1
|
Germany EM, Thewasano N, Imai K, Maruno Y, Bamert RS, Stubenrauch CJ, Dunstan RA, Ding Y, Nakajima Y, Lai X, Webb CT, Hidaka K, Tan KS, Shen H, Lithgow T, Shiota T. Dual recognition of multiple signals in bacterial outer membrane proteins enhances assembly and maintains membrane integrity. eLife 2024; 12:RP90274. [PMID: 38226797 PMCID: PMC10945584 DOI: 10.7554/elife.90274] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Outer membrane proteins (OMPs) are essential components of the outer membrane of Gram-negative bacteria. In terms of protein targeting and assembly, the current dogma holds that a 'β-signal' imprinted in the final β-strand of the OMP engages the β-barrel assembly machinery (BAM) complex to initiate membrane insertion and assembly of the OMP into the outer membrane. Here, we revealed an additional rule that signals equivalent to the β-signal are repeated in other, internal β-strands within bacterial OMPs, by peptidomimetic and mutational analysis. The internal signal is needed to promote the efficiency of the assembly reaction of these OMPs. BamD, an essential subunit of the BAM complex, recognizes the internal signal and the β-signal, arranging several β-strands and partial folding for rapid OMP assembly. The internal signal-BamD ordering system is not essential for bacterial viability but is necessary to retain the integrity of the outer membrane against antibiotics and other environmental insults.
Collapse
Affiliation(s)
- Edward M Germany
- Frontier Science Research Center, University of MiyazakiMiyazakiJapan
- Organization for Promotion of Tenure Track, University of MiyazakiMiyazakiJapan
| | - Nakajohn Thewasano
- Frontier Science Research Center, University of MiyazakiMiyazakiJapan
- Organization for Promotion of Tenure Track, University of MiyazakiMiyazakiJapan
| | - Kenichiro Imai
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)TokyoJapan
| | - Yuki Maruno
- Frontier Science Research Center, University of MiyazakiMiyazakiJapan
- Organization for Promotion of Tenure Track, University of MiyazakiMiyazakiJapan
| | - Rebecca S Bamert
- Centre to Impact AMR, Monash UniversityClaytonAustralia
- Infection Program, Biomedicine Discovery Institute, and Department of Microbiology, Monash UniversityClaytonAustralia
| | - Christopher J Stubenrauch
- Centre to Impact AMR, Monash UniversityClaytonAustralia
- Infection Program, Biomedicine Discovery Institute, and Department of Microbiology, Monash UniversityClaytonAustralia
| | - Rhys A Dunstan
- Centre to Impact AMR, Monash UniversityClaytonAustralia
- Infection Program, Biomedicine Discovery Institute, and Department of Microbiology, Monash UniversityClaytonAustralia
| | - Yue Ding
- Department of Materials Science and Engineering, Monash UniversityClaytonAustralia
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash UniversityClaytonAustralia
| | - Yukari Nakajima
- Frontier Science Research Center, University of MiyazakiMiyazakiJapan
- Organization for Promotion of Tenure Track, University of MiyazakiMiyazakiJapan
| | - XiangFeng Lai
- Department of Materials Science and Engineering, Monash UniversityClaytonAustralia
| | - Chaille T Webb
- Centre to Impact AMR, Monash UniversityClaytonAustralia
- Infection Program, Biomedicine Discovery Institute, and Department of Microbiology, Monash UniversityClaytonAustralia
| | - Kentaro Hidaka
- Frontier Science Research Center, University of MiyazakiMiyazakiJapan
- Organization for Promotion of Tenure Track, University of MiyazakiMiyazakiJapan
| | - Kher Shing Tan
- Centre to Impact AMR, Monash UniversityClaytonAustralia
- Infection Program, Biomedicine Discovery Institute, and Department of Microbiology, Monash UniversityClaytonAustralia
| | - Hsinhui Shen
- Department of Materials Science and Engineering, Monash UniversityClaytonAustralia
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash UniversityClaytonAustralia
| | - Trevor Lithgow
- Centre to Impact AMR, Monash UniversityClaytonAustralia
- Infection Program, Biomedicine Discovery Institute, and Department of Microbiology, Monash UniversityClaytonAustralia
| | - Takuya Shiota
- Frontier Science Research Center, University of MiyazakiMiyazakiJapan
- Organization for Promotion of Tenure Track, University of MiyazakiMiyazakiJapan
| |
Collapse
|
2
|
Ageorges V, Wawrzyniak I, Ruiz P, Bicep C, Zorgani MA, Paxman JJ, Heras B, Henderson IR, Leroy S, Bailly X, Sapountzis P, Peyretaillade E, Desvaux M. Genome-Wide Analysis of Antigen 43 (Ag43) Variants: New Insights in Their Diversity, Distribution and Prevalence in Bacteria. Int J Mol Sci 2023; 24:5500. [PMID: 36982580 PMCID: PMC10058404 DOI: 10.3390/ijms24065500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023] Open
Abstract
Antigen 43 (Ag43) expression induces aggregation and biofilm formation that has consequences for bacterial colonisation and infection. Ag43 is secreted through the Type 5 subtype "a" secretion system (T5aSS) and is a prototypical member of the family of self-associating autotransporters (SAATs). As a T5aSS protein, Ag43 has a modular architecture comprised of (i) a signal peptide, (ii) a passenger domain that can be subdivided into three subdomains (SL, EJ, and BL), (iii) an autochaperone (AC) domain, and (iv) an outer membrane translocator. The cell-surface SL subdomain is directly involved in the "Velcro-handshake" mechanism resulting in bacterial autoaggregation. Ag43 is considered to have a ubiquitous distribution in E. coli genomes and many strains harbour multiple agn43 genes. However, recent phylogenetic analyses indicated the existence of four distinct Ag43 classes exhibiting different propensities for autoaggregation and interactions. Given the knowledge of the diversity and distribution of Ag43 in E. coli genomes is incomplete, we have performed a thorough in silico investigation across bacterial genomes. Our comprehensive analyses indicate that Ag43 passenger domains cluster in six phylogenetic classes associated with different SL subdomains. The diversity of Ag43 passenger domains is a result of the association of the SL subtypes with two different EJ-BL-AC modules. We reveal that agn43 is almost exclusively present among bacterial species of the Enterobacteriaceae family and essentially in the Escherichia genus (99.6%) but that it is not ubiquitous in E. coli. The gene is typically present as a single copy but up to five copies of agn43 with different combinations of classes can be observed. The presence of agn43 as well as its different classes appeared to differ between Escherichia phylogroups. Strikingly, agn43 is present in 90% of E. coli from E phylogroup. Our results shed light on Ag43 diversity and provide a rational framework for investigating its role in E. coli ecophysiology and physiopathology.
Collapse
Affiliation(s)
| | | | - Philippe Ruiz
- INRAE, UCA, UMR0454 MEDIS, 63000 Clermont-Ferrand, France
| | - Cédric Bicep
- UCA, CNRS, UMR6023 LMGE, 63000 Clermont-Ferrand, France
| | | | - Jason J. Paxman
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Begoña Heras
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Ian R. Henderson
- Institute for Molecular Biosciences, University of Queensland, St. Lucia, QLD 4067, Australia
| | - Sabine Leroy
- INRAE, UCA, UMR0454 MEDIS, 63000 Clermont-Ferrand, France
| | - Xavier Bailly
- INRAE, UCA, VetAgro Sup, UMR0346 EPIA, 63122 Saint Genes Champanelle, France
| | | | | | | |
Collapse
|
3
|
Shingarova LN, Petrovskaya LE, Kryukova EA, Gapizov SS, Boldyreva EF, Dolgikh DA, Kirpichnikov MP. Deletion Variants of Autotransporter from Psychrobacter cryohalolentis Increase Efficiency of 10FN3 Exposure on the Surface of Escherichia coli Cells. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:932-939. [PMID: 36180989 DOI: 10.1134/s0006297922090061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 06/16/2023]
Abstract
The autotransporter AT877 from Psychrobacter cryohalolentis belongs to the family of outer membrane proteins containing N-terminal passenger and C-terminal translocator domains that form the basis for the design of display systems on the surface of bacterial cells. It was shown in our previous study that the passenger domain of AT877 can be replaced by the cold-active esterase EstPc or the tenth domain of fibronectin type III (10Fn3). In order to increase efficiency of the 10Fn3 surface display in Escherichia coli cells, four deletion variants of the Fn877 hybrid autotransporter were obtained. It was demonstrated that all variants are present in the membrane of bacterial cells and facilitate binding of the antibodies specific against 10Fn3 on the cell surface. The highest level of binding is provided by the variants Δ239 and Δ310, containing four and seven beta-strands out of twelve that comprise the structure of the translocator domain. Using electrophoresis under semi-native conditions, presence of heat modifiability in the full-size Fn877 and its deletion variants was demonstrated, which indicated preservation of beta structure in their molecules. The obtained results could be used to optimize the bacterial display systems of 10Fn3, as well as of other heterologous passenger domains.
Collapse
Affiliation(s)
- Lyudmila N Shingarova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - Lada E Petrovskaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Elena A Kryukova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Sultan S Gapizov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Elena F Boldyreva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Dmitriy A Dolgikh
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
4
|
Clarke KR, Hor L, Pilapitiya A, Luirink J, Paxman JJ, Heras B. Phylogenetic Classification and Functional Review of Autotransporters. Front Immunol 2022; 13:921272. [PMID: 35860281 PMCID: PMC9289746 DOI: 10.3389/fimmu.2022.921272] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022] Open
Abstract
Autotransporters are the core component of a molecular nano-machine that delivers cargo proteins across the outer membrane of Gram-negative bacteria. Part of the type V secretion system, this large family of proteins play a central role in controlling bacterial interactions with their environment by promoting adhesion to surfaces, biofilm formation, host colonization and invasion as well as cytotoxicity and immunomodulation. As such, autotransporters are key facilitators of fitness and pathogenesis and enable co-operation or competition with other bacteria. Recent years have witnessed a dramatic increase in the number of autotransporter sequences reported and a steady rise in functional studies, which further link these proteins to multiple virulence phenotypes. In this review we provide an overview of our current knowledge on classical autotransporter proteins, the archetype of this protein superfamily. We also carry out a phylogenetic analysis of their functional domains and present a new classification system for this exquisitely diverse group of bacterial proteins. The sixteen phylogenetic divisions identified establish sensible relationships between well characterized autotransporters and inform structural and functional predictions of uncharacterized proteins, which may guide future research aimed at addressing multiple unanswered aspects in this group of therapeutically important bacterial factors.
