1
|
Amanna IJ, Thomas A, Engelmann F, Hammarlund E, Raué HP, Bailey AL, Poore EA, Quintel BK, Lewis AD, Axthelm MK, Johnson AL, Colgin LMA, Diamond MS, Messaoudi I, Slifka MK. Development of a hydrogen peroxide-inactivated vaccine that protects against viscerotropic yellow fever in a non-human primate model. Cell Rep Med 2024; 5:101655. [PMID: 39019010 PMCID: PMC11293362 DOI: 10.1016/j.xcrm.2024.101655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/06/2024] [Accepted: 06/19/2024] [Indexed: 07/19/2024]
Abstract
Yellow fever virus (YFV) is endemic in >40 countries and causes viscerotropic disease with up to 20%-60% mortality. Successful live-attenuated yellow fever (YF) vaccines were developed in the mid-1930s, but their use is restricted or formally contraindicated in vulnerable populations including infants, the elderly, and people with compromised immune systems. In these studies, we describe the development of a next-generation hydrogen peroxide-inactivated YF vaccine and determine immune correlates of protection based on log neutralizing index (LNI) and neutralizing titer-50% (NT50) studies. In addition, we compare neutralizing antibody responses and protective efficacy of hydrogen peroxide-inactivated YF vaccine candidates to live-attenuated YFV-17D (YF-VAX) in a rhesus macaque model of viscerotropic YF. Our results indicate that an optimized, inactivated YF vaccine elicits protective antibody responses that prevent viral dissemination and lethal infection in rhesus macaques and may be a suitable alternative for vaccinating vulnerable populations who are not eligible to receive replicating live-attenuated YF vaccines.
Collapse
Affiliation(s)
- Ian J Amanna
- Najít Technologies, Inc., Beaverton, OR 97006, USA
| | - Archana Thomas
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Flora Engelmann
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, College of Medicine, Lexington, KY 40506, USA
| | - Erika Hammarlund
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Hans-Peter Raué
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Adam L Bailey
- Department of Pathology & Laboratory Medicine, University of Wisconsin - Madison, Madison, WI 53706, USA
| | | | | | - Anne D Lewis
- Division of Comparative Medicine, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Michael K Axthelm
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, and The Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Amanda L Johnson
- Division of Comparative Medicine, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Lois M A Colgin
- Division of Comparative Medicine, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ilhem Messaoudi
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, College of Medicine, Lexington, KY 40506, USA
| | - Mark K Slifka
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA.
| |
Collapse
|
2
|
Wu L, Zhang L, Feng S, Chen L, Lin C, Wang G, Zhu Y, Wang P, Cheng G. An evolutionarily conserved ubiquitin ligase drives infection and transmission of flaviviruses. Proc Natl Acad Sci U S A 2024; 121:e2317978121. [PMID: 38593069 PMCID: PMC11032495 DOI: 10.1073/pnas.2317978121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/08/2024] [Indexed: 04/11/2024] Open
Abstract
Mosquito-borne flaviviruses such as dengue (DENV) and Zika (ZIKV) cause hundreds of millions of infections annually. The single-stranded RNA genome of flaviviruses is translated into a polyprotein, which is cleaved equally into individual functional proteins. While structural proteins are packaged into progeny virions and released, most of the nonstructural proteins remain intracellular and could become cytotoxic if accumulated over time. However, the mechanism by which nonstructural proteins are maintained at the levels optimal for cellular fitness and viral replication remains unknown. Here, we identified that the ubiquitin E3 ligase HRD1 is essential for flaviviruses infections in both mammalian hosts and mosquitoes. HRD1 directly interacts with flavivirus NS4A and ubiquitylates a conserved lysine residue for ER-associated degradation. This mechanism avoids excessive accumulation of NS4A, which otherwise interrupts the expression of processed flavivirus proteins in the ER. Furthermore, a small-molecule inhibitor of HRD1 named LS-102 effectively interrupts DENV2 infection in both mice and Aedes aegypti mosquitoes, and significantly disturbs DENV transmission from the infected hosts to mosquitoes owing to reduced viremia. Taken together, this study demonstrates that flaviviruses have evolved a sophisticated mechanism to exploit the ubiquitination system to balance the homeostasis of viral proteins for their own advantage and provides a potential therapeutic target to interrupt flavivirus infection and transmission.
