1
|
Xie X, Huang H, Jaiswal YS, Su S, Yang L, Fan Y, Guan Y, Williams LL, Bian H. Synthesis and Anticancer Activity Assessment of Zelkovamycin Analogues. Molecules 2024; 29:4483. [PMID: 39339478 PMCID: PMC11433887 DOI: 10.3390/molecules29184483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
The zelkovamycin family is a class of cyclic octapeptides with potent antibacterial and antiviral activity. Due to their unique chemical structures and excellent bioactivity, zelkovamycins have consistently attracted the interest of synthetic chemists. However, only the total synthesis of zelkovamycin and zelkovamycin G has been reported until now. The current work presents, for the first time, the synthesis of zelkovamycin analogues, along with their anticancer activity assessment. Firstly, the corresponding chain peptide based on the amino acid sequence of zelkovamycin H was synthesized using the Fmoc solid-phase peptide strategy. This was followed by cyclization under high dilution conditions to obtain compound 21, and its structure was elucidated by NMR analysis. The results confirm that compound 21 is not the natural product of zelkovamycin H. We deduced that during the synthesis of peptide 12, the D-Abu residue epimerized to the L-Abu form, leading to the formation of peptide 20, which blocked our efforts during the synthesis of zelkovamycin H. Two more analogues, 22 and 23, were synthesized by changing the structure of amino acid residues using the same strategy. The anticancer activity of analogues 21-23 against Huh-7 cells was evaluated in vitro; however, their IC50 values were >50 μM.
Collapse
Affiliation(s)
- Xinrong Xie
- Key Laboratory of Chemistry and Engineering of Forest Products (State Ethnic Affairs Commission), Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Hongshun Huang
- Key Laboratory of Chemistry and Engineering of Forest Products (State Ethnic Affairs Commission), Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Yogini S Jaiswal
- Center for Excellence in Post Harvest Technologies, North Carolina Agricultural and Technical State University, The North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Shaoyang Su
- Department of Applied Chemistry Teaching and Research, Guangxi Vocational University of Agriculture, Nanning 530007, China
| | - Linxia Yang
- Key Laboratory of Chemistry and Engineering of Forest Products (State Ethnic Affairs Commission), Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Yu Fan
- Key Laboratory of Chemistry and Engineering of Forest Products (State Ethnic Affairs Commission), Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Yifu Guan
- Key Laboratory of Chemistry and Engineering of Forest Products (State Ethnic Affairs Commission), Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Leonard L Williams
- Center for Excellence in Post Harvest Technologies, North Carolina Agricultural and Technical State University, The North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Hedong Bian
- Key Laboratory of Chemistry and Engineering of Forest Products (State Ethnic Affairs Commission), Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| |
Collapse
|
2
|
Owens SL, Ahmed SR, Lang Harman RM, Stewart LE, Mori S. Natural Products That Contain Higher Homologated Amino Acids. Chembiochem 2024; 25:e202300822. [PMID: 38487927 PMCID: PMC11386549 DOI: 10.1002/cbic.202300822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/13/2024] [Indexed: 04/11/2024]
Abstract
This review focuses on discussing natural products (NPs) that contain higher homologated amino acids (homoAAs) in the structure as well as the proposed and characterized biosynthesis of these non-proteinogenic amino acids. Homologation of amino acids includes the insertion of a methylene group into its side chain. It is not a very common modification found in NP biosynthesis as approximately 450 homoAA-containing NPs have been isolated from four bacterial phyla (Cyanobacteria, Actinomycetota, Myxococcota, and Pseudomonadota), two fungal phyla (Ascomycota and Basidiomycota), and one animal phylum (Porifera), except for a few examples. Amino acids that are found to be homologated and incorporated in the NP structures include the following ten amino acids: alanine, arginine, cysteine, isoleucine, glutamic acid, leucine, phenylalanine, proline, serine, and tyrosine, where isoleucine, leucine, phenylalanine, and tyrosine share the comparable enzymatic pathway. Other amino acids have their individual homologation pathway (arginine, proline, and glutamic acid for bacteria), likely utilize the primary metabolic pathway (alanine and glutamic acid for fungi), or have not been reported (cysteine and serine). Despite its possible high potential in the drug discovery field, the biosynthesis of homologated amino acids has a large room to explore for future combinatorial biosynthesis and metabolic engineering purpose.
Collapse
Affiliation(s)
- Skyler L Owens
- Department of Chemistry and Biochemistry, Augusta University, 1120 15th Street, Augusta, GA 30912
| | - Shopno R Ahmed
- Department of Chemistry and Biochemistry, Augusta University, 1120 15th Street, Augusta, GA 30912
| | - Rebecca M Lang Harman
- Department of Chemistry and Biochemistry, Augusta University, 1120 15th Street, Augusta, GA 30912
| | - Laura E Stewart
- Department of Chemistry and Biochemistry, Augusta University, 1120 15th Street, Augusta, GA 30912
| | - Shogo Mori
- Department of Chemistry and Biochemistry, Augusta University, 1120 15th Street, Augusta, GA 30912
| |
Collapse
|
3
|
Saggu SK, Nath A, Kumar S. Myxobacteria: biology and bioactive secondary metabolites. Res Microbiol 2023; 174:104079. [PMID: 37169232 DOI: 10.1016/j.resmic.2023.104079] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/22/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Myxobacteria are Gram-negative eubacteria and they thrive in a variety of habitats including soil rich in organic matter, rotting wood, animal dung and marine environment. Myxobacteria are a promising source of new compounds associated with diverse bioactive spectrum and unique mode of action. The genome information of myxobacteria has revealed many orphan biosynthetic pathways indicating that these bacteria can be the source of several novel natural products. In this review, we highlight the biology of myxobacteria with emphasis on their habitat, life cycle, isolation methods and enlist all the bioactive secondary metabolites purified till date and their mode of action.
Collapse
Affiliation(s)
- Sandeep Kaur Saggu
- Department of Biotechnology, Kanya Maha Vidyalaya, Jalandhar, Punjab, India - 144004.
| | - Amar Nath
- University Centre of Excellence in Research, Baba Farid University of Health Sciences, Faridkot, Punjab India 151203.
| | - Shiv Kumar
- Guru Gobind Singh Medical College, Baba Farid University of Health Sciences, Faridkot, Punjab India 151203.
| |
Collapse
|
4
|
Santos KR, Souza FN, Ramos-Sanchez EM, Batista CF, Reis LC, Fotoran WL, Heinemann MB, Cunha AF, Rocha MC, Faria AR, Andrade HM, Cerqueira MMOP, Gidlund M, Goto H, Della Libera AMMP. Staphylococcus aureus-Cure-Associated Antigens Elicit Type 3 Immune Memory T Cells. Antibiotics (Basel) 2022; 11:1831. [PMID: 36551488 PMCID: PMC9774748 DOI: 10.3390/antibiotics11121831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Staphylococcus aureus is one of the most frequently major mastitis pathogens that cause clinical and subclinical mastitis worldwide. Current antimicrobial treatments are usually ineffective, and the commercially available vaccines lack proven effectiveness. The immunological response elicited by the recombinant S. aureus-cure-associated proteins phosphoglycerate kinase (PGK), enolase (ENO), and elongation factor-G (EF-G) in combination with the granulocyte-macrophage colony-stimulating factor (GM-CSF) DNA vaccination was studied in this work. METHODS Here, twenty-three C57BL/6 mice were divided into four groups and vaccinated with: G1: none (control); G2: GM-CSF DNA plasmid DNA vaccine; G3: the combination of EF-G+ENO+PGK; and G4: the combinations of EF-G+ENO+PGK proteins plus GM-CSF plasmid DNA vaccine. After 44 days, spleen cells were collected for immunophenotyping and lymphocyte proliferation evaluation by flow cytometry upon S. aureus stimulus. RESULTS Immunization with the three S. aureus recombinant proteins alone resulted in a higher percentage of IL-17A+ cells among CD8+ T central memory cells, as well as the highest intensity of IL-17A production by overall lymphocytes indicating that the contribution of the combined lymphocyte populations is crucial to sustaining a type 3 cell immunity environment. CONCLUSION The immunization with three S. aureus-cure-associated recombinant proteins triggered type 3 immunity, which is a highly interesting path to pursue an effective bovine S. aureus mastitis vaccine.