Collapse
Affiliation(s)
- Kaitlin R. Clarke
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Lilian Hor
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Akila Pilapitiya
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Joen Luirink
- Department of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit, Amsterdam, Netherlands
| | - Jason J. Paxman
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- *Correspondence: Begoña Heras, ; Jason J. Paxman,
| | - Begoña Heras
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- *Correspondence: Begoña Heras, ; Jason J. Paxman,
| |
Collapse
|
5
|
Vo JL, Ortiz GCM, Totsika M, Lo AW, Hancock SJ, Whitten AE, Hor L, Peters KM, Ageorges V, Caccia N, Desvaux M, Schembri MA, Paxman JJ, Heras B. Variation of Antigen 43 self-association modulates bacterial compacting within aggregates and biofilms. NPJ Biofilms Microbiomes 2022; 8:20. [PMID: 35396507 PMCID: PMC8993888 DOI: 10.1038/s41522-022-00284-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
The formation of aggregates and biofilms enhances bacterial colonisation and infection progression by affording protection from antibiotics and host immune factors. Despite these advantages there is a trade-off, whereby bacterial dissemination is reduced. As such, biofilm development needs to be controlled to suit adaptation to different environments. Here we investigate members from one of largest groups of bacterial adhesins, the autotransporters, for their critical role in the assembly of bacterial aggregates and biofilms. We describe the structural and functional characterisation of autotransporter Ag43 variants from different Escherichia coli pathotypes. We show that specific interactions between amino acids on the contacting interfaces of adjacent Ag43 proteins drives a common mode of trans-association that leads to cell clumping. Furthermore, subtle variation of these interactions alters aggregation kinetics and the degree of compacting within cell clusters. Together, our structure–function investigation reveals an underlying molecular basis for variations in the density of bacterial communities.
Collapse
Affiliation(s)
- Julieanne L Vo
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Gabriela C Martínez Ortiz
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Herston, QLD, 4006, Australia
| | - Alvin W Lo
- School of Chemistry and Molecular Biosciences, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Steven J Hancock
- School of Chemistry and Molecular Biosciences, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Andrew E Whitten
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, 2234, Australia
| | - Lilian Hor
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Kate M Peters
- School of Chemistry and Molecular Biosciences, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Valentin Ageorges
- Université Clermont Auvergne, INRAE, UMR454 MEDiS, 63000, Clermont-Ferrand, France
| | - Nelly Caccia
- Université Clermont Auvergne, INRAE, UMR454 MEDiS, 63000, Clermont-Ferrand, France
| | - Mickaël Desvaux
- Université Clermont Auvergne, INRAE, UMR454 MEDiS, 63000, Clermont-Ferrand, France
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Jason J Paxman
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Begoña Heras
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
6
|
Giannakara M, Koumandou VL. Evolution of two-component quorum sensing systems. Access Microbiol 2022; 4:000303. [PMID: 35252749 PMCID: PMC8895600 DOI: 10.1099/acmi.0.000303] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022] Open
Abstract
Quorum sensing (QS) is a cell-to-cell communication system that enables bacteria to coordinate their gene expression depending on their population density, via the detection of small molecules called autoinducers. In this way bacteria can act collectively to initiate processes like bioluminescence, virulence and biofilm formation. Autoinducers are detected by receptors, some of which are part of two-component signal transduction systems (TCS), which comprise of a (usually membrane-bound) sensor histidine kinase (HK) and a cognate response regulator (RR). Different QS systems are used by different bacterial taxa, and their relative evolutionary relationships have not been extensively studied. To address this, we used the Kyoto Encyclopedia of Genes and Genomes (KEGG) database to identify all the QS HKs and RRs that are part of TCSs and examined their conservation across microbial taxa. We compared the combinations of the highly conserved domains in the different families of receptors and response regulators using the Simple Modular Architecture Research Tool (SMART) and KEGG databases, and we also carried out phylogenetic analyses for each family, and all families together. The distribution of the different QS systems across taxa, indicates flexibility in HK–RR pairing and highlights the need for further study of the most abundant systems. For both the QS receptors and the response regulators, our results indicate close evolutionary relationships between certain families, highlighting a common evolutionary history which can inform future applications, such as the design of novel inhibitors for pathogenic QS systems.
Collapse
Affiliation(s)
- Marina Giannakara
- Genetics Laboratory, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Vassiliki Lila Koumandou
- Genetics Laboratory, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
7
|
Comparative Pathogenomics of Escherichia coli: Polyvalent Vaccine Target Identification through Virulome Analysis. Infect Immun 2021; 89:e0011521. [PMID: 33941580 PMCID: PMC8281228 DOI: 10.1128/iai.00115-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Comparative genomics of bacterial pathogens has been useful for revealing potential virulence factors. Escherichia coli is a significant cause of human morbidity and mortality worldwide but can also exist as a commensal in the human gastrointestinal tract. With many sequenced genomes, it has served as a model organism for comparative genomic studies to understand the link between genetic content and potential for virulence. To date, however, no comprehensive analysis of its complete “virulome” has been performed for the purpose of identifying universal or pathotype-specific targets for vaccine development. Here, we describe the construction of a pathotype database of 107 well-characterized completely sequenced pathogenic and nonpathogenic E. coli strains, which we annotated for major virulence factors (VFs). The data are cross referenced for patterns against pathotype, phylogroup, and sequence type, and the results were verified against all 1,348 complete E. coli chromosomes in the NCBI RefSeq database. Our results demonstrate that phylogroup drives many of the “pathotype-associated” VFs, and ExPEC-associated VFs are found predominantly within the B2/D/F/G phylogenetic clade, suggesting that these phylogroups are better adapted to infect human hosts. Finally, we used this information to propose polyvalent vaccine targets with specificity toward extraintestinal strains, targeting key invasive strategies, including immune evasion (group 2 capsule), iron acquisition (FyuA, IutA, and Sit), adherence (SinH, Afa, Pap, Sfa, and Iha), and toxins (Usp, Sat, Vat, Cdt, Cnf1, and HlyA). While many of these targets have been proposed before, this work is the first to examine their pathotype and phylogroup distribution and how they may be targeted together to prevent disease.
Collapse
|
8
|
Bialer MG, Ferrero MC, Delpino MV, Ruiz-Ranwez V, Posadas DM, Baldi PC, Zorreguieta A. Adhesive Functions or Pseudogenization of Type Va Autotransporters in Brucella Species. Front Cell Infect Microbiol 2021; 11:607610. [PMID: 33987105 PMCID: PMC8111173 DOI: 10.3389/fcimb.2021.607610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 04/01/2021] [Indexed: 01/18/2023] Open
Abstract
Adhesion to host cells is a key step for successful infection of many bacterial pathogens and may define tropism to different host tissues. To do so, bacteria display adhesins on their surfaces. Brucella is an intracellular pathogen capable of proliferating in a wide variety of cell types. It has been described that BmaC, a large protein that belongs to the classical (type Va) autotransporter family, is required for efficient adhesion of Brucella suis strain 1330 to epithelial cells and fibronectin. Here we show that B. suis 1330 harbors two other type Va autotransporters (BmaA and BmaB), which, although much smaller, share significant sequence similarities with BmaC and contain the essential domains to mediate proper protein translocation to the bacterial surface. Gain and loss of function studies indicated that BmaA, BmaB, and BmaC contribute, to a greater or lesser degree, to adhesion of B. suis 1330 to different cells such as synovial fibroblasts, osteoblasts, trophoblasts, and polarized epithelial cells as well as to extracellular matrix components. It was previously shown that BmaC localizes to a single bacterial pole. Interestingly, we observed here that, similar to BmaC, the BmaB adhesin is localized mostly at a single cell pole, reinforcing the hypothesis that Brucella displays an adhesive pole. Although Brucella species have strikingly similar genomes, they clearly differ in their host preferences. Mainly, the differences identified between species appear to be at loci encoding surface proteins. A careful in silico analysis of the putative type Va autotransporter orthologues from several Brucella strains showed that the bmaB locus from Brucella abortus and both, the bmaA and bmaC loci from Brucella melitensis are pseudogenes in all strains analyzed. Results reported here evidence that all three autotransporters play a role in the adhesion properties of B. suis 1330. However, Brucella spp. exhibit extensive variations in the repertoire of functional adhesins of the classical autotransporter family that can be displayed on the bacterial surface, making them an interesting target for future studies on host preference and tropism.
Collapse
Affiliation(s)
- Magalí G Bialer
- Fundación Instituto Leloir (FIL), IIBBA (CONICET-FIL), Buenos Aires, Argentina
| | - Mariana C Ferrero
- Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M Victoria Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Diana M Posadas
- Fundación Instituto Leloir (FIL), IIBBA (CONICET-FIL), Buenos Aires, Argentina
| | - Pablo C Baldi
- Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Angeles Zorreguieta
- Fundación Instituto Leloir (FIL), IIBBA (CONICET-FIL), Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
9
|
Computational prediction of secreted proteins in gram-negative bacteria. Comput Struct Biotechnol J 2021; 19:1806-1828. [PMID: 33897982 PMCID: PMC8047123 DOI: 10.1016/j.csbj.2021.03.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 12/29/2022] Open
Abstract
Gram-negative bacteria harness multiple protein secretion systems and secrete a large proportion of the proteome. Proteins can be exported to periplasmic space, integrated into membrane, transported into extracellular milieu, or translocated into cytoplasm of contacting cells. It is important for accurate, genome-wide annotation of the secreted proteins and their secretion pathways. In this review, we systematically classified the secreted proteins according to the types of secretion systems in Gram-negative bacteria, summarized the known features of these proteins, and reviewed the algorithms and tools for their prediction.