Collapse
Affiliation(s)
- Linjuan Wu
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen518000, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen518055, China
| | - Liming Zhang
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing100084, China
| | - Shengyong Feng
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen518000, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen518055, China
| | - Lu Chen
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing100084, China
| | - Cai Lin
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen518000, China
| | - Gang Wang
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing100084, China
| | - Yibin Zhu
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing100084, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen518055, China
| | - Penghua Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT06030
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen518000, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen518055, China
- Southwest United Graduate School, Kunming650092, China
| |
Collapse
|
3
|
FluoRNT: A robust, efficient assay for the detection of neutralising antibodies against yellow fever virus 17D. PLoS One 2022; 17:e0262149. [PMID: 35139078 PMCID: PMC8827462 DOI: 10.1371/journal.pone.0262149] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 12/16/2021] [Indexed: 11/19/2022] Open
Abstract
There is an urgent need for better diagnostic and analytical methods for vaccine research and infection control in virology. This has been highlighted by recently emerging viral epidemics and pandemics (Zika, SARS-CoV-2), and recurring viral outbreaks like the yellow fever outbreaks in Angola and the Democratic Republic of Congo (2016) and in Brazil (2016–2018). Current assays to determine neutralising activity against viral infections in sera are costly in time and equipment and suffer from high variability. Therefore, both basic infection research and diagnostic population screenings would benefit from improved methods to determine virus-neutralising activity in patient samples. Here we describe a robust, objective, and scalable Fluorescence Reduction Neutralisation Test (FluoRNT) for yellow fever virus, relying on flow cytometric detection of cells infected with a fluorescent Venus reporter containing variant of the yellow fever vaccine strain 17D (YF-17D-Venus). It accurately measures neutralising antibody titres in human serum samples within as little as 24 h. Samples from 32 vaccinees immunised with YF-17D were tested for neutralising activity by both a conventional focus reduction neutralisation test (FRNT) and FluoRNT. Both types of tests proved to be equally reliable for the detection of neutralising activity, however, FluoRNT is significantly more precise and reproducible with a greater dynamic range than conventional FRNT. The FluoRNT assay protocol is substantially faster, easier to control, and cheaper in per-assay costs. FluoRNT additionally reduces handling time minimising exposure of personnel to patient samples. FluoRNT thus brings a range of desirable features that can accelerate and standardise the measurement of neutralising anti-yellow fever virus antibodies. It could be used in applications ranging from vaccine testing to large cohort studies in systems virology and vaccinology. We also anticipate the potential to translate the methodology and analysis of FluoRNT to other flaviviruses such as West Nile, Dengue and Zika or to RNA viruses more generally.
Collapse
|
4
|
Bailey AL, Kang LI, de Assis Barros D'Elia Zanella LGF, Silveira CGT, Ho YL, Foquet L, Bial G, McCune BT, Duarte-Neto AN, Thomas A, Raué HP, Byrnes K, Kallas EG, Slifka MK, Diamond MS. Consumptive coagulopathy of severe yellow fever occurs independently of hepatocellular tropism and massive hepatic injury. Proc Natl Acad Sci U S A 2020; 117:32648-32656. [PMID: 33268494 PMCID: PMC7768776 DOI: 10.1073/pnas.2014096117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Yellow fever (YF) is a mosquito-transmitted viral disease that causes tens of thousands of deaths each year despite the long-standing deployment of an effective vaccine. In its most severe form, YF manifests as a hemorrhagic fever that causes severe damage to visceral organs. Although coagulopathy is a defining feature of severe YF in humans, the mechanism by which it develops remains uncertain. Hepatocytes are a major target of yellow fever virus (YFV) infection, and the coagulopathy in severe YF has long been attributed to massive hepatocyte infection and destruction that results in a defect in clotting factor synthesis. However, when we analyzed blood from Brazilian patients with severe YF, we found high concentrations of plasma D-dimer, a fibrin split product, suggestive of a concurrent consumptive process. To define the relationship between coagulopathy and hepatocellular tropism, we compared infection and disease in Fah-/-, Rag2-/-, and Il2rɣ-/- mice engrafted with human hepatocytes (hFRG mice) and rhesus macaques using a highly pathogenic African YFV strain. YFV infection of macaques and hFRG mice caused substantial hepatocyte infection, liver damage, and coagulopathy as defined by virological, clinical, and pathological criteria. However, only macaques developed a consumptive coagulopathy whereas YFV-infected hFRG mice did not. Thus, infection of cell types other than hepatocytes likely contributes to the consumptive coagulopathy associated with severe YF in primates and humans. These findings expand our understanding of viral hemorrhagic disease and associated coagulopathy and suggest directions for clinical management of severe YF cases.
