severe side effects related to the high toxicity and low selectivity of cddp. To circumvent these drawbacks, the encapsulation of cddp into oxidized carbon nanohorns (CNHoxs) has been shown as a promising formulation with biocompatibility and low toxicity. However, there is still a lack of studies regarding the behavior of this cddp@CNHox nanovector on the cell membranes. This study presents an in silico description of the interactions between cddp@CNHox and membrane models of cancer (C_memb) and normal (N_memb) cells referring to a typical human breast. The results revealed the interaction mechanism of the inclusion complex 3cddp@CNHox (three cddp molecules are included in the CNHox cavity) with these biomembranes, which is a multistep process including approach, landing, insertion, and penetration. The 3cddp@CNHox stability was monitored over time, and demonstrated the trapping of cddp molecules inside the CNHox cavity over all simulations. The van der Waals contribution played a primary role (∼74%) for the complex stability. Moreover, the binding free energy calculations indicated that the interaction of the 3cddp@CNHox complex with the C_memb model was slightly more favorable, on average, than with the N_memb model. Analysis of the hydrogen bonds (HBs) formed over simulations of 800 ns explains the selectivity for the C_memb model, since the total number of HBs established between the inclusion complex and the C_memb model was about three times greater than that with the N_memb model. By reinforcing the potentiality of oxidized CNHox as a nanovector of cddp, the results presented in this study may assist and drive new experimental studies with this nanomaterial, focusing on the development of less aggressive formulations for breast cancer treatment.
Collapse
Affiliation(s)
- Eduardo R Almeida
- Núcleo de Estudos em Química Computacional (NEQC), Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora (UFJF), Campus Universitário, Martelos, Juiz de Fora, MG 36036-330, Brazil.
| | | | | |
Collapse
|
10
|
de Carvalho Lima EN, Diaz RS, Justo JF, Castilho Piqueira JR. Advances and Perspectives in the Use of Carbon Nanotubes in Vaccine Development. Int J Nanomedicine 2021; 16:5411-5435. [PMID: 34408416 PMCID: PMC8367085 DOI: 10.2147/ijn.s314308] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022] Open
Abstract
Advances in nanobiotechnology have allowed the utilization of nanotechnology through nanovaccines. Nanovaccines are powerful tools for enhancing the immunogenicity of a specific antigen and exhibit advantages over other adjuvant approaches, with features such as expanded stability, prolonged release, decreased immunotoxicity, and immunogenic selectivity. We introduce recent advances in carbon nanotubes (CNTs) to induce either a carrier effect as a nanoplatform or an immunostimulatory effect. Several studies of CNT-based nanovaccines revealed that due to the ability of CNTs to carry immunogenic molecules, they can act as nonclassical vaccines, a quality not possessed by vaccines with traditional formulations. Therefore, adapting and modifying the physicochemical properties of CNTs for use in vaccines may additionally enhance their efficacy in inducing a T cell-based immune response. Accordingly, the purpose of this study is to renew and awaken interest in and knowledge of the safe use of CNTs as adjuvants and carriers in vaccines.
Collapse
Affiliation(s)
- Elidamar Nunes de Carvalho Lima
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, Brazil
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Ricardo Sobhie Diaz
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - João Francisco Justo
- Electronic Systems Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, Brazil
| | - José Roberto Castilho Piqueira
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Abstract
Abstract
Carbon nanotubes (CNTs), with unique graphitic structure, superior mechanical, electrical, optical and biological properties, has attracted more and more interests in biomedical applications, including gene/drug delivery, bioimaging, biosensor and tissue engineering. In this review, we focus on the role of CNTs and their polymeric composites in tissue engineering applications, with emphasis on their usages in the nerve, cardiac and bone tissue regenerations. The intrinsic natures of CNTs including their physical and chemical properties are first introduced, explaining the structure effects on CNTs electrical conductivity and various functionalization of CNTs to improve their hydrophobic characteristics. Biosafety issues of CNTs are also discussed in detail including the potential reasons to induce the toxicity and their potential strategies to minimise the toxicity effects. Several processing strategies including solution-based processing, polymerization, melt-based processing and grafting methods are presented to show the 2D/3D construct formations using the polymeric composite containing CNTs. For the sake of improving mechanical, electrical and biological properties and minimising the potential toxicity effects, recent advances using polymer/CNT composite the tissue engineering applications are displayed and they are mainly used in the neural tissue (to improve electrical conductivity and biological properties), cardiac tissue (to improve electrical, elastic properties and biological properties) and bone tissue (to improve mechanical properties and biological properties). Current limitations of CNTs in the tissue engineering are discussed and the corresponded future prospective are also provided. Overall, this review indicates that CNTs are promising “next-generation” materials for future biomedical applications.
Collapse
|
12
|
Ali MH, Sobze JM, Pham TH, Nadeem M, Liu C, Galagedara L, Cheema M, Thomas R. Carbon Nanotubes Improved the Germination and Vigor of Plant Species from Peatland Ecosystem Via Remodeling the Membrane Lipidome. NANOMATERIALS 2020; 10:nano10091852. [PMID: 32947854 PMCID: PMC7557389 DOI: 10.3390/nano10091852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/03/2022]
Abstract
Application of the nanopriming technique to alleviate seed dormancy has shown promising results in various agricultural crop species. However, there is a dearth of knowledge regarding its potential use in native peatland boreal forest species to alleviate seed dormancy and improve their propagation or vigor for forest reclamation activities. Herein, we demonstrate the use of nanopriming with carbon nanotubes (CNT) to alleviate seed dormancy, improved seed germination, and seedling vigor in two boreal peatland species. Bog birch (Betula pumila L.) and Labrador tea (Rhododendron groenlandicum L.) seeds with embryo or seed coat dormancy were nanoprimed with either 20 or 40 µg/mL CNT, cold stratified at 2–4 °C for 15 days, and allowed to germinate at room temperature. The emerged seedlings’ lipidome was assessed to decipher the role of lipid metabolism in alleviating seed dormancy. We observed significant (p < 0.05) improvement in seedling germination and seedling vigor in seeds primed with multiwalled carbon nanotubes functionalized with carboxylic acids. Phosphatidylcholine (PC 18:1/18:3), phosphatidylglycerol (PG 16:1/18:3), and lysophosphatidylcholine (LPC 18:3) molecular species (C18:3 enriched) were observed to be highly correlated with the increased seed germination percentages and the enhanced seedling vigor. Mechanistically, it appears that carbon nanoprimed seeds following stratification are effective in mediating seed dormancy by remodeling the seed membrane lipids (C18:3 enriched PC, PG, and LPC) in both peatland boreal forest species. The study results demonstrate that nanopriming may provide a solution to resolve seed dormancy issues by enhancing seed germination, propagation, and seedling vigor in non-resource boreal forest species ideally suited for forest reclamation following anthropogenic disturbances.