Collapse
Affiliation(s)
- Kamila R. Santos
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil
| | - Fernando N. Souza
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil
- Programa de Pós-Graduação em Ciência Animal, Universidade Federal da Paraíba, Areia 58397-000, Brazil
| | - Eduardo M. Ramos-Sanchez
- Programa de Pós-Graduação em Ciência Animal, Universidade Federal da Paraíba, Areia 58397-000, Brazil
- Laboratório de Soroloepidemiologia e Imunobiologia, Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo 05403-000, Brazil
- Departamento de Salud Publica, Facultad de Ciencias de La Salud, Universidad Nacional Torino Rodriguez de Mendonza de Amazonas, Chachapoyas 01001, Peru
| | - Camila F. Batista
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil
| | - Luiza C. Reis
- Laboratório de Soroloepidemiologia e Imunobiologia, Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Wesley L. Fotoran
- Laboratório de Genética, Instituto Butantã, Universidade de São Paulo, São Paulo 05503-900, Brazil
| | - Marcos B. Heinemann
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil
| | - Adriano F. Cunha
- Departamento de Tecnologia e Inspeção de Produtos de Origem Animal, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 31270-010, Brazil
| | - Mussya C. Rocha
- Laboratório de Soroloepidemiologia e Imunobiologia, Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Angélica R. Faria
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Laboratório de Parasitologia Clínica, Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas 37130-000, Brazil
| | - Hélida M. Andrade
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Mônica M. O. P. Cerqueira
- Departamento de Tecnologia e Inspeção de Produtos de Origem Animal, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 31270-010, Brazil
| | - Magnus Gidlund
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Hiro Goto
- Laboratório de Soroloepidemiologia e Imunobiologia, Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo 05403-000, Brazil
- Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Alice Maria M. P. Della Libera
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil
| |
Collapse
|
5
|
Wieland M, Holm M, Rundlet EJ, Morici M, Koller TO, Maviza TP, Pogorevc D, Osterman IA, Müller R, Blanchard SC, Wilson DN. The cyclic octapeptide antibiotic argyrin B inhibits translation by trapping EF-G on the ribosome during translocation. Proc Natl Acad Sci U S A 2022; 119:e2114214119. [PMID: 35500116 PMCID: PMC9171646 DOI: 10.1073/pnas.2114214119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 03/16/2022] [Indexed: 11/18/2022] Open
Abstract
Argyrins are a family of naturally produced octapeptides that display promising antimicrobial activity against Pseudomonas aeruginosa. Argyrin B (ArgB) has been shown to interact with an elongated form of the translation elongation factor G (EF-G), leading to the suggestion that argyrins inhibit protein synthesis by interfering with EF-G binding to the ribosome. Here, using a combination of cryo-electron microscopy (cryo-EM) and single-molecule fluorescence resonance energy transfer (smFRET), we demonstrate that rather than interfering with ribosome binding, ArgB rapidly and specifically binds EF-G on the ribosome to inhibit intermediate steps of the translocation mechanism. Our data support that ArgB inhibits conformational changes within EF-G after GTP hydrolysis required for translocation and factor dissociation, analogous to the mechanism of fusidic acid, a chemically distinct antibiotic that binds a different region of EF-G. These findings shed light on the mechanism of action of the argyrin-class antibiotics on protein synthesis as well as the nature and importance of rate-limiting, intramolecular conformational events within the EF-G-bound ribosome during late-steps of translocation.
Collapse
Affiliation(s)
- Maximiliane Wieland
- Institute for Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Mikael Holm
- St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Emily J. Rundlet
- St. Jude Children's Research Hospital, Memphis, TN 38105
- Weill Cornell Medicine, Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065
| | - Martino Morici
- Institute for Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Timm O. Koller
- Institute for Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Tinashe P. Maviza
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Domen Pogorevc
- Department Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, Saarland University, 66123 Saarbrücken,Germany
| | - Ilya A. Osterman
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Rolf Müller
- Department Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, Saarland University, 66123 Saarbrücken,Germany
| | | | - Daniel N. Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| |
Collapse
|
6
|
Nageeb WM, Hetta HF. The predictive potential of different molecular markers linked to amikacin susceptibility phenotypes in Pseudomonas aeruginosa. PLoS One 2022; 17:e0267396. [PMID: 35468158 PMCID: PMC9037933 DOI: 10.1371/journal.pone.0267396] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/07/2022] [Indexed: 12/01/2022] Open
Abstract
Informed antibiotic prescription offers a practical solution to antibiotic resistance problem. With the increasing affordability of different sequencing technologies, molecular-based resistance prediction would direct proper antibiotic selection and preserve available agents. Amikacin is a broad-spectrum aminoglycoside exhibiting higher clinical efficacy and less resistance rates in Ps. aeruginosa due to its structural nature and its ability to achieve higher serum concentrations at lower therapeutic doses. This study examines the predictive potential of molecular markers underlying amikacin susceptibility phenotypes in order to provide improved diagnostic panels. Using a predictive model, genes and variants underlying amikacin resistance have been statistically and functionally explored in a large comprehensive and diverse set of Ps. aeruginosa completely sequenced genomes. Different genes and variants have been examined for their predictive potential and functional correlation to amikacin susceptibility phenotypes. Three predictive sets of molecular markers have been identified and can be used in a complementary manner, offering promising molecular diagnostics. armR, nalC, nalD, mexR, mexZ, ampR, rmtD, nalDSer32Asn, fusA1Y552C, fusA1D588G, arnAA170T, and arnDG206C have been identified as the best amikacin resistance predictors in Ps. aeruginosa while faoAT385A, nuoGA890T, nuoGA574T, lptAT55A, lptAR62S, pstBR87C, gidBE126G, gidBQ28K, amgSE108Q, and rplYQ41L have been identified as the best amikacin susceptibility predictors. Combining different measures of predictive performance together with further functional analysis can help design new and more informative molecular diagnostic panels. This would greatly inform and direct point of care diagnosis and prescription, which would consequently preserve amikacin functionality and usefulness.
Collapse
Affiliation(s)
- Wedad M. Nageeb
- Medical Microbiology and Immunology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- * E-mail:
| | - Helal F. Hetta
- Medical Microbiology and Immunology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
7
|
Taechalertpaisarn J, Ono S, Okada O, Johnstone TC, Scott Lokey R. A New Amino Acid for Improving Permeability and Solubility in Macrocyclic Peptides through Side Chain-to-Backbone Hydrogen Bonding. J Med Chem 2022; 65:5072-5084. [PMID: 35275623 PMCID: PMC10681114 DOI: 10.1021/acs.jmedchem.2c00010] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite the notoriously poor membrane permeability of peptides, many cyclic peptide natural products show high passive membrane permeability and potently inhibit a variety of "undruggable" intracellular targets. A major impediment to the design of cyclic peptides with good permeability is the high desolvation energy associated with the peptide backbone amide NH groups. While several strategies have been proposed to mitigate this deleterious effect, only few studies have used polar side chains to sequester backbone NH groups. We investigated the ability of N,N-pyrrolidinylglutamine (Pye), whose side chain contains a powerful hydrogen-bond-accepting C═O amide group but no hydrogen-bond donors, to sequester exposed backbone NH groups in a series of cyclic hexapeptide diastereomers. Analyses revealed that specific Leu-to-Pye substitutions conferred dramatic improvements in aqueous solubility and permeability in a scaffold- and position-dependent manner. Therefore, this approach offers a complementary tool for improving membrane permeability and solubility in cyclic peptides.
Collapse
Affiliation(s)
- Jaru Taechalertpaisarn
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Satoshi Ono
- Modality Laboratories, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshidacho, Aoba-ku, Yokohama, Kanagawa 227-0033, Japan
| | - Okimasa Okada
- Modality Laboratories, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshidacho, Aoba-ku, Yokohama, Kanagawa 227-0033, Japan
| | - Timothy C. Johnstone
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - R. Scott Lokey
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| |
Collapse
|
8
|
Gorelik TE, Tehrani KHME, Gruene T, Monecke T, Niessing D, Kaiser U, Blankenfeldt W, Müller R. Crystal structure of natural product argyrin-D determined by 3D electron diffraction. CrystEngComm 2022. [DOI: 10.1039/d2ce00707j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Crystal structure of natural product argyrin D was determined from electron diffraction data.
Collapse
Affiliation(s)
- Tatiana E. Gorelik
- Electron Microscopy Group of Materials Science, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstraße 7, Braunschweig, Germany
- Helmholtz Centre for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University Campus, Saarbrucken, 66123, Germany
| | - Kamaleddin H. M. E. Tehrani
- Helmholtz Centre for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University Campus, Saarbrucken, 66123, Germany
| | - Tim Gruene
- Faculty of Chemistry, Department of Inorganic Chemistry, University of Vienna, AT-1090 Vienna, Austria
| | - Thomas Monecke
- Institute of Pharmaceutical Biotechnology, Ulm University, James-Franck-Ring N27, 89081 Ulm, Germany
| | - Dierk Niessing
- Institute of Pharmaceutical Biotechnology, Ulm University, James-Franck-Ring N27, 89081 Ulm, Germany
| | - Ute Kaiser
- Electron Microscopy Group of Materials Science, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Wulf Blankenfeldt
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstraße 7, Braunschweig, Germany
| | - Rolf Müller
- Helmholtz Centre for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University Campus, Saarbrucken, 66123, Germany
| |
Collapse
|
9
|
Panjla A, Kaul G, Chopra S, Titz A, Verma S. Short Peptides and Their Mimetics as Potent Antibacterial Agents and Antibiotic Adjuvants. ACS Chem Biol 2021; 16:2731-2745. [PMID: 34779605 DOI: 10.1021/acschembio.1c00626] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Antimicrobial resistance (AMR) has been increasing unrelentingly worldwide, thus negatively impacting human health. The discovery and development of novel antibiotics is an urgent unmet need of the hour. However, it has become more challenging, requiring increasingly time-consuming efforts with increased commercial risks. Hence, alternative strategies are urgently needed to potentiate the existing antibiotics. In this context, short cationic peptides or peptide-based antimicrobials that mimic the activity of naturally occurring antimicrobial peptides (AMPs) could overcome the disadvantages of AMPs having evolved as potent antibacterial agents. Besides their potent antibacterial efficacy, short peptide conjugates have also gained attention as potent adjuvants to conventional antibiotics. Such peptide antibiotic combinations have become an increasingly cost-effective therapeutic option to tackle AMR. This Review summarizes the recent progress for peptide-based small molecules as promising antimicrobials and as adjuvants for conventional antibiotics to counter multidrug resistant (MDR) pathogens.