Collapse
Affiliation(s)
- Adam L Bailey
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110;
| | - Liang-I Kang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | | | - Cássia G T Silveira
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, Sao Paulo, Brazil 01246 903
| | - Yeh-Li Ho
- Department of Infectious and Parasitic Diseases, School of Medicine, University of São Paulo, Sao Paulo, Brazil 01246 903
| | | | - Greg Bial
- Yecuris Corporation, Tualatin, OR 97062
| | - Broc T McCune
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Amaro Nunes Duarte-Neto
- Department of Pathology, Clinical Hospital, School of Medicine, University of São Paulo, Sao Paulo, Brazil 01246 903
| | - Archana Thomas
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Hans-Peter Raué
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Kathleen Byrnes
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Esper G Kallas
- Department of Infectious and Parasitic Diseases, School of Medicine, University of São Paulo, Sao Paulo, Brazil 01246 903
| | - Mark K Slifka
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Michael S Diamond
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110;
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
5
|
Peters R, Stevenson M. Immunological detection of Zika virus: A summary in the context of general viral diagnostics. J Microbiol Methods 2020. [DOI: 10.1016/bs.mim.2019.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
6
|
Gupta P, Tripathy AS. Alternative pathway of complement activation has a beneficial role against Chandipura virus infection. Med Microbiol Immunol 2019; 209:109-124. [PMID: 31781935 PMCID: PMC7223837 DOI: 10.1007/s00430-019-00648-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 11/19/2019] [Indexed: 12/01/2022]
Abstract
The complement system is a critical component of both innate and adaptive immune responses. It has both protective and pathogenic roles in viral infections. There are no studies regarding the role of complement system in Chandipura virus (CHPV) infection. The current study has investigated the role of complement pathways in the in vitro neutralization of CHPV in Vero E6 cells. Using normal human serum (NHS), heat-inactivated serum (HIS), human serum deficient of complement factor, respective reconstituted serum, assays like in vitro neutralization, real-time PCR, and flow cytometry-based tissue culture-based limited dose assay (TC-LDA) were carried out for assessing the activation of different complement pathways. NHS from 9/10 donors showed complement dependent neutralization, reduction in viral load and decrease in percentage of CHPV-positive cells compared to their HIS counterparts. EGTA or EDTA pretreatment experiments indicated that CHPV neutralization proceeds through the alternative pathway of the complement activation. Our data showed a strong dependence on C3 for the in vitro neutralization of CHPV. Disparity in CHPV neutralization levels between factor B-deficient and reconstituted sera could be attributed to amplification loop/“tick-over” mechanism. Assays using C3, C5, and C8 deficient sera indicated that complement-mediated CHPV neutralization and suppression of CHPV infectivity are primarily through C3 and C5, and not dependent on downstream complement factor C8. With no specific anti-viral treatment/vaccine against Chandipura, the current data, elucidating role of human complement system in the neutralization of CHPV, may help in designing effective therapeutics.
Collapse
Affiliation(s)
- Pooja Gupta
- Hepatitis Group, ICMR-National Institute of Virology, Pune, 130/1, Sus Road, Pashan, Pune, Maharashtra 411021 India
| | - Anuradha S. Tripathy
- Hepatitis Group, ICMR-National Institute of Virology, Pune, 130/1, Sus Road, Pashan, Pune, Maharashtra 411021 India
| |
Collapse
|
7
|
Quantitative Flow Cytometry to Measure Viral Production Using Infectious Pancreatic Necrosis Virus as a Model: A Preliminary Study. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8101734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In recent decades, flow cytometry (FCM) has become an important tool in virology, due to its applications in viral replication and viral-cell interactions, as well as its capacity to quantify proteins (qFCM). In the present study, we have designed and evaluated a qFCM procedure for the in vitro analysis and quantification of fish viral proteins, using the infectious pancreatic necrosis virus (IPNV) as a model. We have also tested its use for viral titration and adapted the MARIS (method for analysing RNA following intracellular sorting) method for simultaneous quantification of viral RNA expression in infected cells. The procedure has proved to be repeatable and reproducible to an acceptable level, although to ensure reproducibility, the repetition of standard curves is inevitable. Regarding its use for viral quantification, a direct relationship (by a second-degree polynomial regression) between viral titres and Molecules of Equivalent Soluble Fluorochrome (MESF) was observed. Finally, the results support the use of this technology, not only for virus quantification, but also to study viral replication from a quantitative approach.
