1
|
Burns MPA, Reges CR, Barnhill SW, Koehler KN, Lewis BC, Colombo AT, Felter NJ, Schaeffer PJ. Chronic cold exposure causes left ventricular hypertrophy that appears to be physiological. J Exp Biol 2024; 227:jeb247476. [PMID: 39206582 DOI: 10.1242/jeb.247476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Exposure to winter cold causes an increase in energy demands to meet the challenge of thermoregulation. In small rodents, this increase in cardiac output leads to a profound cardiac hypertrophy, 2-3 times that typically seen with exercise training. The nature of this hypertrophy and its relevance to winter mortality remains unclear. Our goal was to characterize cold-induced cardiac hypertrophy and to assess its similarity to either exercise-induced (physiological) hypertrophy or the pathological hypertrophy of hypertension. We hypothesized that cold-induced hypertrophy will most closely resemble exercise-induced hypertrophy, but be another unique pathway for physiological cardiac growth. We found that cold-induced hypertrophy was largely reversed after a return to warm temperatures. Further, metabolic rates were elevated while gene expression and mitochondrial enzyme activities indicative of pathology were absent. A gene expression panel comparing hearts of exercised and cold-exposed mice further suggests that these activities are similar, although not identical. In conclusion, we found that chronic cold led to a phenotype that most closely resembled physiological hypertrophy, with enhanced metabolic rate, without induction of fetal genes, but with decreased expression of genes associated with fatty acid oxidation, suggesting that heart failure is not a cause of winter mortality in small rodents and identifying a novel approach for the study of cardiac growth.
Collapse
Affiliation(s)
| | | | | | - Kenna N Koehler
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Brandon C Lewis
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | | | - Nick J Felter
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | | |
Collapse
|
2
|
Collins HE, Alexander BT, Care AS, Davenport MH, Davidge ST, Eghbali M, Giussani DA, Hoes MF, Julian CG, LaVoie HA, Olfert IM, Ozanne SE, Bytautiene Prewit E, Warrington JP, Zhang L, Goulopoulou S. Guidelines for assessing maternal cardiovascular physiology during pregnancy and postpartum. Am J Physiol Heart Circ Physiol 2024; 327:H191-H220. [PMID: 38758127 PMCID: PMC11380979 DOI: 10.1152/ajpheart.00055.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Maternal mortality rates are at an all-time high across the world and are set to increase in subsequent years. Cardiovascular disease is the leading cause of death during pregnancy and postpartum, especially in the United States. Therefore, understanding the physiological changes in the cardiovascular system during normal pregnancy is necessary to understand disease-related pathology. Significant systemic and cardiovascular physiological changes occur during pregnancy that are essential for supporting the maternal-fetal dyad. The physiological impact of pregnancy on the cardiovascular system has been examined in both experimental animal models and in humans. However, there is a continued need in this field of study to provide increased rigor and reproducibility. Therefore, these guidelines aim to provide information regarding best practices and recommendations to accurately and rigorously measure cardiovascular physiology during normal and cardiovascular disease-complicated pregnancies in human and animal models.
Collapse
Grants
- HL169157 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HD088590 NICHD NIH HHS
- HD083132 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- Jewish Heritage Fund for Excellence
- The Biotechnology and Biological Sciences Research Council
- P20GM103499 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- British Heart Foundation (BHF)
- R21 HD111908 NICHD NIH HHS
- Distinguished University Professor
- The Lister Insititute
- ES032920 HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)
- Canadian Insitute's of Health Research Foundation Grant
- HL149608 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- Royal Society (The Royal Society)
- U.S. Department of Defense (DOD)
- HL138181 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- MC_00014/4 UKRI | Medical Research Council (MRC)
- HD111908 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- HL163003 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- APP2002129 NHMRC Ideas Grant
- HL159865 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL131182 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL163818 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- NS103017 HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- HL143459 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL146562 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL138181 NHLBI NIH HHS
- 20CSA35320107 American Heart Association (AHA)
- RG/17/12/33167 British Heart Foundation (BHF)
- National Heart Foundation Future Leader Fellowship
- P20GM121334 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- HL146562-04S1 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL155295 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HD088590-06 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- HL147844 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- WVU SOM Synergy Grant
- R01 HL146562 NHLBI NIH HHS
- HL159447 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- ES034646-01 HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)
- HL150472 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 2021T017 Dutch Heart Foundation Dekker Grant
- R01 HL163003 NHLBI NIH HHS
- Christenson professor In Active Healthy Living
- National Heart Foundation
- Dutch Heart Foundation Dekker
- WVU SOM Synergy
- Jewish Heritage
- Department of Health | National Health and Medical Research Council (NHMRC)
- Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de recherche en santé du Canada)
Collapse
Affiliation(s)
- Helen E Collins
- University of Louisville, Louisville, Kentucky, United States
| | - Barbara T Alexander
- University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Alison S Care
- University of Adelaide, Adelaide, South Australia, Australia
| | | | | | - Mansoureh Eghbali
- University of California Los Angeles, Los Angeles, California, United States
| | | | | | - Colleen G Julian
- University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Holly A LaVoie
- University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - I Mark Olfert
- West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | | | | | - Junie P Warrington
- University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Lubo Zhang
- Loma Linda University School of Medicine, Loma Linda, California, United States
| | | |
Collapse
|
3
|
Schulman-Geltzer EB, Fulghum KL, Singhal RA, Hill BG, Collins HE. Cardiac mitochondrial metabolism during pregnancy and the postpartum period. Am J Physiol Heart Circ Physiol 2024; 326:H1324-H1335. [PMID: 38551485 DOI: 10.1152/ajpheart.00127.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
The goal of the present study was to characterize changes in mitochondrial respiration in the maternal heart during pregnancy and after birth. Timed pregnancy studies were performed in 12-wk-old female FVB/NJ mice, and cardiac mitochondria were isolated from the following groups of mice: nonpregnant (NP), midpregnancy (MP), late pregnancy (LP), and 1-wk postbirth (PB). Similar to our previous studies, we observed increased heart size during all stages of pregnancy (e.g., MP and LP) and postbirth (e.g., PB) compared with NP mice. Differential cardiac gene and protein expression analyses revealed changes in several mitochondrial transcripts at LP and PB, including several mitochondrial complex subunits and members of the Slc family, important for mitochondrial substrate transport. Respirometry revealed that pyruvate- and glutamate-supported state 3 respiration was significantly higher in PB vs. LP mitochondria, with respiratory control ratio (RCR) values higher in PB mitochondria. In addition, we found that PB mitochondria respired more avidly when given 3-hydroxybutyrate (3-OHB) than mitochondria from NP, MP, and LP hearts, with no differences in RCR. These increases in respiration in PB hearts occurred independent of changes in mitochondrial yield but were associated with higher abundance of 3-hydroxybutyrate dehydrogenase 1. Collectively, these findings suggest that, after birth, maternal cardiac mitochondria have an increased capacity to use 3-OHB, pyruvate, and glutamate as energy sources; however, increases in mitochondrial efficiency in the postpartum heart appear limited to carbohydrate and amino acid metabolism.NEW & NOTEWORTHY Few studies have detailed the physiological adaptations that occur in the maternal heart. We and others have shown that pregnancy-induced cardiac growth is associated with significant changes in cardiac metabolism. Here, we examined mitochondrial respiration and substrate preference in isolated mitochondria from the maternal heart. We show that following birth, cardiac mitochondria are "primed" to respire on carbohydrate, amino acid, and ketone bodies. However, heightened respiratory efficiency is observed only with carbohydrate and amino acid sources. These results suggest that significant changes in mitochondrial respiration occur in the maternal heart in the postpartum period.
Collapse
Affiliation(s)
- Emily B Schulman-Geltzer
- Division of Environmental Medicine, Department of Medicine, Center for Cardiometabolic ScienceChristina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky, United States
| | - Kyle L Fulghum
- Division of Environmental Medicine, Department of Medicine, Center for Cardiometabolic ScienceChristina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky, United States
| | - Richa A Singhal
- Division of Environmental Medicine, Department of Medicine, Center for Cardiometabolic ScienceChristina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky, United States
| | - Bradford G Hill
- Division of Environmental Medicine, Department of Medicine, Center for Cardiometabolic ScienceChristina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky, United States
| | - Helen E Collins
- Division of Environmental Medicine, Department of Medicine, Center for Cardiometabolic ScienceChristina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky, United States
| |
Collapse
|
4
|
Bonney EA, Lintao RCV, Zelop CM, Kammala AK, Menon R. Are fetal microchimerism and circulating fetal extracellular vesicles important links between spontaneous preterm delivery and maternal cardiovascular disease risk? Bioessays 2024; 46:e2300170. [PMID: 38359068 DOI: 10.1002/bies.202300170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
Trafficking and persistence of fetal microchimeric cells (fMCs) and circulating extracellular vesicles (EVs) have been observed in animals and humans, but their consequences in the maternal body and their mechanistic contributions to maternal physiology and pathophysiology are not yet fully defined. Fetal cells and EVs may help remodel maternal organs after pregnancy-associated changes, but the cell types and EV cargos reaching the mother in preterm pregnancies after exposure to various risk factors can be distinct from term pregnancies. As preterm delivery-associated maternal complications are rising, revisiting this topic and formulating scientific questions for future research to reduce the risk of maternal morbidities are timely. Epidemiological studies report maternal cardiovascular risk as one of the major complications after preterm delivery. This paper suggests a potential link between fMCs and circulating EVs and adverse maternal cardiovascular outcomes post-pregnancies, the underlying mechanisms, consequences, and methods for and how this link might be assessed.
