1
|
Ullah S, Ikram M, Xiao J, Khan A, Din I, Huang J. Influence of Foliar Application of Nanoparticles on Low Temperature Resistance of Rice Seedlings. PLANTS (BASEL, SWITZERLAND) 2024; 13:2949. [PMID: 39519868 PMCID: PMC11548232 DOI: 10.3390/plants13212949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Chilling stress, a common abiotic factor, adversely affects the growth and biomass of rice seedlings during the early stages, ultimately reducing the yield. Effective strategies to mitigate these negative impacts are essential for improving rice productivity. The application of nanotechnology in agriculture, particularly nanoparticles (NPs), has shown a promising effect in alleviating chilling stress in plants. This study evaluates the effects of various nanoparticles, ZnO (0, 50, 100, and 200 mg/L), Fe2O3 (0, 50, 75, and 100 mg/L), TiO2 (0, 50, 75, and 100 mg/L), and CeO2 (0, 50, 75, and 100 mg/L) on the chilling resistance with one control (a water spray) under a normal temperature. Four rice cultivars: LLY-7108 and XZX-6 (Low-temperature-tolerant), and LLY-32 and ZJZ-17 (Low-temperature-susceptible) were tested in this experiment. Rice seedlings were subjected to low temperature conditions (12 h light 14 °C/12 h dark, at 10 °C) for five days, followed by seven days of recovery. The results of this study demonstrate that NPs significantly enhanced seedling height fresh/dry weight and root length compared to untreated controls under chilling stress. NP treatment also reduced the reactive oxygen species (ROS), malondialdehyde (MDA), and proline content, while enhancing superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities, thereby mitigating oxidative damage. The four rice varieties exhibited clear signs of rapid growth recovery and positive physiological changes due to NPs' application. Among the tested cultivars, LLY-7108 showed the most substantial recovery and physiological responses, while ZJZ-17 exhibited the least. The findings of this study indicate that the foliar application of ZnO (100 mg/L), Fe2O3 (50 mg/L), TiO2 (50 mg/L), and CeO2 (75 mg/L) NPs effectively mitigates chilling stress in rice seedlings, likely by enhancing the antioxidant enzymatic activity while reducing the oxidative damage. This study highlights the potential of NPs as effective agents in reducing the adverse effects of chilling stress on rice.
Collapse
Affiliation(s)
- Shafi Ullah
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.U.); (J.X.); (A.K.)
| | - Muhammad Ikram
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Jian Xiao
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.U.); (J.X.); (A.K.)
| | - Atika Khan
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.U.); (J.X.); (A.K.)
| | - Ismail Din
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China;
| | - Jianliang Huang
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.U.); (J.X.); (A.K.)
| |
Collapse
|
2
|
Kazemzadeh S, Farrokhi N, Ahmadikhah A, Tabar Heydar K, Gilani A, Askari H, Ingvarsson PK. Genome-wide association study and genotypic variation for the major tocopherol content in rice grain. FRONTIERS IN PLANT SCIENCE 2024; 15:1426321. [PMID: 39439508 PMCID: PMC11493719 DOI: 10.3389/fpls.2024.1426321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/03/2024] [Indexed: 10/25/2024]
Abstract
Rice tocopherols, vitamin E compounds with antioxidant activity, play essential roles in human health. Even though the key genes involved in vitamin E biosynthetic pathways have been identified in plants, the genetic architecture of vitamin E content in rice grain remains unclear. A genome-wide association study (GWAS) on 179 genotypically diverse rice accessions with 34,323 SNP markers was conducted to detect QTLs that define total and α- tocopherol contents in rice grains. Total and α-tocopherol contents had a strong positive correlation and varied greatly across the accessions, ranging from 0.230-31.76 and 0.011-30.83 (μg/g), respectively. A total of 13 QTLs were identified, which were spread across five of the rice chromosomes. Among the 13 QTLs, 11 were considered major with phenotypic variation explained (PVE) greater than 10%. Twelve transcription factor (TF) genes, one microprotein (miP), and a transposon were found to be associated with the QTLs with putative roles in controlling tocopherol contents. Moreover, intracellular transport proteins, ABC transporters, nonaspanins, and SNARE, were identified as associated genes on chromosomes 1 and 8. In the vicinity of seven QTLs, protein kinases were identified as key signaling factors. Haplotype analysis revealed the QTLs qAlph1.1, qTot1.1, qAlph2.1, qAlph6.1, qTot6.1, and qTot8.3 to have significant haplogroups. Quantitative RT-PCR validated the expression direction and magnitude of WRKY39 (Os02g0265200), PIP5Ks (Os08g0450800), and MADS59 (Os06g0347700) in defining the major tocopherol contents. This study provides insights for ongoing biofortification efforts to breed and/or engineer vitamin E and antioxidant levels in rice and other cereals.
Collapse
Affiliation(s)
- Sara Kazemzadeh
- Department of Cell and Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Naser Farrokhi
- Department of Cell and Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Asadollah Ahmadikhah
- Department of Cell and Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | | | - Abdolali Gilani
- Agricultural and Natural Resources Research Institute of Khuzestan, Ahwaz, Iran
| | - Hossein Askari
- Department of Cell and Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Pär K. Ingvarsson
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
3
|
Zhang J, Tang C, Xie J, Li J, Zhang X, Wang C. Exogenous strigolactones alleviate low-temperature stress in peppers seedlings by reducing the degree of photoinhibition. BMC PLANT BIOLOGY 2024; 24:907. [PMID: 39349999 PMCID: PMC11441246 DOI: 10.1186/s12870-024-05622-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND The growth and yield of pepper, a typical temperature-loving vegetable, are limited by low-temperature environments. Using low-temperature sensitive 'Hangjiao No. 4' (Capsicum annuum L.) as experimental material, this study analyzed the changes in plant growth and photosynthesis under different treatments: normal control (NT), low-temperature stress alone (LT), low-temperature stress in strigolactone pretreated plants (SL_LT), and low-temperature stress in strigolactone biosynthesis inhibitor pretreated plants (Tis_LT). RESULTS SL pretreatment increased the net photosynthetic rate (Pn) and PSII actual photochemical efficiency (φPSII), reducing the inhibition of LT on the growth of pepper by 17.44% (dry weight of shoot). Due to promoting the accumulation of carotenoids, such as lutein, and the de-epoxidation of the xanthophyll cycle [(Z + A)/(Z + A + V)] by strigolactone after long-term low-temperature stress (120 h), non-photochemical quenching (NPQ) of pepper was increased to reduce the excess excitation energy [(1-qP)/NPQ] and the photoinhibition degree (Fv/Fm) of pepper seedlings under long-term low-temperature stress was alleviated. Twelve cDNA libraries were constructed from pepper leaves by transcriptome sequencing. There were 8776 differentially expressed genes (DEGs), including 4473 (51.0%) upregulated and 4303 (49.0%) downregulated genes. Gene ontology pathway annotation showed that based on LT, the DEGs of SL_LT and Tis_LT were significantly enriched in the cellular component, which is mainly related to the photosystem and thylakoids. Further analysis of the porphyrin and chlorophyll biosynthesis, carotenoid biosynthesis, photosynthesis-antenna protein, and photosynthetic metabolic pathways and the Calvin cycle under low-temperature stress highlighted 18, 15, 21, 29, and 31 DEGs for further study, which were almost all highly expressed under SL_LT treatment and moderately expressed under LT treatment, whereas Tis_LT showed low expression. CONCLUSION The positive regulatory effect of SLs on the low-temperature tolerance of pepper seedlings was confirmed. This study provided new insights for the development of temperature-tolerant pepper lines through breeding programs.
Collapse
Affiliation(s)
- Jing Zhang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Chaonan Tang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China.
| | - Jing Li
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Xiaodan Zhang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Cheng Wang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China
| |
Collapse
|
4
|
Laosuntisuk K, Vennapusa A, Somayanda IM, Leman AR, Jagadish SK, Doherty CJ. A normalization method that controls for total RNA abundance affects the identification of differentially expressed genes, revealing bias toward morning-expressed responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1241-1257. [PMID: 38289828 DOI: 10.1111/tpj.16654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
RNA-Sequencing is widely used to investigate changes in gene expression at the transcription level in plants. Most plant RNA-Seq analysis pipelines base the normalization approaches on the assumption that total transcript levels do not vary between samples. However, this assumption has not been demonstrated. In fact, many common experimental treatments and genetic alterations affect transcription efficiency or RNA stability, resulting in unequal transcript abundance. The addition of synthetic RNA controls is a simple correction that controls for variation in total mRNA levels. However, adding spike-ins appropriately is challenging with complex plant tissue, and carefully considering how they are added is essential to their successful use. We demonstrate that adding external RNA spike-ins as a normalization control produces differences in RNA-Seq analysis compared to traditional normalization methods, even between two times of day in untreated plants. We illustrate the use of RNA spike-ins with 3' RNA-Seq and present a normalization pipeline that accounts for differences in total transcriptional levels. We evaluate the effect of normalization methods on identifying differentially expressed genes in the context of identifying the effect of the time of day on gene expression and response to chilling stress in sorghum.