Collapse
Affiliation(s)
- Apurva Panjla
- Department of Chemistry, IIT Kanpur, Kanpur-208016, Uttar Pradesh, India
| | - Grace Kaul
- Department of Microbiology, CSIR-Central Drug Research Institute, Lucknow-226031, Uttar Pradesh, India
- AcSIR: Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sidharth Chopra
- Department of Microbiology, CSIR-Central Drug Research Institute, Lucknow-226031, Uttar Pradesh, India
- AcSIR: Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), 38124, Standort Hannover-Braunschweig, Germany
| | - Sandeep Verma
- Department of Chemistry, IIT Kanpur, Kanpur-208016, Uttar Pradesh, India
- Center for Nanoscience, IIT Kanpur, Kanpur-208016, Uttar Pradesh, India
| |
Collapse
|
10
|
Gao X, Yu X, Zhu K, Qin B, Wang W, Han P, Aleksandra Wojdyla J, Wang M, Cui S. Crystal Structure of Mycobacterium tuberculosis Elongation Factor G1. Front Mol Biosci 2021; 8:667638. [PMID: 34540889 PMCID: PMC8446442 DOI: 10.3389/fmolb.2021.667638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 08/19/2021] [Indexed: 11/24/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) caused an estimated 10 million cases of tuberculosis and 1.2 million deaths in 2019 globally. The increasing emergence of multidrug-resistant and extensively drug-resistant Mtb is becoming a public health threat worldwide and makes the identification of anti-Mtb drug targets urgent. Elongation factor G (EF-G) is involved in tRNA translocation on ribosomes during protein translation. Therefore, EF-G is a major focus of structural analysis and a valuable drug target of antibiotics. However, the crystal structure of Mtb EF-G1 is not yet available, and this has limited the design of inhibitors. Here, we report the crystal structure of Mtb EF-G1 in complex with GDP. The unique crystal form of the Mtb EF-G1-GDP complex provides an excellent platform for fragment-based screening using a crystallographic approach. Our findings provide a structure-based explanation for GDP recognition, and facilitate the identification of EF-G1 inhibitors with potential interest in the context of drug discovery.
Collapse
Affiliation(s)
- Xiaopan Gao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, And Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xia Yu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, And Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-resistant Tuberculosis Research Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Institute, Capital Medical University, Beijing, China
| | - Kaixiang Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, And Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Qin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, And Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, And Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pu Han
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | | - Meitian Wang
- Swiss Light Source at the Paul Scherrer Institut, Villigen, Switzerland
| | - Sheng Cui
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, And Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Sanming Project of Medicine in Shenzhen on Construction of Novel Systematic Network Against Tuberculosis, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
11
|
Almeida L, Dhillon-LaBrooy A, Castro CN, Adossa N, Carriche GM, Guderian M, Lippens S, Dennerlein S, Hesse C, Lambrecht BN, Berod L, Schauser L, Blazar BR, Kalesse M, Müller R, Moita LF, Sparwasser T. Ribosome-Targeting Antibiotics Impair T Cell Effector Function and Ameliorate Autoimmunity by Blocking Mitochondrial Protein Synthesis. Immunity 2020; 54:68-83.e6. [PMID: 33238133 PMCID: PMC7837214 DOI: 10.1016/j.immuni.2020.11.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 09/16/2020] [Accepted: 11/03/2020] [Indexed: 02/08/2023]
Abstract
While antibiotics are intended to specifically target bacteria, most are known to affect host cell physiology. In addition, some antibiotic classes are reported as immunosuppressive for reasons that remain unclear. Here, we show that Linezolid, a ribosomal-targeting antibiotic (RAbo), effectively blocked the course of a T cell-mediated autoimmune disease. Linezolid and other RAbos were strong inhibitors of T helper-17 cell effector function in vitro, showing that this effect was independent of their antibiotic activity. Perturbing mitochondrial translation in differentiating T cells, either with RAbos or through the inhibition of mitochondrial elongation factor G1 (mEF-G1) progressively compromised the integrity of the electron transport chain. Ultimately, this led to deficient oxidative phosphorylation, diminishing nicotinamide adenine dinucleotide concentrations and impairing cytokine production in differentiating T cells. In accordance, mice lacking mEF-G1 in T cells were protected from experimental autoimmune encephalomyelitis, demonstrating that this pathway is crucial in maintaining T cell function and pathogenicity.
Collapse
Affiliation(s)
- Luís Almeida
- Institute of Infection Immunology, TWINCORE, Center for Experimental and Clinical Infection Research, Hannover Medical School and the Helmholtz Center for Infection Research, Hannover 30625, Germany; Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany
| | - Ayesha Dhillon-LaBrooy
- Institute of Infection Immunology, TWINCORE, Center for Experimental and Clinical Infection Research, Hannover Medical School and the Helmholtz Center for Infection Research, Hannover 30625, Germany; Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany
| | - Carla N Castro
- Institute of Infection Immunology, TWINCORE, Center for Experimental and Clinical Infection Research, Hannover Medical School and the Helmholtz Center for Infection Research, Hannover 30625, Germany
| | - Nigatu Adossa
- QIAGEN, Aarhus C 8000, Denmark; University of Turku, Computational Biomedicine, Turku Center for Biotechnology, Turku 20520, Finland
| | - Guilhermina M Carriche
- Institute of Infection Immunology, TWINCORE, Center for Experimental and Clinical Infection Research, Hannover Medical School and the Helmholtz Center for Infection Research, Hannover 30625, Germany; Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany
| | - Melanie Guderian
- Institute of Infection Immunology, TWINCORE, Center for Experimental and Clinical Infection Research, Hannover Medical School and the Helmholtz Center for Infection Research, Hannover 30625, Germany
| | | | - Sven Dennerlein
- Department of Cellular Biochemistry, University Medical Center, Göttingen 37073, Germany
| | - Christina Hesse
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover 30625, Germany
| | | | - Luciana Berod
- Institute of Infection Immunology, TWINCORE, Center for Experimental and Clinical Infection Research, Hannover Medical School and the Helmholtz Center for Infection Research, Hannover 30625, Germany; Institute of Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | | | - Bruce R Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55454, USA
| | - Markus Kalesse
- Institute for Organic Chemistry, Leibniz University Hannover, Hannover, Germany; Helmholtz Center for Infection Research (HZI), Braunschweig 38124, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research, Helmholtz Center for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Saarbrücken 66123, Germany
| | - Luís F Moita
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Tim Sparwasser
- Institute of Infection Immunology, TWINCORE, Center for Experimental and Clinical Infection Research, Hannover Medical School and the Helmholtz Center for Infection Research, Hannover 30625, Germany; Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany.
| |
Collapse
|
12
|
Krahn D, Heilmann G, Vogel FCE, Papadopoulos C, Zweerink S, Kaschani F, Meyer H, Roesch A, Kaiser M. Zelkovamycin is an OXPHOS Inhibitory Member of the Argyrin Natural Product Family. Chemistry 2020; 26:8524-8531. [PMID: 32250484 PMCID: PMC7383741 DOI: 10.1002/chem.202001577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Indexed: 12/16/2022]
Abstract
Natural products (NPs) are an important inspirational source for developing drugs and chemical probes. In 1999, the group of Ōmura reported the constitutional elucidation of zelkovamycin. Although largely unrecognized so far, this NP displays structural similarities as well as differences to the argyrin NP family, a class of peptidic NPs with promising anticancer activities and diverse mode‐of‐action at the molecular level. By a combination of structure elucidation experiments, the first total synthesis of zelkovamycin and bioassays, the zelkovamycin configuration was determined and its previously proposed molecular structure was revised. The full structure assignment proves zelkovamycin as an additional member of the argyrins with however unique OXPHOS inhibitory properties. Zelkovamycin may therefore not only serve as a new starting point for chemical inhibitors of the OXPHOS system, but also guide customized argyrin NP isolation and biosynthesis studies.