Collapse
|
8
|
Vazquez D, López-Vázquez C, Cutrín JM, Dopazo CP. A novel procedure of quantitation of virus based on microflow cytometry analysis. Appl Microbiol Biotechnol 2016; 100:2347-54. [DOI: 10.1007/s00253-015-7228-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 12/02/2015] [Accepted: 12/05/2015] [Indexed: 11/27/2022]
|
9
|
Pathophysiologic and transcriptomic analyses of viscerotropic yellow fever in a rhesus macaque model. PLoS Negl Trop Dis 2014; 8:e3295. [PMID: 25412185 PMCID: PMC4238990 DOI: 10.1371/journal.pntd.0003295] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/24/2014] [Indexed: 11/19/2022] Open
Abstract
Infection with yellow fever virus (YFV), an explosively replicating flavivirus, results in viral hemorrhagic disease characterized by cardiovascular shock and multi-organ failure. Unvaccinated populations experience 20 to 50% fatality. Few studies have examined the pathophysiological changes that occur in humans during YFV infection due to the sporadic nature and remote locations of outbreaks. Rhesus macaques are highly susceptible to YFV infection, providing a robust animal model to investigate host-pathogen interactions. In this study, we characterized disease progression as well as alterations in immune system homeostasis, cytokine production and gene expression in rhesus macaques infected with the virulent YFV strain DakH1279 (YFV-DakH1279). Following infection, YFV-DakH1279 replicated to high titers resulting in viscerotropic disease with ∼72% mortality. Data presented in this manuscript demonstrate for the first time that lethal YFV infection results in profound lymphopenia that precedes the hallmark changes in liver enzymes and that although tissue damage was noted in liver, kidneys, and lymphoid tissues, viral antigen was only detected in the liver. These observations suggest that additional tissue damage could be due to indirect effects of viral replication. Indeed, circulating levels of several cytokines peaked shortly before euthanasia. Our study also includes the first description of YFV-DakH1279-induced changes in gene expression within peripheral blood mononuclear cells 3 days post-infection prior to any clinical signs. These data show that infection with wild type YFV-DakH1279 or live-attenuated vaccine strain YFV-17D, resulted in 765 and 46 differentially expressed genes (DEGs), respectively. DEGs detected after YFV-17D infection were mostly associated with innate immunity, whereas YFV-DakH1279 infection resulted in dysregulation of genes associated with the development of immune response, ion metabolism, and apoptosis. Therefore, WT-YFV infection is associated with significant changes in gene expression that are detectable before the onset of clinical symptoms and may influence disease progression and outcome of infection. Yellow fever virus causes ∼200,000 infections and 30,000 deaths annually in Africa and South America. Although this is an important human pathogen, the basis of yellow fever disease severity remains poorly understood. Rhesus macaques are susceptible to yellow fever and develop similar symptoms as severe as those observed in humans. In this study, we characterized disease progression in this model and observed a profound loss of lymphocytes that preceded the appearance of serum markers of virus-induced liver pathology. This change might provide an early indicator of fatal yellow fever. In addition, we also identified significant changes in gene expression in white blood cells that occur before any measurable disease symptoms and these genetic signatures may provide future targets for antiviral therapeutics and better diagnostics.
Collapse
|
10
|
Jonker EFF, Visser LG, Roukens AH. Advances and controversies in yellow fever vaccination. THERAPEUTIC ADVANCES IN VACCINES 2013; 1:144-52. [PMID: 24757521 PMCID: PMC3991151 DOI: 10.1177/2051013613498954] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Ever since its development in 1937, the live-attenuated 17D yellow fever (YF) vaccine has been one of the most effective vaccines available to man. In this review we highlight the major steps in the development of 17D YF vaccine. We discuss the use of neutralizing antibodies as a surrogate marker for protection, and explore the strengths and weaknesses of the current plaque reduction neutralization test (PRNT), a technique developed in the 1960s that continues to be superior to every modern test in both sensitivity and specificity. The neutralizing antibodies demonstrated by the PRNT can be detected for several decades after vaccination, possibly even for the remainder of the recipient's natural life. We review the available evidence on the duration of protection after primary vaccination, a topic that has been the subject of controversy over the last few months. For persons who are immunocompromised due to disease, medication or advancing age, the duration of protection may be shorter: they should always have their vaccine response checked by PRNT. Due to the higher risk of severe adverse events after vaccination with 17D YF in this group, the development of a new, inactivated vaccine will have substantial benefits in this population.
Collapse
Affiliation(s)
- Emile F F Jonker
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Leonardus G Visser
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Anna H Roukens
- Department of Infectious Diseases C5-P, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, the Netherlands
| |
Collapse
|