Collapse
Affiliation(s)
- Kanjana Laosuntisuk
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Amaranatha Vennapusa
- Department of Agriculture and Natural Resources, Delaware State University, Dover, Delaware, USA
| | - Impa M Somayanda
- Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, 79410, USA
| | - Adam R Leman
- Department of Science and Technology, The Good Food Institute, Washington, District of Columbia, 20090, USA
| | - Sv Krishna Jagadish
- Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, 79410, USA
- Department of Agronomy, Kansas State University, Manhattan, Kansas, 66506, USA
| | - Colleen J Doherty
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
5
|
Chen K, Wang Y, Nong X, Zhang Y, Tang T, Chen Y, Shen Q, Yan C, Lü B. Characterization and in silico analysis of the domain unknown function DUF568-containing gene family in rice (Oryza sativa L.). BMC Genomics 2023; 24:544. [PMID: 37704940 PMCID: PMC10500787 DOI: 10.1186/s12864-023-09654-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Domains of unknown function (DUF) proteins are a number of uncharacterized and highly conserved protein families in eukaryotes. In plants, some DUFs have been predicted to play important roles in development and response to abiotic stress. Among them, DUF568-containing protein family is plant-specific and has not been described previously. A basic analysis and expression profiling was performed, and the co-expression and interaction networks were constructed to explore the functions of DUF568 family in rice. RESULTS The phylogenetic tree showed that the 8, 9 and 11 DUF568 family members from rice, Arabidopsis and maize were divided into three groups. The evolutionary relationship between DUF568 members in rice and maize was close, while the genes in Arabidopsis were more distantly related. The cis-elements prediction showed that over 82% of the elements upstream of OsDUF568 genes were responsive to light and phytohormones. Gene expression profile prediction and RT-qPCR experiments revealed that OsDUF568 genes were highly expressed in leaves, stems and roots of rice seedling. The expression of some OsDUF568 genes varied in response to plant hormones (abscisic acid, 6-benzylaminopurine) and abiotic stress (drought and chilling). Further analysis of the co-expression and protein-protein interaction networks using gene ontology showed that OsDUF568 - related genes were enriched in cellular transports, metabolism and processes. CONCLUSIONS In summary, our findings suggest that the OsDUF568 family may be a vital gene family for the development of rice roots, leaves and stems. In addition, the OsDUF568 family may participate in abscisic acid and cytokinin signaling pathways, and may be related to abiotic stress resistance in these vegetative tissues of rice.
Collapse
Affiliation(s)
- Kai Chen
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Province Engineering Research Center of Knowledge Management and Intelligent Service, College of Information Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Yilin Wang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Province Engineering Research Center of Knowledge Management and Intelligent Service, College of Information Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Xiaoyan Nong
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yichi Zhang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Province Engineering Research Center of Knowledge Management and Intelligent Service, College of Information Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Tang Tang
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
| | - Yun Chen
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Qikun Shen
- Jiangsu Province Engineering Research Center of Knowledge Management and Intelligent Service, College of Information Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Changjie Yan
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Bing Lü
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Province Engineering Research Center of Knowledge Management and Intelligent Service, College of Information Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China.
| |
Collapse
|
6
|
Wang H, Cheng X, Shi Q, Xu J, Chen D, Luo C, Liu H, Cao L, Huang C. Cold tolerance identification of nine Rosa L. materials and expression patterns of genes related to cold tolerance in Rosa hybrida. FRONTIERS IN PLANT SCIENCE 2023; 14:1209134. [PMID: 37441175 PMCID: PMC10333502 DOI: 10.3389/fpls.2023.1209134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/05/2023] [Indexed: 07/15/2023]
Abstract
Members of the Rosa genus have a high ornamental value, but their cultivation area is limited by their sensitivity to cold temperatures. The aim of this study was to evaluate the cold tolerance of a range of Rosa materials, and then determine which genes were related to cold tolerance. Nine Rosa materials were subjected to a cold treatment. To identify genes related to cold tolerance, R. hybrida was treated at -15°C for 10 min, and leaves collected before and after this treatment were collected for RNA-Seq analyses. The transcript profiles of four DEGs (POD17, NDUFA9, PMA1, and b-Amy1) in R. hybrida were determined by qRT-PCR at 0 h, 1 h, 2 h, and 3 h at -15°C. Nine Rosa materials were subjected to a cold treatment, and the most cold-tolerant materials were identified as those that showed the lowest levels of electrolyte leakage and the best recovery after 30 d of growth. The most cold-tolerant materials were Rosa hybrida, Rosa rugosa 'Pingyin 12', and Rosa rugosa. In total, 204 significantly differentially expressed genes (DEGs) were identified, of which 88 were significantly up-regulated and 116 were significantly down-regulated under cold conditions. Gene Ontology classification and Kyoto Encyclopedia of Genes and Genomes pathway analyses showed that the DEGs were enriched in 57 pathways, especially starch and sucrose metabolism, phenylpropane biosynthesis, MAPK signaling, fructose and mannose metabolism, and oxidative phosphorylation. By transcriptional analysis, PMA1, which was related to H+ ATPase activity, was continuously up-regulated, but the transcript levels of POD17, NDUFA9, and β-Amy1 fluctuated during the freezing treatment. This research uncovered scarce cold-resistant materials and layed the foundation for further research on the cold tolerance mechanism of Rosa plants and the breeding of cold-tolerant varieties.
Collapse
Affiliation(s)
- Hongli Wang
- Beijing Engineering Research Center of Functional Floriculture, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xi Cheng
- Beijing Engineering Research Center of Functional Floriculture, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Qiyu Shi
- Beijing Engineering Research Center of Functional Floriculture, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Agriculture, Yanbian University, Yanji, China
| | - Jie Xu
- Beijing Engineering Research Center of Functional Floriculture, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Dongliang Chen
- Beijing Engineering Research Center of Functional Floriculture, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chang Luo
- Beijing Engineering Research Center of Functional Floriculture, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hua Liu
- Beijing Engineering Research Center of Functional Floriculture, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Li Cao
- College of Agriculture, Yanbian University, Yanji, China
| | - Conglin Huang
- Beijing Engineering Research Center of Functional Floriculture, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
7
|
Elakhdar A, Slaski JJ, Kubo T, Hamwieh A, Hernandez Ramirez G, Beattie AD, Capo-chichi LJ. Genome-wide association analysis provides insights into the genetic basis of photosynthetic responses to low-temperature stress in spring barley. FRONTIERS IN PLANT SCIENCE 2023; 14:1159016. [PMID: 37346141 PMCID: PMC10279893 DOI: 10.3389/fpls.2023.1159016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/04/2023] [Indexed: 06/23/2023]
Abstract
Low-temperature stress (LTS) is among the major abiotic stresses affecting the geographical distribution and productivity of the most important crops. Understanding the genetic basis of photosynthetic variation under cold stress is necessary for developing more climate-resilient barley cultivars. To that end, we investigated the ability of chlorophyll fluorescence parameters (FVFM, and FVF0) to respond to changes in the maximum quantum yield of Photosystem II photochemistry as an indicator of photosynthetic energy. A panel of 96 barley spring cultivars from different breeding zones of Canada was evaluated for chlorophyll fluorescence-related traits under cold acclimation and freeze shock stresses at different times. Genome-wide association studies (GWAS) were performed using a mixed linear model (MLM). We identified three major and putative genomic regions harboring 52 significant quantitative trait nucleotides (QTNs) on chromosomes 1H, 3H, and 6H for low-temperature tolerance. Functional annotation indicated several QTNs were either within the known or close to genes that play important roles in the photosynthetic metabolites such as abscisic acid (ABA) signaling, hydrolase activity, protein kinase, and transduction of environmental signal transduction at the posttranslational modification levels. These outcomes revealed that barley plants modified their gene expression profile in response to decreasing temperatures resulting in physiological and biochemical modifications. Cold tolerance could influence a long-term adaption of barley in many parts of the world. Since the degree and frequency of LTS vary considerably among production sites. Hence, these results could shed light on potential approaches for improving barley productivity under low-temperature stress.
Collapse
Affiliation(s)
- Ammar Elakhdar
- Field Crops Research Institute, Agricultural Research Center, Giza, Egypt
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Jan J. Slaski
- Bio Industrial Services Division, InnoTech Alberta Inc., Vegreville, AB, Canada
| | - Takahiko Kubo
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Aladdin Hamwieh
- International Center for Agriculture Research in the Dry Areas (ICARDA), Giza, Egypt
| | - Guillermo Hernandez Ramirez
- Department of Renewable Resources, Faculty of Agriculture, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Aaron D. Beattie
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ludovic J.A. Capo-chichi
- Department of Renewable Resources, Faculty of Agriculture, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
8
|
Usman B, Derakhshani B, Jung KH. Recent Molecular Aspects and Integrated Omics Strategies for Understanding the Abiotic Stress Tolerance of Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:2019. [PMID: 37653936 PMCID: PMC10221523 DOI: 10.3390/plants12102019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 09/02/2023]
Abstract
Rice is an important staple food crop for over half of the world's population. However, abiotic stresses seriously threaten rice yield improvement and sustainable production. Breeding and planting rice varieties with high environmental stress tolerance are the most cost-effective, safe, healthy, and environmentally friendly strategies. In-depth research on the molecular mechanism of rice plants in response to different stresses can provide an important theoretical basis for breeding rice varieties with higher stress resistance. This review presents the molecular mechanisms and the effects of various abiotic stresses on rice growth and development and explains the signal perception mode and transduction pathways. Meanwhile, the regulatory mechanisms of critical transcription factors in regulating gene expression and important downstream factors in coordinating stress tolerance are outlined. Finally, the utilization of omics approaches to retrieve hub genes and an outlook on future research are prospected, focusing on the regulatory mechanisms of multi-signaling network modules and sustainable rice production.