Collapse
|
10
|
Doyle MT, Bernstein HD. BamA forms a translocation channel for polypeptide export across the bacterial outer membrane. Mol Cell 2021; 81:2000-2012.e3. [PMID: 33705710 DOI: 10.1016/j.molcel.2021.02.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/05/2021] [Accepted: 02/18/2021] [Indexed: 12/18/2022]
Abstract
The β-barrel assembly machine (BAM) integrates β-barrel proteins into the outer membrane (OM) of Gram-negative bacteria. An essential BAM subunit (BamA) catalyzes integration by promoting the formation of a hybrid-barrel intermediate state between its own β-barrel domain and that of its client proteins. Here we show that in addition to catalyzing the integration of β-barrel proteins, BamA functions as a polypeptide export channel. In vivo structural mapping via intermolecular disulfide crosslinking showed that the extracellular "passenger" domain of a member of the "autotransporter" superfamily of virulence factors traverses the OM through the BamA β-barrel lumen. Furthermore, we demonstrate that a highly conserved residue within autotransporter β-barrels is required to position the passenger inside BamA to initiate translocation and that during translocation, the passenger stabilizes the hybrid-barrel state. Our results not only establish a new function for BamA but also unify the divergent functions of BamA and other "Omp85" superfamily transporters.
Collapse
Affiliation(s)
- Matthew Thomas Doyle
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Harris David Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
11
|
Jung HJ, Sorbara MT, Pamer EG. TAM mediates adaptation of carbapenem-resistant Klebsiella pneumoniae to antimicrobial stress during host colonization and infection. PLoS Pathog 2021; 17:e1009309. [PMID: 33556154 PMCID: PMC7895364 DOI: 10.1371/journal.ppat.1009309] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/19/2021] [Accepted: 01/12/2021] [Indexed: 01/12/2023] Open
Abstract
Gram-negative pathogens, such as Klebsiella pneumoniae, remodel their outer membrane (OM) in response to stress to maintain its integrity as an effective barrier and thus to promote their survival in the host. The emergence of carbapenem-resistant K. pneumoniae (CR-Kp) strains that are resistant to virtually all antibiotics is an increasing clinical problem and OM impermeability has limited development of antimicrobial agents because higher molecular weight antibiotics cannot access sites of activity. Here, we demonstrate that TAM (translocation and assembly module) deletion increases CR-Kp OM permeability under stress conditions and enhances sensitivity to high-molecular weight antimicrobials. SILAC-based proteomic analyses revealed mis-localization of membrane proteins in the TAM deficient strain. Stress-induced sensitization enhances clearance of TAM-deficient CR-Kp from the gut lumen following fecal microbiota transplantation and from infection sites following pulmonary or systemic infection. Our study suggests that TAM, as a regulator of OM permeability, represents a potential target for development of agents that enhance the effectiveness of existing antibiotics.
Collapse
Affiliation(s)
- Hea-Jin Jung
- Duchossois Family Institute, The University of Chicago, Chicago, Illinois, United States of America
- Department of Microbiology, The University of Chicago, Chicago, Illinois, United States of America
- Department of Medicine, Section of Infectious Diseases and Global Health, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (H-JJ); (EGP)
| | - Matthew T. Sorbara
- Duchossois Family Institute, The University of Chicago, Chicago, Illinois, United States of America
- Department of Microbiology, The University of Chicago, Chicago, Illinois, United States of America
- Department of Medicine, Section of Infectious Diseases and Global Health, The University of Chicago, Chicago, Illinois, United States of America
| | - Eric G. Pamer
- Duchossois Family Institute, The University of Chicago, Chicago, Illinois, United States of America
- Department of Microbiology, The University of Chicago, Chicago, Illinois, United States of America
- Department of Medicine, Section of Infectious Diseases and Global Health, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (H-JJ); (EGP)
| |
Collapse
|
12
|
Properties of protein unfolded states suggest broad selection for expanded conformational ensembles. Proc Natl Acad Sci U S A 2020; 117:23356-23364. [PMID: 32879005 PMCID: PMC7519328 DOI: 10.1073/pnas.2003773117] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Much attention is being paid to conformational biases in the ensembles of intrinsically disordered proteins. However, it is currently unknown whether or how conformational biases within the disordered ensembles of foldable proteins affect function in vivo. Recently, we demonstrated that water can be a good solvent for unfolded polypeptide chains, even those with a hydrophobic and charged sequence composition typical of folded proteins. These results run counter to the generally accepted model that protein folding begins with hydrophobicity-driven chain collapse. Here we investigate what other features, beyond amino acid composition, govern chain collapse. We found that local clustering of hydrophobic and/or charged residues leads to significant collapse of the unfolded ensemble of pertactin, a secreted autotransporter virulence protein from Bordetella pertussis, as measured by small angle X-ray scattering (SAXS). Sequence patterns that lead to collapse also correlate with increased intermolecular polypeptide chain association and aggregation. Crucially, sequence patterns that support an expanded conformational ensemble enhance pertactin secretion to the bacterial cell surface. Similar sequence pattern features are enriched across the large and diverse family of autotransporter virulence proteins, suggesting sequence patterns that favor an expanded conformational ensemble are under selection for efficient autotransporter protein secretion, a necessary prerequisite for virulence. More broadly, we found that sequence patterns that lead to more expanded conformational ensembles are enriched across water-soluble proteins in general, suggesting protein sequences are under selection to regulate collapse and minimize protein aggregation, in addition to their roles in stabilizing folded protein structures.
Collapse
|
13
|
Evolutionary genetic analysis of unassigned peptidase clan-associated microbial virulence and pathogenesis. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00529-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Sequential Translocation of Polypeptides across the Bacterial Outer Membrane through the Trimeric Autotransporter Pathway. mBio 2019; 10:mBio.01973-19. [PMID: 31641085 PMCID: PMC6805991 DOI: 10.1128/mbio.01973-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Trimeric autotransporter adhesins (TAAs) are a family of bacterial outer membrane (OM) proteins that are comprised of three identical subunits. Each subunit contains an N-terminal extracellular ("passenger") domain and a short C-terminal segment that contributes four β strands to a single 12-stranded β barrel. The mechanism by which the passenger domains are translocated across the OM and the energetics of the translocation reaction are poorly understood. To address these issues, we examined the secretion of modified versions of the passenger domain of UpaG, a TAA produced by Escherichia coli CFT073. Using the SpyTag-SpyCatcher system to probe passenger domain localization, we found that both intrinsically disordered polypeptides fused to the UpaG passenger domain and artificially disulfide-bonded polypeptides were secreted effectively but relatively slowly. Surprisingly, we also found that in some cases, the three nonnative passenger domain segments associated with a single trimer were secreted sequentially. Photo-cross-linking experiments indicated that incompletely assembled UpaG derivatives remained bound to the barrel assembly machinery (Bam) complex until all three passenger domains were fully secreted. Taken together, our results strongly suggest that the secretion of polypeptides through the TAA pathway is coordinated with the assembly of the β barrel domain and that the folding of passenger domains in the extracellular space maximizes the rate of secretion. Furthermore, our work provides evidence for an unprecedented sequential mode of protein translocation, at least under specific experimental conditions.IMPORTANCE Trimeric autotransporter adhesins (TAAs) are specialized bacterial outer membrane proteins consisting of three identical subunits. TAAs contain large extracellular domains that trimerize and promote virulence, but the mechanism by which they are secreted is poorly understood. We found that the extracellular domains of a native TAA were secreted rapidly but that disordered and artificially folded polypeptides fused to native passenger domains were secreted in a slow, sequential fashion. Our results strongly suggest that the efficient secretion of native extracellular domains is driven by their trimerization following export but that alternative energy sources can be harnessed to secrete nonnative polypeptides. Furthermore, we obtained evidence that TAA extracellular domains are secreted before the assembly of the linked membrane spanning domain is completed.
Collapse
|
15
|
Yan Z, Hussain S, Wang X, Bernstein HD, Bardwell JCA. Chaperone OsmY facilitates the biogenesis of a major family of autotransporters. Mol Microbiol 2019; 112:1373-1387. [PMID: 31369167 DOI: 10.1111/mmi.14358] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2019] [Indexed: 12/26/2022]
Abstract
OsmY is a widely conserved but poorly understood 20 kDa periplasmic protein. Using a folding biosensor, we previously obtained evidence that OsmY has molecular chaperone activity. To discover natural OsmY substrates, we screened for proteins that are destabilized and thus present at lower steady-state levels in an osmY-null strain. The abundance of an outer membrane protein called antigen 43 was substantially decreased and its β-barrel domain was undetectable in the outer membrane of an osmY-null strain. Antigen 43 is a member of the diffuse adherence family of autotransporters. Like strains that are defective in antigen 43 production, osmY-null mutants failed to undergo cellular autoaggregation. In vitro, OsmY assisted in the refolding of the antigen 43 β-barrel domain and protected it from added protease. Finally, an osmY-null strain that expressed two members of the diffuse adherence family of autotransporters that are distantly related to antigen 43, EhaA and TibA, contained reduced levels of the proteins and failed to undergo cellular autoaggregation. Taken together, our results indicate that OsmY is involved in the biogenesis of a major subset of autotransporters, a group of proteins that play key roles in bacterial pathogenesis.
Collapse
Affiliation(s)
- Zhen Yan
- Howard Hughes Medical Institute and Department of Molecular, Cellular & Development Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sunyia Hussain
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xu Wang
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Harris D Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - James C A Bardwell
- Howard Hughes Medical Institute and Department of Molecular, Cellular & Development Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
16
|
Differential homotypic and heterotypic interactions of antigen 43 (Ag43) variants in autotransporter-mediated bacterial autoaggregation. Sci Rep 2019; 9:11100. [PMID: 31367003 PMCID: PMC6668479 DOI: 10.1038/s41598-019-47608-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/18/2019] [Indexed: 12/18/2022] Open
Abstract
Antigen 43 (Ag43) is a cell-surface exposed protein of Escherichia coli secreted by the Type V, subtype a, secretion system (T5aSS) and belonging to the family of self-associating autotransporters (SAATs). These modular proteins, comprising a cleavable N-terminal signal peptide, a surface-exposed central passenger and an outer membrane C-terminal translocator, self-recognise in a Velcro-like handshake mechanism. A phylogenetic network analysis focusing on the passenger revealed for the first time that they actually distribute into four distinct classes, namely C1, C2, C3 and C4. Structural alignment and modelling analyses demonstrated these classes arose from shuffling of two different subdomains within the Ag43 passengers. Functional analyses revealed that homotypic interactions occur for all Ag43 classes but significant differences in the sedimentation kinetics and aggregation state were present when Ag43C3 was expressed. In contrast, heterotypic interaction occurred in a very limited number of cases. Single cell-force spectroscopy demonstrated the importance of specific as well as nonspecific interactions in mediating Ag43-Ag43 recognition. We propose that structural differences in the subdomains of the Ag43 classes account for different autoaggregation dynamics and propensities to co-interact.