Collapse
Affiliation(s)
- Elizabeth A Bonney
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA
| | - Ryan C V Lintao
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
- College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Carolyn M Zelop
- The Valley Hospital, Ridgewood, Paramus, New Jersey, USA
- Grossman School of Medicine, New York University, New York City, New York, USA
| | - Ananth Kumar Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| |
Collapse
|
5
|
Taube N, Kabir R, Ebenebe OV, Garbus H, Alam El Din SM, Illingworth E, Fitch M, Wang N, Kohr MJ. Prenatal arsenite exposure alters maternal cardiac remodeling during late pregnancy. Toxicol Appl Pharmacol 2024; 483:116833. [PMID: 38266874 PMCID: PMC10922692 DOI: 10.1016/j.taap.2024.116833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/08/2024] [Accepted: 01/21/2024] [Indexed: 01/26/2024]
Abstract
Exposure to inorganic arsenic through drinking water is widespread and has been linked to many chronic diseases, including cardiovascular disease. Arsenic exposure has been shown to alter hypertrophic signaling in the adult heart, as well as in utero offspring development. However, the effect of arsenic on maternal cardiac remodeling during pregnancy has not been studied. As such, there is a need to understand how environmental exposure contributes to adverse pregnancy-related cardiovascular events. This study seeks to understand the impact of trivalent inorganic arsenic exposure during gestation on maternal cardiac remodeling in late pregnancy, as well as offspring outcomes. C57BL/6 J mice were exposed to 0 (control), 100 or 1000 μg/L sodium arsenite (NaAsO2) beginning at embryonic day (E) 2.5 and continuing through E17.5. Maternal heart function and size were assessed via transthoracic echocardiography, gravimetric measurement, and histology. Transcript levels of hypertrophic markers were probed via qRT-PCR and confirmed by western blot. Offspring outcomes were assessed through echocardiography and gravimetric measurement. We found that maternal heart size was smaller and transcript levels of Esr1 (estrogen receptor alpha), Pgrmc1 (progesterone receptor membrane component 1) and Pgrmc2 (progesterone receptor membrane component 2) reduced during late pregnancy with exposure to 1000 μg/L iAs vs. non-exposed pregnant controls. Both 100 and 1000 μg/L iAs also reduced transcription of Nppa (atrial natriuretic peptide). Akt protein expression was also significantly reduced after 1000 μg/L iAs exposure in the maternal heart with no change in activating phosphorylation. This significant abrogation of maternal cardiac hypertrophy suggests that arsenic exposure during pregnancy can potentially contribute to cardiovascular disease. Taken together, our findings further underscore the importance of reducing arsenic exposure during pregnancy and indicate that more research is needed to assess the impact of arsenic and other environmental exposures on the maternal heart and adverse pregnancy events.
Collapse
Affiliation(s)
- Nicole Taube
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Raihan Kabir
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Obialunanma V Ebenebe
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Haley Garbus
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Sarah-Marie Alam El Din
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Emily Illingworth
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Michael Fitch
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Nadan Wang
- Cardiology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mark J Kohr
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States.
| |
Collapse
|
6
|
Schulman-Geltzer EB, Collins HE, Hill BG, Fulghum KL. Coordinated Metabolic Responses Facilitate Cardiac Growth in Pregnancy and Exercise. Curr Heart Fail Rep 2023; 20:441-450. [PMID: 37581772 PMCID: PMC10589193 DOI: 10.1007/s11897-023-00622-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/19/2023] [Indexed: 08/16/2023]
Abstract
PURPOSE OF REVIEW Pregnancy and exercise are systemic stressors that promote physiological growth of the heart in response to repetitive volume overload and maintenance of cardiac output. This type of remodeling is distinct from pathological hypertrophy and involves different metabolic mechanisms that facilitate growth; however, it remains unclear how metabolic changes in the heart facilitate growth and if these processes are similar in both pregnancy- and exercise-induced cardiac growth. RECENT FINDINGS The ability of the heart to metabolize a myriad of substrates balances cardiac demands for energy provision and anabolism. During pregnancy, coordination of hormonal status with cardiac reductions in glucose oxidation appears important for physiological growth. During exercise, a reduction in cardiac glucose oxidation also appears important for physiological growth, which could facilitate shuttling of glucose-derived carbons into biosynthetic pathways for growth. Understanding the metabolic underpinnings of physiological cardiac growth could provide insight to optimize cardiovascular health and prevent deleterious remodeling, such as that which occurs from postpartum cardiomyopathy and heart failure. This short review highlights the metabolic mechanisms known to facilitate pregnancy-induced and exercise-induced cardiac growth, both of which require changes in cardiac glucose metabolism for the promotion of growth. In addition, we mention important similarities and differences of physiological cardiac growth in these models as well as discuss current limitations in our understanding of metabolic changes that facilitate growth.
Collapse
Affiliation(s)
- Emily B Schulman-Geltzer
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Helen E Collins
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Bradford G Hill
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Kyle L Fulghum
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, KY, USA.
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
7
|
Taube N, Kabir R, Ebenebe OV, Garbus H, Din SMAE, Illingworth E, Fitch M, Wang N, Kohr MJ. Prenatal Arsenite Exposure Alters Maternal Cardiac Remodeling During Late Pregnancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.559986. [PMID: 37808684 PMCID: PMC10557683 DOI: 10.1101/2023.09.28.559986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Exposure to inorganic arsenic through drinking water is widespread and has been linked to many chronic diseases, including cardiovascular disease. Arsenic exposure has been shown to alter hypertrophic signaling in the adult heart, as well as in-utero offspring development. However, the effect of arsenic on maternal cardiac remodeling during pregnancy has not been studied. As such, there is a need to understand how environmental exposure contributes to adverse pregnancy-related cardiovascular events. This study seeks to understand the impact of trivalent inorganic arsenic exposure during gestation on maternal cardiac remodeling in late pregnancy, as well as offspring outcomes. C57BL/6J mice were exposed to 0 (control), 100 or 1000 µg/L sodium arsenite (NaAsO 2 ) beginning at embryonic day (E) 2.5 and continuing through E17.5. Maternal heart function and size were assessed via transthoracic echocardiography, gravimetric measurement, and histology. Transcript levels of hypertrophic markers were probed via qRT-PCR and confirmed by western blot. Offspring outcomes were assessed through echocardiography and gravimetric measurement. We found that exposure to 1000 µg/L iAs abrogated normal physiologic growth of the maternal heart during late pregnancy and reduced transcript levels of estrogen receptor alpha (ERα), progesterone receptor membrane component 1 (Pgrmc1) and progesterone receptor membrane component 2 (Pgrmc2). Both 100 and 1000 µg/L iAs also reduced transcription of protein kinase B (Akt) and atrial natriuretic peptide (ANP). Akt protein expression was also significantly reduced after 1000 µg/L iAs exposure in the maternal heart with no change in activating phosphorylation. This significant abrogation of maternal cardiac hypertrophy suggests that arsenic exposure during pregnancy can potentially contribute to cardiovascular disease. Taken together, our findings further underscore the importance of reducing arsenic exposure during pregnancy and indicate that more research is needed to assess the impact of arsenic and other environmental exposures on the maternal heart and adverse pregnancy events.
Collapse
|
8
|
Martin TG, Juarros MA, Leinwand LA. Regression of cardiac hypertrophy in health and disease: mechanisms and therapeutic potential. Nat Rev Cardiol 2023; 20:347-363. [PMID: 36596855 PMCID: PMC10121965 DOI: 10.1038/s41569-022-00806-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 01/05/2023]
Abstract
Left ventricular hypertrophy is a leading risk factor for cardiovascular morbidity and mortality. Although reverse ventricular remodelling was long thought to be irreversible, evidence from the past three decades indicates that this process is possible with many existing heart disease therapies. The regression of pathological hypertrophy is associated with improved cardiac function, quality of life and long-term health outcomes. However, less than 50% of patients respond favourably to most therapies, and the reversibility of remodelling is influenced by many factors, including age, sex, BMI and disease aetiology. Cardiac hypertrophy also occurs in physiological settings, including pregnancy and exercise, although in these cases, hypertrophy is associated with normal or improved ventricular function and is completely reversible postpartum or with cessation of training. Studies over the past decade have identified the molecular features of hypertrophy regression in health and disease settings, which include modulation of protein synthesis, microRNAs, metabolism and protein degradation pathways. In this Review, we summarize the evidence for hypertrophy regression in patients with current first-line pharmacological and surgical interventions. We further discuss the molecular features of reverse remodelling identified in cell and animal models, highlighting remaining knowledge gaps and the essential questions for future investigation towards the goal of designing specific therapies to promote regression of pathological hypertrophy.
Collapse
Affiliation(s)
- Thomas G Martin
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Miranda A Juarros
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Leslie A Leinwand
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA.