Collapse
Affiliation(s)
- Babar Usman
- Graduate School of Green Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (B.U.)
| | - Behnam Derakhshani
- Graduate School of Green Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (B.U.)
| | - Ki-Hong Jung
- Graduate School of Green Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (B.U.)
- Research Center for Plant Plasticity, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
9
|
Thapa R, Tabien RE, Johnson CD, Septiningsih EM. Comparative transcriptomic analysis of germinating rice seedlings to individual and combined anaerobic and cold stress. BMC Genomics 2023; 24:185. [PMID: 37024819 PMCID: PMC10080786 DOI: 10.1186/s12864-023-09262-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Rice is one of the most important cereals consumed worldwide. Two major abiotic factors affecting rice plants in different growth stages are flooding stress and cold stress. These abiotic stresses can take place independently or simultaneously and significantly affect rice plants during germination and seedling growth. Fortunately, a wide array of phenotypic responses conferring flooding stress and chilling stress tolerance exist within the rice germplasm, indicating the presence of different molecular mechanisms underlying tolerance to these stresses. Understanding these differences may assist in developing improved rice cultivars having higher tolerance to both stresses. In this study, we conducted a comparative global gene expression analysis of two rice genotypes with contrasting phenotypes under cold stress, anaerobic stress, and combined cold and anaerobic stress during germination. RESULTS The differential gene expression analysis revealed that 5571 differentially expressed genes (DEGs), 7206 DEGs, and 13279 DEGs were identified under anaerobic stress, cold stress, and combined stress, respectively. Genes involved in the carbohydrate metabolic process, glucosyltransferase activity, regulation of nitrogen compound metabolic process, protein metabolic process, lipid metabolic process, cellular nitrogen compound biosynthetic process, lipid biosynthetic process, and a microtubule-based process were enriched across all stresses. Notably, the common Gene Ontology (GO) analysis identified three hub genes, namely Os08g0176800 (similar to mRNA-associated protein mrnp 41), Os11g0454200 (dehydrin), and OS10g0505900 (expressed protein). CONCLUSION A large number of differentially expressed genes were identified under anaerobic, cold conditions during germination and the combination of the two stress conditions in rice. These results will assist in the identification of promising candidate genes for possible manipulation toward rice crops that are more tolerant under flooding and cold during germination, both independently and concurrently.
Collapse
Affiliation(s)
- Ranjita Thapa
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843, USA
- Present address: Section of Plant Breeding and Genetics, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14853, USA
| | | | - Charles D Johnson
- Genomics and Bioinformatics Service, Texas A&M AgriLife Research, College Station, TX, 77843, USA
| | - Endang M Septiningsih
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
10
|
Wang Z, Wu X, Chen Y, Wu C, Long W, Zhu S. Transcriptomic profiling of the cold stress and recovery responsiveness of two contrasting Guizhou HE rice genotypes. Genes Genomics 2023; 45:401-412. [PMID: 36469228 DOI: 10.1007/s13258-022-01321-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/28/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND At the seed germination stage, rice is sensitive to cold stress, which adversely affects its growth and development. Guizhou HE rice comprises several different landraces, most of which are cold tolerant. OBJECTIVE To identify differentially expressed genes and molecular mechanism underlying the cold tolerance of Guizhou HE. METHODS Two Guizhou HE genotypes, AC44 (cold-sensitive) and AC96 (cold-tolerant), which exhibit opposite phenotypes in response to cold treatment at the seed germination stage were used. Comprehensive gene expressions of AC44 and AC96 under 4 °C cold treatment and subsequent recovery conditions were comparatively analyzed by RNA sequencing. RESULTS Overall, 11,082 and 7749 differentially expressed genes were detected in AC44 and AC96, respectively. Comparative transcriptome analysis demonstrated that, compared with AC44, AC96 presented fewer upregulated and downregulated genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses demonstrated that AC96 presented more upregulated GO terms, especially terms associated with biological processes. However, AC44 presented more terms related to cellular components, mainly chloroplasts. Moreover, DEGs related to the auxin signaling pathway (including ARF and IAA family members) and transcription factors (including members of the F-box, bZIP, basic helix-loop-helix [bHLH], and MYB-like transcription factor families) were found to be expressed specifically in AC96; thus, these DEGs may be responsible for the cold tolerance of AC96. CONCLUSIONS These findings present information about the cold tolerance mechanism of Guizhou HE rice at the germination stage, providing valuable resources and candidate genes for breeding cold-tolerant rice genotypes.
Collapse
Affiliation(s)
- Zhongni Wang
- Guizhou Rice Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Xian Wu
- Guizhou Rice Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Yuxuan Chen
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Chaoxin Wu
- Guizhou Rice Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Wuhua Long
- Guizhou Rice Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Susong Zhu
- Guizhou Rice Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Guiyang, 550006, China.
| |
Collapse
|
11
|
Xu Z, Zhang J, Wang X, Essemine J, Jin J, Qu M, Xiang Y, Chen W. Cold-induced inhibition of photosynthesis-related genes integrated by a TOP6 complex in rice mesophyll cells. Nucleic Acids Res 2023; 51:1823-1842. [PMID: 36660855 PMCID: PMC9976896 DOI: 10.1093/nar/gkac1275] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/18/2022] [Accepted: 12/25/2022] [Indexed: 01/21/2023] Open
Abstract
Photosynthesis is the most temperature-sensitive process in the plant kingdom, but how the photosynthetic pathway responds during low-temperature exposure remains unclear. Herein, cold stress (4°C) induced widespread damage in the form DNA double-stranded breaks (DSBs) in the mesophyll cells of rice (Oryza sativa), subsequently causing a global inhibition of photosynthetic carbon metabolism (PCM) gene expression. Topoisomerase genes TOP6A3 and TOP6B were induced at 4°C and their encoded proteins formed a complex in the nucleus. TOP6A3 directly interacted with KU70 to inhibit its binding to cold-induced DSBs, which was facilitated by TOP6B, finally blocking the loading of LIG4, a component of the classic non-homologous end joining (c-NHEJ) pathway. The repression of c-NHEJ repair imposed by cold extended DSB damage signaling, thus prolonging the inhibition of photosynthesis in leaves. Furthermore, the TOP6 complex negatively regulated 13 crucial PCM genes by directly binding to their proximal promoter regions. Phenotypically, TOP6A3 overexpression exacerbated the γ-irradiation-triggered suppression of PCM genes and led to the hypersensitivity of photosynthesis parameters to cold stress, dependent on the DSB signal transducer ATM. Globally, the TOP6 complex acts as a signal integrator to control PCM gene expression and synchronize cold-induced photosynthesis inhibition, which modulates carbon assimilation rates immediately in response to changes in ambient temperature.
Collapse
Affiliation(s)
- Zhan Xu
- Guangzhou City Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding, Pazhou Dadao Rd 17-19, Haizhu District, Guangzhou 510000, China
| | - Jianxiang Zhang
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics, Yangzhou University, Yangzhou 225009, China
| | - Xu Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Jemaa Essemine
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jing Jin
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Mingnan Qu
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Yong Xiang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Weixiong Chen
- Guangzhou City Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding, Pazhou Dadao Rd 17-19, Haizhu District, Guangzhou 510000, China
| |
Collapse
|
12
|
Teng Z, Chen Y, Meng S, Duan M, Zhang J, Ye N. Environmental Stimuli: A Major Challenge during Grain Filling in Cereals. Int J Mol Sci 2023; 24:2255. [PMID: 36768575 PMCID: PMC9917212 DOI: 10.3390/ijms24032255] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Light, temperature, water, and fertilizer are arguably the most important environmental factors regulating crop growth and productivity. Environmental stimuli, including low light, extreme temperatures, and water stresses caused by climate change, affect crop growth and production and pose a growing threat to sustainable agriculture. Furthermore, soil salinity is another major environmental constraint affecting crop growth and threatening global food security. The grain filling stage is the final stage of growth and is also the most important stage in cereals, directly determining the grain weight and final yield. However, the grain filling process is extremely vulnerable to different environmental stimuli, especially for inferior spikelets. Given the importance of grain filling in cereals and the deterioration of environmental problems, understanding environmental stimuli and their effects on grain filling constitutes a major focus of crop research. In recent years, significant advances made in this field have led to a good description of the intricate mechanisms by which different environmental stimuli regulate grain filling, as well as approaches to adapt cereals to changing climate conditions and to give them better grain filling. In this review, the current environmental stimuli, their dose-response effect on grain filling, and the physiological and molecular mechanisms involved are discussed. Furthermore, what we can do to help cereal crops adapt to environmental stimuli is elaborated. Overall, we call for future research to delve deeper into the gene function-related research and the commercialization of gene-edited crops. Meanwhile, smart agriculture is the development trend of the future agriculture under environmental stimuli.