Collapse
|
17
|
The Autotransporter IcsA Promotes Shigella flexneri Biofilm Formation in the Presence of Bile Salts. Infect Immun 2019; 87:IAI.00861-18. [PMID: 30988059 DOI: 10.1128/iai.00861-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/09/2019] [Indexed: 12/25/2022] Open
Abstract
Shigella flexneri is an intracellular bacterial pathogen that invades epithelial cells in the colonic mucosa, leading to bloody diarrhea. A previous study showed that S. flexneri forms biofilms in the presence of bile salts, through an unknown mechanism. Here, we investigated the potential role of adhesin-like autotransporter proteins in S. flexneri biofilm formation. BLAST search analysis revealed that the S. flexneri 2457T genome harbors 4 genes, S1242, S1289, S2406, and icsA, encoding adhesin-like autotransporter proteins. Deletion mutants of the S1242, S1289, S2406 and icsA genes were generated and tested for biofilm formation. Phenotypic analysis of the mutant strains revealed that disruption of icsA abolished bile salt-induced biofilm formation. IcsA is an outer membrane protein secreted at the bacterial pole that is required for S. flexneri actin-based motility during intracellular infection. In extracellular biofilms, IcsA was also secreted at the bacterial pole and mediated bacterial cell-cell contacts and aggregative growth in the presence of bile salts. Dissecting individual roles of bile salts showed that deoxycholate is a robust biofilm inducer compared to cholate. The release of the extracellular domain of IcsA through IcsP-mediated cleavage was greater in the presence of cholate, suggesting that the robustness of biofilm formation was inversely correlated with IcsA processing. Accordingly, deletion of icsP abrogated IcsA processing in biofilms and enhanced biofilm formation.
Collapse
|
18
|
Abstract
Type V, or "autotransporter," secretion is a term used to refer to several simple protein export pathways that are found in a wide range of Gram-negative bacteria. Autotransporters are generally single polypeptides that consist of an extracellular ("passenger") domain and a β barrel domain that anchors the protein to the outer membrane (OM). Although it was originally proposed that the passenger domain is secreted through a channel formed solely by the covalently linked β barrel domain, experiments performed primarily on the type Va, or "classical," autotransporter pathway have challenged this hypothesis. Several lines of evidence strongly suggest that both the secretion of the passenger domain and the membrane integration of the β barrel domain are catalyzed by the barrel assembly machinery (Bam) complex, a conserved hetero-oligomer that plays an essential role in the assembly of most integral OM proteins. The secretion reaction appears to be driven at least in part by the folding of the passenger domain in the extracellular space. Although many aspects of autotransporter biogenesis remain to be elucidated, it will be especially interesting to determine whether the different classes of proteins that fall under the type V rubric-most of which have not been examined in detail-are assembled by the same basic mechanism as classical autotransporters.
Collapse
|
19
|
van Ulsen P, Zinner KM, Jong WSP, Luirink J. On display: autotransporter secretion and application. FEMS Microbiol Lett 2018; 365:5061625. [DOI: 10.1093/femsle/fny165] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/27/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Peter van Ulsen
- Section Molecular Microbiology, Department of Molecular Cell Biology, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | - Katinka M Zinner
- Section Molecular Microbiology, Department of Molecular Cell Biology, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | | | - Joen Luirink
- Section Molecular Microbiology, Department of Molecular Cell Biology, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Abera Bioscience AB, SE-111 45 Stockholm, Sweden
| |
Collapse
|
20
|
Stubenrauch CJ, Dougan G, Lithgow T, Heinz E. Constraints on lateral gene transfer in promoting fimbrial usher protein diversity and function. Open Biol 2018; 7:rsob.170144. [PMID: 29142104 PMCID: PMC5717340 DOI: 10.1098/rsob.170144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/05/2017] [Indexed: 12/16/2022] Open
Abstract
Fimbriae are long, adhesive structures widespread throughout members of the family Enterobacteriaceae. They are multimeric extrusions, which are moved out of the bacterial cell through an integral outer membrane protein called usher. The complex folding mechanics of the usher protein were recently revealed to be catalysed by the membrane-embedded translocation and assembly module (TAM). Here, we examine the diversity of usher proteins across a wide range of extraintestinal (ExPEC) and enteropathogenic (EPEC) Escherichia coli, and further focus on a so far undescribed chaperone–usher system, with this usher referred to as UshC. The fimbrial system containing UshC is distributed across a discrete set of EPEC types, including model strains like E2348/67, as well as ExPEC ST131, currently the most prominent multi-drug-resistant uropathogenic E. coli strain worldwide. Deletion of the TAM from a naive strain of E. coli results in a drastic time delay in folding of UshC, which can be observed for a protein from EPEC as well as for two introduced proteins from related organisms, Yersinia and Enterobacter. We suggest that this models why the TAM machinery is essential for efficient folding of proteins acquired via lateral gene transfer.
Collapse
Affiliation(s)
- Christopher J Stubenrauch
- Infection and Immunity Program, Department of Microbiology, Monash University, Clayton 3800, Australia
| | - Gordon Dougan
- Infection Genomics Program, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Trevor Lithgow
- Infection and Immunity Program, Department of Microbiology, Monash University, Clayton 3800, Australia
| | - Eva Heinz
- Infection Genomics Program, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| |
Collapse
|
21
|
Molecular basis for the folding of β-helical autotransporter passenger domains. Nat Commun 2018; 9:1395. [PMID: 29643377 PMCID: PMC5895577 DOI: 10.1038/s41467-018-03593-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 02/27/2018] [Indexed: 11/23/2022] Open
Abstract
Bacterial autotransporters comprise a C-terminal β-barrel domain, which must be correctly folded and inserted into the outer membrane to facilitate translocation of the N-terminal passenger domain to the cell exterior. Once at the surface, the passenger domains of most autotransporters are folded into an elongated β-helix. In a cellular context, key molecules catalyze the assembly of the autotransporter β-barrel domain. However, how the passenger domain folds into its functional form is poorly understood. Here we use mutational analysis on the autotransporter Pet to show that the β-hairpin structure of the fifth extracellular loop of the β-barrel domain has a crucial role for passenger domain folding into a β-helix. Bioinformatics and structural analyses, and mutagenesis of a homologous autotransporter, suggest that this function is conserved among autotransporter proteins with β-helical passenger domains. We propose that the autotransporter β-barrel domain is a folding vector that nucleates folding of the passenger domain. Autotransporter passenger domains are presented on or released from the bacterial surface upon translocation through an outer membrane β-barrel anchor. Here the authors study the two E. coli autotransporters Pet and EspP and propose that the β-barrel anchor acts as a vector to nucleate the folding of the passenger domain.
Collapse
|
22
|
Rojas-Lopez M, Zorgani MA, Kelley LA, Bailly X, Kajava AV, Henderson IR, Polticelli F, Pizza M, Rosini R, Desvaux M. Identification of the Autochaperone Domain in the Type Va Secretion System (T5aSS): Prevalent Feature of Autotransporters with a β-Helical Passenger. Front Microbiol 2018; 8:2607. [PMID: 29375499 PMCID: PMC5767081 DOI: 10.3389/fmicb.2017.02607] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/14/2017] [Indexed: 11/29/2022] Open
Abstract
Autotransporters (ATs) belong to a family of modular proteins secreted by the Type V, subtype a, secretion system (T5aSS) and considered as an important source of virulence factors in lipopolysaccharidic diderm bacteria (archetypical Gram-negative bacteria). While exported by the Sec pathway, the ATs are further secreted across the outer membrane via their own C-terminal translocator forming a β-barrel, through which the rest of the protein, namely the passenger, can pass. In several ATs, an autochaperone domain (AC) present at the C-terminal region of the passenger and upstream of the translocator was demonstrated as strictly required for proper secretion and folding. However, considering it was functionally characterised and identified only in a handful of ATs, wariness recently fells on the commonality and conservation of this structural element in the T5aSS. To circumvent the issue of sequence divergence and taking advantage of the resolved three-dimensional structure of some ACs, identification of this domain was performed following structural alignment among all AT passengers experimentally resolved by crystallography before searching in a dataset of 1523 ATs. While demonstrating that the AC is indeed a conserved structure found in numerous ATs, phylogenetic analysis further revealed a distribution into deeply rooted branches, from which emerge 20 main clusters. Sequence analysis revealed that an AC could be identified in the large majority of SAATs (self-associating ATs) but not in any LEATs (lipase/esterase ATs) nor in some PATs (protease autotransporters) and PHATs (phosphatase/hydrolase ATs). Structural analysis indicated that an AC was present in passengers exhibiting single-stranded right-handed parallel β-helix, whatever the type of β-solenoid, but not with α-helical globular fold. From this investigation, the AC of type 1 appears as a prevalent and conserved structural element exclusively associated to β-helical AT passenger and should promote further studies about the protein secretion and folding via the T5aSS, especially toward α-helical AT passengers.
Collapse
Affiliation(s)
- Maricarmen Rojas-Lopez
- Université Clermont Auvergne, INRA, UMR454 MEDiS, Clermont-Ferrand, France.,GSK, Siena, Italy
| | - Mohamed A Zorgani
- Université Clermont Auvergne, INRA, UMR454 MEDiS, Clermont-Ferrand, France
| | - Lawrence A Kelley
- Structural Bioinformatics Group, Imperial College London, London, United Kingdom
| | - Xavier Bailly
- Institut National de la Recherche Agronomique, UR346 Epidémiologie Animale, Saint Genès Champanelle, France
| | - Andrey V Kajava
- CRBM UMR5237 CNRS, Institut de Biologie Computationnelle, Université Montpellier, Montpellier, France
| | - Ian R Henderson
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Fabio Polticelli
- Department of Sciences, National Institute of Nuclear Physics, Roma Tre University, Rome, Italy
| | | | | | - Mickaël Desvaux
- Université Clermont Auvergne, INRA, UMR454 MEDiS, Clermont-Ferrand, France
| |
Collapse
|
23
|
Fusion with the cold-active esterase facilitates autotransporter-based surface display of the 10th human fibronectin domain in Escherichia coli. Extremophiles 2017; 22:141-150. [PMID: 29256084 DOI: 10.1007/s00792-017-0990-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/08/2017] [Indexed: 10/24/2022]
Abstract
Cell surface display is a popular approach for the construction of whole-cell biocatalysts, live vaccines, and screening of combinatorial libraries. To develop a novel surface display system for the popular scaffold protein 10th human fibronectin type III domain (10Fn3) in Escherichia coli cells, we have used an α-helical linker and a C-terminal translocator domain from previously characterized autotransporter from Psychrobacter cryohalolentis K5T. The level of 10Fn3 passenger exposure at the cell surface provided by the hybrid autotransporter Fn877 and its C-terminal variants was low. To improve it, the fusion proteins containing 10Fn3 and the native autotransporter passenger Est877 or the cold-active esterase EstPc in different orientations were constructed and expressed as passenger domains. Using the whole-cell ELISA and activity assays, we have demonstrated that N-terminal position of EstPc in the passenger significantly improves the efficiency of the surface display of 10Fn3 in E. coli cells.