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
9
|
Thurstin AA, Egeli AN, Goldsmith EC, Spinale FG, LaVoie HA. Tissue inhibitor of metalloproteinase-4 deletion in mice impacts maternal cardiac function during pregnancy and postpartum. Am J Physiol Heart Circ Physiol 2023; 324:H85-H99. [PMID: 36459450 PMCID: PMC9799138 DOI: 10.1152/ajpheart.00408.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
Reversible physiological cardiac hypertrophy of the maternal heart occurs during pregnancy and involves extracellular matrix (ECM) remodeling. Previous mouse studies revealed that changes in ECM molecules accompany functional changes in the left ventricle (LV) during late pregnancy and postpartum. We evaluated the effect of global Timp4 deletion in female mice on LV functional parameters and ECM molecules during pregnancy and the postpartum period. Heart weights normalized to tibia lengths were increased in Timp4 knockout (Timp4 KO) virgin, pregnant, and postpartum day 2 mice compared with wild types. Serial echocardiography performed on pregnancy days 10, 12, and 18 and postpartum days (ppds) 2, 7, 14, 21, and 28 revealed that both wild-type and Timp4 KO mice increased end systolic and end diastolic volumes (ESV, EDV) by mid to late pregnancy compared with virgins, with EDV changes persisting through the postpartum period. When compared with wild types, Timp4 KO mice exhibited higher ejection fractions in virgins, at pregnancy days 10 and 18 and ppd2 and ppd14. High-molecular weight forms of COL1A1 and COL3A1 proteins in LV were greater in Timp4 KO virgins, and COL1A1 was higher in late pregnancy and on ppd2 compared with wild types. With exceptions, Timp4 KO mice during late pregnancy and the early postpartum period were able to maintain stroke volume similar to wild-type mice through increased ejection fraction. Although TIMP4 deletion in females exhibited altered ECM molecules, it did not adversely affect cardiac function during first pregnancies and lactation.NEW & NOTEWORTHY Pregnancy and lactation increase volume load on the heart. Defects in cardiac remodeling during pregnancy and postpartum can result in peripartum cardiomyopathy. TIMPs participate in cardiac remodeling. The present study reports the cardiac function in Timp4 knockout adult female mice during pregnancy and lactation. Timp4 knockout females at many time points have higher ejection fraction to maintain stroke volume. Global deletion of Timp4 was not detrimental to maternal heart function during first pregnancies and lactation.
Collapse
Affiliation(s)
- Ashley A Thurstin
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Allison N Egeli
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Edie C Goldsmith
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Francis G Spinale
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Holly A LaVoie
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| |
Collapse
|
10
|
Trager LE, Lyons M, Kuznetsov A, Sheffield C, Roh K, Freeman R, Rhee J, Guseh JS, Li H, Rosenzweig A. Beyond cardiomyocytes: Cellular diversity in the heart's response to exercise. JOURNAL OF SPORT AND HEALTH SCIENCE 2022:S2095-2546(22)00125-9. [PMID: 36549585 PMCID: PMC10362490 DOI: 10.1016/j.jshs.2022.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/24/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Cardiomyocytes comprise ∼70% to 85% of the total volume of the adult mammalian heart but only about 25% to 35% of its total number of cells. Advances in single cell and single nuclei RNA sequencing have greatly facilitated investigation into and increased appreciation of the potential functions of non-cardiomyocytes in the heart. While much of this work has focused on the relationship between non-cardiomyocytes, disease, and the heart's response to pathological stress, it will also be important to understand the roles that these cells play in the healthy heart, cardiac homeostasis, and the response to physiological stress such as exercise. The present review summarizes recent research highlighting dynamic changes in non-cardiomyocytes in response to the physiological stress of exercise. Of particular interest are changes in fibrotic pathways, the cardiac vasculature, and immune or inflammatory cells. In many instances, limited data are available about how specific lineages change in response to exercise or whether the changes observed are functionally important, underscoring the need for further research.
Collapse
Affiliation(s)
- Lena E Trager
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; University of Minnesota Medical School, Minneapolis, MI 55455, USA
| | - Margaret Lyons
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Alexandra Kuznetsov
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Cedric Sheffield
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kangsan Roh
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Anesthesiology and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rebecca Freeman
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - James Rhee
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Anesthesiology and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - J Sawalla Guseh
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Haobo Li
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Anthony Rosenzweig
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, MI 48109, USA.
| |
Collapse
|
11
|
Fulghum KL, Smith JB, Chariker J, Garrett LF, Brittian KR, Lorkiewicz P, McNally LA, Uchida S, Jones SP, Hill BG, Collins HE. Metabolic Signatures of Pregnancy-Induced Cardiac Growth. Am J Physiol Heart Circ Physiol 2022; 323:H146-H164. [PMID: 35622533 DOI: 10.1152/ajpheart.00105.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The goal of this study was to develop an atlas of the metabolic, transcriptional, and proteomic changes that occur with pregnancy in the maternal heart. Timed pregnancy studies in FVB/NJ mice revealed significant increases in heart size by day 8 of pregnancy (mid-pregnancy; MP), which was sustained throughout the rest of the term compared with non-pregnant controls. Cardiac hypertrophy and myocyte cross-sectional area were highest 7 d after birth (post-birth; PB) and were associated with significant increases in end-diastolic and end-systolic left ventricular volumes and cardiac output. Metabolomics analyses revealed that, by day 16 of pregnancy (late pregnancy; LP), metabolites associated with nitric oxide production as well as acylcholines, sphingomyelins, and fatty acid species were elevated, which coincided with a lower activation state of phosphofructokinase and higher levels of pyruvate dehydrogenase kinase 4 (Pdk4). In the postpartum period, urea cycle metabolites, polyamines, and phospholipid levels were markedly elevated in the maternal heart. Cardiac transcriptomics in LP revealed significant increases in not only Pdk4, but also genes that regulate glutamate and ketone body oxidation, which were preceded in MP by higher expression of transcripts controlling cell proliferation and angiogenesis. Proteomics analysis of the maternal heart in LP and PB revealed significant reductions in several contractile filaments and mitochondrial complex subunits. Collectively, these findings describe the coordinated molecular changes that occur in the maternal heart during and after pregnancy.
Collapse
Affiliation(s)
- Kyle L Fulghum
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Juliette B Smith
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Julia Chariker
- KY INBRE Genomics Core, University of Louisville, Louisville, KY, United States
| | - Lauren F Garrett
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Kenneth R Brittian
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Pawel Lorkiewicz
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Lindsey A McNally
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Steven P Jones
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Bradford G Hill
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Helen E Collins
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States
| |
Collapse
|
12
|
Morciano G, Rimessi A, Patergnani S, Vitto VAM, Danese A, Kahsay A, Palumbo L, Bonora M, Wieckowski MR, Giorgi C, Pinton P. Calcium dysregulation in heart diseases: Targeting calcium channels to achieve a correct calcium homeostasis. Pharmacol Res 2022; 177:106119. [PMID: 35131483 DOI: 10.1016/j.phrs.2022.106119] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/16/2022]
Abstract
Intracellular calcium signaling is a universal language source shared by the most part of biological entities inside cells that, all together, give rise to physiological and functional anatomical units, the organ. Although preferentially recognized as signaling between cell life and death processes, in the heart it assumes additional relevance considered the importance of calcium cycling coupled to ATP consumption in excitation-contraction coupling. The concerted action of a plethora of exchangers, channels and pumps inward and outward calcium fluxes where needed, to convert energy and electric impulses in muscle contraction. All this without realizing it, thousands of times, every day. An improper function of those proteins (i.e., variation in expression, mutations onset, dysregulated channeling, differential protein-protein interactions) being part of this signaling network triggers a short circuit with severe acute and chronic pathological consequences reported as arrhythmias, cardiac remodeling, heart failure, reperfusion injury and cardiomyopathies. By acting with chemical, peptide-based and pharmacological modulators of these players, a correction of calcium homeostasis can be achieved accompanied by an amelioration of clinical symptoms. This review will focus on all those defects in calcium homeostasis which occur in the most common cardiac diseases, including myocardial infarction, arrhythmia, hypertrophy, heart failure and cardiomyopathies. This part will be introduced by the state of the art on the proteins involved in calcium homeostasis in cardiomyocytes and followed by the therapeutic treatments that to date, are able to target them and to revert the pathological phenotype.
Collapse
Affiliation(s)
- Giampaolo Morciano
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, RA, Italy.
| | - Alessandro Rimessi
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Simone Patergnani
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Veronica A M Vitto
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Alberto Danese
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Asrat Kahsay
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Laura Palumbo
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Massimo Bonora
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism. Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, RA, Italy.
| |
Collapse
|
13
|
Alizadeh Pahlavani H. Possible roles of exercise and apelin against pregnancy complications. Front Endocrinol (Lausanne) 2022; 13:965167. [PMID: 36093083 PMCID: PMC9452694 DOI: 10.3389/fendo.2022.965167] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/08/2022] [Indexed: 12/02/2022] Open
Abstract
The prevalence of maternal obesity during pregnancy is associated with the risk of gestational diabetes, preeclampsia, and cardiomyopathy. Environmental factors such as active lifestyles and apelin may lead to beneficial changes. In rats, apelin and exercise (45 to 65% VO2max for 6 to 9 weeks) during pregnancy increase brown adipose tissue (BAT) proteins such as Cidea, Elovl3, UCP1, PRDM16, and PGC-1α in males and females fetuses, while white adipose tissue (WAT) is reduced. In humans and animals, apelin and exercise stimulate the expression of the glucose transporters (GLUT1/2/4) in the muscle and adipose tissue through the PI3K/Akt and AMPK pathways. Hence, exercise and apelin may are known as regulators of energy metabolism and be anti-obesity and anti-diabetic properties. In mice, exercise also creates a short-term hypoxic environment in the pregnant mother, activating HIF-1, VEGF, and VEGFR, and increasing angiogenesis. Exercise and apelin also increase vasodilation, angiogenesis, and suppression of inflammation through the L-arginine/eNOS/NO pathway in humans. Exercise can stimulate the ACE2-Ang-(1-7)-Mas axis in parallel with inhibiting the ACE-Ang II-AT1 pathway. Exercise and apelin seem to prevent preeclampsia through these processes. In rats, moderate-intensity exercise (60 to 70% VO2max for 8 weeks) and apelin/APJ also may prevent pathological hypertrophy in pregnancy by activating the PI3K/Akt/mTOR/p70S6K pathway, PI3k-Akt-ERK1/2-p70S6K pathway, and the anti-inflammatory cytokine IL-10. Since pre-clinical studies have been more on animal models, future research with scientific guidelines should pay more attention to human specimens. In future research, time factors such as the first, second, and third trimesters of pregnancy and the intensity and duration of exercise are important variables that should be considered to determine the optimal intensity and duration of exercise.