Collapse
Affiliation(s)
- Zhenning Teng
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| | - Yinke Chen
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
| | - Shuan Meng
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
| | - Meijuan Duan
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Laboratory of Rice Stress Biology, Hunan Agricultural University, Changsha 410128, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China
| | - Nenghui Ye
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Laboratory of Rice Stress Biology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
13
|
Aslam MM, Deng L, Meng J, Wang Y, Pan L, Niu L, Lu Z, Cui G, Zeng W, Wang Z. Characterization and expression analysis of basic leucine zipper (bZIP) transcription factors responsive to chilling injury in peach fruit. Mol Biol Rep 2023; 50:361-376. [PMID: 36334232 DOI: 10.1007/s11033-022-08035-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/17/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Peach (Prunus persica L.) is prone to chilling injury as exhibited by inhibition of the ethylene production, failure in softening, and the manifestation of internal browning. The basic leucine zipper (bZIP) transcription factors play an essential role in regulatory networks that control many processes associated with physiological, abiotic and biotic stress responses in fruits. Formerly, the underlying molecular and regulatory mechanism of (bZIP) transcription factors responsive to chilling injury in peach fruit is still elusive. METHODS AND RESULTS In the current experiment, the solute peach 'Zhongyou Peach No. 13' was used as the test material and cold storage at low temperature (4 °C). It was found that long-term low-temperature storage induced the production of ethylene, the hardness of the pulp decreased, and the low temperature also induced ABA accumulation. The changes of ABA and ethylene in peach fruits during low-temperature storage were clarified. Since the bZIP transcription factor is involved in the regulation of downstream pathways of ABA signals, 47 peach bZIP transcription factor family genes were identified through bioinformatics analysis. Further based on RT-qPCR analysis, 18 PpbZIP genes were discovered to be expressed in refrigerated peach fruits. Among them, the expression of PpbZIP23 and PpbZIP25 was significantly reduced during the refrigeration process, the promoter analysis of these genes found that this region contains the MYC/MYB/ABRES binding element, but not the DRES/CBFS element, indicating that the expression may be regulated by the ABA-dependent cold induction pathway, thereby responding to chilling injury in peach fruit. CONCLUSIONS Over investigation will provide new insights for further postharvest protocols related to molecular changes during cold storage and will prove a better cope for chilling injury.
Collapse
Affiliation(s)
- Muhammad Muzammal Aslam
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Li Deng
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Junren Meng
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Yan Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Lei Pan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Liang Niu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Zhenhua Lu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Guochao Cui
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Wenfang Zeng
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China.
| | - Zhiqiang Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China.
| |
Collapse
|
14
|
Guo Z, Ma W, Cai L, Guo T, Liu H, Wang L, Liu J, Ma B, Feng Y, Liu C, Pan G. Comparison of anther transcriptomes in response to cold stress at the reproductive stage between susceptible and resistant Japonica rice varieties. BMC PLANT BIOLOGY 2022; 22:500. [PMID: 36284279 PMCID: PMC9597962 DOI: 10.1186/s12870-022-03873-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Rice is one of the most important cereal crops in the world but is susceptible to cold stress (CS). In this study, we carried out parallel transcriptomic analysis at the reproductive stage on the anthers of two Japonica rice varieties with contrasting CS resistance: cold susceptible Longjing11 (LJ11) and cold resistant Longjing25 (LJ25). RESULTS According to the obtained results, a total of 16,762 differentially expressed genes (DEGs) were identified under CS, including 7,050 and 14,531 DEGs in LJ25 and LJ11, respectively. Examining gene ontology (GO) enrichment identified 35 up- and 39 down-regulated biological process BP GO terms were significantly enriched in the two varieties, with 'response to heat' and 'response to cold' being the most enriched. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified 33 significantly enriched pathways. Only the carbon metabolism and amino acid biosynthesis pathways with down-regulated DEGs were enriched considerably in LJ11, while the plant hormone signal transduction pathway (containing 153 DEGs) was dramatically improved. Eight kinds of plant hormones were detected in the pathway, while auxin, abscisic acid (ABA), salicylic acid (SA), and ethylene (ETH) signaling pathways were found to be the top four pathways with the most DEGs. Furthermore, the protein-protein interaction (PPI) network analysis identified ten hub genes (co-expressed gene number ≥ 30), including six ABA-related genes. Various DEGs (such as OsDREB1A, OsICE1, OsMYB2, OsABF1, OsbZIP23, OsCATC, and so on) revealed distinct expression patterns among rice types when the DEGs between LJ11 and LJ25 were compared, indicating that they are likely responsible for CS resistance of rice in cold region. CONCLUSION Collectively, our findings provide comprehensive insights into complex molecular mechanisms of CS response and can aid in CS resistant molecular breeding of rice in cold regions.
Collapse
Affiliation(s)
- Zhenhua Guo
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, 154026, Jiamusi, Heilongjiang, China
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, 510642, Guangzhou, Guangdong, China
| | - Wendong Ma
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, 154026, Jiamusi, Heilongjiang, China
| | - Lijun Cai
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, 154007, Jiamusi, Heilongjiang, China.
| | - Tao Guo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, 510642, Guangzhou, Guangdong, China
| | - Hao Liu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, 510640, Guangzhou, Guangdong, China
| | - Linan Wang
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, 154026, Jiamusi, Heilongjiang, China
| | - Junliang Liu
- Jiamusi Longjing Seed Industry Co., LTD, 154026, Jiamusi, Heilongjiang, China
| | - Bo Ma
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, 161006, Qiqihar, Heilongjiang, China
| | - Yanjiang Feng
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, 154026, Jiamusi, Heilongjiang, China.
| | - Chuanxue Liu
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, 154026, Jiamusi, Heilongjiang, China.
| | - Guojun Pan
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, 154026, Jiamusi, Heilongjiang, China.
| |
Collapse
|
15
|
Combination of Genomics, Transcriptomics Identifies Candidate Loci Related to Cold Tolerance in Dongxiang Wild Rice. PLANTS 2022; 11:plants11182329. [PMID: 36145730 PMCID: PMC9506393 DOI: 10.3390/plants11182329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/22/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022]
Abstract
Rice, a cold-sensitive crop, is a staple food for more than 50% of the world’s population. Low temperature severely compromises the growth of rice and challenges China’s food safety. Dongxiang wild rice (DXWR) is the most northerly common wild rice in China and has strong cold tolerance, but the genetic basis of its cold tolerance is still unclear. Here, we report quantitative trait loci (QTLs) analysis for seedling cold tolerance (SCT) using a high-density single nucleotide polymorphism linkage map in the backcross recombinant inbred lines that were derived from a cross of DXWR, and an indica cultivar, GZX49. A total of 10 putative QTLs were identified for SCT under 4 °C cold treatment, each explaining 2.0–6.8% of the phenotypic variation in this population. Furthermore, transcriptome sequencing of DXWR seedlings before and after cold treatment was performed, and 898 and 3413 differentially expressed genes (DEGs) relative to 0 h in cold-tolerant for 4 h and 12 h were identified, respectively. Gene ontology and Kyoto encyclopedia of genes and genomes (KEGG) analysis were performed on these DEGs. Using transcriptome data and genetic linkage analysis, combined with qRT-PCR, sequence comparison, and bioinformatics, LOC_Os08g04840 was putatively identified as a candidate gene for the major effect locus qSCT8. These findings provided insights into the genetic basis of SCT for the improvement of cold stress potential in rice breeding programs.
Collapse
|
16
|
Veisi S, Sabouri A, Abedi A. Meta-analysis of QTLs and candidate genes associated with seed germination in rice ( Oryza sativa L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1587-1605. [PMID: 36389095 PMCID: PMC9530108 DOI: 10.1007/s12298-022-01232-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/18/2022] [Accepted: 09/16/2022] [Indexed: 06/12/2023]
Abstract
Seed germination is one of the critical stages of plant life, and many quantitative trait loci (QTLs) control this complex trait. Meta-analysis of QTLs is a powerful computational technique for estimating the most stable QTLs regardless of the population's genetic background. Besides, this analysis effectively narrows down the confidence interval (CI) to identify candidate genes (CGs) and marker development. In the current study, a comprehensive genome-wide meta-analysis was performed on QTLs associated with germination in rice. This analysis was conducted based on the data reported over the last two decades. In this case, various analyses were performed, including seed germination rate, plumule length, radicle length, germination percentage, coleoptile length, coleorhiza length, radicle fresh weight, germination potential, and germination index. A total of 67 QTLs were projected onto a reference map for these traits and then integrated into 32 meta-QTLs (MQTLs) to provide a genetic framework for seed germination. The average CI of MQTLs was considerably reduced from 15.125 to 8.73 cM compared to the initial QTLs. This situation identified 728 well-known functionally characterized genes and novel putative CGs for investigated traits. The fold change calculation demonstrated that 155 CGs had significant changes in expression analysis. In this case, 112 and 43 CGs were up-regulated and down-regulated during germination, respectively. This study provides an overview and compares genetic loci controlling traits related to seed germination in rice. The findings can bridge the gap between QTLs and CGs for seed germination. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01232-1.