Collapse
Affiliation(s)
- Md. Hossen Ali
- School of Science and the Environment/Boreal Ecosystem Research Facility, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G5, Canada; (M.H.A.); (T.H.P.); (C.L.); (L.G.); (M.C.)
| | - Jean-Marie Sobze
- Northern Alberta Institute of Technology, Boreal Research Institute, 8102-99 Avenue, Peace River, AB T8S 1R2, Canada;
| | - Thu Huong Pham
- School of Science and the Environment/Boreal Ecosystem Research Facility, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G5, Canada; (M.H.A.); (T.H.P.); (C.L.); (L.G.); (M.C.)
| | - Muhammad Nadeem
- School of Science and the Environment/Boreal Ecosystem Research Facility, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G5, Canada; (M.H.A.); (T.H.P.); (C.L.); (L.G.); (M.C.)
- Correspondence: (M.N.); (R.T.)
| | - Chen Liu
- School of Science and the Environment/Boreal Ecosystem Research Facility, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G5, Canada; (M.H.A.); (T.H.P.); (C.L.); (L.G.); (M.C.)
| | - Lakshman Galagedara
- School of Science and the Environment/Boreal Ecosystem Research Facility, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G5, Canada; (M.H.A.); (T.H.P.); (C.L.); (L.G.); (M.C.)
| | - Mumtaz Cheema
- School of Science and the Environment/Boreal Ecosystem Research Facility, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G5, Canada; (M.H.A.); (T.H.P.); (C.L.); (L.G.); (M.C.)
| | - Raymond Thomas
- School of Science and the Environment/Boreal Ecosystem Research Facility, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G5, Canada; (M.H.A.); (T.H.P.); (C.L.); (L.G.); (M.C.)
- Correspondence: (M.N.); (R.T.)
| |
Collapse
|
13
|
Chandrasekaran R, Rajiv P, Abd-Elsalam KA. Carbon nanotubes: Plant gene delivery and genome editing. CARBON NANOMATERIALS FOR AGRI-FOOD AND ENVIRONMENTAL APPLICATIONS 2020:279-296. [DOI: 10.1016/b978-0-12-819786-8.00014-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
14
|
Carbon Nanotubes Translocation through a Lipid Membrane and Transporting Small Hydrophobic and Hydrophilic Molecules. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9204271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Carbon nanotubes (CNTs) are extensively adopted in the applications of biotechnology and biomedicine. Their interactions with cell membranes are of great importance for understanding the toxicity of CNTs and the application of drug delivery. In this paper, we use atomic molecular dynamics simulations to study the permeation and orientation of pristine and functionalized CNTs in a lipid bilayer. Pristine CNT (PCNT) can readily permeate into the membrane and reside in the hydrophobic region without specific orientation. The insertion of PCNTs into the lipid bilayer is robust and independent on the lengths of PCNTs. Due to the presence of hydroxyl groups on both ends of the functionalized CNT (FCNT), FCNT prefers to stand upright in the lipid bilayer center. Compared with PCNT, FCNT is more suitable to be a bridge connecting the inner and outer lipid membrane. The inserted CNTs have no distinct effects on membrane structure. However, they may block the ion channels. In addition, preliminary explorations on the transport properties of CNTs show that the small hydrophobic molecule carbon dioxide can enter both PCNT and FCNT hollow channels. However, hydrophilic molecule urea is prone to penetrate the PCNT but finds it difficult to enter the FCNT. These results may provide new insights into the internalization of CNT in the lipid membrane and the transport properties of CNTs when embedded therein.
Collapse
|
15
|
Abstract
Malignant melanoma is an aggressive skin cancer with limited therapeutic options. Cancer is the second largest cause of death in society and one of the most difficult diseases to treat. Advances in biotechnology have enabled the current use of nanotechnology via the application of nanomaterials, especially as drug delivery systems for the transportation of very small particles. In this context, carbon nanotubes, with a potential role in the diagnosis and treatment of melanoma, are still an emerging research field. Their properties have been extensively studied for the use of antineoplastics drugs, as well as for DNA and RNA interference for the treatment of cancer. However, the most important challenge in nanomedicine is to decrease the toxicity and increase the biocompatibility of the nanomaterials used to transport therapeutic molecules. In this sense, this article addresses the recent advances in the use of carbon nanotubes in melanoma therapy and highlights the opportunities and challenges in this area. The advances and challenges involving these topics are essential to the success of nanoconjugate systems, and studies improving the comprehension of these nanosystems contribute to the development of specific antitumor therapies.
Collapse
|
16
|
Del Bonis-O’Donnell JT, Chio L, Dorlhiac GF, McFarlane IR, Landry MP. Advances in Nanomaterials for Brain Microscopy. NANO RESEARCH 2018; 11:5144-5172. [PMID: 31105899 PMCID: PMC6516768 DOI: 10.1007/s12274-018-2145-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/05/2018] [Accepted: 07/08/2018] [Indexed: 05/19/2023]
Abstract
Microscopic imaging of the brain continues to reveal details of its structure, connectivity, and function. To further improve our understanding of the emergent properties and functions of neural circuits, new methods are necessary to directly visualize the relationship between brain structure, neuron activity, and neurochemistry. Advances in engineering the chemical and optical properties of nanomaterials concurrent with developments in deep-tissue microscopy hold tremendous promise for overcoming the current challenges associated with in vivo brain imaging, particularly for imaging the brain through optically-dense brain tissue, skull, and scalp. To this end, developments in nanomaterials offer much promise toward implementing tunable chemical functionality for neurochemical targeting and sensing, and fluorescence stability for long-term imaging. In this review, we summarize current brain microscopy methods and describe the diverse classes of nanomaterials recently leveraged as contrast agents and functional probes for microscopic optical imaging of the brain.
Collapse
Affiliation(s)
| | - Linda Chio
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720
| | - Gabriel F Dorlhiac
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720
| | - Ian R McFarlane
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720
- Innovative Genomics Institute (IGI), Berkeley, CA 94720
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, CA 94720
- Chan-Zuckerberg Biohub, San Francisco, CA 94158
| |
Collapse
|
17
|
Choi MK, Kim H, Lee BH, Kim T, Rho J, Kim MK, Kim K. Understanding carbon nanotube channel formation in the lipid membrane. NANOTECHNOLOGY 2018; 29:115702. [PMID: 29332844 DOI: 10.1088/1361-6528/aaa77b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Carbon nanotubes (CNTs) have been considered a prominent nano-channel in cell membranes because of their prominent ion-conductance and ion-selectivity, offering agents for a biomimetic channel platform. Using a coarse-grained molecular dynamics simulation, we clarify a construction mechanism of vertical CNT nano-channels in a lipid membrane for a long period, which has been difficult to observe in previous CNT-lipid interaction simulations. The result shows that both the lipid coating density and length of CNT affect the suitable fabrication condition for a vertical and stable CNT channel. Also, simulation elucidated that a lipid coating on the surface of the CNT prevents the CNT from burrowing into the lipid membrane and the vertical channel is stabilized by the repulsion force between the lipids in the coating and membrane. Our study provides an essential understanding of how CNTs can form stable and vertical channels in the membrane, which is important for designing new types of artificial channels as biosensors for bio-fluidic studies.