Collapse
|
14
|
Angeloni M, Thievessen I, Engel FB, Magni P, Ferrazzi F. Functional genomics meta-analysis to identify gene set enrichment networks in cardiac hypertrophy. Biol Chem 2021; 402:953-972. [PMID: 33951759 DOI: 10.1515/hsz-2020-0378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/19/2021] [Indexed: 12/28/2022]
Abstract
In order to take advantage of the continuously increasing number of transcriptome studies, it is important to develop strategies that integrate multiple expression datasets addressing the same biological question to allow a robust analysis. Here, we propose a meta-analysis framework that integrates enriched pathways identified through the Gene Set Enrichment Analysis (GSEA) approach and calculates for each meta-pathway an empirical p-value. Validation of our approach on benchmark datasets showed comparable or even better performance than existing methods and an increase in robustness with increasing number of integrated datasets. We then applied the meta-analysis framework to 15 functional genomics datasets of physiological and pathological cardiac hypertrophy. Within these datasets we grouped expression sets measured at time points that represent the same hallmarks of heart tissue remodeling ('aggregated time points') and performed meta-analysis on the expression sets assigned to each aggregated time point. To facilitate biological interpretation, results were visualized as gene set enrichment networks. Here, our meta-analysis framework identified well-known biological mechanisms associated with pathological cardiac hypertrophy (e.g., cardiomyocyte apoptosis, cardiac contractile dysfunction, and alteration in energy metabolism). In addition, results highlighted novel, potentially cardioprotective mechanisms in physiological cardiac hypertrophy involving the down-regulation of immune cell response, which are worth further investigation.
Collapse
Affiliation(s)
- Miriam Angeloni
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Krankenhausstr. 8-10, D-91054 Erlangen, Germany
- Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Krankenhausstr. 8-10, D-91054 Erlangen, Germany
| | - Ingo Thievessen
- Biophysics Group, Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 91, D-91052 Erlangen, Germany
- Muscle Research Center Erlangen (MURCE), D-91052 Erlangen, Germany
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 12, D-91054 Erlangen, Germany
- Muscle Research Center Erlangen (MURCE), D-91052 Erlangen, Germany
| | - Paolo Magni
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, via Ferrata 5, I-27100 Pavia, Italy
| | - Fulvia Ferrazzi
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Krankenhausstr. 8-10, D-91054 Erlangen, Germany
- Muscle Research Center Erlangen (MURCE), D-91052 Erlangen, Germany
| |
Collapse
|
15
|
Chen YC, Voskoboinik A, Gerche AL, Marwick TH, McMullen JR. Prevention of Pathological Atrial Remodeling and Atrial Fibrillation: JACC State-of-the-Art Review. J Am Coll Cardiol 2021; 77:2846-2864. [PMID: 34082914 DOI: 10.1016/j.jacc.2021.04.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/07/2021] [Indexed: 12/29/2022]
Abstract
Atrial enlargement in response to pathological stimuli (e.g., hypertension, mitral valve disease) and physiological stimuli (exercise, pregnancy) can be comparable in magnitude, but the diseased enlarged atria is associated with complications such as atrial fibrillation (AF), whereas physiological atrial enlargement is not. Pathological atrial enlargement and AF is also observed in a small percentage of athletes undergoing extreme/intense endurance sport and pregnant women with preeclampsia. Differences between physiological and pathological atrial enlargement and underlying mechanisms are poorly understood. This review describes human and animal studies characterizing atrial enlargement under physiological and pathological conditions and highlights key knowledge gaps and clinical challenges, including: 1) the limited ability of atria to reverse remodel; and 2) distinguishing physiological and pathological enlargement via imaging/biomarkers. Finally, this review discusses how targeting distinct molecular mechanisms underlying physiological and pathological atrial enlargement could provide new therapeutic and diagnostic strategies for preventing or reversing atrial enlargement and AF.
Collapse
Affiliation(s)
- Yi Ching Chen
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Aleksandr Voskoboinik
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Heart Center, Alfred Hospital, Melbourne, Victoria, Australia; Department of Cardiology, Western Health, Melbourne, Victoria, Australia; Monash University, Melbourne, Victoria, Australia
| | - Andre La Gerche
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia; National Centre for Sports Cardiology, St. Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
| | - Thomas H Marwick
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Heart Center, Alfred Hospital, Melbourne, Victoria, Australia; Department of Cardiology, Western Health, Melbourne, Victoria, Australia; Monash University, Melbourne, Victoria, Australia; Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia.
| | - Julie R McMullen
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Monash University, Melbourne, Victoria, Australia; Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia; Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia.
| |
Collapse
|
16
|
Yang Y, Kurian J, Schena G, Johnson J, Kubo H, Travers JG, Kang C, Lucchese AM, Eaton DM, Lv M, Li N, Leynes LG, Yu D, Yang F, McKinsey TA, Kishore R, Khan M, Mohsin S, Houser SR. Cardiac Remodeling During Pregnancy With Metabolic Syndrome: Prologue of Pathological Remodeling. Circulation 2021; 143:699-712. [PMID: 33587660 PMCID: PMC7888689 DOI: 10.1161/circulationaha.120.051264] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/30/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND The heart undergoes physiological hypertrophy during pregnancy in healthy individuals. Metabolic syndrome (MetS) is now prevalent in women of child-bearing age and might add risks of adverse cardiovascular events during pregnancy. The present study asks if cardiac remodeling during pregnancy in obese individuals with MetS is abnormal and whether this predisposes them to a higher risk for cardiovascular disorders. METHODS The idea that MetS induces pathological cardiac remodeling during pregnancy was studied in a long-term (15 weeks) Western diet-feeding animal model that recapitulated features of human MetS. Pregnant female mice with Western diet (45% kcal fat)-induced MetS were compared with pregnant and nonpregnant females fed a control diet (10% kcal fat). RESULTS Pregnant mice fed a Western diet had increased heart mass and exhibited key features of pathological hypertrophy, including fibrosis and upregulation of fetal genes associated with pathological hypertrophy. Hearts from pregnant animals with WD-induced MetS had a distinct gene expression profile that could underlie their pathological remodeling. Concurrently, pregnant female mice with MetS showed more severe cardiac hypertrophy and exacerbated cardiac dysfunction when challenged with angiotensin II/phenylephrine infusion after delivery. CONCLUSIONS These results suggest that preexisting MetS could disrupt physiological hypertrophy during pregnancy to produce pathological cardiac remodeling that could predispose the heart to chronic disorders.
Collapse
Affiliation(s)
- Yijun Yang
- Independence Blue Cross Cardiovascular Research Center and Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Justin Kurian
- Center for Metabolic Disease and Department of Physiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Giana Schena
- Independence Blue Cross Cardiovascular Research Center and Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jaslyn Johnson
- Independence Blue Cross Cardiovascular Research Center and Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hajime Kubo
- Independence Blue Cross Cardiovascular Research Center and Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Joshua G. Travers
- Department of Medicine, Division of Cardiology, and Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Chunya Kang
- Medical University of Lublin, Lublin, Poland
| | - Anna Maria Lucchese
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Deborah M. Eaton
- Independence Blue Cross Cardiovascular Research Center and Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Maoting Lv
- Second Ultrasound Department, Cangzhou Central Hospital, Hebei, China
| | - Na Li
- Second Department of Obstetrics, Cangzhou Central Hospital, Hebei, China
| | - Lorianna G. Leynes
- Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Daohai Yu
- Department of Clinical Sciences, Lewis Katz School of Medicine at Temple University, PA, United States
| | - Fengzhen Yang
- Second Department of Obstetrics, Cangzhou Central Hospital, Hebei, China
| | - Timothy A. McKinsey
- Department of Medicine, Division of Cardiology, and Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Raj Kishore
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Mohsin Khan
- Center for Metabolic Disease and Department of Physiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Sadia Mohsin
- Independence Blue Cross Cardiovascular Research Center and Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Steven R. Houser
- Independence Blue Cross Cardiovascular Research Center and Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
17
|
Burke RM, Burgos Villar KN, Small EM. Fibroblast contributions to ischemic cardiac remodeling. Cell Signal 2021; 77:109824. [PMID: 33144186 PMCID: PMC7718345 DOI: 10.1016/j.cellsig.2020.109824] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/23/2022]
Abstract
The heart can respond to increased pathophysiological demand through alterations in tissue structure and function 1 . This process, called cardiac remodeling, is particularly evident following myocardial infarction (MI), where the blockage of a coronary artery leads to widespread death of cardiac muscle. Following MI, necrotic tissue is replaced with extracellular matrix (ECM), and the remaining viable cardiomyocytes (CMs) undergo hypertrophic growth. ECM deposition and cardiac hypertrophy are thought to represent an adaptive response to increase structural integrity and prevent cardiac rupture. However, sustained ECM deposition leads to the formation of a fibrotic scar that impedes cardiac compliance and can induce lethal arrhythmias. Resident cardiac fibroblasts (CFs) are considered the primary source of ECM molecules such as collagens and fibronectin, particularly after becoming activated by pathologic signals. CFs contribute to multiple phases of post-MI heart repair and remodeling, including the initial response to CM death, immune cell (IC) recruitment, and fibrotic scar formation. The goal of this review is to describe how resident fibroblasts contribute to the healing and remodeling that occurs after MI, with an emphasis on how fibroblasts communicate with other cell types in the healing infarct scar 1 –6 .