Collapse
Affiliation(s)
- Sheida Veisi
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences, University of Guilan, P.O. Box: 41635-1314, Rasht, Iran
| | - Atefeh Sabouri
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences, University of Guilan, P.O. Box: 41635-1314, Rasht, Iran
| | - Amin Abedi
- Department of Plant Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
17
|
Zhao K, Chen R, Duan W, Meng L, Song H, Wang Q, Li J, Xu X. Chilling injury of tomato fruit was alleviated under low-temperature storage by silencing Sly-miR171e with short tandem target mimic technology. Front Nutr 2022; 9:906227. [PMID: 35938134 PMCID: PMC9355414 DOI: 10.3389/fnut.2022.906227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, the role of Sly-miR171e on post-harvest cold tolerance of tomato fruit was researched. The results showed that overexpression of Sly-miR171e (miR171e-OE) promoted postharvest chilling injury (CI) of tomato fruit at the mature red (MR) and mature green (MG) stage. Contrasted with the wild type (WT) and miR171e-OE fruit, the knockdown of Sly-miR171e (miR171e-STTM) showed a lower CI index, lower hydrogen peroxide (H2O2) content, and higher fruit firmness after harvest. In the fruit of miR171e-STTM, the expression level of GRAS24, CBF1, GA2ox1, and COR, and the GA3 content were ascended, while the expression levels of GA20ox1 and GA3ox1 were descended. The research demonstrated that CI in tomato fruit was alleviated at low temperature storage by silencing Sly-miR171e with short tandem target mimic (STTM) technology. Furthermore, it also provided helpful information for genetic modification of miR171e and control of CI in the postharvest fruit.
Collapse
Affiliation(s)
- Keyan Zhao
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Rulong Chen
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Wenhui Duan
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Lanhuan Meng
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Hongmiao Song
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Qing Wang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jiangkuo Li
- Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, National Engineering and Technology Research Center for Preservation of Agricultural Products, Tianjin, China
| | - Xiangbin Xu
- School of Food Science and Engineering, Hainan University, Haikou, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
- *Correspondence: Xiangbin Xu
| |
Collapse
|
18
|
Gonin M, Jeong K, Coudert Y, Lavarenne J, Hoang GT, Bes M, To HTM, Thiaw MN, Do TV, Moukouanga D, Guyomarc'h S, Bellande K, Brossier J, Parizot B, Nguyen HT, Beeckman T, Bergougnoux V, Rouster J, Sallaud C, Laplaze L, Champion A, Gantet P. CROWN ROOTLESS1 binds DNA with a relaxed specificity and activates OsROP and OsbHLH044 genes involved in crown root formation in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:546-566. [PMID: 35596715 PMCID: PMC9542200 DOI: 10.1111/tpj.15838] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/14/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
In cereals, the root system is mainly composed of post-embryonic shoot-borne roots, named crown roots. The CROWN ROOTLESS1 (CRL1) transcription factor, belonging to the ASYMMETRIC LEAVES2-LIKE/LATERAL ORGAN BOUNDARIES DOMAIN (ASL/LBD) family, is a key regulator of crown root initiation in rice (Oryza sativa). Here, we show that CRL1 can bind, both in vitro and in vivo, not only the LBD-box, a DNA sequence recognized by several ASL/LBD transcription factors, but also another not previously identified DNA motif that was named CRL1-box. Using rice protoplast transient transactivation assays and a set of previously identified CRL1-regulated genes, we confirm that CRL1 transactivates these genes if they possess at least a CRL1-box or an LBD-box in their promoters. In planta, ChIP-qPCR experiments targeting two of these genes that include both a CRL1- and an LBD-box in their promoter show that CRL1 binds preferentially to the LBD-box in these promoter contexts. CRISPR/Cas9-targeted mutation of these two CRL1-regulated genes, which encode a plant Rho GTPase (OsROP) and a basic helix-loop-helix transcription factor (OsbHLH044), show that both promote crown root development. Finally, we show that OsbHLH044 represses a regulatory module, uncovering how CRL1 regulates specific processes during crown root formation.
Collapse
Affiliation(s)
- Mathieu Gonin
- UMR DIADEUniversité de Montpellier, IRD, CIRAD911 Avenue Agropolis34394Montpellier cedex 5France
| | - Kwanho Jeong
- UMR DIADEUniversité de Montpellier, IRD, CIRAD911 Avenue Agropolis34394Montpellier cedex 5France
| | - Yoan Coudert
- Laboratoire Reproduction et Développement des PlantesUniversité de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIALyon69007France
| | - Jeremy Lavarenne
- UMR DIADEUniversité de Montpellier, IRD, CIRAD911 Avenue Agropolis34394Montpellier cedex 5France
| | - Giang Thi Hoang
- National Key Laboratory for Plant Cell Biotechnology, LMI RICE2Agricultural Genetic Institute11300HanoiVietnam
| | - Martine Bes
- CIRAD, UMR AGAPF‐34398MontpellierFrance
- UMR AGAPUniversité de Montpellier, CIRAD, INRA, Montpellier SupAgroMontpellierFrance
| | - Huong Thi Mai To
- University of Science and Technology of Hanoi, LMIRICE2Vietnam Academy of Science and Technology11300HanoiVietnam
| | - Marie‐Rose Ndella Thiaw
- UMR DIADEUniversité de Montpellier, IRD, CIRAD911 Avenue Agropolis34394Montpellier cedex 5France
| | - Toan Van Do
- National Key Laboratory for Plant Cell Biotechnology, LMI RICE2Agricultural Genetic Institute11300HanoiVietnam
| | - Daniel Moukouanga
- UMR DIADEUniversité de Montpellier, IRD, CIRAD911 Avenue Agropolis34394Montpellier cedex 5France
| | - Soazig Guyomarc'h
- UMR DIADEUniversité de Montpellier, IRD, CIRAD911 Avenue Agropolis34394Montpellier cedex 5France
| | - Kevin Bellande
- UMR DIADEUniversité de Montpellier, IRD, CIRAD911 Avenue Agropolis34394Montpellier cedex 5France
| | - Jean‐Rémy Brossier
- UMR DIADEUniversité de Montpellier, IRD, CIRAD911 Avenue Agropolis34394Montpellier cedex 5France
| | - Boris Parizot
- Department of Plant Biotechnology and BioinformaticsGhent UniversityB‐9052GhentBelgium
- VIB Center for Plant Systems Biology9052GhentBelgium
| | - Hieu Trang Nguyen
- UMR DIADEUniversité de Montpellier, IRD, CIRAD911 Avenue Agropolis34394Montpellier cedex 5France
| | - Tom Beeckman
- Department of Plant Biotechnology and BioinformaticsGhent UniversityB‐9052GhentBelgium
- VIB Center for Plant Systems Biology9052GhentBelgium
| | - Véronique Bergougnoux
- Czech Advanced Technology and Research Institute, Centre of Region Haná for Biotechnological and Agricultural ResearchPalacký University OlomoucOlomoucCzech Republic
| | - Jacques Rouster
- Limagrain Field Seeds, Traits and Technologies, Groupe Limagrain—Centre de RechercheRoute d'EnnezatChappesFrance
| | - Christophe Sallaud
- Limagrain Field Seeds, Traits and Technologies, Groupe Limagrain—Centre de RechercheRoute d'EnnezatChappesFrance
| | - Laurent Laplaze
- UMR DIADEUniversité de Montpellier, IRD, CIRAD911 Avenue Agropolis34394Montpellier cedex 5France
| | - Antony Champion
- UMR DIADEUniversité de Montpellier, IRD, CIRAD911 Avenue Agropolis34394Montpellier cedex 5France
| | - Pascal Gantet
- UMR DIADEUniversité de Montpellier, IRD, CIRAD911 Avenue Agropolis34394Montpellier cedex 5France
- Czech Advanced Technology and Research Institute, Centre of Region Haná for Biotechnological and Agricultural ResearchPalacký University OlomoucOlomoucCzech Republic
| |
Collapse
|
19
|
Freda PJ, Toxopeus J, Dowle EJ, Ali ZM, Heter N, Collier RL, Sower I, Tucker JC, Morgan TJ, Ragland GJ. Transcriptomic and functional genetic evidence for distinct ecophysiological responses across complex life cycle stages. J Exp Biol 2022; 225:275641. [PMID: 35578907 DOI: 10.1242/jeb.244063] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/30/2022] [Indexed: 11/20/2022]
Abstract
Organisms with complex life cycles demonstrate a remarkable ability to change their phenotypes across development, presumably as an evolutionary adaptation to developmentally variable environments. Developmental variation in environmentally sensitive performance, and thermal sensitivity in particular, has been well documented in holometabolous insects. For example, thermal performance in adults and juvenile stages exhibit little genetic correlation (genetic decoupling) and can evolve independently, resulting in divergent thermal responses. Yet, we understand very little about how this genetic decoupling occurs. We tested the hypothesis that genetic decoupling of thermal physiology is driven by fundamental differences in physiology between life stages, despite a potentially conserved Cellular Stress Response. We used RNAseq to compare transcript expression in response to a cold stressor in Drosophila melanogaster larvae and adults and used RNAi (RNA interference) to test whether knocking down nine target genes differentially affected larval and adult cold tolerance. Transcriptomic responses of whole larvae and adults during and following exposure to -5°C were largely unique both in identity of responding transcripts and in temporal dynamics. Further, we analyzed the tissue-specificity of differentially-expressed transcripts from FlyAtlas 2 data, and concluded that stage-specific differences in transcription were not simply driven by differences in tissue composition. In addition, RNAi of target genes resulted in largely stage-specific and sometimes sex-specific effects on cold tolerance. The combined evidence suggests that thermal physiology is largely stage-specific at the level of gene expression, and thus natural selection may be acting on different loci during the independent thermal adaptation of different life stages.