Collapse
Affiliation(s)
- Moon-Ki Choi
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
18
|
Lin N, Berton P, Moraes C, Rogers RD, Tufenkji N. Nanodarts, nanoblades, and nanospikes: Mechano-bactericidal nanostructures and where to find them. Adv Colloid Interface Sci 2018; 252:55-68. [PMID: 29317019 DOI: 10.1016/j.cis.2017.12.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/29/2017] [Accepted: 12/14/2017] [Indexed: 10/18/2022]
Abstract
Over the past ten years, a next-generation approach to combat bacterial contamination has emerged: one which employs nanostructure geometry to deliver lethal mechanical forces causing bacterial cell death. In this review, we first discuss advances in both colloidal and topographical nanostructures shown to exhibit such "mechano-bactericidal" mechanisms of action. Next, we highlight work from pioneering research groups in this area of antibacterials. Finally, we provide suggestions for unexplored research topics that would benefit the field of mechano-bactericidal nanostructures. Traditionally, antibacterial materials are loaded with antibacterial agents with the expectation that these agents will be released in a timely fashion to reach their intended bacterial metabolic target at a sufficient concentration. Such antibacterial approaches, generally categorized as chemical-based, face design drawbacks as compounds diffuse in all directions, leach into the environment, and require replenishing. In contrast, due to their mechanisms of action, mechano-bactericidal nanostructures can benefit from sustainable opportunities. Namely, mechano-bactericidal efficacy needs not replenishing since they are not consumed metabolically, nor are they designed to release or leach compounds. For this same reason, however, their action is limited to the bacterial cells that have made direct contact with mechano-bactericidal nanostructures. As suspended colloids, mechano-bactericidal nanostructures such as carbon nanotubes and graphene nanosheets can pierce or slice bacterial membranes. Alternatively, surface topography such as mechano-bactericidal nanopillars and nanospikes can inflict critical membrane damage to microorganisms perched upon them, leading to subsequent cell lysis and death. Despite the infancy of this area of research, materials constructed from these nanostructures show remarkable antibacterial potential worthy of further investigation.
Collapse
|
19
|
Vögele M, Köfinger J, Hummer G. Molecular dynamics simulations of carbon nanotube porins in lipid bilayers. Faraday Discuss 2018; 209:341-358. [DOI: 10.1039/c8fd00011e] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Carbon nanotube porins embedded in lipid membranes are studied by molecular dynamics simulations.
Collapse
Affiliation(s)
- Martin Vögele
- Department of Theoretical Biophysics
- Max Planck Institute of Biophysics
- 60438 Frankfurt am Main
- Germany
| | - Jürgen Köfinger
- Department of Theoretical Biophysics
- Max Planck Institute of Biophysics
- 60438 Frankfurt am Main
- Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics
- Max Planck Institute of Biophysics
- 60438 Frankfurt am Main
- Germany
- Institute for Biophysics
| |
Collapse
|
20
|
Bonhenry D, Dehez F, Tarek M. Effects of hydration on the protonation state of a lysine analog crossing a phospholipid bilayer – insights from molecular dynamics and free-energy calculations. Phys Chem Chem Phys 2018; 20:9101-9107. [DOI: 10.1039/c8cp00312b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Protonation states of amino acids crossing lipid bilayers from multidimensional free energy surfaces.
Collapse
Affiliation(s)
| | | | - Mounir Tarek
- Université de Lorraine
- CNRS
- LPCT
- F-54000 Nancy
- France
| |
Collapse
|
21
|
Al-Qattan MN, Deb PK, Tekade RK. Molecular dynamics simulation strategies for designing carbon-nanotube-based targeted drug delivery. Drug Discov Today 2017; 23:235-250. [PMID: 29031623 DOI: 10.1016/j.drudis.2017.10.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/05/2017] [Accepted: 10/05/2017] [Indexed: 01/05/2023]
Abstract
The carbon nanotube (CNT)-based target-specific delivery of drugs, or other molecular cargo, has emerged as one of the most promising biomedical applications of nanotechnology. To achieve efficient CNT-based drug delivery, the interactions between the drug, CNT and biomolecular target need to be properly optimized. Recent advances in the computer-aided molecular design tools, in particular molecular dynamics (MD) simulation studies, offer an appropriate low-cost approach for such optimization. This review highlights the various potential MD approaches for the simulation of CNT interactions with cell membranes while emphasizing various methods of cellular internalization and toxicities of CNTs to build new strategies for designing rational CNT-based targeted drug delivery to circumvent the limitations associated with the various clinically available nonspecific therapeutic agents.
Collapse
Affiliation(s)
- Mohammed N Al-Qattan
- Faculty of Pharmacy, Philadelphia University-Jordan, P.O. Box (1), Philadelphia University (19392), Jordan
| | - Pran Kishore Deb
- Faculty of Pharmacy, Philadelphia University-Jordan, P.O. Box (1), Philadelphia University (19392), Jordan.
| | - Rakesh K Tekade
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, (An Institute of National Importance, Government of India), Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opposite Air Force Station, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
22
|
Dykas MM, Poddar K, Yoong SL, Viswanathan V, Mathew S, Patra A, Saha S, Pastorin G, Venkatesan T. Enhancing image contrast of carbon nanotubes on cellular background using helium ion microscope by varying helium ion fluence. J Microsc 2017; 269:14-22. [PMID: 28703381 DOI: 10.1111/jmi.12604] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 06/08/2017] [Accepted: 06/22/2017] [Indexed: 01/28/2023]
Abstract
Carbon nanotubes (CNTs) have become an important nano entity for biomedical applications. Conventional methods of their imaging, often cannot be applied in biological samples due to an inadequate spatial resolution or poor contrast between the CNTs and the biological sample. Here we report a unique and effective detection method, which uses differences in conductivities of carbon nanotubes and HeLa cells. The technique involves the use of a helium ion microscope to image the sample with the surface charging artefacts created by the He+ and neutralised by electron flood gun. This enables us to obtain a few nanometre resolution images of CNTs in HeLa Cells with high contrast, which was achieved by tailoring the He+ fluence. Charging artefacts can be efficiently removed for conductive CNTs by a low amount of electrons, the fluence of which is not adequate to discharge the cell surface, resulting in high image contrast. Thus, this technique enables rapid detection of any conducting nano structures on insulating cellular background even in large fields of view and fine spatial resolution. The technique demonstrated has wider applications for researchers seeking enhanced contrast and high-resolution imaging of any conducting entity in a biological matrix - a commonly encountered issue of importance in drug delivery, tissue engineering and toxicological studies.