Collapse
Affiliation(s)
- Daniel Krahn
- Chemische Biologie, Universität Duisburg-Essen, ZMB, Fakultät für Biologie, Universitätsstr. 2, 45117, Essen, Germany
| | - Geronimo Heilmann
- Chemische Biologie, Universität Duisburg-Essen, ZMB, Fakultät für Biologie, Universitätsstr. 2, 45117, Essen, Germany
| | - Felix C E Vogel
- Department of Dermatology, University hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK).,Current address: Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Chrisovalantis Papadopoulos
- Molekularbiologie I, Universität Duisburg-Essen, ZMB, Fakultät für Biologie, Universitätsstr. 2, 45117, Essen, Germany
| | - Susanne Zweerink
- Chemische Biologie, Universität Duisburg-Essen, ZMB, Fakultät für Biologie, Universitätsstr. 2, 45117, Essen, Germany.,Current address: University of Cologne, Faculty of Medicine and University Hospital of Cologne, Department of Gastroenterology and Hepatology, Kerpener Str. 62, 50937, Cologne, Germany
| | - Farnusch Kaschani
- Chemische Biologie, Universität Duisburg-Essen, ZMB, Fakultät für Biologie, Universitätsstr. 2, 45117, Essen, Germany
| | - Hemmo Meyer
- Molekularbiologie I, Universität Duisburg-Essen, ZMB, Fakultät für Biologie, Universitätsstr. 2, 45117, Essen, Germany
| | - Alexander Roesch
- Department of Dermatology, University hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK)
| | - Markus Kaiser
- Chemische Biologie, Universität Duisburg-Essen, ZMB, Fakultät für Biologie, Universitätsstr. 2, 45117, Essen, Germany
| |
Collapse
|
13
|
Abstract
The rise of antimicrobial resistance is a leading medical threat, motivating efforts to forecast both its evolutionary dynamics and its genetic causes. Aminoglycosides are a major class of antibiotics that disrupt translation, but resistance may occur by a number of mechanisms. Here, we show the repeated evolution of resistance to the aminoglycoside tobramycin in both P. aeruginosa and A. baumannii via mutations in fusA1, encoding elongation factor G, and ptsP, encoding the nitrogen-specific phosphotransferase system. Laboratory evolution and whole-population genome sequencing were used to identify these targets, but mutations at identical amino acid positions were also found in published genomes of diverse bacterial species and clinical isolates. We also identified other resistance mechanisms associated with growth in biofilms that likely interfere with drug binding or uptake. Characterizing the evolution of multiple species in the presence of antibiotics can identify new, repeatable causes of resistance that may be predicted and counteracted by alternative treatment. Different species exposed to a common stress may adapt by mutations in shared pathways or in unique systems, depending on how past environments have molded their genomes. Understanding how diverse bacterial pathogens evolve in response to an antimicrobial treatment is a pressing example of this problem, where discovery of molecular parallelism could lead to clinically useful predictions. Evolution experiments with pathogens in environments containing antibiotics, combined with periodic whole-population genome sequencing, can be used to identify many contending routes to antimicrobial resistance. We separately propagated two clinically relevant Gram-negative pathogens, Pseudomonas aeruginosa and Acinetobacter baumannii, in increasing concentrations of tobramycin in two different environments each: planktonic and biofilm. Independently of the pathogen, the populations adapted to tobramycin selection by parallel evolution of mutations in fusA1, encoding elongation factor G, and ptsP, encoding phosphoenolpyruvate phosphotransferase. As neither gene is a direct target of this aminoglycoside, mutations to either are unexpected and underreported causes of resistance. Additionally, both species acquired antibiotic resistance-associated mutations that were more prevalent in the biofilm lifestyle than in the planktonic lifestyle; these mutations were in electron transport chain components in A. baumannii and lipopolysaccharide biosynthesis enzymes in P. aeruginosa populations. Using existing databases, we discovered site-specific parallelism of fusA1 mutations that extends across bacterial phyla and clinical isolates. This study suggests that strong selective pressures, such as antibiotic treatment, may result in high levels of predictability in molecular targets of evolution, despite differences between organisms’ genetic backgrounds and environments.
Collapse
|
14
|
Siebert DCB, Sommer R, Pogorevc D, Hoffmann M, Wenzel SC, Müller R, Titz A. Chemical synthesis of tripeptide thioesters for the biotechnological incorporation into the myxobacterial secondary metabolite argyrin via mutasynthesis. Beilstein J Org Chem 2019; 15:2922-2929. [PMID: 31839838 PMCID: PMC6902895 DOI: 10.3762/bjoc.15.286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/20/2019] [Indexed: 11/23/2022] Open
Abstract
The argyrins are secondary metabolites from myxobacteria with antibiotic activity against Pseudomonas aeruginosa. Studying their structure–activity relationship is hampered by the complexity of the chemical total synthesis. Mutasynthesis is a promising approach where simpler and fully synthetic intermediates of the natural product’s biosynthesis can be biotechnologically incorporated. Here, we report the synthesis of a series of tripeptide thioesters as mutasynthons containing the native sequence with a dehydroalanine (Dha) Michael acceptor attached to a sarcosine (Sar) and derivatives. Chemical synthesis of the native sequence ᴅ-Ala-Dha-Sar thioester required revision of the sequential peptide synthesis into a convergent strategy where the thioester with sarcosine was formed before coupling to the Dha-containing dipeptide.
Collapse
Affiliation(s)
- David C B Siebert
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Roman Sommer
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Domen Pogorevc
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany.,Microbial Natural Substances, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany.,Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany
| | - Michael Hoffmann
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany.,Microbial Natural Substances, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany.,Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany
| | - Silke C Wenzel
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany.,Microbial Natural Substances, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany.,Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany
| | - Rolf Müller
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany.,Microbial Natural Substances, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany.,Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany
| | - Alexander Titz
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany.,Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany
| |
Collapse
|
15
|
Defects in Efflux ( oprM), β-Lactamase ( ampC), and Lipopolysaccharide Transport ( lptE) Genes Mediate Antibiotic Hypersusceptibility of Pseudomonas aeruginosa Strain Z61. Antimicrob Agents Chemother 2019; 63:AAC.00784-19. [PMID: 31036686 DOI: 10.1128/aac.00784-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 02/08/2023] Open
Abstract
Antibiotic hypersensitive bacterial mutants (e.g., Escherichia coli imp) are used to investigate intrinsic resistance and are exploited in antibacterial discovery to track weak antibacterial activity of novel inhibitor compounds. Pseudomonas aeruginosa Z61 is one such drug-hypersusceptible strain generated by chemical mutagenesis, although the genetic basis for hypersusceptibility is not fully understood. Genome sequencing of Z61 revealed nonsynonymous single-nucleotide polymorphisms in 153 genes relative to its parent strain, and three candidate mutations (in oprM, ampC, and lptE) predicted to mediate hypersusceptibility were characterized. The contribution of these mutations was confirmed by genomic restoration of the wild-type sequences, individually or in combination, in the Z61 background. Introduction of the lptE mutation or genetic inactivation of oprM and ampC genes alone or together in the parent strain recapitulated drug sensitivities. This showed that disruption of oprM (which encodes a major outer membrane efflux pump channel) increased susceptibility to pump substrate antibiotics, that inactivation of the inducible β-lactamase gene ampC contributed to β-lactam susceptibility, and that mutation of the lipopolysaccharide transporter gene lptE strongly altered the outer membrane permeability barrier, causing susceptibility to large antibiotics such as rifampin and also to β-lactams.
Collapse
|
16
|
Allardyce DJ, Bell CM, Loizidou EZ. Argyrin B, a non-competitive inhibitor of the human immunoproteasome exhibiting preference for β1i. Chem Biol Drug Des 2019; 94:1556-1567. [PMID: 31074944 DOI: 10.1111/cbdd.13539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/12/2019] [Accepted: 03/31/2019] [Indexed: 12/14/2022]
Abstract
Inhibitors of the proteasome have found broad therapeutic applications; however, they show severe toxicity due to the abundance of proteasomes in healthy cells. In contrast, inhibitors of the immunoproteasome, which is upregulated during disease states, are less toxic and have increased therapeutic potential including against autoimmune disorders. In this project, we report argyrin B, a natural product cyclic peptide to be a reversible, non-competitive inhibitor of the immunoproteasome. Argyrin B showed selective inhibition of the β5i and β1i sites of the immunoproteasome over the β5c and β1c sites of the constitutive proteasome with nearly 20-fold selective inhibition of β1i over the homologous β1c. Molecular modelling attributes the β1i over β1c selectivity to the small hydrophobic S1 pocket of β1i and β5i over β5c to site-specific amino acid variations that enable additional bonding interactions and stabilization of the binding conformation. These findings facilitate the design of immunoproteasome selective and reversible inhibitors that may have a greater therapeutic potential and lower toxicity.