Collapse
|
24
|
Webb CT, Chandrapala D, Oslan SN, Bamert RS, Grinter RD, Dunstan RA, Gorrell RJ, Song J, Strugnell RA, Lithgow T, Kwok T. Reductive evolution in outer membrane protein biogenesis has not compromised cell surface complexity in Helicobacter pylori. Microbiologyopen 2017; 6. [PMID: 29055967 PMCID: PMC5727368 DOI: 10.1002/mbo3.513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/19/2017] [Accepted: 05/25/2017] [Indexed: 12/18/2022] Open
Abstract
Helicobacter pylori is a gram‐negative bacterial pathogen that chronically inhabits the human stomach. To survive and maintain advantage, it has evolved unique host–pathogen interactions mediated by Helicobacter‐specific proteins in the bacterial outer membrane. These outer membrane proteins (OMPs) are anchored to the cell surface via a C‐terminal β‐barrel domain, which requires their assembly by the β‐barrel assembly machinery (BAM). Here we have assessed the complexity of the OMP C‐terminal β‐barrel domains employed by H. pylori, and characterized the H. pyloriBAM complex. Around 50 Helicobacter‐specific OMPs were assessed with predictive structural algorithms. The data suggest that H. pylori utilizes a unique β‐barrel architecture that might constitute H. pylori‐specific Type V secretions system. The structural and functional diversity in these proteins is encompassed by their extramembrane domains. Bioinformatic and biochemical characterization suggests that the low β‐barrel‐complexity requires only minimalist assembly machinery. The H. pylori proteins BamA and BamD associate to form a BAM complex, with features of BamA enabling an oligomerization that might represent a mechanism by which a minimalist BAM complex forms a larger, sophisticated machinery capable of servicing the outer membrane proteome of H. pylori.
Collapse
Affiliation(s)
- Chaille T. Webb
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
| | - Dilini Chandrapala
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
| | - Siti Nurbaya Oslan
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
- Department of BiochemistryFaculty of Biotechnology and Biomolecular SciencesUniversiti Putra MalaysiaSerdangSelangorMalaysia
- Enzyme and Microbial Technology Research CenterUniversiti Putra MalaysiaSerdangSelangorMalaysia
| | - Rebecca S. Bamert
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
| | - Rhys D. Grinter
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
| | - Rhys A. Dunstan
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
| | - Rebecca J. Gorrell
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
| | - Jiangning Song
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
- Monash Centre for Data ScienceFaculty of Information TechnologyMonash UniversityMelbourneAustralia
| | - Richard A. Strugnell
- Department of Microbiology & ImmunologyUniversity of MelbourneParkvilleAustralia
| | - Trevor Lithgow
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
| | - Terry Kwok
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
| |
Collapse
|
25
|
Vo JL, Martínez Ortiz GC, Subedi P, Keerthikumar S, Mathivanan S, Paxman JJ, Heras B. Autotransporter Adhesins in Escherichia coli Pathogenesis. Proteomics 2017; 17. [PMID: 28665015 DOI: 10.1002/pmic.201600431] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 06/21/2017] [Indexed: 12/14/2022]
Abstract
Most bacteria produce adhesion molecules to facilitate the interaction with host cells and establish successful infections. An important group of bacterial adhesins belong to the autotransporter (AT) superfamily, the largest group of secreted and outer membrane proteins in Gram-negative bacteria. AT adhesins possess diverse functions that facilitate bacterial colonisation, survival and persistence, and as such are often associated with increased bacterial fitness and pathogenic potential. In this review, we will describe AIDA-I type AT adhesins, which comprise the biggest and most diverse group in the AT family. We will focus on Escherichia coli proteins and define general aspects of their biogenesis, distribution, structural properties and key roles in infection.
Collapse
Affiliation(s)
- Julieanne L Vo
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Gabriela Constanza Martínez Ortiz
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Pramod Subedi
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Shivakumar Keerthikumar
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Suresh Mathivanan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Jason J Paxman
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Begoña Heras
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
26
|
Albenne C, Ieva R. Job contenders: roles of the β-barrel assembly machinery and the translocation and assembly module in autotransporter secretion. Mol Microbiol 2017; 106:505-517. [PMID: 28887826 DOI: 10.1111/mmi.13832] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2017] [Indexed: 01/17/2023]
Abstract
In Gram-negative bacteria, autotransporters secrete effector protein domains that are linked to virulence. Although they were once thought to be simple and autonomous secretion machines, mounting evidence reveals that multiple factors of the bacterial envelope are necessary for autotransporter assembly. Secretion across the outer membrane of their soluble effector "passenger domain" is promoted by the assembly of an outer membrane-spanning "β-barrel domain". Both reactions require BamA, an essential component of the β-barrel assembly machinery (BAM complex) that catalyzes the final reaction step by which outer membrane proteins are integrated into the lipid bilayer. A large amount of data generated in the last decade has shed key insights onto the mechanistic coordination of autotransporter β-barrel domain assembly and passenger domain secretion. These results, together with the recently solved structures of the BAM complex, offer an unprecedented opportunity to discuss a detailed model of autotransporter assembly. Importantly, some autotransporters benefit from the presence of an additional machinery, the translocation and assembly module (TAM), a two-membrane spanning complex, which contains a BamA-homologous subunit. Although it remains unclear how the BAM complex and the TAM cooperate, it is evident that multiple preparatory steps are necessary for efficient autotransporter biogenesis.
Collapse
Affiliation(s)
- Cécile Albenne
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Raffaele Ieva
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
27
|
Bamert RS, Lundquist K, Hwang H, Webb CT, Shiota T, Stubenrauch CJ, Belousoff MJ, Goode RJA, Schittenhelm RB, Zimmerman R, Jung M, Gumbart JC, Lithgow T. Structural basis for substrate selection by the translocation and assembly module of the β-barrel assembly machinery. Mol Microbiol 2017; 106:142-156. [PMID: 28752534 DOI: 10.1111/mmi.13757] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2017] [Indexed: 02/06/2023]
Abstract
The assembly of proteins into bacterial outer membranes is a key cellular process that we are only beginning to understand, mediated by the β-barrel assembly machinery (BAM). Two crucial elements of that machinery are the core BAM complex and the translocation and assembly module (TAM), with each containing a member of the Omp85 superfamily of proteins: BamA in the BAM complex, TamA in the TAM. Here, we used the substrate protein FimD as a model to assess the selectivity of substrate interactions for the TAM relative to those of the BAM complex. A peptide scan revealed that TamA and BamA bind the β-strands of FimD, and do so selectively. Chemical cross-linking and molecular dynamics are consistent with this interaction taking place between the first and last strand of the TamA barrel domain, providing the first experimental evidence of a lateral gate in TamA: a structural element implicated in membrane protein assembly. We suggest that the lateral gates in TamA and BamA provide different environments for substrates to engage, with the differences observed here beginning to address how the TAM can be more effective than the BAM complex in the folding of some substrate proteins.
Collapse
Affiliation(s)
- Rebecca S Bamert
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Karl Lundquist
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Hyea Hwang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Chaille T Webb
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Takoya Shiota
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Christopher J Stubenrauch
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Mathew J Belousoff
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Robert J A Goode
- Monash Biomedical Proteomics Facility, Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Ralf B Schittenhelm
- Monash Biomedical Proteomics Facility, Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Richard Zimmerman
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg 66421, Germany
| | - Martin Jung
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg 66421, Germany
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Trevor Lithgow
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
28
|
Abstract
Type V secretion denotes a variety of secretion systems that cross the outer membrane in Gram-negative bacteria but that depend on the Sec machinery for transport through the inner membrane. They are possibly the simplest bacterial secretion systems, because they consist only of a single polypeptide chain (or two chains in the case of two-partner secretion). Their seemingly autonomous transport through the outer membrane has led to the term "autotransporters" for various subclasses of type V secretion. In this chapter, we review the structure and function of these transporters and review recent findings on additional factors involved in the secretion process, which have put the term "autotransporter" to debate.
Collapse
|
29
|
Li H, Debowski AW, Liao T, Tang H, Nilsson HO, Marshall BJ, Stubbs KA, Benghezal M. Understanding protein glycosylation pathways in bacteria. Future Microbiol 2016; 12:59-72. [PMID: 27689684 DOI: 10.2217/fmb-2016-0166] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Through advances in analytical methods to detect glycoproteins and to determine glycan structures, there have been increasing reports of protein glycosylation in bacteria. In this review, we summarize the known pathways for bacterial protein glycosylation: lipid carrier-mediated 'en bloc' glycosylation; and cytoplasmic stepwise protein glycosylation. The exploitation of bacterial protein glycosylation systems, especially the 'mix and match' of three independent but similar pathways (oligosaccharyltransferase-mediated protein glycosylation, lipopolysaccharide and peptidoglycan biosynthesis) in Gram-negative bacteria for glycoengineering recombinant glycoproteins is also discussed.