Collapse
Affiliation(s)
- M M Dykas
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore.,Nanoscience & Nanotechnology Initiative, National University of Singapore, Singapore
| | - K Poddar
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore.,Nanoscience & Nanotechnology Initiative, National University of Singapore, Singapore.,Department of Orthopedic Surgery, National University of Singapore, Singapore
| | - S L Yoong
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore.,Department of Pharmacy, National University of Singapore, Singapore
| | - V Viswanathan
- Nanoscience & Nanotechnology Initiative, National University of Singapore, Singapore.,Department of Electrical and Computer Engineering, National University of Singapore, Singapore
| | - S Mathew
- Nanoscience & Nanotechnology Initiative, National University of Singapore, Singapore
| | - A Patra
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore.,Nanoscience & Nanotechnology Initiative, National University of Singapore, Singapore
| | - S Saha
- Nanoscience & Nanotechnology Initiative, National University of Singapore, Singapore
| | - G Pastorin
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore.,Nanoscience & Nanotechnology Initiative, National University of Singapore, Singapore.,Department of Pharmacy, National University of Singapore, Singapore
| | - T Venkatesan
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore.,Nanoscience & Nanotechnology Initiative, National University of Singapore, Singapore.,Department of Electrical and Computer Engineering, National University of Singapore, Singapore.,Department of Materials Science and Engineering, National University of Singapore, Singapore.,Department of Physics, National University of Singapore, Singapore
| |
Collapse
|
23
|
Versiani AF, Astigarraga RG, Rocha ESO, Barboza APM, Kroon EG, Rachid MA, Souza DG, Ladeira LO, Barbosa-Stancioli EF, Jorio A, Da Fonseca FG. Multi-walled carbon nanotubes functionalized with recombinant Dengue virus 3 envelope proteins induce significant and specific immune responses in mice. J Nanobiotechnology 2017; 15:26. [PMID: 28376812 PMCID: PMC5379608 DOI: 10.1186/s12951-017-0259-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/20/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Dengue is the most prevalent arthropod-borne viral disease in the world. In this article we present results on the development, characterization and immunogenic evaluation of an alternative vaccine candidate against Dengue. METHODS The MWNT-DENV3E nanoconjugate was developed by covalent functionalization of carboxylated multi-walled carbon nanotubes (MWNT) with recombinant dengue envelope (DENV3E) proteins. The recombinant antigens were bound to the MWNT using a diimide-activated amidation process and the immunogen was characterized by TEM, AFM and Raman Spectroscopy. Furthermore, the immunogenicity of this vaccine candidate was evaluated in a murine model. RESULTS Immunization with MWNT-DENV3E induced comparable IgG responses in relation to the immunization with non-conjugated proteins; however, the inoculation of the nanoconjugate into mice generated higher titers of neutralizing antibodies. Cell-mediated responses were also evaluated, and higher dengue-specific splenocyte proliferation was observed in cell cultures derived from mice immunized with MWNT-DENV3E when compared to animals immunized with the non-conjugated DENV3E. CONCLUSIONS Despite the recent licensure of the CYD-TDV dengue vaccine in some countries, results from the vaccine's phase III trial have cast doubts about its overall efficacy and global applicability. While questions about the effectiveness of the CYD-TDV vaccine still lingers, it is wise to keep at hand an array of vaccine candidates, including alternative non-classical approaches like the one presented here.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- Antibody Formation
- Antigens, Viral/immunology
- Cell Proliferation
- Cytokines/immunology
- Dengue/immunology
- Dengue/prevention & control
- Dengue Vaccines/immunology
- Dengue Vaccines/therapeutic use
- Dengue Virus/immunology
- Female
- Immunity, Cellular
- Immunoglobulin G/blood
- Mice
- Mice, Inbred BALB C
- Microscopy, Atomic Force
- Microscopy, Electron, Transmission
- Nanoconjugates/chemistry
- Nanomedicine
- Nanotubes, Carbon/chemistry
- Recombinant Proteins/chemistry
- Recombinant Proteins/immunology
- Spectrum Analysis, Raman
- Spleen/cytology
- Vaccines, Subunit/immunology
- Vaccines, Subunit/therapeutic use
- Viral Envelope Proteins/immunology
Collapse
Affiliation(s)
- Alice F. Versiani
- Laboratory of Basic and Applied Virology, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Ruiz G. Astigarraga
- Laboratory of Basic and Applied Virology, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Eliseu S. O. Rocha
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Ana Paula M. Barboza
- Laboratório de Nanoscopia, Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Erna G. Kroon
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Milene A. Rachid
- Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Daniele G. Souza
- Laboratory of Microorganism-Host Interaction, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Luiz O. Ladeira
- Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Edel F. Barbosa-Stancioli
- Laboratory of Basic and Applied Virology, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Ado Jorio
- Laboratório de Nanoscopia, Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Flávio G. Da Fonseca
- Laboratory of Basic and Applied Virology, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| |
Collapse
|
24
|
Bhaskara RM, Linker SM, Vögele M, Köfinger J, Hummer G. Carbon Nanotubes Mediate Fusion of Lipid Vesicles. ACS NANO 2017; 11:1273-1280. [PMID: 28103440 DOI: 10.1021/acsnano.6b05434] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The fusion of lipid membranes is opposed by high energetic barriers. In living organisms, complex protein machineries carry out this biologically essential process. Here we show that membrane-spanning carbon nanotubes (CNTs) can trigger spontaneous fusion of small lipid vesicles. In coarse-grained molecular dynamics simulations, we find that a CNT bridging between two vesicles locally perturbs their lipid structure. Their outer leaflets merge as the CNT pulls lipids out of the membranes, creating an hourglass-shaped fusion intermediate with still intact inner leaflets. As the CNT moves away from the symmetry axis connecting the vesicle centers, the inner leaflets merge, forming a pore that completes fusion. The distinct mechanism of CNT-mediated membrane fusion may be transferable, providing guidance in the development of fusion agents, e.g., for the targeted delivery of drugs or nucleic acids.