Collapse
Affiliation(s)
- Duncan J Allardyce
- Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, London, UK
| | - Celia M Bell
- Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, London, UK
| | - Eriketi Z Loizidou
- Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, London, UK
| |
Collapse
|
17
|
Pogorevc D, Tang Y, Hoffmann M, Zipf G, Bernauer HS, Popoff A, Steinmetz H, Wenzel SC. Biosynthesis and Heterologous Production of Argyrins. ACS Synth Biol 2019; 8:1121-1133. [PMID: 30995838 DOI: 10.1021/acssynbio.9b00023] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Argyrins represent a family of cyclic octapeptides exhibiting promising antimicrobial, antitumorigenic and immunosuppressant activities. They derive from a nonribosomal peptide synthetase pathway, which was identified and characterized in this study from the myxobacterial producer strain Cystobacter sp. SBCb004. Using the native biosynthetic gene cluster (BGC) sequence as template synthetic BGC versions were designed and assembled from gene synthesis fragments. A heterologous expression system was established after chromosomal deletion of a well-expressed lipopeptide pathway from the host strain Myxococcus xanthus DK1622. Different approaches were applied to engineer and improve heterologous argyrin production, which was finally increased to 160 mg/L, around 20-fold higher yields compared to the native producer. Heterologous production platform also led to identification of several novel argyrin derivatives (A2, F3, G3, I, J, K, and L). The optimized production system provides a versatile platform for future supply of argyrins and novel derivatives thereof.
Collapse
Affiliation(s)
- Domen Pogorevc
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)/Helmholtz Centre for Infection Research (HZI) and Department of Pharmaceutical Biotechnology, Saarland University, 66123 Saarbruecken, Germany
| | - Ying Tang
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)/Helmholtz Centre for Infection Research (HZI) and Department of Pharmaceutical Biotechnology, Saarland University, 66123 Saarbruecken, Germany
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, People’s Republic of China
| | - Michael Hoffmann
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)/Helmholtz Centre for Infection Research (HZI) and Department of Pharmaceutical Biotechnology, Saarland University, 66123 Saarbruecken, Germany
| | - Gregor Zipf
- ATG:Biosynthetics GmbH, 79249 Merzhausen, Germany
| | | | - Alexander Popoff
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)/Helmholtz Centre for Infection Research (HZI) and Department of Pharmaceutical Biotechnology, Saarland University, 66123 Saarbruecken, Germany
| | - Heinrich Steinmetz
- Microbial Strain Collection, Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany
| | - Silke C. Wenzel
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)/Helmholtz Centre for Infection Research (HZI) and Department of Pharmaceutical Biotechnology, Saarland University, 66123 Saarbruecken, Germany
| |
Collapse
|
18
|
Target (MexB)- and Efflux-Based Mechanisms Decreasing the Effectiveness of the Efflux Pump Inhibitor D13-9001 in Pseudomonas aeruginosa PAO1: Uncovering a New Role for MexMN-OprM in Efflux of β-Lactams and a Novel Regulatory Circuit (MmnRS) Controlling MexMN Expression. Antimicrob Agents Chemother 2019; 63:AAC.01718-18. [PMID: 30420483 DOI: 10.1128/aac.01718-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/29/2018] [Indexed: 12/22/2022] Open
Abstract
Efflux pumps contribute to antibiotic resistance in Gram-negative pathogens. Correspondingly, efflux pump inhibitors (EPIs) may reverse this resistance. D13-9001 specifically inhibits MexAB-OprM in Pseudomonas aeruginosa Mutants with decreased susceptibility to MexAB-OprM inhibition by D13-9001 were identified, and these fell into two categories: those with alterations in the target MexB (F628L and ΔV177) and those with an alteration in a putative sensor kinase of unknown function, PA1438 (L172P). The alterations in MexB were consistent with reported structural studies of the D13-9001 interaction with MexB. The PA1438L172P alteration mediated a >150-fold upregulation of MexMN pump gene expression and a >50-fold upregulation of PA1438 and the neighboring response regulator gene, PA1437. We propose that these be renamed mmnR and mmnS for MexMN regulator and MexMN sensor, respectively. MexMN was shown to partner with the outer membrane channel protein OprM and to pump several β-lactams, monobactams, and tazobactam. Upregulated MexMN functionally replaced MexAB-OprM to efflux these compounds but was insusceptible to inhibition by D13-9001. MmnSL172P also mediated a decrease in susceptibility to imipenem and biapenem that was independent of MexMN-OprM. Expression of oprD, encoding the uptake channel for these compounds, was downregulated, suggesting that this channel is also part of the MmnSR regulon. Transcriptome sequencing (RNA-seq) of cells encoding MmnSL172P revealed, among other things, an interrelationship between the regulation of mexMN and genes involved in heavy metal resistance.
Collapse
|
19
|
Prescott TAK, Jaeg T, Hoepfner D. Yeast Chemogenomic Profiling Reveals Iron Chelation To Be the Principle Cell Inhibitory Mode of Action of Gossypol. J Med Chem 2018; 61:7381-7386. [PMID: 30016095 DOI: 10.1021/acs.jmedchem.8b00692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gossypol is an inhibitor of eukaryotic cells with an undetermined mode of action. Here we show that the chemogenomic profile of gossypol is strikingly similar to that of the iron chelators deferasirox and desferricoprogen. Iron import channels Fet1 and Fet3 are prominent in all three profiles. Furthermore, yeast inhibited by gossypol and deferasirox is rescued by the addition of Fe2+. We propose that Fe2+ chelation is in fact the principle mode of action of gossypol.
Collapse
Affiliation(s)
| | - Tiphaine Jaeg
- Developmental & Molecular Pathways , Novartis Institutes for BioMedical Research, Novartis Pharma AG , Fabrikstrasse 22 , CH-4056 Basel , Switzerland
| | - Dominic Hoepfner
- Developmental & Molecular Pathways , Novartis Institutes for BioMedical Research, Novartis Pharma AG , Fabrikstrasse 22 , CH-4056 Basel , Switzerland
| |
Collapse
|
20
|
Abstract
Our limited understanding of the molecular basis for compound entry into and efflux out of Gram-negative bacteria is now recognized as a key bottleneck for the rational discovery of novel antibacterial compounds. Traditional, large-scale biochemical or target-agnostic phenotypic antibacterial screening efforts have, as a result, not been very fruitful. A main driver of this knowledge gap has been the historical lack of predictive cellular assays, tools, and models that provide structure-activity relationships to inform optimization of compound accumulation. A variety of recent approaches has recently been described to address this conundrum. This Perspective explores these approaches and considers ways in which their integration could successfully redirect antibacterial drug discovery efforts.
Collapse
Affiliation(s)
- Rubén Tommasi
- Entasis Therapeutics, Inc., 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Ramkumar Iyer
- Entasis Therapeutics, Inc., 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Alita A. Miller
- Entasis Therapeutics, Inc., 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| |
Collapse
|
21
|
Zhao L, Wang Z, Zhang H, Li W, Yue Q, Jin Y. Design, Preparation of 3-Hydroxy Isoindolinone Cyclotripeptides, and the In Vitro
Antitumor Activities Against Cervical Carcinoma HeLa Cells. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Lishuang Zhao
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry & Chemical Engineering; Harbin Normal University; Harbin 150025 China
| | - Zhiqiang Wang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry & Chemical Engineering; Harbin Normal University; Harbin 150025 China
| | - Hongyue Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry & Chemical Engineering; Harbin Normal University; Harbin 150025 China
| | - Wenting Li
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry & Chemical Engineering; Harbin Normal University; Harbin 150025 China
| | - Qunfeng Yue
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry & Chemical Engineering; Harbin Normal University; Harbin 150025 China
| | - Yingxue Jin
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry & Chemical Engineering; Harbin Normal University; Harbin 150025 China
| |
Collapse
|
22
|
Painting argyrins blue: Negishi cross-coupling for synthesis of deep-blue tryptophan analogue β-(1-azulenyl)-l alanine and its incorporation into argyrin C. Bioorg Med Chem 2018; 26:5259-5269. [PMID: 29729984 DOI: 10.1016/j.bmc.2018.03.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 01/22/2023]
Abstract
The argyrins are a family of non-ribosomal peptides that exhibits different biological activities through only small structural changes. Ideally, a biologically active molecule can be tracked and observed in a variety of biological and clinical settings in a non-invasive manner. As a step towards this goal, we report here a chemical synthesis of unnatural deep blue amino acid β-(1-azulenyl)-l alanine with different fluorescence and photophysical properties, which allows a spectral separation from the native tryptophan signal. This might be especially useful for cell localization studies and visualizing the targeted proteins. In particular, the synthesis of β-(1-azulenyl)-l alanine was achieved through a Negishi coupling which proved to be a powerful tool for the synthesis of unnatural tryptophan analogs. Upon β-(1-azulenyl)-l alanine incorporation into argyrin C, deep blue octapeptide variant was spectrally and structurally characterized.