Collapse
Affiliation(s)
- Hong Li
- West China Marshall Research Centre for Infectious Diseases, Centre of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China.,Helicobacter Pylori Research Laboratory, School of Pathology & Laboratory Medicine, Marshall Centre for Infectious Disease Research & Training, The University of Western Australia, M504, L Block, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Aleksandra W Debowski
- Helicobacter Pylori Research Laboratory, School of Pathology & Laboratory Medicine, Marshall Centre for Infectious Disease Research & Training, The University of Western Australia, M504, L Block, QEII Medical Centre, Nedlands, WA 6009, Australia.,School of Chemistry & Biochemistry, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Tingting Liao
- Helicobacter Pylori Research Laboratory, School of Pathology & Laboratory Medicine, Marshall Centre for Infectious Disease Research & Training, The University of Western Australia, M504, L Block, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Hong Tang
- West China Marshall Research Centre for Infectious Diseases, Centre of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hans-Olof Nilsson
- Ondek Pty Ltd, School of Pathology & Laboratory Medicine, Marshall Centre for Infectious Disease Research & Training, The University of Western Australia, M504, L Block, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Barry J Marshall
- Helicobacter Pylori Research Laboratory, School of Pathology & Laboratory Medicine, Marshall Centre for Infectious Disease Research & Training, The University of Western Australia, M504, L Block, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Keith A Stubbs
- School of Chemistry & Biochemistry, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Mohammed Benghezal
- Helicobacter Pylori Research Laboratory, School of Pathology & Laboratory Medicine, Marshall Centre for Infectious Disease Research & Training, The University of Western Australia, M504, L Block, QEII Medical Centre, Nedlands, WA 6009, Australia.,Swiss Vitamin Institute, Route de la Corniche 1, CH-1066 Epalinges, Switzerland
| |
Collapse
|
30
|
Braselmann E, Chaney JL, Champion MM, Clark PL. DegP Chaperone Suppresses Toxic Inner Membrane Translocation Intermediates. PLoS One 2016; 11:e0162922. [PMID: 27626276 PMCID: PMC5023192 DOI: 10.1371/journal.pone.0162922] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/30/2016] [Indexed: 11/18/2022] Open
Abstract
The periplasm of Gram-negative bacteria includes a variety of molecular chaperones that shepherd the folding and targeting of secreted proteins. A central player of this quality control network is DegP, a protease also suggested to have a chaperone function. We serendipitously discovered that production of the Bordetella pertussis autotransporter virulence protein pertactin is lethal in Escherichia coli ΔdegP strains. We investigated specific contributions of DegP to secretion of pertactin as a model system to test the functions of DegP in vivo. The DegP chaperone activity was sufficient to restore growth during pertactin production. This chaperone dependency could be relieved by changing the pertactin signal sequence: an E. coli signal sequence leading to co-translational inner membrane (IM) translocation was sufficient to suppress lethality in the absence of DegP, whereas an E. coli post-translational signal sequence was sufficient to recapitulate the lethal phenotype. These results identify a novel connection between the DegP chaperone and the mechanism used to translocate a protein across the IM. Lethality coincided with loss of periplasmic proteins, soluble σE, and proteins regulated by this essential stress response. These results suggest post-translational IM translocation can lead to the formation of toxic periplasmic folding intermediates, which DegP can suppress.
Collapse
Affiliation(s)
- Esther Braselmann
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail:
| | - Julie L. Chaney
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Matthew M. Champion
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Patricia L. Clark
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| |
Collapse
|
31
|
Heinz E, Stubenrauch CJ, Grinter R, Croft NP, Purcell AW, Strugnell RA, Dougan G, Lithgow T. Conserved Features in the Structure, Mechanism, and Biogenesis of the Inverse Autotransporter Protein Family. Genome Biol Evol 2016; 8:1690-705. [PMID: 27190006 PMCID: PMC4943183 DOI: 10.1093/gbe/evw112] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The bacterial cell surface proteins intimin and invasin are virulence factors that share a common domain structure and bind selectively to host cell receptors in the course of bacterial pathogenesis. The β-barrel domains of intimin and invasin show significant sequence and structural similarities. Conversely, a variety of proteins with sometimes limited sequence similarity have also been annotated as “intimin-like” and “invasin” in genome datasets, while other recent work on apparently unrelated virulence-associated proteins ultimately revealed similarities to intimin and invasin. Here we characterize the sequence and structural relationships across this complex protein family. Surprisingly, intimins and invasins represent a very small minority of the sequence diversity in what has been previously the “intimin/invasin protein family”. Analysis of the assembly pathway for expression of the classic intimin, EaeA, and a characteristic example of the most prevalent members of the group, FdeC, revealed a dependence on the translocation and assembly module as a common feature for both these proteins. While the majority of the sequences in the grouping are most similar to FdeC, a further and widespread group is two-partner secretion systems that use the β-barrel domain as the delivery device for secretion of a variety of virulence factors. This comprehensive analysis supports the adoption of the “inverse autotransporter protein family” as the most accurate nomenclature for the family and, in turn, has important consequences for our overall understanding of the Type V secretion systems of bacterial pathogens.
Collapse
Affiliation(s)
- Eva Heinz
- Department of Microbiology, Infection & Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Christopher J Stubenrauch
- Department of Microbiology, Infection & Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Rhys Grinter
- Department of Microbiology, Infection & Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia Institute of Microbiology and Infection, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Nathan P Croft
- Department of Biochemistry and Molecular Biology, Infection & Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology, Infection & Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Richard A Strugnell
- Department of Microbiology & Immunology, University of Melbourne, Parkville, Australia
| | - Gordon Dougan
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Trevor Lithgow
- Department of Microbiology, Infection & Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| |
Collapse
|
32
|
The Serine Protease Autotransporter Pic Modulates Citrobacter rodentium Pathogenesis and Its Innate Recognition by the Host. Infect Immun 2015; 83:2636-50. [PMID: 25895966 DOI: 10.1128/iai.00025-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bacterial pathogens produce a number of autotransporters that possess diverse functions. These include the family of serine protease autotransporters of Enterobacteriaceae (SPATEs) produced by enteric pathogens such as Shigella flexneri and enteroaggregative Escherichia coli. Of these SPATEs, one termed "protein involved in colonization," or Pic, has been shown to possess mucinase activity in vitro, but to date, its role in in vivo enteric pathogenesis is unknown. Testing a pic null (ΔpicC) mutant in Citrobacter rodentium, a natural mouse pathogen, found that the C. rodentium ΔpicC strain was impaired in its ability to degrade mucin in vitro compared to the wild type. Upon infection of mice, the ΔpicC mutant exhibited a hypervirulent phenotype with dramatically heavier pathogen burdens found in intestinal crypts. ΔpicC mutant-infected mice suffered greater barrier disruption and more severe colitis and weight loss, necessitating their euthanization between 10 and 14 days postinfection. Notably, the virulence of the ΔpicC mutant was normalized when the picC gene was restored; however, a PicC point mutant causing loss of mucinase activity did not replicate the ΔpicC phenotype. Exploring other aspects of PicC function, the ΔpicC mutant was found to aggregate to higher levels in vivo than wild-type C. rodentium. Moreover, unlike the wild type, the C. rodentium ΔpicC mutant had a red, dry, and rough (RDAR) morphology in vitro and showed increased activation of the innate receptor Toll-like receptor 2 (TLR2). Interestingly, the C. rodentium ΔpicC mutant caused a degree of pathology similar to that of wild-type C. rodentium when infecting TLR2-deficient mice, showing that despite its mucinase activity, PicC's major role in vivo may be to limit C. rodentium's stimulation of the host's innate immune system.
Collapse
|
33
|
Heinz E, Selkrig J, Belousoff MJ, Lithgow T. Evolution of the Translocation and Assembly Module (TAM). Genome Biol Evol 2015; 7:1628-43. [PMID: 25994932 PMCID: PMC4494059 DOI: 10.1093/gbe/evv097] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2015] [Indexed: 02/06/2023] Open
Abstract
Bacterial outer membrane proteins require the beta-barrel assembly machinery (BAM) for their correct folding and function. The central component of this machinery is BamA, an Omp85 protein that is essential and found in all Gram-negative bacteria. An additional feature of the BAM is the translocation and assembly module (TAM), comprised TamA (an Omp85 family protein) and TamB. We report that TamA and a closely related protein TamL are confined almost exclusively to Proteobacteria and Bacteroidetes/Chlorobi respectively, whereas TamB is widely distributed across the majority of Gram-negative bacterial lineages. A comprehensive phylogenetic and secondary structure analysis of the TamB protein family revealed that TamB was present very early in the evolution of bacteria. Several sequence characteristics were discovered to define the TamB protein family: A signal-anchor linkage to the inner membrane, beta-helical structure, conserved domain architecture and a C-terminal region that mimics outer membrane protein beta-strands. Taken together, the structural and phylogenetic analyses suggest that the TAM likely evolved from an original combination of BamA and TamB, with a later gene duplication event of BamA, giving rise to an additional Omp85 sequence that evolved to be TamA in Proteobacteria and TamL in Bacteroidetes/Chlorobi.
Collapse
Affiliation(s)
- Eva Heinz
- Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Joel Selkrig
- Department of Biochemistry & Molecular Biology, Monash University, Melbourne, Victoria, Australia Present address: European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Matthew J Belousoff
- Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Trevor Lithgow
- Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
34
|
Bernstein HD. Looks can be deceiving: recent insights into the mechanism of protein secretion by the autotransporter pathway. Mol Microbiol 2015; 97:205-15. [PMID: 25881492 DOI: 10.1111/mmi.13031] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2015] [Indexed: 12/14/2022]
Abstract
Autotransporters are a large superfamily of cell surface proteins produced by Gram-negative bacteria that consist of an N-terminal extracellular domain ('passenger domain') and a C-terminal β-barrel domain that resides in the outer membrane (OM). Although it was originally proposed that the passenger domain is translocated across the OM through a channel formed exclusively by the covalently linked β-barrel domain, this idea has been strongly challenged by a variety of observations. Recent experimental results have suggested a new model in which both the translocation of the passenger domain and the membrane integration of the β-barrel domain are facilitated by the Bam complex, a highly conserved heteroligomer that plays a general role in OM protein assembly. Other factors, including periplasmic chaperones and inner membrane proteins, have also recently been implicated in the biogenesis of at least some members of the autotransporter superfamily. New results have raised intriguing questions about the energetics of the secretion reaction and the relationship between the assembly of autotransporters and the assembly of other classes of OM proteins. Concomitantly, new mechanistic and structural insights have expanded the utility of the autotransporter pathway for the surface display of heterologous peptides and proteins of interest.