Collapse
Affiliation(s)
- Ramachandra M Bhaskara
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics , Max-von-Laue Straße 3, 60438 Frankfurt am Main, Germany
| | - Stephanie M Linker
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics , Max-von-Laue Straße 3, 60438 Frankfurt am Main, Germany
| | - Martin Vögele
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics , Max-von-Laue Straße 3, 60438 Frankfurt am Main, Germany
| | - Jürgen Köfinger
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics , Max-von-Laue Straße 3, 60438 Frankfurt am Main, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics , Max-von-Laue Straße 3, 60438 Frankfurt am Main, Germany
- Institute for Biophysics, Goethe University Frankfurt , 60438 Frankfurt am Main, Germany
| |
Collapse
|
25
|
Budhathoki-Uprety J, Harvey JD, Isaac E, Williams RM, Galassi TV, Langenbacher RE, Heller DA. Polymer cloaking modulates the carbon nanotube protein corona and delivery into cancer cells. J Mater Chem B 2017; 5:6637-6644. [DOI: 10.1039/c7tb00695k] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Polycarbodiimide cloaking of photoluminescent single-walled carbon nanotubes modulates their surface chemistry, protein corona, and uptake in cancer cells.
Collapse
Affiliation(s)
| | - Jackson D. Harvey
- Memorial Sloan Kettering Cancer Center
- New York
- USA
- Weill Cornell Medical College
- New York
| | | | | | - Thomas V. Galassi
- Memorial Sloan Kettering Cancer Center
- New York
- USA
- Weill Cornell Medical College
- New York
| | | | - Daniel A. Heller
- Memorial Sloan Kettering Cancer Center
- New York
- USA
- Weill Cornell Medical College
- New York
| |
Collapse
|
26
|
Costa PM, Bourgognon M, Wang JTW, Al-Jamal KT. Functionalised carbon nanotubes: From intracellular uptake and cell-related toxicity to systemic brain delivery. J Control Release 2016; 241:200-219. [DOI: 10.1016/j.jconrel.2016.09.033] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/24/2016] [Accepted: 09/26/2016] [Indexed: 12/20/2022]
|
27
|
Nanomechanical mechanism for lipid bilayer damage induced by carbon nanotubes confined in intracellular vesicles. Proc Natl Acad Sci U S A 2016; 113:12374-12379. [PMID: 27791073 DOI: 10.1073/pnas.1605030113] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Understanding the behavior of low-dimensional nanomaterials confined in intracellular vesicles has been limited by the resolution of bioimaging techniques and the complex nature of the problem. Recent studies report that long, stiff carbon nanotubes are more cytotoxic than flexible varieties, but the mechanistic link between stiffness and cytotoxicity is not understood. Here we combine analytical modeling, molecular dynamics simulations, and in vitro intracellular imaging methods to reveal 1D carbon nanotube behavior within intracellular vesicles. We show that stiff nanotubes beyond a critical length are compressed by lysosomal membranes causing persistent tip contact with the inner membrane leaflet, leading to lipid extraction, lysosomal permeabilization, release of cathepsin B (a lysosomal protease) into the cytoplasm, and cell death. The precise material parameters needed to activate this unique mechanical pathway of nanomaterials interaction with intracellular vesicles were identified through coupled modeling, simulation, and experimental studies on carbon nanomaterials with wide variation in size, shape, and stiffness, leading to a generalized classification diagram for 1D nanocarbons that distinguishes pathogenic from biocompatible varieties based on a nanomechanical buckling criterion. For a wide variety of other 1D material classes (metal, oxide, polymer), this generalized classification diagram shows a critical threshold in length/width space that represents a transition from biologically soft to stiff, and thus identifies the important subset of all 1D materials with the potential to induce lysosomal permeability by the nanomechanical mechanism under investigation.
Collapse
|
28
|
Boncel S, Herman AP, Budniok S, Jędrysiak RG, Jakóbik-Kolon A, Skepper JN, Müller KH. In Vitro Targeting and Selective Killing of T47D Breast Cancer Cells by Purpurin and 5-Fluorouracil Anchored to Magnetic CNTs: Nitrene-Based Functionalization versus Uptake, Cytotoxicity, and Intracellular Fate. ACS Biomater Sci Eng 2016; 2:1273-1285. [DOI: 10.1021/acsbiomaterials.6b00197] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sławomir Boncel
- Department
of Organic Chemistry, Biochemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, Gliwice 44-100, Poland
| | - Artur P. Herman
- Department
of Organic Chemistry, Biochemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, Gliwice 44-100, Poland
| | - Sebastian Budniok
- Department
of Organic Chemistry, Biochemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, Gliwice 44-100, Poland
| | - Rafał G. Jędrysiak
- Department
of Organic Chemistry, Biochemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, Gliwice 44-100, Poland
| | - Agata Jakóbik-Kolon
- Department
of Inorganic Chemistry, Analytical Chemistry and Electrochemistry,
Faculty of Chemistry, Silesian University of Technology, Krzywoustego
6, Gliwice 44-100, Poland
| | - Jeremy N. Skepper
- Cambridge
Advanced Imaging Centre, Department of Physiology, Development and
Neuroscience, Anatomy Building, University of Cambridge, Downing
Street, Cambridge CB2 3DY, United Kingdom
| | - Karin H. Müller
- Cambridge
Advanced Imaging Centre, Department of Physiology, Development and
Neuroscience, Anatomy Building, University of Cambridge, Downing
Street, Cambridge CB2 3DY, United Kingdom
| |
Collapse
|
29
|
Tran IC, Tunuguntla RH, Kim K, Lee JRI, Willey TM, Weiss TM, Noy A, van Buuren T. Structure of Carbon Nanotube Porins in Lipid Bilayers: An in Situ Small-Angle X-ray Scattering (SAXS) Study. NANO LETTERS 2016; 16:4019-4024. [PMID: 27322135 DOI: 10.1021/acs.nanolett.6b00466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Carbon nanotube porins (CNTPs), small segments of carbon nanotubes capable of forming defined pores in lipid membranes, are important future components for bionanoelectronic devices as they could provide a robust analog of biological membrane channels. In order to control the incorporation of these CNT channels into lipid bilayers, it is important to understand the structure of the CNTPs before and after insertion into the lipid bilayer as well as the impact of such insertion on the bilayer structure. Here we employed a noninvasive in situ probe, small-angle X-ray scattering, to study the integration of CNT porins into dioleoylphosphatidylcholine bilayers. Our results show that CNTPs in solution are stabilized by a monolayer of lipid molecules wrapped around their outer surface. We also demonstrate that insertion of CNTPs into the lipid bilayer results in decreased bilayer thickness with the magnitude of this effect increasing with the concentration of CNTPs.