Collapse
Affiliation(s)
- Philip J Freda
- Department of Entomology, Kansas State University, 1603 Old Claflin Place, Manhattan, KS 66506, USA
| | - Jantina Toxopeus
- Department of Integrative Biology, University of Colorado Denver, 1151 Arapahoe St., Denver, CO 80204, USA
| | - Edwina J Dowle
- Department of Integrative Biology, University of Colorado Denver, 1151 Arapahoe St., Denver, CO 80204, USA
| | - Zainab M Ali
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Nicholas Heter
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Rebekah L Collier
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Isaiah Sower
- Department of Integrative Biology, University of Colorado Denver, 1151 Arapahoe St., Denver, CO 80204, USA
| | - Joseph C Tucker
- Department of Integrative Biology, University of Colorado Denver, 1151 Arapahoe St., Denver, CO 80204, USA
| | - Theodore J Morgan
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Gregory J Ragland
- Department of Integrative Biology, University of Colorado Denver, 1151 Arapahoe St., Denver, CO 80204, USA
| |
Collapse
|
20
|
Pan X, Guan L, Lei K, Li J, Zhang X. Transcriptional and physiological data revealed cold tolerance in a photo-thermo sensitive genic male sterile line Yu17S. BMC PLANT BIOLOGY 2022; 22:44. [PMID: 35062884 PMCID: PMC8781465 DOI: 10.1186/s12870-022-03437-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Rice is highly sensitive to chilling stress during the seedling stage. However, the adaptable photo-thermo sensitive genic male sterile (PTGMS) rice line, Yu17S, exhibits tolerance to low temperatures. Currently, the molecular characteristics of Yu17S are unclear. RESULTS To evaluate the molecular mechanisms behind cold responses in rice seedlings, a comparative transcriptome analysis was performed in Yu17S during seedling development under normal temperature and low temperature conditions. In total, 9317 differentially expressed genes were detected. Gene ontology and pathway analyses revealed that these genes were involved mostly in photosynthesis, carotenoid biosynthesis, carbohydrate metabolism and plant hormone signal transduction. An integrated analysis of specific pathways combined with physiological data indicated that rice seedlings improved the performance of photosystem II when exposed to cold conditions. Genes involved in starch degradation and sucrose metabolism were activated in rice plants exposed to cold stress treatments, which was accompanied by the accumulation of soluble sugar, trehalose, raffinose and galactinol. Furthermore, chilling stress induced the expression of phytoene desaturase, 15-cis-ζ-carotene isomerase, ζ-carotene desaturase, carotenoid isomerase and β-carotene hydroxylase; this was coupled with the activation of carotenoid synthase activity and increases in abscisic acid (ABA) levels in rice seedlings. CONCLUSIONS Our results suggest that Yu17S exhibited better tolerance to cold stress with the activation of carotenoid synthase activity and increasing of ABA levels, and as well as the expression of photosynthesis-related genes under cold condition in rice seedlings.
Collapse
Affiliation(s)
- Xiaoxue Pan
- Biotechnology Research Institute, Chongqing Academy of Agricultural Sciences/Chongqing Key Laboratory of Adversity Agriculture, Chongqing, 401329, China
| | - Ling Guan
- Biotechnology Research Institute, Chongqing Academy of Agricultural Sciences/Chongqing Key Laboratory of Adversity Agriculture, Chongqing, 401329, China
| | - Kairong Lei
- Biotechnology Research Institute, Chongqing Academy of Agricultural Sciences/Chongqing Key Laboratory of Adversity Agriculture, Chongqing, 401329, China
| | - Jingyong Li
- Chongqing Rationing Rice Research Center, Chongqing Academy of Agricultural Sciences, Chongqing, 402160, China
| | - Xianwei Zhang
- Chongqing Rationing Rice Research Center, Chongqing Academy of Agricultural Sciences, Chongqing, 402160, China.
| |
Collapse
|
21
|
Gao Y, Cui Y, Zhao R, Chen X, Zhang J, Zhao J, Kong L. Cryo-Treatment Enhances the Embryogenicity of Mature Somatic Embryos via the lncRNA-miRNA-mRNA Network in White Spruce. Int J Mol Sci 2022; 23:ijms23031111. [PMID: 35163033 PMCID: PMC8834816 DOI: 10.3390/ijms23031111] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/09/2022] [Accepted: 01/14/2022] [Indexed: 12/04/2022] Open
Abstract
In conifers, somatic embryogenesis is uniquely initiated from immature embryos in a narrow time window, which is considerably hindered by the difficulty to induce embryogenic tissue (ET) from other tissues, including mature somatic embryos. In this study, the embryogenic ability of newly induced ET and DNA methylation levels was detected, and whole-transcriptome sequencing analyses were carried out. The results showed that ultra-low temperature treatment significantly enhanced ET induction from mature somatic embryos, with the induction rate from 0.4% to 15.5%, but the underlying mechanisms remain unclear. The newly induced ET showed higher capability in generating mature embryos than the original ET. DNA methylation levels fluctuated during the ET induction process. Here, WGCNA analysis revealed that OPT4, TIP1-1, Chi I, GASA5, GST, LAX3, WRKY7, MYBS3, LRR-RLK, PBL7, and WIN1 genes are involved in stress response and auxin signal transduction. Through co-expression analysis, lncRNAs MSTRG.505746.1, MSTRG.1070680.1, and MSTRG.33602.1 might bind to pre-novel_miR_339 to promote the expression of WRKY7 genes for stress response; LAX3 could be protected by lncRNAs MSTRG.1070680.1 and MSTRG.33602.1 via serving as sponges for novel_miR_495 to initiate auxin signal transduction; lncRNAs MSTRG.505746.1, MSTRG.1070680.1, and MSTRG.33602.1 might serve as sponges for novel_miR_527 to enhance the expression of Chi I for early somatic embryo development. This study provides new insight into the area of stress-enhanced early somatic embryogenesis in conifers, which is also attributable to practical applications.
Collapse
Affiliation(s)
- Ying Gao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.G.); (Y.C.); (R.Z.); (X.C.); (J.Z.)
| | - Ying Cui
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.G.); (Y.C.); (R.Z.); (X.C.); (J.Z.)
| | - Ruirui Zhao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.G.); (Y.C.); (R.Z.); (X.C.); (J.Z.)
| | - Xiaoyi Chen
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.G.); (Y.C.); (R.Z.); (X.C.); (J.Z.)
| | - Jinfeng Zhang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.G.); (Y.C.); (R.Z.); (X.C.); (J.Z.)
| | - Jian Zhao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.G.); (Y.C.); (R.Z.); (X.C.); (J.Z.)
- Correspondence: (J.Z.); (L.K.)
| | - Lisheng Kong
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.G.); (Y.C.); (R.Z.); (X.C.); (J.Z.)
- Centre for Forest Biology, Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
- Correspondence: (J.Z.); (L.K.)
| |
Collapse
|
22
|
Baldoni E, Frugis G, Martinelli F, Benny J, Paffetti D, Buti M. A Comparative Transcriptomic Meta-Analysis Revealed Conserved Key Genes and Regulatory Networks Involved in Drought Tolerance in Cereal Crops. Int J Mol Sci 2021; 22:13062. [PMID: 34884864 PMCID: PMC8657901 DOI: 10.3390/ijms222313062] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Drought affects plant growth and development, causing severe yield losses, especially in cereal crops. The identification of genes involved in drought tolerance is crucial for the development of drought-tolerant crops. The aim of this study was to identify genes that are conserved key players for conferring drought tolerance in cereals. By comparing the transcriptomic changes between tolerant and susceptible genotypes in four Gramineae species, we identified 69 conserved drought tolerant-related (CDT) genes that are potentially involved in the drought tolerance of all of the analysed species. The CDT genes are principally involved in stress response, photosynthesis, chlorophyll biogenesis, secondary metabolism, jasmonic acid signalling, and cellular transport. Twenty CDT genes are not yet characterized and can be novel candidates for drought tolerance. The k-means clustering analysis of expression data highlighted the prominent roles of photosynthesis and leaf senescence-related mechanisms in differentiating the drought response between tolerant and sensitive genotypes. In addition, we identified specific transcription factors that could regulate the expression of photosynthesis and leaf senescence-related genes. Our analysis suggests that the balance between the induction of leaf senescence and maintenance of photosynthesis during drought plays a major role in tolerance. Fine-tuning of CDT gene expression modulation by specific transcription factors can be the key to improving drought tolerance in cereals.