Collapse
Affiliation(s)
- Ryan M Burke
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, United States of America
| | - Kimberly N Burgos Villar
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Eric M Small
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, United States of America; Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, United States of America; Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, United States of America.
| |
Collapse
|
18
|
Khalilimeybodi A, Paap AM, Christiansen SLM, Saucerman JJ. Context-specific network modeling identifies new crosstalk in β-adrenergic cardiac hypertrophy. PLoS Comput Biol 2020; 16:e1008490. [PMID: 33338038 PMCID: PMC7781532 DOI: 10.1371/journal.pcbi.1008490] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/04/2021] [Accepted: 11/05/2020] [Indexed: 11/25/2022] Open
Abstract
Cardiac hypertrophy is a context-dependent phenomenon wherein a myriad of biochemical and biomechanical factors regulate myocardial growth through a complex large-scale signaling network. Although numerous studies have investigated hypertrophic signaling pathways, less is known about hypertrophy signaling as a whole network and how this network acts in a context-dependent manner. Here, we developed a systematic approach, CLASSED (Context-specific Logic-bASed Signaling nEtwork Development), to revise a large-scale signaling model based on context-specific data and identify main reactions and new crosstalks regulating context-specific response. CLASSED involves four sequential stages with an automated validation module as a core which builds a logic-based ODE model from the interaction graph and outputs the model validation percent. The context-specific model is developed by estimation of default parameters, classified qualitative validation, hybrid Morris-Sobol global sensitivity analysis, and discovery of missing context-dependent crosstalks. Applying this pipeline to our prior-knowledge hypertrophy network with context-specific data revealed key signaling reactions which distinctly regulate cell response to isoproterenol, phenylephrine, angiotensin II and stretch. Furthermore, with CLASSED we developed a context-specific model of β-adrenergic cardiac hypertrophy. The model predicted new crosstalks between calcium/calmodulin-dependent pathways and upstream signaling of Ras in the ISO-specific context. Experiments in cardiomyocytes validated the model’s predictions on the role of CaMKII-Gβγ and CaN-Gβγ interactions in mediating hypertrophic signals in ISO-specific context and revealed a difference in the phosphorylation magnitude and translocation of ERK1/2 between cardiac myocytes and fibroblasts. CLASSED is a systematic approach for developing context-specific large-scale signaling networks, yielding insights into new-found crosstalks in β-adrenergic cardiac hypertrophy. Pathological cardiac hypertrophy is a disease in which the heart grows abnormally in response to different motivators such as high blood pressure or variations in hormones and growth factors. The shape of the heart after its growth depends on the context in which it grows. Since cell signaling in the cardiac cells plays a key role in the determination of heart shape, a thorough understanding of cardiac cells signaling in each context enlightens the mechanisms which control response of cardiac cells. However, cell signaling in cardiac hypertrophy comprises a complex web of pathways with numerous interactions, and predicting how these interactions control the hypertrophic signal in each context is not achievable by only experiments or general computational models. To address this need, we developed an approach to bring together the experimental data of each context with a signaling network curated from literature to identify the main players of cardiac cells response in each context and attain the context-specific models of cardiac hypertrophy. By utilizing our approach, we identified the main regulators of cardiac hypertrophy in four important contexts. We developed a network model of β-adrenergic cardiac hypertrophy, and predicted and validated new interactions that regulate cardiac cells response in this context.
Collapse
Affiliation(s)
- Ali Khalilimeybodi
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Alexander M. Paap
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Steven L. M. Christiansen
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
19
|
Genetic-Based Hypertension Subtype Identification Using Informative SNPs. Genes (Basel) 2020; 11:genes11111265. [PMID: 33121163 PMCID: PMC7693873 DOI: 10.3390/genes11111265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 12/22/2022] Open
Abstract
In this work, we proposed a process to select informative genetic variants for identifying clinically meaningful subtypes of hypertensive patients. We studied 575 African American (AA) and 612 Caucasian hypertensive participants enrolled in the Hypertension Genetic Epidemiology Network (HyperGEN) study and analyzed each race-based group separately. All study participants underwent GWAS (Genome-Wide Association Studies) and echocardiography. We applied a variety of statistical methods and filtering criteria, including generalized linear models, F statistics, burden tests, deleterious variant filtering, and others to select the most informative hypertension-related genetic variants. We performed an unsupervised learning algorithm non-negative matrix factorization (NMF) to identify hypertension subtypes with similar genetic characteristics. Kruskal–Wallis tests were used to demonstrate the clinical meaningfulness of genetic-based hypertension subtypes. Two subgroups were identified for both African American and Caucasian HyperGEN participants. In both AAs and Caucasians, indices of cardiac mechanics differed significantly by hypertension subtypes. African Americans tend to have more genetic variants compared to Caucasians; therefore, using genetic information to distinguish the disease subtypes for this group of people is relatively challenging, but we were able to identify two subtypes whose cardiac mechanics have statistically different distributions using the proposed process. The research gives a promising direction in using statistical methods to select genetic information and identify subgroups of diseases, which may inform the development and trial of novel targeted therapies.
Collapse
|
20
|
Blackwood EA, Hofmann C, Santo Domingo M, Bilal AS, Sarakki A, Stauffer W, Arrieta A, Thuerauf DJ, Kolkhorst FW, Müller OJ, Jakobi T, Dieterich C, Katus HA, Doroudgar S, Glembotski CC. ATF6 Regulates Cardiac Hypertrophy by Transcriptional Induction of the mTORC1 Activator, Rheb. Circ Res 2019; 124:79-93. [PMID: 30582446 DOI: 10.1161/circresaha.118.313854] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Endoplasmic reticulum (ER) stress dysregulates ER proteostasis, which activates the transcription factor, ATF6 (activating transcription factor 6α), an inducer of genes that enhance protein folding and restore ER proteostasis. Because of increased protein synthesis, it is possible that protein folding and ER proteostasis are challenged during cardiac myocyte growth. However, it is not known whether ATF6 is activated, and if so, what its function is during hypertrophic growth of cardiac myocytes. OBJECTIVE To examine the activity and function of ATF6 during cardiac hypertrophy. METHODS AND RESULTS We found that ER stress and ATF6 were activated and ATF6 target genes were induced in mice subjected to an acute model of transverse aortic constriction, or to free-wheel exercise, both of which promote adaptive cardiac myocyte hypertrophy with preserved cardiac function. Cardiac myocyte-specific deletion of Atf6 (ATF6 cKO [conditional knockout]) blunted transverse aortic constriction and exercise-induced cardiac myocyte hypertrophy and impaired cardiac function, demonstrating a role for ATF6 in compensatory myocyte growth. Transcript profiling and chromatin immunoprecipitation identified RHEB (Ras homologue enriched in brain) as an ATF6 target gene in the heart. RHEB is an activator of mTORC1 (mammalian/mechanistic target of rapamycin complex 1), a major inducer of protein synthesis and subsequent cell growth. Both transverse aortic constriction and exercise upregulated RHEB, activated mTORC1, and induced cardiac hypertrophy in wild type mouse hearts but not in ATF6 cKO hearts. Mechanistically, knockdown of ATF6 in neonatal rat ventricular myocytes blocked phenylephrine- and IGF1 (insulin-like growth factor 1)-mediated RHEB induction, mTORC1 activation, and myocyte growth, all of which were restored by ectopic RHEB expression. Moreover, adeno-associated virus 9- RHEB restored cardiac growth to ATF6 cKO mice subjected to transverse aortic constriction. Finally, ATF6 induced RHEB in response to growth factors, but not in response to other activators of ATF6 that do not induce growth, indicating that ATF6 target gene induction is stress specific. CONCLUSIONS Compensatory cardiac hypertrophy activates ER stress and ATF6, which induces RHEB and activates mTORC1. Thus, ATF6 is a previously unrecognized link between growth stimuli and mTORC1-mediated cardiac growth.