Collapse
Affiliation(s)
- Harris D Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
35
|
Doyle MT, Tran ENH, Morona R. The passenger-associated transport repeat promotes virulence factor secretion efficiency and delineates a distinct autotransporter subtype. Mol Microbiol 2015; 97:315-29. [PMID: 25869731 DOI: 10.1111/mmi.13027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2015] [Indexed: 11/28/2022]
Abstract
Autotransporters are a superfamily of virulence factors secreted by Gram negative bacteria. They are comprised of an N-terminal passenger domain that is translocated across the outer membrane and a C-terminal domain that inserts into the outer membrane forming a β-barrel anchor. It is still poorly understood how the passenger is efficiently translocated in the absence of external energy inputs. Several mechanisms have been proposed in solution of this problem, yet due to the vast diversity of size, sequence and function of the passenger, it is not clear how widely these mechanisms are employed. In this study we functionally characterize a conserved repeat found in many passengers that we designate the Passenger-associated Transport Repeat (PATR). Using the autotransporter IcsA from the enteropathogen Shigella flexneri, we identified conserved PATR residues that are required for efficient export of the passenger during growth and infection. Furthermore, PATR-containing autotransporters are significantly larger than non-PATR autotransporters, with PATR copy number correlating with passenger size. We also show that PATR-containing autotransporters delineate a subgroup that associates with specific virulence traits and architectures. These results advance our understanding of autotransporter composition and indicate that an additional transport mechanism is important for thousands of these proteins.
Collapse
Affiliation(s)
- Matthew Thomas Doyle
- Department of Molecular and Cellular Biology, School of Biological Sciences, Discipline of Microbiology and Immunology, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Elizabeth Ngoc Hoa Tran
- Department of Molecular and Cellular Biology, School of Biological Sciences, Discipline of Microbiology and Immunology, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Renato Morona
- Department of Molecular and Cellular Biology, School of Biological Sciences, Discipline of Microbiology and Immunology, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, 5005, Australia
| |
Collapse
|
36
|
Zalewska-Pia Tek B, Pia Tek R, Olszewski M, Kur J. Identification of antigen Ag43 in uropathogenic Escherichia coli Dr+ strains and defining its role in the pathogenesis of urinary tract infections. MICROBIOLOGY-SGM 2015; 161:1034-1049. [PMID: 25743156 DOI: 10.1099/mic.0.000072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/03/2015] [Indexed: 11/18/2022]
Abstract
Urinary tract infections (UTIs) caused by uropathogenic Escherichia coli (UPEC) are amongst the most common bacterial infectious diseases in the developed world. The urovirulence of UPEC is mainly associated with the surface-exposed fimbrial adhesins and adhesins of the autotransporter (AT) family. The best studied of these proteins is antigen Ag43 mediating cell aggregation, adhesion and biofilm development as the causes of chronic UTIs. The E. coli IH11128 Dr(+) (dra (+)) strain of the Dr/Afa(+) family of adhesins possesses two major surface-exposed virulence factors: Dr fimbrial polyadhesin and DraD protein (fimbrial tip subunit or protein component of the adhesive sheath). Here, we identified for the first time, to our knowledge, the agn43 gene encoding Ag43 in the WT clinical isolate of UPEC Dr(+) as a new virulence factor not yet tested. We also found that Dr fimbrial expression, which like Ag43 is under the control of a phase-variable mechanism, did not exclude Ag43 surface presentation. However, the presence of Dr fimbriae supported by other structures on the cell surface caused a physical neutralization of Ag43-mediated autoaggregation during in vitro growth. The fimbrial bundling further increased the distance between the adjacent Ag43(+) cells, thus preventing head-to-tail association between surface-exposed Ag43 subunits and their interactions with the host cells. The investigations showed that Ag43 did not act as a specific adhesin and invasin, conversely to the major virulence factors of E. coli Dr(+), but played significant roles in the viability and metabolic activity of bacterial cells forming biofilm, and in the survival of bacteria within invaded epithelial cells.
Collapse
Affiliation(s)
- Beata Zalewska-Pia Tek
- Department of Molecular Biotechnology and Microbiology, Gdansk University of Technology, ul. G. Narutowicza 11/12, 80-233Gdansk, Poland
| | - Rafał Pia Tek
- Department of Molecular Biotechnology and Microbiology, Gdansk University of Technology, ul. G. Narutowicza 11/12, 80-233Gdansk, Poland
| | - Marcin Olszewski
- Department of Molecular Biotechnology and Microbiology, Gdansk University of Technology, ul. G. Narutowicza 11/12, 80-233Gdansk, Poland
| | - Józef Kur
- Department of Molecular Biotechnology and Microbiology, Gdansk University of Technology, ul. G. Narutowicza 11/12, 80-233Gdansk, Poland
| |
Collapse
|
37
|
Drobnak I, Braselmann E, Clark PL. Multiple driving forces required for efficient secretion of autotransporter virulence proteins. J Biol Chem 2015; 290:10104-16. [PMID: 25670852 DOI: 10.1074/jbc.m114.629170] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Indexed: 01/14/2023] Open
Abstract
Autotransporter (AT) proteins are a broad class of virulence proteins from Gram-negative bacterial pathogens that require their own C-terminal transmembrane domain to translocate their N-terminal passenger across the bacterial outer membrane (OM). But given the unavailability of ATP or a proton gradient across the OM, it is unknown what energy source(s) drives this process. Here we used a combination of computational and experimental approaches to quantitatively compare proposed AT OM translocation mechanisms. We show directly for the first time that when translocation was blocked an AT passenger remained unfolded in the periplasm. We demonstrate that AT secretion is a kinetically controlled, non-equilibrium process coupled to folding of the passenger and propose a model connecting passenger conformation to secretion kinetics. These results reconcile seemingly contradictory reports regarding the importance of passenger folding as a driving force for OM translocation but also reveal that another energy source is required to initiate translocation.
Collapse
Affiliation(s)
- Igor Drobnak
- From the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Esther Braselmann
- From the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Patricia L Clark
- From the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| |
Collapse
|
38
|
Khairalla AS, Omer SA, Mahdavi J, Aslam A, Dufailu OA, Self T, Jonsson AB, Geörg M, Sjölinder H, Royer PJ, Martinez-Pomares L, Ghaemmaghami AM, Wooldridge KG, Oldfield NJ, Ala'Aldeen DAA. Nuclear trafficking, histone cleavage and induction of apoptosis by the meningococcal App and MspA autotransporters. Cell Microbiol 2015; 17:1008-20. [PMID: 25600171 PMCID: PMC5024080 DOI: 10.1111/cmi.12417] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 12/18/2014] [Accepted: 01/13/2015] [Indexed: 01/13/2023]
Abstract
Neisseria meningitidis, a major cause of bacterial meningitis and septicaemia, secretes multiple virulence factors, including the adhesion and penetration protein (App) and meningococcal serine protease A (MspA). Both are conserved, immunogenic, type Va autotransporters harbouring S6‐family serine endopeptidase domains. Previous work suggested that both could mediate adherence to human cells, but their precise contribution to meningococcal pathogenesis was unclear. Here, we confirm that App and MspA are in vivo virulence factors since human CD46‐expressing transgenic mice infected with meningococcal mutants lacking App, MspA or both had improved survival rates compared with mice infected with wild type. Confocal imaging showed that App and MspA were internalized by human cells and trafficked to the nucleus. Cross‐linking and enzyme‐linked immuno assay (ELISA) confirmed that mannose receptor (MR), transferrin receptor 1 (TfR1) and histones interact with MspA and App. Dendritic cell (DC) uptake could be blocked using mannan and transferrin, the specific physiological ligands for MR and TfR1, whereas in vitro clipping assays confirmed the ability of both proteins to proteolytically cleave the core histone H3. Finally, we show that App and MspA induce a dose‐dependent increase in DC death via caspase‐dependent apoptosis. Our data provide novel insights into the roles of App and MspA in meningococcal infection.
Collapse
Affiliation(s)
| | - Sherko A Omer
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Jafar Mahdavi
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Akhmed Aslam
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Osman A Dufailu
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Tim Self
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Ann-Beth Jonsson
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Miriam Geörg
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Hong Sjölinder
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | | | | | | | | - Neil J Oldfield
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
39
|
Going beyond E. coli: autotransporter based surface display on alternative host organisms. N Biotechnol 2015; 32:644-50. [PMID: 25579193 DOI: 10.1016/j.nbt.2014.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/19/2014] [Accepted: 12/31/2014] [Indexed: 11/21/2022]
Abstract
Autotransporters represent one of the most popular anchoring motifs used to display peptides, proteins or enzymes on the cell surface of a Gram-negative bacterium. Applications range from vaccine delivery to library screenings to biocatalysis and bioremediation. Although the underlying secretion mechanism is supposed to be available in most, if not all, Gram-negative bacteria, autotransporters have to date almost exclusively been used for surface display on Escherichia coli. However, for their utilisation beyond a laboratory scale, in particular for biocatalysis, host bacteria with specific features and industrial applicability are required. A few groups have addressed this issue and demonstrated that bacteria other than E. coli can also be used for autotransporter based surface display. We summarise these studies and discuss opportunities and challenges that arise from surface display of recombinant proteins using the autotransporter pathway in alternative hosts.
Collapse
|
40
|
Sichwart S, Tozakidis IEP, Teese M, Jose J. Maximized Autotransporter-Mediated Expression (MATE) for Surface Display and Secretion of Recombinant Proteins in Escherichia coli. Food Technol Biotechnol 2015; 53:251-260. [PMID: 27904356 DOI: 10.17113/ftb.53.03.15.3802] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A new optimized system for the surface display and secretion of recombinant proteins is described, termed MATE (maximized autotransporter-mediated expression). It is based on an artificial gene consisting of the coding region for the signal peptide of CtxB, a multiple cloning site for passenger gene insertion, flanked by coding sequences for linear epitopes for monoclonal antibodies and OmpT, and factor Xa protease cleavage sites followed by a codon-optimized DNA sequence of the linker and the β-barrel of the type V autotransporter EhaA from Escherichia coli under control of an IPTG-inducible T5 promoter. The MATE system enabled the continuous secretion of recombinant passenger mCherry via OmpT-mediated cleavage, using native OmpT protease activity in E. coli when grown at 37 °C. It is the first example to show that native OmpT activity is sufficient to facilitate the secretion of a correctly folded target protein in preparative amounts obtaining 240 µg of purified mCherry from 800 mL of crude culture supernatant. Because the release of mCherry was achieved by a simple transfer of the encoding plasmid from an OmpT-negative to an OmpT-positive strain, it bears the option to use surface display for screening purposes and secretion for production of the selected variant. A single plasmid could therefore be used for continuous secretion in OmpT-positive strains or surface display in OmpT-negative strains. In conclusion, the MATE system appears to be a versatile tool for the surface display and for the secretion of target proteins in E. coli.