Collapse
Affiliation(s)
- Ich C Tran
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory , Livermore, California 94550, United States
| | - Ramya H Tunuguntla
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory , Livermore, California 94550, United States
| | - Kyunghoon Kim
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory , Livermore, California 94550, United States
| | - Jonathan R I Lee
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory , Livermore, California 94550, United States
| | - Trevor M Willey
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory , Livermore, California 94550, United States
| | - Thomas M Weiss
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Center , Menlo Park, California 94025, United States
| | - Aleksandr Noy
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory , Livermore, California 94550, United States
| | - Tony van Buuren
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory , Livermore, California 94550, United States
| |
Collapse
|
30
|
Whitlow J, Pacelli S, Paul A. Polymeric Nanohybrids as a New Class of Therapeutic Biotransporters. MACROMOL CHEM PHYS 2016; 217:1245-1259. [PMID: 29151704 PMCID: PMC5693378 DOI: 10.1002/macp.201500464] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A possible solution to enhance existing drug and gene therapies is to develop hybrid nanocarriers capable of delivering therapeutic agents in a controlled and targeted manner. This goal can be achieved by designing nanohybrid systems, which combine organic or inorganic nanomaterials with biomacromolecules into a single composite. The unique combination of properties along with their facile fabrication enables the design of smart carriers for both drug and gene delivery. These hybrids can be further modified with cell targeting motifs to enhance their biological interactivity. In this Talents and Trends article, an overview of emerging nanohybrid-based technologies will be provided to highlight their potential use as innovative platforms for improved cancer therapies and new strategies in regenerative medicine. The clinical relevance of these systems will be reviewed to define the current challenges which still need to be addressed to allow these therapies to move from bench to bedside.
Collapse
Affiliation(s)
- Jonathan Whitlow
- BioIntel Research Laboratory, Department of Chemical and Petroleum Engineering, Bioengineering Program, School of Engineering, University of Kansas, Lawrence, KS, USA
| | - Settimio Pacelli
- BioIntel Research Laboratory, Department of Chemical and Petroleum Engineering, Bioengineering Program, School of Engineering, University of Kansas, Lawrence, KS, USA
| | - Arghya Paul
- BioIntel Research Laboratory, Department of Chemical and Petroleum Engineering, Bioengineering Program, School of Engineering, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
31
|
Hilder TA, Gaston N. Interaction of Boron Nitride Nanosheets with Model Cell Membranes. Chemphyschem 2016; 17:1573-8. [DOI: 10.1002/cphc.201600165] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Tamsyn A Hilder
- Computational Biophysics Group; Research School of Biology; Australian National University; Canberra ACT 0200 Australia
| | - Nicola Gaston
- MacDiarmid Institute for Advanced Materials and Nanotechnology; School of Chemical and Physical Sciences; Victoria University of Wellington; Wellington 6140 New Zealand
- Department of Physics; University of Auckland; Auckland 1142 New Zealand
| |
Collapse
|
32
|
Ramezanpour M, Leung SSW, Delgado-Magnero KH, Bashe BYM, Thewalt J, Tieleman DP. Computational and experimental approaches for investigating nanoparticle-based drug delivery systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1688-709. [PMID: 26930298 DOI: 10.1016/j.bbamem.2016.02.028] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 02/20/2016] [Accepted: 02/23/2016] [Indexed: 12/21/2022]
Abstract
Most therapeutic agents suffer from poor solubility, rapid clearance from the blood stream, a lack of targeting, and often poor translocation ability across cell membranes. Drug/gene delivery systems (DDSs) are capable of overcoming some of these barriers to enhance delivery of drugs to their right place of action, e.g. inside cancer cells. In this review, we focus on nanoparticles as DDSs. Complementary experimental and computational studies have enhanced our understanding of the mechanism of action of nanocarriers and their underlying interactions with drugs, biomembranes and other biological molecules. We review key biophysical aspects of DDSs and discuss how computer modeling can assist in rational design of DDSs with improved and optimized properties. We summarize commonly used experimental techniques for the study of DDSs. Then we review computational studies for several major categories of nanocarriers, including dendrimers and dendrons, polymer-, peptide-, nucleic acid-, lipid-, and carbon-based DDSs, and gold nanoparticles. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.
Collapse
Affiliation(s)
- M Ramezanpour
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - S S W Leung
- Department of Physics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - K H Delgado-Magnero
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - B Y M Bashe
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - J Thewalt
- Department of Physics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - D P Tieleman
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
33
|
|
34
|
Díez-Pascual AM, Díez-Vicente AL. PEGylated boron nitride nanotube-reinforced poly(propylene fumarate) nanocomposite biomaterials. RSC Adv 2016. [DOI: 10.1039/c6ra09884c] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Novel PPF/PEG-g-BNNTs nanocomposites were synthesized and characterized. These antibacterial and non-toxic biomaterials are suitable for bone tissue engineering.
Collapse
Affiliation(s)
- Ana M. Díez-Pascual
- Analytical Chemistry
- Physical Chemistry and Chemical Engineering Department
- Faculty of Biology
- Environmental Sciences and Chemistry
- Alcalá University
| | | |
Collapse
|
35
|
Akbari E, Buntat Z, Shahraki E, Parvaz R, Kiani MJ. Analytical investigation of bilayer lipid biosensor based on graphene. J Biomater Appl 2015; 30:677-85. [DOI: 10.1177/0885328215585682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Graphene is another allotrope of carbon with two-dimensional monolayer honeycomb. Owing to its special characteristics including electrical, physical and optical properties, graphene is known as a more suitable candidate compared to other materials to be used in the sensor application. It is possible, moreover, to use biosensor by using electrolyte-gated field effect transistor based on graphene (GFET) to identify the alterations in charged lipid membrane properties. The current article aims to show how thickness and charges of a membrane electric can result in a monolayer graphene-based GFET while the emphasis is on the conductance variation. It is proposed that the thickness and electric charge of the lipid bilayer (LLP and QLP) are functions of carrier density, and to find the equation relating these suitable control parameters are introduced. Artificial neural network algorithm as well as support vector regression has also been incorporated to obtain other models for conductance characteristic. The results comparison between analytical models, artificial neural network and support vector regression with the experimental data extracted from previous work show an acceptable agreement.