Collapse
Affiliation(s)
- Elena Baldoni
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Via Alfonso Corti 12, 20133 Milan, Italy
| | - Giovanna Frugis
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Rome Unit, Via Salaria Km. 29,300, 00015 Monterotondo, Italy;
| | - Federico Martinelli
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy;
| | - Jubina Benny
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90133 Palermo, Italy;
| | - Donatella Paffetti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50144 Florence, Italy;
| | - Matteo Buti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50144 Florence, Italy;
| |
Collapse
|
23
|
Phospholipases C and D and Their Role in Biotic and Abiotic Stresses. PLANTS 2021; 10:plants10050921. [PMID: 34064485 PMCID: PMC8148002 DOI: 10.3390/plants10050921] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 02/03/2023]
Abstract
Plants, as sessile organisms, have adapted a fine sensing system to monitor environmental changes, therefore allowing the regulation of their responses. As the interaction between plants and environmental changes begins at the surface, these changes are detected by components in the plasma membrane, where a molecule receptor generates a lipid signaling cascade via enzymes, such as phospholipases (PLs). Phospholipids are the key structural components of plasma membranes and signaling cascades. They exist in a wide range of species and in different proportions, with conversion processes that involve hydrophilic enzymes, such as phospholipase-C (PLC), phospholipase-D (PLD), and phospholipase-A (PLA). Hence, it is suggested that PLC and PLD are highly conserved, compared to their homologous genes, and have formed clusters during their adaptive history. Additionally, they generate responses to different functions in accordance with their protein structure, which should be reflected in specific signal transduction responses to environmental stress conditions, including innate immune responses. This review summarizes the phospholipid systems associated with signaling pathways and the innate immune response.
Collapse
|
24
|
Viana VE, Carlos da Maia L, Busanello C, Pegoraro C, Costa de Oliveira A. When rice gets the chills: comparative transcriptome profiling at germination shows WRKY transcription factor responses. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23 Suppl 1:100-112. [PMID: 33773005 DOI: 10.1111/plb.13262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Rice is vital for food security. Due to its tropical origin, rice suffers from cold temperatures that affect its entire life cycle. Key genes have been identified involved in cold tolerance. WRKYs are generally downstream of the MAPK cascade and can act together with VQ proteins to regulate stress-responsive genes. Chilling treatment was applied at germination to two rice genotypes (tolerant and sensitive). Shoots at S3 stage were collected for RNA-seq to identify OsWRKY, OsMAPKs and OsVQs expression. Relationships among MAPKs, WRKYs and VQs were predicted through correlation analysis. OsWRKY transcriptional regulation was predicted by in silico analysis of cis-regulatory elements. A total of 39 OsWRKYs were differentially expressed. OsWRKY21, OsWRK24 and OsWRKY69 are potential positive regulators, while OsWRKY10, OsWRK47, OsWRKY62, OsWRKY72 and OsWRKY77 are potential negative regulators, of chilling tolerance. 12 OsMAPKs were differentially expressed. OsMAPKs were downregulated and negatively correlated with the upregulated OsWRKYs in the tolerant genotype. 19 OsVQs were differentially expressed, three and six OsVQs were positively correlated with OsWRKYs in the tolerant and sensitive genotypes, respectively. Seven differentially expressed OsWRKYs have cold-responsive elements in their promoters and five upregulated OsWRKYs in the tolerant genotype contained the W-box motif. Chilling causes changes in OsWRKY, OsMAPK and OsVQ gene expression at germination. OsWRKYs may not act downstream of the MAPK cascade to coordinate chilling tolerance, but OsWRKYs may act with VQs to regulate chilling tolerance. Candidate OsWRKYs are correlated and have a W-box in the promoter, suggesting an auto-regulation mechanism.
Collapse
Affiliation(s)
- V E Viana
- Plant Genomics and Breeding Center, Eliseu Maciel School of Agronomy, Federal University of Pelotas, Pelotas-RS, Brazil
| | - L Carlos da Maia
- Plant Genomics and Breeding Center, Eliseu Maciel School of Agronomy, Federal University of Pelotas, Pelotas-RS, Brazil
| | - C Busanello
- Plant Genomics and Breeding Center, Eliseu Maciel School of Agronomy, Federal University of Pelotas, Pelotas-RS, Brazil
| | - C Pegoraro
- Plant Genomics and Breeding Center, Eliseu Maciel School of Agronomy, Federal University of Pelotas, Pelotas-RS, Brazil
| | - A Costa de Oliveira
- Plant Genomics and Breeding Center, Eliseu Maciel School of Agronomy, Federal University of Pelotas, Pelotas-RS, Brazil
| |
Collapse
|
25
|
Naithani S, Dikeman D, Garg P, Al-Bader N, Jaiswal P. Beyond gene ontology (GO): using biocuration approach to improve the gene nomenclature and functional annotation of rice S-domain kinase subfamily. PeerJ 2021; 9:e11052. [PMID: 33777532 PMCID: PMC7971086 DOI: 10.7717/peerj.11052] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
The S-domain subfamily of receptor-like kinases (SDRLKs) in plants is poorly characterized. Most members of this subfamily are currently assigned gene function based on the S-locus Receptor Kinase from Brassica that acts as the female determinant of self-incompatibility (SI). However, Brassica like SI mechanisms does not exist in most plants. Thus, automated Gene Ontology (GO) pipelines are not sufficient for functional annotation of SDRLK subfamily members and lead to erroneous association with the GO biological process of SI. Here, we show that manual bio-curation can help to correct and improve the gene annotations and association with relevant biological processes. Using publicly available genomic and transcriptome datasets, we conducted a detailed analysis of the expansion of the rice (Oryza sativa) SDRLK subfamily, the structure of individual genes and proteins, and their expression.The 144-member SDRLK family in rice consists of 82 receptor-like kinases (RLKs) (67 full-length, 15 truncated),12 receptor-like proteins, 14 SD kinases, 26 kinase-like and 10 GnK2 domain-containing kinases and RLKs. Except for nine genes, all other SDRLK family members are transcribed in rice, but they vary in their tissue-specific and stress-response expression profiles. Furthermore, 98 genes show differential expression under biotic stress and 98 genes show differential expression under abiotic stress conditions, but share 81 genes in common.Our analysis led to the identification of candidate genes likely to play important roles in plant development, pathogen resistance, and abiotic stress tolerance. We propose a nomenclature for 144 SDRLK gene family members based on gene/protein conserved structural features, gene expression profiles, and literature review. Our biocuration approach, rooted in the principles of findability, accessibility, interoperability and reusability, sets forth an example of how manual annotation of large-gene families can fill in the knowledge gap that exists due to the implementation of automated GO projections, thereby helping to improve the quality and contents of public databases.
Collapse
Affiliation(s)
- Sushma Naithani
- Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Daemon Dikeman
- Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Priyanka Garg
- Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Noor Al-Bader
- Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Pankaj Jaiswal
- Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
26
|
Castander-Olarieta A, Pereira C, Montalbán IA, Mendes VM, Correia S, Suárez-Álvarez S, Manadas B, Canhoto J, Moncaleán P. Proteome-Wide Analysis of Heat-Stress in Pinus radiata Somatic Embryos Reveals a Combined Response of Sugar Metabolism and Translational Regulation Mechanisms. FRONTIERS IN PLANT SCIENCE 2021; 12:631239. [PMID: 33912202 PMCID: PMC8072280 DOI: 10.3389/fpls.2021.631239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/22/2021] [Indexed: 05/06/2023]
Abstract
Somatic embryogenesis is the process by which bipolar structures with no vascular connection with the surrounding tissue are formed from a single or a group of vegetative cells, and in conifers it can be divided into five different steps: initiation, proliferation, maturation, germination and acclimatization. Somatic embryogenesis has long been used as a model to study the mechanisms regulating stress response in plants, and recent research carried out in our laboratory has demonstrated that high temperatures during initial stages of conifer somatic embryogenesis modify subsequent phases of the process, as well as the behavior of the resulting plants ex vitro. The development of high-throughput techniques has facilitated the study of the molecular response of plants to numerous stress factors. Proteomics offers a reliable image of the cell status and is known to be extremely susceptible to environmental changes. In this study, the proteome of radiata pine somatic embryos was analyzed by LC-MS after the application of high temperatures during initiation of embryonal masses [(23°C, control; 40°C (4 h); 60°C (5 min)]. At the same time, the content of specific soluble sugars and sugar alcohols was analyzed by HPLC. Results confirmed a significant decrease in the initiation rate of embryonal masses under 40°C treatments (from 44 to 30.5%) and an increasing tendency in the production of somatic embryos (from 121.87 to 170.83 somatic embryos per gram of embryogenic tissue). Besides, heat provoked a long-term readjustment of the protein synthesis machinery: a great number of structural constituents of ribosomes were increased under high temperatures, together with the down-regulation of the enzyme methionine-tRNA ligase. Heat led to higher contents of heat shock proteins and chaperones, transmembrane transport proteins, proteins related with post-transcriptional regulation (ARGONAUTE 1D) and enzymes involved in the synthesis of fatty acids, specific compatible sugars (myo-inositol) and cell-wall carbohydrates. On the other hand, the protein adenosylhomocysteinase and enzymes linked with the glycolytic pathway, nitrogen assimilation and oxidative stress response were found at lower levels.