Collapse
Affiliation(s)
- Shanna Sichwart
- Institute of Pharmaceutical and Medicinal Chemistry, PharmaCampus, Westphalian Wilhelms-University, Corrensstraße 48, DE-48149 Münster, Germany
| | - Iasson E P Tozakidis
- Institute of Pharmaceutical and Medicinal Chemistry, PharmaCampus, Westphalian Wilhelms-University, Corrensstraße 48, DE-48149 Münster, Germany; The NRW Graduate School of Chemistry, Wilhelm-Klemm-Straße 10, DE-48149 Münster, Germany
| | - Mark Teese
- Institute of Pharmaceutical and Medicinal Chemistry, PharmaCampus, Westphalian Wilhelms-University, Corrensstraße 48, DE-48149 Münster, Germany; Present address: Technical University Munich, Weihenstephaner Berg 3, DE-85354 Freising, Germany
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, PharmaCampus, Westphalian Wilhelms-University, Corrensstraße 48, DE-48149 Münster, Germany; The NRW Graduate School of Chemistry, Wilhelm-Klemm-Straße 10, DE-48149 Münster, Germany
| |
Collapse
|
41
|
Abstract
The outer membranes of gram-negative bacteria contain integral membrane proteins, most of which are of β-barrel structure, and critical for bacterial survival. These β-barrel proteins rely on the β-barrel assembly machinery (BAM) complex for their integration into the outer membrane as folded species. The central and essential subunit of the BAM complex, BamA, is a β-barrel protein conserved in all gram-negative bacteria and also found in eukaryotic organelles derived from bacterial endosymbionts. In Escherichia coli, BamA docks with four peripheral lipoproteins, BamB, BamC, BamD and BamE, partner subunits that add to the function of the BAM complex in outer membrane protein biogenesis. By way of introduction to this volume, we provide an overview of the work that has illuminated the mechanism by which the BAM complex drives β-barrel assembly. The protocols and methodologies associated with these studies as well as the challenges encountered and their elegant solutions are discussed in subsequent chapters.
Collapse
|
42
|
Tozakidis IE, Sichwart S, Teese MG, Jose J. Autotransporter mediated esterase display on Zymomonas mobilis and Zymobacter palmae. J Biotechnol 2014; 191:228-35. [DOI: 10.1016/j.jbiotec.2014.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 07/01/2014] [Accepted: 07/08/2014] [Indexed: 01/02/2023]
|
43
|
Drobnak I, Braselmann E, Chaney JL, Leyton DL, Bernstein HD, Lithgow T, Luirink J, Nataro JP, Clark PL. Of linkers and autochaperones: an unambiguous nomenclature to identify common and uncommon themes for autotransporter secretion. Mol Microbiol 2014; 95:1-16. [PMID: 25345653 DOI: 10.1111/mmi.12838] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2014] [Indexed: 01/02/2023]
Abstract
Autotransporter (AT) proteins provide a diverse array of important virulence functions to Gram-negative bacterial pathogens, and have also been adapted for protein surface display applications. The 'autotransporter' moniker refers to early models that depicted these proteins facilitating their own translocation across the bacterial outer membrane. Although translocation is less autonomous than originally proposed, AT protein segments upstream of the C-terminal transmembrane β-barrel have nevertheless consistently been found to contribute to efficient translocation and/or folding of the N-terminal virulence region (the 'passenger'). However, defining the precise secretion functions of these AT regions has been complicated by the use of multiple overlapping and ambiguous terms to define AT sequence, structural, and functional features, including 'autochaperone', 'linker' and 'junction'. Moreover, the precise definitions and boundaries of these features vary among ATs and even among research groups, leading to an overall murky picture of the contributions of specific features to translocation. Here we propose a unified, unambiguous nomenclature for AT structural, functional and conserved sequence features, based on explicit criteria. Applied to 16 well-studied AT proteins, this nomenclature reveals new commonalities for translocation but also highlights that the autochaperone function is less closely associated with a conserved sequence element than previously believed.
Collapse
Affiliation(s)
- Igor Drobnak
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Roussel-Jazédé V, Arenas J, Langereis JD, Tommassen J, van Ulsen P. Variable processing of the IgA protease autotransporter at the cell surface of Neisseria meningitidis. MICROBIOLOGY-SGM 2014; 160:2421-2431. [PMID: 25161279 DOI: 10.1099/mic.0.082511-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
As with all classical monomeric autotransporters, IgA protease of Neisseria meningitidis is a modular protein consisting of an N-terminal signal sequence, a passenger domain and a C-terminal translocator domain (TD) that assists in the secretion of the passenger domain across the outer membrane. The passenger of IgA protease consists of three separate domains: the protease domain, the γ-peptide and the α-peptide that contains nuclear localization signals (NLSs). The protease domain is released into the extracellular milieu either via autocatalytic processing or via cleavage by another autotransporter, NalP, expression of which is phase-variable. NalP-mediated cleavage results in the release of a passenger that includes the α- and γ-peptides. Here, we studied the fate of the α-peptide when NalP was not expressed and observed strain-dependent differences. In meningococcal strains where the α-peptide contained a single NLS, the α-peptide remained covalently attached to the TD and was detected at the cell surface. In other strains, the α-peptide contained four NLSs and was separated from the TD by an IgA protease autoproteolytic cleavage site. In many of those cases, the α-peptide was found non-covalently associated with the cells as a separate polypeptide. The cell surface association of the α-peptides may be relevant physiologically. We report a novel function for the α-peptide, i.e. the binding of heparin - an immune-modulatory molecule that in the host is found in the extracellular matrix and connected to cell surfaces.
Collapse
Affiliation(s)
- Virginie Roussel-Jazédé
- Department of Molecular Microbiology, Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Jesús Arenas
- Department of Molecular Microbiology, Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Jeroen D Langereis
- Department of Molecular Microbiology, Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Jan Tommassen
- Department of Molecular Microbiology, Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Peter van Ulsen
- Department of Molecular Microbiology, Institute of Molecular Cell Biology, VU University, 1081 HV Amsterdam, The Netherlands
- Department of Molecular Microbiology, Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
45
|
Schüürmann J, Quehl P, Festel G, Jose J. Bacterial whole-cell biocatalysts by surface display of enzymes: toward industrial application. Appl Microbiol Biotechnol 2014; 98:8031-46. [DOI: 10.1007/s00253-014-5897-y] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 11/24/2022]
|
46
|
Selkrig J, Leyton DL, Webb CT, Lithgow T. Assembly of β-barrel proteins into bacterial outer membranes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1542-50. [DOI: 10.1016/j.bbamcr.2013.10.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/05/2013] [Accepted: 10/08/2013] [Indexed: 12/30/2022]
|
47
|
van Ulsen P, Rahman SU, Jong WS, Daleke-Schermerhorn MH, Luirink J. Type V secretion: From biogenesis to biotechnology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1592-611. [DOI: 10.1016/j.bbamcr.2013.11.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/01/2013] [Accepted: 11/13/2013] [Indexed: 12/13/2022]
|
48
|
A mortise-tenon joint in the transmembrane domain modulates autotransporter assembly into bacterial outer membranes. Nat Commun 2014; 5:4239. [PMID: 24967730 DOI: 10.1038/ncomms5239] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 05/28/2014] [Indexed: 11/08/2022] Open
Abstract
Bacterial autotransporters comprise a 12-stranded membrane-embedded β-barrel domain, which must be folded in a process that entraps segments of an N-terminal passenger domain. This first stage of autotransporter folding determines whether subsequent translocation can deliver the N-terminal domain to its functional form on the bacterial cell surface. Here, paired glycine-aromatic 'mortise and tenon' motifs are shown to join neighbouring β-strands in the C-terminal barrel domain, and mutations within these motifs slow the rate and extent of passenger domain translocation to the surface of bacterial cells. In line with this, biophysical studies of the autotransporter Pet show that the conserved residues significantly quicken completion of the folding reaction and promote stability of the autotransporter barrel domain. Comparative genomics demonstrate conservation of glycine-aromatic residue pairings through evolution as a previously unrecognized feature of all autotransporter proteins.
Collapse
|
49
|
Chang JH, Desveaux D, Creason AL. The ABCs and 123s of bacterial secretion systems in plant pathogenesis. ANNUAL REVIEW OF PHYTOPATHOLOGY 2014; 52:317-45. [PMID: 24906130 DOI: 10.1146/annurev-phyto-011014-015624] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Bacteria have many export and secretion systems that translocate cargo into and across biological membranes. Seven secretion systems contribute to pathogenicity by translocating proteinaceous cargos that can be released into the extracellular milieu or directly into recipient cells. In this review, we describe these secretion systems and how their complexities and functions reflect differences in the destinations, states, functions, and sizes of the translocated cargos as well as the architecture of the bacterial cell envelope. We examine the secretion systems from the perspective of pathogenic bacteria that proliferate within plant tissues and highlight examples of translocated proteins that contribute to the infection and disease of plant hosts.
Collapse
Affiliation(s)
- Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331; ,
| | | | | |
Collapse
|
50
|
The antigen 43 structure reveals a molecular Velcro-like mechanism of autotransporter-mediated bacterial clumping. Proc Natl Acad Sci U S A 2013; 111:457-62. [PMID: 24335802 DOI: 10.1073/pnas.1311592111] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aggregation and biofilm formation are critical mechanisms for bacterial resistance to host immune factors and antibiotics. Autotransporter (AT) proteins, which represent the largest group of outer-membrane and secreted proteins in Gram-negative bacteria, contribute significantly to these phenotypes. Despite their abundance and role in bacterial pathogenesis, most AT proteins have not been structurally characterized, and there is a paucity of detailed information with regard to their mode of action. Here we report the structure-function relationships of Antigen 43 (Ag43a), a prototypic self-associating AT protein from uropathogenic Escherichia coli. The functional domain of Ag43a displays a twisted L-shaped β-helical structure firmly stabilized by a 3D hydrogen-bonded scaffold. Notably, the distinctive Ag43a L shape facilitates self-association and cell aggregation. Combining all our data, we define a molecular "Velcro-like" mechanism of AT-mediated bacterial clumping, which can be tailored to fit different bacterial lifestyles such as the formation of biofilms.
Collapse
|