Collapse
Affiliation(s)
- Elnaz Akbari
- Institute of High Voltage and High Current, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Zolkafle Buntat
- Institute of High Voltage and High Current, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Elmira Shahraki
- Department of Communications Engineering, University of Sistan and Baluchestan, Zahedan, Iran
| | - Ramtin Parvaz
- Department of Electrical Engineering, Neyriz Branch, Islamic Azad University, Neyriz, Iran
| | | |
Collapse
|
36
|
Thomas M, Enciso M, Hilder TA. Insertion Mechanism and Stability of Boron Nitride Nanotubes in Lipid Bilayers. J Phys Chem B 2015; 119:4929-36. [DOI: 10.1021/acs.jpcb.5b00102] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Michael Thomas
- Computational
Biophysics Group, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
- Molecular Modelling Group, Faculty of Science,
Technology and Engineering, School of Molecular Sciences, Department
of Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Life Science Computation Centre, Victorian Life Sciences Computation Initiative, Carlton, VIC 3010, Australia
| | - Marta Enciso
- Molecular Modelling Group, Faculty of Science,
Technology and Engineering, School of Molecular Sciences, Department
of Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Tamsyn A. Hilder
- Computational
Biophysics Group, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
37
|
Tabari S, Jamali Y, Poursalehi R. Multi-scale Simulation of Carbon Nanotubes Interactions with Cell Membrane: DFT Calculations and Molecular Dynamic Simulation. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.mspro.2015.11.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
38
|
Zhou S, Hashida Y, Kawakami S, Mihara J, Umeyama T, Imahori H, Murakami T, Yamashita F, Hashida M. Preparation of immunostimulatory single-walled carbon nanotube/CpG DNA complexes and evaluation of their potential in cancer immunotherapy. Int J Pharm 2014; 471:214-23. [PMID: 24861942 DOI: 10.1016/j.ijpharm.2014.05.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 04/30/2014] [Accepted: 05/19/2014] [Indexed: 01/10/2023]
Abstract
Carbon nanotubes (CNTs) have many interesting properties. In particular, their photohyperthermic effect by near-infrared (NIR) irradiation could be used to kill cancer cells, and could thus be applied in photohyperthermic therapy. However, the solubility of CNTs must be improved before they can be used in biological applications. As DNA is reported to disperse the CNTs in aqueous solution with π-π interactions, we hypothesis that immunostimulatory CpG DNA may also disperse the CNTs in aqueous solution. In this study, we used CpG DNA to disperse single-walled CNTs (SWCNTs) in aqueous solution, in order to combine photohyperthermic effect and immunoactivation together to achieve a more effective cancer therapy. As expected, CpG DNA effectively dispersed the SWCNTs in aqueous solution via the formation of SWCNT/CpG DNA complexes. Moreover, the immunoreactivity of the SWCNT/CpG DNA complexes was investigated. The results showed that intratumoral administration of the SWCNT/CpG DNA complexes in mice enhanced the production level of inflammatory cytokines in tumor tissues. Finally, we evaluated the antitumor effects of the SWCNT/CpG DNA complexes in tumor-bearing mice. The result indicated that intratumoral administration of the SWCNT/CpG DNA complexes combined with NIR irradiation was a more effective approach to prevent the proliferation of tumor growth.
Collapse
Affiliation(s)
- Shuwen Zhou
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; The Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Tokyo 102-8471, Japan
| | - Yasuhiko Hashida
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shigeru Kawakami
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Junya Mihara
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tomokazu Umeyama
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hiroshi Imahori
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tatsuya Murakami
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Fumiyoshi Yamashita
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitsuru Hashida
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
39
|
Molecular Modeling of PEGylated Peptides, Dendrimers, and Single-Walled Carbon Nanotubes for Biomedical Applications. Polymers (Basel) 2014. [DOI: 10.3390/polym6030776] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
40
|
Hamdi M, Ferreira A. Guidelines for the Design of Magnetic Nanorobots to Cross the Blood–Brain Barrier. IEEE T ROBOT 2014. [DOI: 10.1109/tro.2013.2291616] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Skandani AA, Al-Haik M. Reciprocal effects of the chirality and the surface functionalization on the drug delivery permissibility of carbon nanotubes. SOFT MATTER 2013; 9:11645-9. [PMID: 25535628 DOI: 10.1039/c3sm52126e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The drug delivery admissibility of nanomaterials such as carbon nanotubes and their uncertain interactions with live tissues and organs have sparked ongoing research efforts. To boost the selective diffusivity of single walled carbon nanotubes (SWCNTs), surface functionalization was adopted in several experimental attempts. Numerous studies had identified polyethylene glycol (PEG) as a bio-compatible surfactant to carbon nanotubes. In this study, a large scale, atomistic molecular dynamic simulation was utilized to disclose the cellular exposure and uptake mechanisms of PEG-functionalized single walled carbon nanotubes (f-SWCNTs) into a lipid bilayer cell membrane. Results showed that with PEGs attached to a SWCNT, the penetration depth and speed can be controlled. Also, the simulations revealed that the adhesion energy between the nanotube and the lipid membrane is affected considerably, in the presence of PEGs, by the chirality of the SWCNTs.
Collapse
Affiliation(s)
- Amir Alipour Skandani
- Department of Engineering Science and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA.
| | | |
Collapse
|
42
|
Enhanced Sampling in Molecular Dynamics Using Metadynamics, Replica-Exchange, and Temperature-Acceleration. ENTROPY 2013. [DOI: 10.3390/e16010163] [Citation(s) in RCA: 291] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
43
|
Geyik C, Evran S, Timur S, Telefoncu A. The covalent bioconjugate of multiwalled carbon nanotube and amino-modified linearized plasmid DNA for gene delivery. Biotechnol Prog 2013; 30:224-32. [DOI: 10.1002/btpr.1836] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 10/15/2013] [Indexed: 12/24/2022]
Affiliation(s)
- Caner Geyik
- Dept. of Biochemistry; Faculty of Science; Ege University; 35100 Bornova-Izmir Turkey
| | - Serap Evran
- Dept. of Biochemistry; Faculty of Science; Ege University; 35100 Bornova-Izmir Turkey
| | - Suna Timur
- Dept. of Biochemistry; Faculty of Science; Ege University; 35100 Bornova-Izmir Turkey
| | - Azmi Telefoncu
- Dept. of Biochemistry; Faculty of Science; Ege University; 35100 Bornova-Izmir Turkey
| |
Collapse
|
44
|
Lacerda L, Ali-Boucetta H, Kraszewski S, Tarek M, Prato M, Ramseyer C, Kostarelos K, Bianco A. How do functionalized carbon nanotubes land on, bind to and pierce through model and plasma membranes. NANOSCALE 2013; 5:10242-10250. [PMID: 24056765 DOI: 10.1039/c3nr03184e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Study of the mechanisms understanding how chemically functionalized carbon nanotubes internalize into mammalian cells is important in view of their design as new tools for therapeutic and diagnostic applications. The initial contact between the nanotube and the cell membrane allows elucidation of the types of interaction that are occurring and the contribution from the types of functional groups at the nanotube surface. Here we offer a combination of experimental and theoretical evidence of the initial phases of interaction between functionalized carbon nanotubes with model and cellular membranes. Both experimental and theoretical data reveal the critical parameters to determine direct translocation of the nanotubes through the membrane into the cytoplasm as a result of three distinct processes that can be summarized as landing, piercing and uptake.