Collapse
Affiliation(s)
- Erik A Blackwood
- From the Department of Biology, San Diego State University Heart Institute, San Diego State University, CA (E.A.B., C.H., M.S.D., A.S.B., A.S., W.S., A.A., D.J.T., F.W.K., C.C.G.)
| | - Christoph Hofmann
- From the Department of Biology, San Diego State University Heart Institute, San Diego State University, CA (E.A.B., C.H., M.S.D., A.S.B., A.S., W.S., A.A., D.J.T., F.W.K., C.C.G.).,Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, Germany (C.H., O.J.M., H.A.K., S.D.).,German Centre for Cardiovascular Research, Partner Site Heidelberg (C.H., O.J.M., T.J., C.D., H.A.K., S.D.)
| | - Michelle Santo Domingo
- From the Department of Biology, San Diego State University Heart Institute, San Diego State University, CA (E.A.B., C.H., M.S.D., A.S.B., A.S., W.S., A.A., D.J.T., F.W.K., C.C.G.)
| | - Alina S Bilal
- From the Department of Biology, San Diego State University Heart Institute, San Diego State University, CA (E.A.B., C.H., M.S.D., A.S.B., A.S., W.S., A.A., D.J.T., F.W.K., C.C.G.)
| | - Anup Sarakki
- From the Department of Biology, San Diego State University Heart Institute, San Diego State University, CA (E.A.B., C.H., M.S.D., A.S.B., A.S., W.S., A.A., D.J.T., F.W.K., C.C.G.)
| | - Winston Stauffer
- From the Department of Biology, San Diego State University Heart Institute, San Diego State University, CA (E.A.B., C.H., M.S.D., A.S.B., A.S., W.S., A.A., D.J.T., F.W.K., C.C.G.)
| | - Adrian Arrieta
- From the Department of Biology, San Diego State University Heart Institute, San Diego State University, CA (E.A.B., C.H., M.S.D., A.S.B., A.S., W.S., A.A., D.J.T., F.W.K., C.C.G.)
| | - Donna J Thuerauf
- From the Department of Biology, San Diego State University Heart Institute, San Diego State University, CA (E.A.B., C.H., M.S.D., A.S.B., A.S., W.S., A.A., D.J.T., F.W.K., C.C.G.)
| | - Fred W Kolkhorst
- From the Department of Biology, San Diego State University Heart Institute, San Diego State University, CA (E.A.B., C.H., M.S.D., A.S.B., A.S., W.S., A.A., D.J.T., F.W.K., C.C.G.)
| | - Oliver J Müller
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, Germany (C.H., O.J.M., H.A.K., S.D.).,German Centre for Cardiovascular Research, Partner Site Heidelberg (C.H., O.J.M., T.J., C.D., H.A.K., S.D.).,Department of Internal Medicine III, University of Kiel, Germany, and German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany (O.J.M.)
| | - Tobias Jakobi
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, Germany (C.H., O.J.M., H.A.K., S.D.).,German Centre for Cardiovascular Research, Partner Site Heidelberg (C.H., O.J.M., T.J., C.D., H.A.K., S.D.).,Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III, University Hospital Heidelberg, Germany (T.J., C.D.)
| | - Christoph Dieterich
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, Germany (C.H., O.J.M., H.A.K., S.D.).,German Centre for Cardiovascular Research, Partner Site Heidelberg (C.H., O.J.M., T.J., C.D., H.A.K., S.D.).,Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III, University Hospital Heidelberg, Germany (T.J., C.D.)
| | - Hugo A Katus
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, Germany (C.H., O.J.M., H.A.K., S.D.).,German Centre for Cardiovascular Research, Partner Site Heidelberg (C.H., O.J.M., T.J., C.D., H.A.K., S.D.)
| | - Shirin Doroudgar
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, Germany (C.H., O.J.M., H.A.K., S.D.).,German Centre for Cardiovascular Research, Partner Site Heidelberg (C.H., O.J.M., T.J., C.D., H.A.K., S.D.)
| | - Christopher C Glembotski
- From the Department of Biology, San Diego State University Heart Institute, San Diego State University, CA (E.A.B., C.H., M.S.D., A.S.B., A.S., W.S., A.A., D.J.T., F.W.K., C.C.G.)
| |
Collapse
|
21
|
Abstract
Metabolic pathways integrate to support tissue homeostasis and to prompt changes in cell phenotype. In particular, the heart consumes relatively large amounts of substrate not only to regenerate ATP for contraction but also to sustain biosynthetic reactions for replacement of cellular building blocks. Metabolic pathways also control intracellular redox state, and metabolic intermediates and end products provide signals that prompt changes in enzymatic activity and gene expression. Mounting evidence suggests that the changes in cardiac metabolism that occur during development, exercise, and pregnancy as well as with pathological stress (eg, myocardial infarction, pressure overload) are causative in cardiac remodeling. Metabolism-mediated changes in gene expression, metabolite signaling, and the channeling of glucose-derived carbon toward anabolic pathways seem critical for physiological growth of the heart, and metabolic inefficiency and loss of coordinated anabolic activity are emerging as proximal causes of pathological remodeling. This review integrates knowledge of different forms of cardiac remodeling to develop general models of how relationships between catabolic and anabolic glucose metabolism may fortify cardiac health or promote (mal)adaptive myocardial remodeling. Adoption of conceptual frameworks based in relational biology may enable further understanding of how metabolism regulates cardiac structure and function.
Collapse
Affiliation(s)
- Andrew A Gibb
- From the Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (A.A.G.)
| | - Bradford G Hill
- the Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville School of Medicine, KY (B.G.H.).
| |
Collapse
|
22
|
Matrix Metalloproteinases System and Types of Fibrosis in Rat Heart during Late Pregnancy and Postpartum. ACTA ACUST UNITED AC 2019; 55:medicina55050199. [PMID: 31126142 PMCID: PMC6571987 DOI: 10.3390/medicina55050199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/28/2019] [Accepted: 05/20/2019] [Indexed: 11/25/2022]
Abstract
Background and objectives: Cardiac remodeling in pregnancy and postpartum is poorly understood. The aim of this study was to evaluate changes in cardiac fibrosis (pericardial, perivascular, and interstitial), as well as the expression of matrix metalloproteinases (MMP-1, MMP-2, and MMP-9) and their inhibitors (Tissue inhibitors of metalloproteinases, TIMP-1 and TIMP-4) during late pregnancy and postpartum in rat left ventricle. Materials and Methods: Female Sprague–Dawley rats were used for this study. Rats were divided three groups: non-pregnant, late pregnancy, and postpartum. The heart was weighed and cardiac fibrosis was studied by conventional histological procedures. The expression and transcript level of target proteins were evaluated using immunoblot techniques and quantitative PCR. Results: The experiments showed an increase of perivascular, pericardial, and interstitial fibrosis in heart during pregnancy and its reversion in postpartum. Moreover, in late pregnancy, MMP-1, MMP-2, and MMP-9 metalloproteinases were downregulated and TIMP-1 and TIMP-4 were upregulated in left ventricle. Conclusions: Our data suggest that the metalloproteinases system is involved in the cardiac extracellular matrix remodeling during pregnancy and its reversion in postpartum, this improves the knowledge of the adaptive cardiac remodeling in response to a blood volume overload present during pregnancy.
Collapse
|
23
|
Cardiac adaptation to exercise training in health and disease. Pflugers Arch 2019; 472:155-168. [PMID: 31016384 DOI: 10.1007/s00424-019-02266-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 02/08/2023]
Abstract
The heart is the primary pump that circulates blood through the entire cardiovascular system, serving many important functions in the body. Exercise training provides favorable anatomical and physiological changes that reduce the risk of heart disease and failure. Compared with pathological cardiac hypertrophy, exercise-induced physiological cardiac hypertrophy leads to an improvement in heart function. Exercise-induced cardiac remodeling is associated with gene regulatory mechanisms and cellular signaling pathways underlying cellular, molecular, and metabolic adaptations. Exercise training also promotes mitochondrial biogenesis and oxidative capacity leading to a decrease in cardiovascular disease. In this review, we summarized the exercise-induced adaptation in cardiac structure and function to understand cellular and molecular signaling pathways and mechanisms in preclinical and clinical trials.
Collapse
|
24
|
Parrott ME, Aljrbi E, Biederman DL, Montalvo RN, Barth JL, LaVoie HA. Maternal cardiac messenger RNA expression of extracellular matrix proteins in mice during pregnancy and the postpartum period. Exp Biol Med (Maywood) 2018; 243:1220-1232. [PMID: 30541349 PMCID: PMC6384446 DOI: 10.1177/1535370218818457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/20/2018] [Indexed: 11/17/2022] Open
Abstract
IMPACT STATEMENT This study provides the first comprehensive analysis of extracellular matrix protein (ECM) gene expression combined with echocardiographic analyses of heart functional parameters in the murine heart during pregnancy and the early postpartum period. Our findings show regulation of all Timp, selected Mmps, and Col1a1, Col3a1, and Col8a1 mRNA levels with reproductive status, with the greatest number of significant changes occurring in the early postpartum period. Left ventricle cardiac diastolic parameters were the first to change during pregnancy and remained elevated postpartum, whereas systolic parameters were increased in late pregnancy and began to recover during the first week postpartum. These novel findings indicate that although some ECM genes are elevated during late pregnancy, that the postpartum period is a time of robust altered ECM gene expression. These studies provide a basis for examining ECM proteins and their activities in the normal pregnant and postpartum heart and in models of postpartum cardiomyopathy.
Collapse
Affiliation(s)
- Megan E Parrott
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Esam Aljrbi
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Diane L Biederman
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Ryan N Montalvo
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Jeremy L Barth
- MUSC Proteogenomics Facility, Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Holly A LaVoie
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| |
Collapse
|
25
|
Bernardo BC, Ooi JYY, Weeks KL, Patterson NL, McMullen JR. Understanding Key Mechanisms of Exercise-Induced Cardiac Protection to Mitigate Disease: Current Knowledge and Emerging Concepts. Physiol Rev 2018; 98:419-475. [PMID: 29351515 DOI: 10.1152/physrev.00043.2016] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The benefits of exercise on the heart are well recognized, and clinical studies have demonstrated that exercise is an intervention that can improve cardiac function in heart failure patients. This has led to significant research into understanding the key mechanisms responsible for exercise-induced cardiac protection. Here, we summarize molecular mechanisms that regulate exercise-induced cardiac myocyte growth and proliferation. We discuss in detail the effects of exercise on other cardiac cells, organelles, and systems that have received less or little attention and require further investigation. This includes cardiac excitation and contraction, mitochondrial adaptations, cellular stress responses to promote survival (heat shock response, ubiquitin-proteasome system, autophagy-lysosomal system, endoplasmic reticulum unfolded protein response, DNA damage response), extracellular matrix, inflammatory response, and organ-to-organ crosstalk. We summarize therapeutic strategies targeting known regulators of exercise-induced protection and the challenges translating findings from bench to bedside. We conclude that technological advancements that allow for in-depth profiling of the genome, transcriptome, proteome and metabolome, combined with animal and human studies, provide new opportunities for comprehensively defining the signaling and regulatory aspects of cell/organelle functions that underpin the protective properties of exercise. This is likely to lead to the identification of novel biomarkers and therapeutic targets for heart disease.