Collapse
|
23
|
Mutations in Gene fusA1 as a Novel Mechanism of Aminoglycoside Resistance in Clinical Strains of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2018; 62:AAC.01835-17. [PMID: 29133559 DOI: 10.1128/aac.01835-17] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/05/2017] [Indexed: 01/03/2023] Open
Abstract
Resistance of clinical strains of Pseudomonas aeruginosa to aminoglycosides can result from production of transferable aminoglycoside-modifying enzymes, of 16S rRNA methylases, and/or mutational derepression of intrinsic multidrug efflux pump MexXY(OprM). We report here the characterization of a new type of mutant that is 4- to 8-fold more resistant to 2-deoxystreptamine derivatives (e.g., gentamicin, amikacin, and tobramycin) than the wild-type strain PAO1. The genetic alterations of three in vitro mutants were mapped on fusA1 and found to result in single amino acid substitutions in domains II, III, and V of elongation factor G (EF-G1A), a key component of translational machinery. Transfer of the mutated fusA1 alleles into PAO1 reproduced the resistance phenotype. Interestingly, fusA1 mutants with other amino acid changes in domains G, IV, and V of EF-G1A were identified among clinical strains with decreased susceptibility to aminoglycosides. Allelic-exchange experiments confirmed the relevance of these latter mutations and of three other previously reported alterations located in domains G and IV. Pump MexXY(OprM) partly contributed to the resistance conferred by the mutated EF-G1A variants and had additive effects on aminoglycoside MICs when mutationally upregulated. Altogether, our data demonstrate that cystic fibrosis (CF) and non-CF strains of P. aeruginosa can acquire a therapeutically significant resistance to important aminoglycosides via a new mechanism involving mutations in elongation factor EF-G1A.
Collapse
|
24
|
Therapeutic effects of Argyrin F in pancreatic adenocarcinoma. Cancer Lett 2017; 399:20-28. [PMID: 28408354 DOI: 10.1016/j.canlet.2017.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 03/13/2017] [Accepted: 04/01/2017] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with limited treatment options. The proteasome inhibitor Argyrin A, a cyclic peptide derived from the myxobacterium Archangium gephyra, shows antitumoral activities. We hypothesize that his analogue Argyrin F (AF) may also prevent PDAC progression. We have used PDAC cells and engineered mice (Pdx1-Cre; LSL-KrasG12D; p53 lox/+) to assess AF anticancer activity. We analyzed the effect of AF on proliferation and epithelial plasticity using MTT-, wound healing-, invasion-, colony formation-, apoptosis-, cell cycle- and senescence assays. In vivo treatment with AF, Gemcitabine (G) and combinational treatment (AF + G) was performed for survival analysis. AF inhibited cell proliferation, migration, invasion and colony formation in vitro. AF impaired epithelial-mesenchymal transition (EMT), caused considerable apoptosis and senescence in a dose- and time-dependent manner and affected cell cycle G1/S phase transition. G treatment achieved longest mice survival, followed by AF + G and AF compared to vehicle group. However, AF + G treatment induced the largest reduction in tumor spread and ascites. In conclusion, we have demonstrated that AF prevents PDAC progression and that combined therapy was superior to AF monotherapy. Therefore, AF treatment might be useful as an additional therapy for PDAC.
Collapse
|
25
|
Determinants of Antibacterial Spectrum and Resistance Potential of the Elongation Factor G Inhibitor Argyrin B in Key Gram-Negative Pathogens. Antimicrob Agents Chemother 2017; 61:AAC.02400-16. [PMID: 28096160 DOI: 10.1128/aac.02400-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/24/2016] [Indexed: 11/20/2022] Open
Abstract
Argyrins are natural products with antibacterial activity against Gram-negative pathogens, such as Pseudomonas aeruginosa, Burkholderia multivorans, and Stenotrophomonas maltophilia We previously showed that argyrin B targets elongation factor G (FusA). Here, we show that argyrin B activity against P. aeruginosa PAO1 (MIC = 8 μg/ml) was not affected by deletion of the MexAB-OprM, MexXY-OprM, MexCD-OprJ, or MexEF-OprN efflux pump. However, argyrin B induced expression of MexXY, causing slight but reproducible antagonism with the MexXY substrate antibiotic ciprofloxacin. Argyrin B activity against Escherichia coli increased in a strain with nine tolC efflux pump partner genes deleted. Complementation experiments showed that argyrin was effluxed by AcrAB, AcrEF, and MdtFX. Argyrin B was inactive against Acinetobacter baumannii Differences between A. baumannii and P. aeruginosa FusA proteins at key residues for argyrin B interaction implied that natural target sequence variation impacted antibacterial activity. Consistent with this, expression of the sensitive P. aeruginosa FusA1 protein in A. baumannii conferred argyrin susceptibility, whereas resistant variants did not. Argyrin B was active against S. maltophilia (MIC = 4 μg/ml). Spontaneous resistance occurred at high frequency in the bacterium (circa 10-7), mediated by mutational inactivation of fusA1 rather than by amino acid substitutions in the target binding region. This strongly suggested that resistance occurred at high frequency through loss of the sensitive FusA1, leaving an alternate argyrin-insensitive elongation factor. Supporting this, an additional fusA-like gene (fusA2) is present in S. maltophilia that was strongly upregulated in response to mutational loss of fusA1.
Collapse
|
26
|
Zhao L, Zhang H, Cui J, Zhao M, Wang Z, Yue Q, Jin Y. Photo-induced synthesis and in vitro antitumor activity of Fenestin A analogs. NEW J CHEM 2017. [DOI: 10.1039/c7nj03363j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Two bioactive Fenestin A analogs were synthesized by photo-induced cyclization.
Collapse
Affiliation(s)
- Lishuang Zhao
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry & Chemical Engineering
- Harbin Normal University
- Harbin
| | - Hongyue Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry & Chemical Engineering
- Harbin Normal University
- Harbin
| | - Jianing Cui
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry & Chemical Engineering
- Harbin Normal University
- Harbin
| | - Meiqi Zhao
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry & Chemical Engineering
- Harbin Normal University
- Harbin
| | - Zhiqiang Wang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry & Chemical Engineering
- Harbin Normal University
- Harbin
| | - Qunfeng Yue
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry & Chemical Engineering
- Harbin Normal University
- Harbin
| | - Yingxue Jin
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry & Chemical Engineering
- Harbin Normal University
- Harbin
| |
Collapse
|
27
|
Affiliation(s)
- Silke C. Wenzel
- Saarland University; Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Pharmaceutical Biotechnology; Saarland University Campus, Building E8.1 66123 Saarbrücken Germany
| | - Rolf Müller
- Saarland University; Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Pharmaceutical Biotechnology; Saarland University Campus, Building E8.1 66123 Saarbrücken Germany
| |
Collapse
|
28
|
Molecular Epidemiology of Mutations in Antimicrobial Resistance Loci of Pseudomonas aeruginosa Isolates from Airways of Cystic Fibrosis Patients. Antimicrob Agents Chemother 2016; 60:6726-6734. [PMID: 27572404 DOI: 10.1128/aac.00724-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/23/2016] [Indexed: 01/30/2023] Open
Abstract
The chronic airway infections with Pseudomonas aeruginosa in people with cystic fibrosis (CF) are treated with aerosolized antibiotics, oral fluoroquinolones, and/or intravenous combination therapy with aminoglycosides and β-lactam antibiotics. An international strain collection of 361 P. aeruginosa isolates from 258 CF patients seen at 30 CF clinics was examined for mutations in 17 antimicrobial susceptibility and resistance loci that had been identified as hot spots of mutation by genome sequencing of serial isolates from a single CF clinic. Combinatorial amplicon sequencing of pooled PCR products identified 1,112 sequence variants that were not present in the genomes of representative strains of the 20 most common clones of the global P. aeruginosa population. A high frequency of singular coding variants was seen in spuE, mexA, gyrA, rpoB, fusA1, mexZ, mexY, oprD, ampD, parR, parS, and envZ (amgS), reflecting the pressure upon P. aeruginosa in lungs of CF patients to generate novel protein variants. The proportion of nonneutral amino acid exchanges was high. Of the 17 loci, mexA, mexZ, and pagL were most frequently affected by independent stop mutations. Private and de novo mutations seem to play a pivotal role in the response of P. aeruginosa populations to the antimicrobial load and the individual CF host.
Collapse
|
29
|
Wagner S, Sommer R, Hinsberger S, Lu C, Hartmann RW, Empting M, Titz A. Novel Strategies for the Treatment of Pseudomonas aeruginosa Infections. J Med Chem 2016; 59:5929-69. [DOI: 10.1021/acs.jmedchem.5b01698] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Stefanie Wagner
- Chemical
Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), 30625 Standort Hannover-Braunschweig, Germany
| | - Roman Sommer
- Chemical
Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), 30625 Standort Hannover-Braunschweig, Germany
| | - Stefan Hinsberger
- Deutsches Zentrum für Infektionsforschung (DZIF), 30625 Standort Hannover-Braunschweig, Germany
- Drug
Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany
| | - Cenbin Lu
- Deutsches Zentrum für Infektionsforschung (DZIF), 30625 Standort Hannover-Braunschweig, Germany
- Drug
Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany
| | - Rolf W. Hartmann
- Deutsches Zentrum für Infektionsforschung (DZIF), 30625 Standort Hannover-Braunschweig, Germany
- Drug
Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany
| | - Martin Empting
- Deutsches Zentrum für Infektionsforschung (DZIF), 30625 Standort Hannover-Braunschweig, Germany
- Drug
Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany
| | - Alexander Titz
- Chemical
Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), 30625 Standort Hannover-Braunschweig, Germany
| |
Collapse
|
30
|
Natural products as probes in pharmaceutical research. J Ind Microbiol Biotechnol 2015; 43:249-60. [PMID: 26438431 DOI: 10.1007/s10295-015-1691-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/16/2015] [Indexed: 10/23/2022]
Abstract
From the start of the pharmaceutical research natural products played a key role in drug discovery and development. Over time many discoveries of fundamental new biology were triggered by the unique biological activity of natural products. Unprecedented chemical structures, novel chemotypes, often pave the way to investigate new biology and to explore new pathways and targets. This review summarizes the recent results in the area with a focus on research done in the laboratories of Novartis Institutes for BioMedical Research. We aim to put the technological advances in target identification techniques in the context to the current revival of phenotypic screening and the increasingly complex biological questions related to drug discovery.