Collapse
Affiliation(s)
- Lara Lacerda
- Nanomedicine Lab, School of Medicine & National Graphene Institute, Faculty of Medical and Human Sciences, University of Manchester, AV Hill Building, Manchester M13 9PT, UK.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Baoukina S, Monticelli L, Tieleman DP. Interaction of Pristine and Functionalized Carbon Nanotubes with Lipid Membranes. J Phys Chem B 2013; 117:12113-23. [DOI: 10.1021/jp405732k] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Svetlana Baoukina
- Department
of Biological Sciences and Center for Molecular Simulation, University of Calgary, Calgary, Alberta, T2N1N4, Canada
| | - Luca Monticelli
- DSIMB, INSERM, UMR-S 665, Paris, 75015, France
- Université Paris Diderot − Paris 7, Paris, 75015, France
- INTS, Paris, 75015, France
| | - D. Peter Tieleman
- Department
of Biological Sciences and Center for Molecular Simulation, University of Calgary, Calgary, Alberta, T2N1N4, Canada
| |
Collapse
|
46
|
Thorley AJ, Tetley TD. New perspectives in nanomedicine. Pharmacol Ther 2013; 140:176-85. [PMID: 23811125 DOI: 10.1016/j.pharmthera.2013.06.008] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 06/06/2013] [Indexed: 12/31/2022]
Abstract
Recent advances in nanotechnology have revolutionised all aspects of life, from engineering to cosmetics. One of the most exciting areas of development is that of nanomedicine. Due to their size (less than 100nm in one aspect), nanoparticles exhibit properties that are unlike that of the same material in bulk size. These unique properties are being exploited to create new diagnostics and therapeutics for application in a broad spectrum of organ systems. Indeed, nanoparticles are already being developed as effective carriers of drugs to target regions of the body that were previously hard to access using traditional drug formulation methods. However, in addition to their role as a vehicle for drug delivery, nanoparticles themselves have the potential to have therapeutic benefit. Through manipulation of their elemental composition, size, shape, charge and surface modification or functionalisation it may be possible to target particles to specific organs where they may elicit their therapeutic effect. In this review we will focus on the recent advances in nanotechnology for therapeutic applications with a particular focus on the respiratory system, cancer and vaccinations. In addition we will also address developments in the field of nanotoxicology and the need for concomitant studies in to the toxicity of emerging nanotechnologies. It is possible that the very properties that make nanoparticles a desirable technology for therapeutic intervention may also lead to adverse health effects. It is thus important to determine, and appreciate, the fine balance between the efficacy and toxicity of nanomedicine.
Collapse
Affiliation(s)
- Andrew J Thorley
- Lung Cell Biology, National Heart & Lung Institute, Imperial College London, United Kingdom.
| | | |
Collapse
|
47
|
Tian F, Habel NC, Yin R, Hirn S, Banerjee A, Ercal N, Takenaka S, Estrada G, Kostarelos K, Kreyling W, Stoeger T. Pulmonary DWCNT exposure causes sustained local and low-level systemic inflammatory changes in mice. Eur J Pharm Biopharm 2013; 84:412-20. [DOI: 10.1016/j.ejpb.2013.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 03/02/2013] [Accepted: 03/13/2013] [Indexed: 12/18/2022]
|
48
|
Pryzhkova MV. Concise review: carbon nanotechnology: perspectives in stem cell research. Stem Cells Transl Med 2013; 2:376-83. [PMID: 23572053 DOI: 10.5966/sctm.2012-0151] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Carbon nanotechnology has developed rapidly during the last decade, and carbon allotropes, especially graphene and carbon nanotubes, have already found a wide variety of applications in industry, high-tech fields, biomedicine, and basic science. Electroconductive nanomaterials have attracted great attention from tissue engineers in the design of remotely controlled cell-substrate interfaces. Carbon nanoconstructs are also under extensive investigation by clinical scientists as potential agents in anticancer therapies. Despite the recent progress in human pluripotent stem cell research, only a few attempts to use carbon nanotechnology in the stem cell field have been reported. However, acquired experience with and knowledge of carbon nanomaterials may be efficiently used in the development of future personalized medicine and in tissue engineering.
Collapse
|
49
|
Mashaghi S, Jadidi T, Koenderink G, Mashaghi A. Lipid nanotechnology. Int J Mol Sci 2013; 14:4242-82. [PMID: 23429269 PMCID: PMC3588097 DOI: 10.3390/ijms14024242] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/29/2013] [Accepted: 01/30/2013] [Indexed: 01/14/2023] Open
Abstract
Nanotechnology is a multidisciplinary field that covers a vast and diverse array of devices and machines derived from engineering, physics, materials science, chemistry and biology. These devices have found applications in biomedical sciences, such as targeted drug delivery, bio-imaging, sensing and diagnosis of pathologies at early stages. In these applications, nano-devices typically interface with the plasma membrane of cells. On the other hand, naturally occurring nanostructures in biology have been a source of inspiration for new nanotechnological designs and hybrid nanostructures made of biological and non-biological, organic and inorganic building blocks. Lipids, with their amphiphilicity, diversity of head and tail chemistry, and antifouling properties that block nonspecific binding to lipid-coated surfaces, provide a powerful toolbox for nanotechnology. This review discusses the progress in the emerging field of lipid nanotechnology.
Collapse
Affiliation(s)
- Samaneh Mashaghi
- Zernike Institute for Advanced Materials, Centre for Synthetic Biology, Nijenborgh 4, 9747 AG Groningen, The Netherlands; E-Mail:
| | - Tayebeh Jadidi
- Department of Physics, University of Osnabrück, Barbarastraße 7, 49076 Osnabrück, Germany; E-Mail:
| | - Gijsje Koenderink
- FOM Institute AMOLF, Science Park 104, 1098XG Amsterdam, The Netherlands; E-Mail:
| | - Alireza Mashaghi
- FOM Institute AMOLF, Science Park 104, 1098XG Amsterdam, The Netherlands; E-Mail:
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| |
Collapse
|
50
|
Lee H. Interparticle Dispersion, Membrane Curvature, and Penetration Induced by Single-Walled Carbon Nanotubes Wrapped with Lipids and PEGylated Lipids. J Phys Chem B 2013; 117:1337-44. [DOI: 10.1021/jp308912r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Hwankyu Lee
- Department of Chemical
Engineering, Dankook University, Yongin, 448-701, South Korea
| |
Collapse
|