Collapse
Affiliation(s)
- Bianca C Bernardo
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| | - Jenny Y Y Ooi
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| | - Kate L Weeks
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| | - Natalie L Patterson
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| | - Julie R McMullen
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| |
Collapse
|
26
|
Shoieb SM, El-Kadi AOS. S-Enantiomer of 19-Hydroxyeicosatetraenoic Acid Preferentially Protects Against Angiotensin II-Induced Cardiac Hypertrophy. Drug Metab Dispos 2018; 46:1157-1168. [DOI: 10.1124/dmd.118.082073] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/29/2018] [Indexed: 12/20/2022] Open
|
27
|
Chung E, Haizlip KM, Leinwand LA. Pregnancy late in rodent life has detrimental effects on the heart. Am J Physiol Heart Circ Physiol 2018; 315:H482-H491. [PMID: 29750565 DOI: 10.1152/ajpheart.00020.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
During pregnancy, the heart undergoes significant and numerous changes, including hypertrophy, that are usually described as physiological and reversible. Two aspects of the cardiac response to pregnancy are relatively understudied: advanced maternal age and multiple pregnancies (multiparity). Repeated breeder (RB) mice that have undergone five to seven consecutive pregnancies were euthanized 21 days after the weaning of their last pups and compared with age-matched primiparous, one-time pregnant (O1P) mice. The ages of the older mouse groups were similar (12 ± 1 mo). Pregnancy at a later age resulted in reduced fertility (40%); resorption was 29%, maternal mortality was 10%, and mortality of the pups was 17%. Contractile function as indicated by percent fractional shortening was significantly decreased in O1P and RB groups compared with the old nonpregnant control (ONP) group. There was no pathological induction of the fetal program of gene expression, with the exception of β-myosin heavy chain mRNA, which was induced in O1P compared with ONP mice ( P < 0.05) but not in RB mice. MicroRNA-208a was significantly increased in O1P compared with ONP mice ( P < 0.05) but significantly decreased in RB compared with ONP mice ( P < 0.05). mRNA of genes regulating angiogenesis (i.e., vascular endothelial growth factor-A) were significantly downregulated, whereas proinflammatory genes [i.e., interleukin-6, chemokine (C-C motif) ligand 2, and Cd36] were significantly upregulated in O1P ( P < 0.05) but not in RB mice. Overall, our results suggest that rather than multiparity, pregnancy in advanced age is a much more stressful event in both pregnant dams and fetuses, as evidenced by increased mortality, lower fertility, downregulation of angiogenesis, upregulation of inflammation, and cardiac dysfunction. NEW & NOTEWORTHY Pregnancy in older mice significantly decreases cardiac function, although repeated breeder mice demonstrated increased wall hypertrophy and dilated chamber size compared with one-time pregnant mice. Interestingly, many of the molecular changes were altered in one-time pregnant mice but not in repeated breeder mice, which may contribute to adverse pregnancy outcomes in a first pregnancy at a later age.
Collapse
Affiliation(s)
- Eunhee Chung
- Department of Kinesiology, Health, and Nutrition, University of Texas at San Antonio , San Antonio, Texas
| | - Kaylan M Haizlip
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado , Boulder, Colorado
| | - Leslie A Leinwand
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado , Boulder, Colorado
| |
Collapse
|
28
|
Vega RB, Konhilas JP, Kelly DP, Leinwand LA. Molecular Mechanisms Underlying Cardiac Adaptation to Exercise. Cell Metab 2017; 25:1012-1026. [PMID: 28467921 PMCID: PMC5512429 DOI: 10.1016/j.cmet.2017.04.025] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/13/2017] [Accepted: 04/18/2017] [Indexed: 02/06/2023]
Abstract
Exercise elicits coordinated multi-organ responses including skeletal muscle, vasculature, heart, and lung. In the short term, the output of the heart increases to meet the demand of strenuous exercise. Long-term exercise instigates remodeling of the heart including growth and adaptive molecular and cellular re-programming. Signaling pathways such as the insulin-like growth factor 1/PI3K/Akt pathway mediate many of these responses. Exercise-induced, or physiologic, cardiac growth contrasts with growth elicited by pathological stimuli such as hypertension. Comparing the molecular and cellular underpinnings of physiologic and pathologic cardiac growth has unveiled phenotype-specific signaling pathways and transcriptional regulatory programs. Studies suggest that exercise pathways likely antagonize pathological pathways, and exercise training is often recommended for patients with chronic stable heart failure or following myocardial infarction. Herein, we summarize the current understanding of the structural and functional cardiac responses to exercise as well as signaling pathways and downstream effector molecules responsible for these adaptations.
Collapse
Affiliation(s)
- Rick B Vega
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA
| | - John P Konhilas
- Department of Physiology, Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85724, USA
| | - Daniel P Kelly
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA
| | - Leslie A Leinwand
- Molecular, Cellular and Developmental Biology, BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
29
|
Xu H, van Deel ED, Johnson MR, Opić P, Herbert BR, Moltzer E, Sooranna SR, van Beusekom H, Zang WF, Duncker DJ, Roos-Hesselink JW. Pregnancy mitigates cardiac pathology in a mouse model of left ventricular pressure overload. Am J Physiol Heart Circ Physiol 2016; 311:H807-14. [PMID: 27371681 DOI: 10.1152/ajpheart.00056.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/27/2016] [Indexed: 02/05/2023]
Abstract
In Western countries heart disease is the leading cause of maternal death during pregnancy. The effect of pregnancy on the heart is difficult to study in patients with preexisting heart disease. Since experimental studies are scarce, we investigated the effect of pressure overload, produced by transverse aortic constriction (TAC) in mice, on the ability to conceive, pregnancy outcome, and maternal cardiac structure and function. Four weeks of TAC produced left ventricular (LV) hypertrophy and dysfunction with marked interstitial fibrosis, decreased capillary density, and induced pathological cardiac gene expression. Pregnancy increased relative LV and right ventricular weight without affecting the deterioration of LV function following TAC. Surprisingly, the TAC-induced increase in relative heart and lung weight was mitigated by pregnancy, which was accompanied by a trend towards normalization of capillary density and natriuretic peptide type A expression. Additionally, the combination of pregnancy and TAC increased the cardiac phosphorylation of c-Jun, and STAT1, but reduced phosphoinositide 3-kinase phosphorylation. Finally, TAC did not significantly affect conception rate, pregnancy duration, uterus size, litter size, and pup weight. In conclusion, we found that, rather than exacerbating the changes associated with cardiac pressure overload, pregnancy actually attenuated pathological LV remodeling and mitigated pulmonary congestion, and pathological gene expression produced by TAC, suggesting a positive effect of pregnancy on the pressure-overloaded heart.
Collapse
Affiliation(s)
- Hong Xu
- Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, The Netherlands; Department of Cardiac Surgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, Peoples Republic of China
| | - Elza D van Deel
- Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Mark R Johnson
- Academic Department of Obstetrics and Gynaecology, Imperial College London, Chelsea and Westminster Hospital, United Kingdom; and
| | - Petra Opić
- Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Bronwen R Herbert
- Academic Department of Obstetrics and Gynaecology, Imperial College London, Chelsea and Westminster Hospital, United Kingdom; and
| | - Els Moltzer
- Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, The Netherlands; Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Suren R Sooranna
- Academic Department of Obstetrics and Gynaecology, Imperial College London, Chelsea and Westminster Hospital, United Kingdom; and
| | - Heleen van Beusekom
- Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Wang-Fu Zang
- Department of Cardiac Surgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, Peoples Republic of China
| | - Dirk J Duncker
- Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Jolien W Roos-Hesselink
- Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, The Netherlands;
| |
Collapse
|
30
|
Chung E, Kim Y, Usen O. Associations Between Parity, Obesity, and Cardiovascular Risk Factors Among Middle-Aged Women. J Womens Health (Larchmt) 2016; 25:818-25. [PMID: 26886718 DOI: 10.1089/jwh.2015.5581] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Several studies have demonstrated an association between parity and the risk of developing cardiovascular disease (CVD) in middle-aged women; however, some inconsistencies still remain in the literature after accounting for obesity. The purpose of this study was to examine the association between parity and the risk factors of CVD while accounting for current obesity status in middle-aged women. METHOD Data for this study came from the National Health and Nutrition Examination Survey 2007-2012. The final analytic sample included 2024 middle-aged women (40-60 years old). General linear models predicting CVD risk factors based on parity (nulliparous, 1, 2, 3, and ≥4) were established after controlling for study covariates. Least square adjusted means of CVD risk factors and associated 95% confidence intervals were estimated across parity and body mass index (BMI) levels. RESULTS Women with ≥4 parity (8.34%; standard error [SE] = 0.84) showed significantly distinct demographic characteristics and health conditions, including obesity (49.08%; SE = 3.55). There were no significant associations between parity and CVD risk factors after controlling for covariates. Follow-up analyses showed consistent results across parity; however, CVD risk factors were significantly increased with higher BMI levels, regardless of parity status. CONCLUSIONS Our results suggest that parity is not a significant predictor of CVD risk factors in middle-aged women, whereas current overweight or obesity status is more important when explaining the risk of the development of CVD.