Collapse
|
31
|
Khare S, Roach SL, Barnes SW, Hoepfner D, Walker JR, Chatterjee AK, Neitz RJ, Arkin MR, McNamara CW, Ballard J, Lai Y, Fu Y, Molteni V, Yeh V, McKerrow JH, Glynne RJ, Supek F. Utilizing Chemical Genomics to Identify Cytochrome b as a Novel Drug Target for Chagas Disease. PLoS Pathog 2015; 11:e1005058. [PMID: 26186534 PMCID: PMC4506092 DOI: 10.1371/journal.ppat.1005058] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 06/30/2015] [Indexed: 11/19/2022] Open
Abstract
Unbiased phenotypic screens enable identification of small molecules that inhibit pathogen growth by unanticipated mechanisms. These small molecules can be used as starting points for drug discovery programs that target such mechanisms. A major challenge of the approach is the identification of the cellular targets. Here we report GNF7686, a small molecule inhibitor of Trypanosoma cruzi, the causative agent of Chagas disease, and identification of cytochrome b as its target. Following discovery of GNF7686 in a parasite growth inhibition high throughput screen, we were able to evolve a GNF7686-resistant culture of T. cruzi epimastigotes. Clones from this culture bore a mutation coding for a substitution of leucine by phenylalanine at amino acid position 197 in cytochrome b. Cytochrome b is a component of complex III (cytochrome bc1) in the mitochondrial electron transport chain and catalyzes the transfer of electrons from ubiquinol to cytochrome c by a mechanism that utilizes two distinct catalytic sites, QN and QP. The L197F mutation is located in the QN site and confers resistance to GNF7686 in both parasite cell growth and biochemical cytochrome b assays. Additionally, the mutant cytochrome b confers resistance to antimycin A, another QN site inhibitor, but not to strobilurin or myxothiazol, which target the QP site. GNF7686 represents a promising starting point for Chagas disease drug discovery as it potently inhibits growth of intracellular T. cruzi amastigotes with a half maximal effective concentration (EC50) of 0.15 µM, and is highly specific for T. cruzi cytochrome b. No effect on the mammalian respiratory chain or mammalian cell proliferation was observed with up to 25 µM of GNF7686. Our approach, which combines T. cruzi chemical genetics with biochemical target validation, can be broadly applied to the discovery of additional novel drug targets and drug leads for Chagas disease. Chagas Disease, or American trypanosomiasis, is caused by the kinetoplastid protozoan Trypanosoma cruzi and is primarily transmitted to a mammalian host via a triatomine insect vector (the “kissing bug”) infected with T. cruzi parasites. Although discovered in 1909 by the physician Dr. Carlos Chagas, the disease gained recognition by the public health community only following a major outbreak in Brazil during the 1960s. Approximately eight million people (primarily in Central and South America) are infected with T. cruzi and cases are becoming more widespread due to migration out of the endemic regions. Current treatment options have severe problems with toxicity, limited efficacy, and long administration. Hence, discovery of new drugs for treatment of Chagas disease has become of prime interest to the biomedical research community. In this study, we report identification of a potent inhibitor of T. cruzi growth and use a chemical genetics-based approach to elucidate the associated mechanism of action. We found that this compound, GNF7686, targets cytochrome b, a component of the mitochondrial electron transport chain crucial for ATP generation. Our study provides new insights into the use of phenotypic screening to identify novel targets for kinetoplastid drug discovery.
Collapse
Affiliation(s)
- Shilpi Khare
- Department of Genetics and Neglected Diseases, Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Steven L. Roach
- Department of Medicinal Chemistry, Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - S. Whitney Barnes
- Department of Genetics and Neglected Diseases, Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Dominic Hoepfner
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - John R. Walker
- Department of Genetics and Neglected Diseases, Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Arnab K. Chatterjee
- Department of Medicinal Chemistry, Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - R. Jeffrey Neitz
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, United States of America
| | - Michelle R. Arkin
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, United States of America
| | - Case W. McNamara
- Department of Genetics and Neglected Diseases, Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Jaime Ballard
- Department of Genetics and Neglected Diseases, Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Yin Lai
- Department of Genetics and Neglected Diseases, Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Yue Fu
- Department of Genetics and Neglected Diseases, Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Valentina Molteni
- Department of Medicinal Chemistry, Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Vince Yeh
- Department of Medicinal Chemistry, Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - James H. McKerrow
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Richard J. Glynne
- Department of Genetics and Neglected Diseases, Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Frantisek Supek
- Department of Genetics and Neglected Diseases, Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
32
|
Junne T, Wong J, Studer C, Aust T, Bauer BW, Beibel M, Bhullar B, Bruccoleri R, Eichenberger J, Estoppey D, Hartmann N, Knapp B, Krastel P, Melin N, Oakeley EJ, Oberer L, Riedl R, Roma G, Schuierer S, Petersen F, Tallarico JA, Rapoport TA, Spiess M, Hoepfner D. Decatransin, a new natural product inhibiting protein translocation at the Sec61/SecYEG translocon. J Cell Sci 2015; 128:1217-29. [PMID: 25616894 DOI: 10.1242/jcs.165746] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A new cyclic decadepsipeptide was isolated from Chaetosphaeria tulasneorum with potent bioactivity on mammalian and yeast cells. Chemogenomic profiling in S. cerevisiae indicated that the Sec61 translocon complex, the machinery for protein translocation and membrane insertion at the endoplasmic reticulum, is the target. The profiles were similar to those of cyclic heptadepsipeptides of a distinct chemotype (including HUN-7293 and cotransin) that had previously been shown to inhibit cotranslational translocation at the mammalian Sec61 translocon. Unbiased, genome-wide mutagenesis followed by full-genome sequencing in both fungal and mammalian cells identified dominant mutations in Sec61p (yeast) or Sec61α1 (mammals) that conferred resistance. Most, but not all, of these mutations affected inhibition by both chemotypes, despite an absence of structural similarity. Biochemical analysis confirmed inhibition of protein translocation into the endoplasmic reticulum of both co- and post-translationally translocated substrates by both chemotypes, demonstrating a mechanism independent of a translating ribosome. Most interestingly, both chemotypes were found to also inhibit SecYEG, the bacterial Sec61 translocon homolog. We suggest 'decatransin' as the name for this new decadepsipeptide translocation inhibitor.
Collapse
Affiliation(s)
- Tina Junne
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Joanne Wong
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Christian Studer
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Thomas Aust
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Benedikt W Bauer
- Howard Hughes Medical Institute, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Martin Beibel
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Bhupinder Bhullar
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | | | - Jürg Eichenberger
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - David Estoppey
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Nicole Hartmann
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Britta Knapp
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Philipp Krastel
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Nicolas Melin
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Edward J Oakeley
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Lukas Oberer
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Ralph Riedl
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Guglielmo Roma
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Sven Schuierer
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Frank Petersen
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - John A Tallarico
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Tom A Rapoport
- Howard Hughes Medical Institute, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Martin Spiess
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Dominic Hoepfner
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| |
Collapse
|
33
|
Coexistence and within-host evolution of diversified lineages of hypermutable Pseudomonas aeruginosa in long-term cystic fibrosis infections. PLoS Genet 2014; 10:e1004651. [PMID: 25330091 PMCID: PMC4199492 DOI: 10.1371/journal.pgen.1004651] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 08/03/2014] [Indexed: 12/14/2022] Open
Abstract
The advent of high-throughput sequencing techniques has made it possible to follow the genomic evolution of pathogenic bacteria by comparing longitudinally collected bacteria sampled from human hosts. Such studies in the context of chronic airway infections by Pseudomonas aeruginosa in cystic fibrosis (CF) patients have indicated high bacterial population diversity. Such diversity may be driven by hypermutability resulting from DNA mismatch repair system (MRS) deficiency, a common trait evolved by P. aeruginosa strains in CF infections. No studies to date have utilized whole-genome sequencing to investigate within-host population diversity or long-term evolution of mutators in CF airways. We sequenced the genomes of 13 and 14 isolates of P. aeruginosa mutator populations from an Argentinian and a Danish CF patient, respectively. Our collection of isolates spanned 6 and 20 years of patient infection history, respectively. We sequenced 11 isolates from a single sample from each patient to allow in-depth analysis of population diversity. Each patient was infected by clonal populations of bacteria that were dominated by mutators. The in vivo mutation rate of the populations was ∼100 SNPs/year–∼40-fold higher than rates in normo-mutable populations. Comparison of the genomes of 11 isolates from the same sample showed extensive within-patient genomic diversification; the populations were composed of different sub-lineages that had coexisted for many years since the initial colonization of the patient. Analysis of the mutations identified genes that underwent convergent evolution across lineages and sub-lineages, suggesting that the genes were targeted by mutation to optimize pathogenic fitness. Parallel evolution was observed in reduction of overall catabolic capacity of the populations. These findings are useful for understanding the evolution of pathogen populations and identifying new targets for control of chronic infections. Patients with cystic fibrosis (CF) are often colonized by a single clone of the common, widespread bacterium Pseudomonas aeruginosa, resulting in chronic airway infections. Long-term persistence of the bacteria involves the emergence and selection of multiple phenotypic variants. Among these are “mutator” variants characterized by increased mutation rates resulting from the inactivation of DNA repair systems. The genetic evolution of mutators during the course of chronic infection is poorly understood, and the effects of hypermutability on bacterial population structure have not been studied using genomic approaches. We evaluated the genomic changes undergone by mutator populations of P. aeruginosa obtained from single sputum samples from two chronically infected CF patients, and found that mutators completely dominated the infecting population in both patients. These populations displayed high genomic diversity based on vast accumulation of stochastic mutations. Our results are in contrast to the concept of a homogeneous population consisting of a single dominant clone; rather, they support a model of populations structured by diverse subpopulations that coexist within the patient. Certain genes involved in adaptation were highly and convergently mutated in both lineages, suggesting that these genes were beneficial and potentially responsible for the co-selection of mutator alleles.
Collapse
|
34
|
Abstract
The yeast deletion collections comprise >21,000 mutant strains that carry precise start-to-stop deletions of ∼6000 open reading frames. This collection includes heterozygous and homozygous diploids, and haploids of both MATa and MATα mating types. The yeast deletion collection, or yeast knockout (YKO) set, represents the first and only complete, systematically constructed deletion collection available for any organism. Conceived during the Saccharomyces cerevisiae sequencing project, work on the project began in 1998 and was completed in 2002. The YKO strains have been used in numerous laboratories in >1000 genome-wide screens. This landmark genome project has inspired development of numerous genome-wide technologies in organisms from yeast to man. Notable spinoff technologies include synthetic genetic array and HIPHOP chemogenomics. In this retrospective, we briefly describe the yeast deletion project and some of its most noteworthy biological contributions and the impact that these collections have had on the yeast research community and on genomics in general.
Collapse
|
35
|
Roelen CAM, Heymans MW, van Rhenen W, Groothoff JW, Twisk JWR, Bültmann U. Fatigue as prognostic risk marker of mental sickness absence in white collar employees. JOURNAL OF OCCUPATIONAL REHABILITATION 2014; 24:307-315. [PMID: 23821309 DOI: 10.1007/s10926-013-9458-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
PURPOSE To investigate fatigue as prognostic risk marker for identifying working employees at risk of long-term sickness absence (SA). METHODS At baseline, fatigue was measured in 633 white collar employees with the checklist individual strength (CIS) including scales for fatigue severity, reduced concentration, reduced motivation, and reduced physical activity. SA was medically certified by an occupational physician in the 3rd or 4th SA week with diagnostic codes according to the 10th version of the International Classification of Diseases. Medically certified SA was retrieved at the individual level from an occupational health register after 1-year follow-up. CIS scores were investigated as prognostic risk markers predicting medically certified SA and particularly SA certified as mental SA. RESULTS 614 employees (N = 378 men and N = 236 women) had complete data and were eligible for analysis; 63 (10 %) had medically certified SA of whom 39 (6 %) had mental SA. Fatigue severity and total CIS scores were associated with medically certified SA in men, but poorly discriminated between men with and without medically certified SA. Fatigue severity, reduced concentration, reduced motivation, and total CIS scores were also associated with mental SA in men. CIS and its reduced concentration scale were valid prognostic risk markers of mental SA. CONCLUSION Fatigue was a prognostic risk marker of mental SA in white collar men. The CIS should be further validated as a screening tool for the risk of mental SA in white collar working populations.
Collapse
Affiliation(s)
- C A M Roelen
- Department of Health Sciences, Methodology and Applied Biostatistics, VU University, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands,
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Covering: up to the end of 2013. Myxobacteria produce a vast range of structurally diverse natural products with prominent biological activities. Here, we provide a detailed description and judge the potential of all antibiotically active myxobacterial compounds as lead structures, pointing out their particularities and, if known, their mode of action. Thus, the review provides an overview of the potential of specific compounds, suitable for future investigations and possible clinical applications.
Collapse
Affiliation(s)
- Till F Schäberle
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany.
| | | | | | | |
Collapse
|
37
|
Chen CH, Genapathy S, Fischer PM, Chan WC. A facile approach to tryptophan derivatives for the total synthesis of argyrin analogues. Org Biomol Chem 2014; 12:9764-8. [DOI: 10.1039/c4ob02107j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Utilising a chiral auxiliary-facilitated Strecker amino acid synthesis strategy, indole-substituted (S)-tryptophans have been obtained from corresponding indoles; the former in turn were used for the synthesis of a potent antibacterial agent, argyrin and its analogues.
Collapse
Affiliation(s)
- Chou-Hsiung Chen
- School of Pharmacy
- Centre for Biomolecular Sciences
- University of Nottingham
- Nottingham NG7 2RD, UK
| | - Sivaneswary Genapathy
- School of Pharmacy
- Centre for Biomolecular Sciences
- University of Nottingham
- Nottingham NG7 2RD, UK
| | - Peter M. Fischer
- School of Pharmacy
- Centre for Biomolecular Sciences
- University of Nottingham
- Nottingham NG7 2RD, UK
| | - Weng C. Chan
- School of Pharmacy
- Centre for Biomolecular Sciences
- University of Nottingham
- Nottingham NG7 2RD, UK
| |
Collapse
|
38
|
Palmer SO, Rangel EY, Hu Y, Tran AT, Bullard JM. Two homologous EF-G proteins from Pseudomonas aeruginosa exhibit distinct functions. PLoS One 2013; 8:e80252. [PMID: 24260360 PMCID: PMC3832671 DOI: 10.1371/journal.pone.0080252] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/11/2013] [Indexed: 11/28/2022] Open
Abstract
Genes encoding two proteins corresponding to elongation factor G (EF-G) were cloned from Pseudomonas aeruginosa. The proteins encoded by these genes are both members of the EFG I subfamily. The gene encoding one of the forms of EF-G is located in the str operon and the resulting protein is referred to as EF-G1A while the gene encoding the other form of EF-G is located in another part of the genome and the resulting protein is referred to as EF-G1B. These proteins were expressed and purified to 98% homogeneity. Sequence analysis indicated the two proteins are 90/84% similar/identical. In other organisms containing multiple forms of EF-G a lower degree of similarity is seen. When assayed in a poly(U)-directed poly-phenylalanine translation system, EF-G1B was 75-fold more active than EF-G1A. EF-G1A pre-incubate with ribosomes in the presence of the ribosome recycling factor (RRF) decreased polymerization of poly-phenylalanine upon addition of EF-G1B in poly(U)-directed translation suggesting a role for EF-G1A in uncoupling of the ribosome into its constituent subunits. Both forms of P. aeruginosa EF-G were active in ribosome dependent GTPase activity. The kinetic parameters (KM) for the interaction of EF-G1A and EF-G1B with GTP were 85 and 70 μM, respectively. However, EF-G1B exhibited a 5-fold greater turnover number (observed kcat) for the hydrolysis of GTP than EF-G1A; 0.2 s-1 vs. 0.04 s-1. These values resulted in specificity constants (kcatobs/KM) for EF-G1A and EF-G1B of 0.5 x 103 s-1 M-1 and 3.0 x 103 s-1 M-1, respectively. The antibiotic fusidic acid (FA) completely inhibited poly(U)-dependent protein synthesis containing P. aeruginosa EF-G1B, but the same protein synthesis system containing EF-G1A was not affected. Likewise, the activity of EF-G1B in ribosome dependent GTPase assays was completely inhibited by FA, while the activity of EF-G1A was not affected.
Collapse
Affiliation(s)
- Stephanie O. Palmer
- The University of Texas-Pan American, Edinburg, Texas, United States of America
| | - Edna Y. Rangel
- The University of Texas-Pan American, Edinburg, Texas, United States of America
| | - Yanmei Hu
- The University of Texas-Pan American, Edinburg, Texas, United States of America
| | - Alexis T. Tran
- The University of Texas-Pan American, Edinburg, Texas, United States of America
| | - James M. Bullard
- The University of Texas-Pan American, Edinburg, Texas, United States of America
- * E-mail:
| |
Collapse
|