Collapse
Affiliation(s)
- Eunhee Chung
- Department of Kinesiology and Sport Management, Texas Tech University , Lubbock, Texas
| | - Youngdeok Kim
- Department of Kinesiology and Sport Management, Texas Tech University , Lubbock, Texas
| | - Oduware Usen
- Department of Kinesiology and Sport Management, Texas Tech University , Lubbock, Texas
| |
Collapse
|
31
|
Pregnancy differentially regulates the collagens types I and III in left ventricle from rat heart. BIOMED RESEARCH INTERNATIONAL 2014; 2014:984785. [PMID: 25147829 PMCID: PMC4131467 DOI: 10.1155/2014/984785] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 01/19/2023]
Abstract
The pathologic cardiac remodeling has been widely documented; however, the physiological cardiac remodeling induced by pregnancy and its reversion in postpartum are poorly understood. In the present study we investigated the changes in collagen I (Col I) and collagen III (Col III) mRNA and protein levels in left ventricle from rat heart during pregnancy and postpartum. Col I and Col III mRNA expression in left ventricle samples during pregnancy and postpartum were analyzed by using quantitative PCR. Data obtained from gene expression show that Col I and Col III in left ventricle are upregulated during pregnancy with reversion in postpartum. In contrast to gene expression, the protein expression evaluated by western blot showed that Col I is downregulated and Col III is upregulated in left ventricle during pregnancy. In conclusion, the pregnancy differentially regulates collagens types I and III in heart; this finding could be an important molecular mechanism that regulates the ventricular stiffness in response to blood volume overload present during pregnancy which is reversed in postpartum.
Collapse
|
32
|
Chung E, Leinwand LA. Pregnancy as a cardiac stress model. Cardiovasc Res 2014; 101:561-70. [PMID: 24448313 PMCID: PMC3941597 DOI: 10.1093/cvr/cvu013] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/28/2013] [Accepted: 12/08/2013] [Indexed: 02/07/2023] Open
Abstract
Cardiac hypertrophy occurs during pregnancy as a consequence of both volume overload and hormonal changes. Both pregnancy- and exercise-induced cardiac hypertrophy are generally thought to be similar and physiological. Despite the fact that there are shared transcriptional responses in both forms of cardiac adaptation, pregnancy results in a distinct signature of gene expression in the heart. In some cases, however, pregnancy can induce adverse cardiac events in previously healthy women without any known cardiovascular disease. Peripartum cardiomyopathy is the leading cause of non-obstetric mortality during pregnancy. To understand how pregnancy can cause heart disease, it is first important to understand cardiac adaptation during normal pregnancy. This review provides an overview of the cardiac consequences of pregnancy, including haemodynamic, functional, structural, and morphological adaptations, as well as molecular phenotypes. In addition, this review describes the signalling pathways responsible for pregnancy-induced cardiac hypertrophy and angiogenesis. We also compare and contrast cardiac adaptation in response to disease, exercise, and pregnancy. The comparisons of these settings of cardiac hypertrophy provide insight into pregnancy-associated cardiac adaptation.
Collapse
Affiliation(s)
- Eunhee Chung
- Department of Health, Exercise, and Sport Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Leslie A. Leinwand
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
33
|
Xiao J, Li J, Xu T, Lv D, Shen B, Song Y, Xu J. Pregnancy-induced physiological hypertrophy protects against cardiac ischemia-reperfusion injury. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2013; 7:229-235. [PMID: 24427343 PMCID: PMC3885477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 12/15/2013] [Indexed: 06/03/2023]
Abstract
OBJECTIVE Cardiac hypertrophy is a compensatory response of the heart to maintain its pumping capacity. Cardiac hypertrophy can be divided into pathological hypertrophy and physiological hypertrophy. The major forms of physiological hypertrophy include developing in response to developmental maturation, exercise, and pregnancy, which is adaptive and beneficial. Exercise has well-known beneficial cardiovascular effects and has recently been shown to be protective for myocardial ischemia-reperfusion injury. However, there are conflicting reports for the cardiac protective effects of pregnancy-induced hypertrophy. In the present study, we investigated the effects of pregnancy-induced physiological hypertrophy in cardiac ischemia-reperfusion injury and if cardiac progenitor cells were activated during pregnancy. METHODS Physiological hypertrophy was induced in pregnancy and the mRNA levels of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) were determined by real-time polymerase chain reactions (RT-PCRs) analysis. Triphenyltetrazolium chloride staining was used to determine the cardiac ischemia-reperfusion injury. c-Kit and Nkx2.5 levels were determined by RT-PCRs, western blot and immunofluorescent staining. RESULTS Heart weight (HW) and the ratio of HW to tibia length were increased while mRNA levels of ANP and BNP remained unchanged. Pregnancy-induced physiological hypertrophy protected against cardiac ischemia-reperfusion injury. In pregnancy, c-Kit positive cardiac progenitor cells were activated. CONCLUSION This study presents that pregnancy-induced physiological hypertrophy activates cardiac progenitor cells and thereafter protects against cardiac ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Junjie Xiao
- Regeneration Lab and Experimental Center of Life Sciences, Shanghai UniversityShanghai 200444, China
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Science, Shanghai UniversityShanghai 200444, China
| | - Jin Li
- Regeneration Lab and Experimental Center of Life Sciences, Shanghai UniversityShanghai 200444, China
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Science, Shanghai UniversityShanghai 200444, China
| | - Tianzao Xu
- Regeneration Lab and Experimental Center of Life Sciences, Shanghai UniversityShanghai 200444, China
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Science, Shanghai UniversityShanghai 200444, China
| | - Dongcao Lv
- Regeneration Lab and Experimental Center of Life Sciences, Shanghai UniversityShanghai 200444, China
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Science, Shanghai UniversityShanghai 200444, China
| | - Bo Shen
- Shanghai Entry-Exit Inspection and Quarantine BureauShanghai 200135, China
| | - Yang Song
- Tongji University School of MedicineShanghai 200065, China
| | - Jiahong Xu
- Department of Cardiology, Shanghai Tongji Hospital, Tongji University School of MedicineShanghai 200065, China
| |
Collapse
|
34
|
Chung E, Yeung F, Leinwand LA. Calcineurin activity is required for cardiac remodelling in pregnancy. Cardiovasc Res 2013; 100:402-10. [PMID: 23985902 PMCID: PMC3826703 DOI: 10.1093/cvr/cvt208] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 08/12/2013] [Accepted: 08/20/2013] [Indexed: 11/14/2022] Open
Abstract
AIMS Calcium fluctuations and cardiac hypertrophy occur during pregnancy, but the role of the well-studied calcium-activated phosphatase, calcineurin, has not been studied in this setting. The purpose of this study was to determine whether calcineurin signalling is required for cardiac remodelling during pregnancy in mice. METHODS AND RESULTS We first examined calcineurin expression in the heart of mice during pregnancy. We found both calcineurin levels and activity were significantly increased in early-pregnancy and decreased in late-pregnancy. Since progesterone levels start to rise in early-pregnancy, we investigated whether progesterone alone was sufficient to modulate calcineurin levels in vivo. After implantation of progesterone pellets in non-pregnant female mice, cardiac mass increased, whereas cardiac function was maintained. In addition, calcineurin levels increased, which is also consistent with early-pregnancy. To determine whether these effects were occurring in the cardiac myocytes, we treated neonatal rat ventricular myocytes (NRVMs) with pregnancy-associated sex hormones. We found that progesterone treatment, but not oestradiol, increased calcineurin levels. To obtain a functional read-out of increased calcineurin activity, we measured the activity of the transcription factor NFAT, a downstream target of calcineurin. Progesterone treatment significantly increased NFAT activity in NRVMs, and this was blocked by the calcineurin inhibitor cyclosporine A (CsA), showing that the progesterone-mediated increase in NFAT activity requires calcineurin activity. Importantly, CsA treatment of mice completely blocked pregnancy-induced cardiac hypertrophy. CONCLUSION Our results show that calcineurin is required for pregnancy-induced cardiac hypertrophy, and that calcineurin activity in early-pregnancy is due at least in part to increased progesterone.
Collapse
MESH Headings
- Animals
- Calcineurin/metabolism
- Calcineurin Inhibitors
- Cells, Cultured
- Drug Implants
- Enzyme Inhibitors/pharmacology
- Female
- Gestational Age
- Hypertrophy, Left Ventricular/enzymology
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Left Ventricular/prevention & control
- Mice
- Mice, Inbred C57BL
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/pathology
- NFATC Transcription Factors/metabolism
- Pregnancy
- Pregnancy Complications/enzymology
- Pregnancy Complications/pathology
- Pregnancy Complications/physiopathology
- Pregnancy Complications/prevention & control
- Progesterone/administration & dosage
- Progesterone/metabolism
- Rats
- Ventricular Function, Left
- Ventricular Remodeling
Collapse
Affiliation(s)
- Eunhee Chung
- Department of Molecular, Cellular, and Developmental Biology and Biofrontiers Institute, University of Colorado, Boulder, CO 80309, USA
- Department of Health, Exercise, and Sport Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Fan Yeung
- Department of Molecular, Cellular, and Developmental Biology and Biofrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - Leslie A. Leinwand
- Department of Molecular, Cellular, and Developmental Biology and Biofrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
35
|
Bernardo BC, Ooi JY, McMullen JR. The yin and yang of adaptive and maladaptive processes in heart failure. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.ddstr.2013.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|