Collapse
Affiliation(s)
| | - Cátia Pereira
- Department of Forestry Science, NEIKER, Arkaute, Spain
- Center for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | | | - Vera M. Mendes
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Sandra Correia
- Center for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | | | - Bruno Manadas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Jorge Canhoto
- Center for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Paloma Moncaleán
- Department of Forestry Science, NEIKER, Arkaute, Spain
- *Correspondence: Paloma Moncaleán,
| |
Collapse
|
27
|
Zhang Z, Xiao W, Qiu J, Xin Y, Liu Q, Chen H, Fu Y, Ma H, Chen W, Huang Y, Ruan S, Yan J. Nystose regulates the response of rice roots to cold stress via multiple signaling pathways: A comparative proteomics analysis. PLoS One 2020; 15:e0238381. [PMID: 32881942 PMCID: PMC7470417 DOI: 10.1371/journal.pone.0238381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/15/2020] [Indexed: 11/18/2022] Open
Abstract
Small fructans improve plant tolerance for cold stress. However, the underlying molecular mechanisms are poorly understood. Here, we have demonstrated that the small fructan tetrasaccharide nystose improves the cold stress tolerance of primary rice roots. Roots developed from seeds soaked in nystose showed lower browning rate, higher root activity, and faster growth compared to seeds soaked in water under chilling stress. Comparative proteomics analysis of nystose-treated and control roots identified a total of 497 differentially expressed proteins. GO classification and KEGG pathway analysis documented that some of the upregulated differentially expressed proteins were implicated in the regulation of serine/threonine protein phosphatase activity, abscisic acid-activated signaling, removal of superoxide radicals, and the response to oxidative stress and defense responses. Western blot analysis indicated that nystose promotes the growth of primary rice roots by increasing the level of RSOsPR10, and the cold stress-induced change in RSOsPR10levelis regulated by jasmonate, salicylic acid, and abscisic acid signaling pathways in rice roots. Furthermore, OsMKK4-dependentmitogen-activated protein kinase signaling cascades may be involved in the nystose-induced cold tolerance of primary rice roots. Together, these results indicate that nystose acts as an immunostimulator of the response to cold stress by multiple signaling pathways.
Collapse
Affiliation(s)
- Zijie Zhang
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
- College of Agriculture and Food Science, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Wenfei Xiao
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Jieren Qiu
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Ya Xin
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Qinpo Liu
- College of Agriculture and Food Science, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Huizhe Chen
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yaping Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Huasheng Ma
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Wenyue Chen
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Yuqin Huang
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Songlin Ruan
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
- College of Agriculture and Food Science, Zhejiang Agriculture & Forestry University, Hangzhou, China
- * E-mail: (SR); (JY)
| | - Jianli Yan
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
- * E-mail: (SR); (JY)
| |
Collapse
|
28
|
Pan Y, Liang H, Gao L, Dai G, Chen W, Yang X, Qing D, Gao J, Wu H, Huang J, Zhou W, Huang C, Liang Y, Deng G. Transcriptomic profiling of germinating seeds under cold stress and characterization of the cold-tolerant gene LTG5 in rice. BMC PLANT BIOLOGY 2020; 20:371. [PMID: 32762649 PMCID: PMC7409433 DOI: 10.1186/s12870-020-02569-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/22/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND Low temperature is a limiting factor of rice productivity and geographical distribution. Wild rice (Oryza rufipogon Griff.) is an important germplasm resource for rice improvement. It has superior tolerance to many abiotic stresses, including cold stress, but little is known about the mechanism underlying its resistance to cold. RESULTS This study elucidated the molecular genetic mechanisms of wild rice in tolerating low temperature. Comprehensive transcriptome profiles of two rice genotypes (cold-sensitive ce 253 and cold-tolerant Y12-4) at the germinating stage under cold stress were comparatively analyzed. A total of 42.44-68.71 million readings were obtained, resulting in the alignment of 29,128 and 30,131 genes in genotypes 253 and Y12-4, respectively. Many common and differentially expressed genes (DEGs) were analyzed in the cold-sensitive and cold-tolerant genotypes. Results showed more upregulated DEGs in the cold-tolerant genotype than in the cold-sensitive genotype at four stages under cold stress. Gene ontology enrichment analyses based on cellular process, metabolic process, response stimulus, membrane part, and catalytic activity indicated more upregulated genes than downregulated ones in the cold-tolerant genotype than in the cold-sensitive genotype. Quantitative real-time polymerase chain reaction was performed on seven randomly selected DEGs to confirm the RNA Sequencing (RNA-seq) data. These genes showed similar expression patterns corresponding with the RNA-Seq method. Weighted gene co-expression network analysis (WGCNA) revealed Y12-4 showed more positive genes than 253 under cold stress. We also explored the cold tolerance gene LTG5 (Low Temperature Growth 5) encoding a UDP-glucosyltransferase. The overexpression of the LTG5 gene conferred cold tolerance to indica rice. CONCLUSION Gene resources related to cold stress from wild rice can be valuable for improving the cold tolerance of crops.
Collapse
Affiliation(s)
- Yinghua Pan
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Haifu Liang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Lijun Gao
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Gaoxing Dai
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Weiwei Chen
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Xinghai Yang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Dongjin Qing
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Ju Gao
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Hao Wu
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Juan Huang
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Weiyong Zhou
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Chengcui Huang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Yuntao Liang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Guofu Deng
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| |
Collapse
|
29
|
Transcriptomic Profiling of Young Cotyledons Response to Chilling Stress in Two Contrasting Cotton ( Gossypium hirsutum L.) Genotypes at the Seedling Stage. Int J Mol Sci 2020; 21:ijms21145095. [PMID: 32707667 PMCID: PMC7404027 DOI: 10.3390/ijms21145095] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 12/19/2022] Open
Abstract
Young cotyledons of cotton seedlings are most susceptible to chilling stress. To gain insight into the potential mechanism of cold tolerance of young cotton cotyledons, we conducted physiological and comparative transcriptome analysis of two varieties with contrasting phenotypes. The evaluation of chilling injury of young cotyledons among 74 cotton varieties revealed that H559 was the most tolerant and YM21 was the most sensitive. The physiological analysis found that the ROS scavenging ability was lower, and cell membrane damage was more severe in the cotyledons of YM21 than that of H559 under chilling stress. RNA-seq analysis identified a total of 44,998 expressed genes and 19,982 differentially expressed genes (DEGs) in young cotyledons of the two varieties under chilling stress. Weighted gene coexpression network analysis (WGCNA) of all DEGs revealed four significant modules with close correlation with specific samples. The GO-term enrichment analysis found that lots of genes in H559-specific modules were involved in plant resistance to abiotic stress. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that pathways such as plant hormone signal transduction, MAPK signaling, and plant–pathogen interaction were related to chilling stress response. A total of 574 transcription factors and 936 hub genes in these modules were identified. Twenty hub genes were selected for qRT-PCR verification, revealing the reliability and accuracy of transcriptome data. These findings will lay a foundation for future research on the molecular mechanism of cold tolerance in cotyledons of cotton.
Collapse
|
30
|
Kong W, Zhang C, Qiang Y, Zhong H, Zhao G, Li Y. Integrated RNA-Seq Analysis and Meta-QTLs Mapping Provide Insights into Cold Stress Response in Rice Seedling Roots. Int J Mol Sci 2020; 21:ijms21134615. [PMID: 32610550 PMCID: PMC7369714 DOI: 10.3390/ijms21134615] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022] Open
Abstract
Rice (Oryza sativa L.) is a widely cultivated food crop around the world, especially in Asia. However, rice seedlings often suffer from cold stress, which affects their growth and yield. Here, RNA-seq analysis and Meta-QTLs mapping were performed to understand the molecular mechanisms underlying cold tolerance in the roots of 14-day-old seedlings of rice (RPY geng, cold-tolerant genotype). A total of 4779 of the differentially expressed genes (DEGs) were identified, including 2457 up-regulated and 2322 down-regulated DEGs. The GO, COG, KEEG, and Mapman enrichment results of DEGs revealed that DEGs are mainly involved in carbohydrate transport and metabolism, signal transduction mechanisms (plant hormone signal transduction), biosynthesis, transport and catabolism of secondary metabolites (phenylpropanoid biosynthesis), defense mechanisms, and large enzyme families mechanisms. Notably, the AP2/ERF-ERF, NAC, WRKY, MYB, C2H2, and bHLH transcription factors participated in rice’s cold–stress response and tolerance. On the other hand, we mapped the identified DEGs to 44 published cold–stress-related genes and 41 cold-tolerant Meta-QTLs regions. Of them, 12 DEGs were the published cold–stress-related genes and 418 DEGs fell into the cold-tolerant Meta-QTLs regions. In this study, the identified DEGs and the putative molecular regulatory network can provide insights for understanding the mechanism of cold stress tolerance in rice. In addition, DEGs in KEGG term-enriched terms or cold-tolerant Meta-QTLs will help to secure key candidate genes for further functional studies on the molecular mechanism of cold stress response in rice.
Collapse
|
31
|
Zheng X, Shi M, Wang J, Yang N, Wang K, Xi J, Wu C, Xi T, Zheng J, Zhang J. Isoform Sequencing Provides Insight Into Freezing Response of Common Wheat ( Triticum aestivum L.). Front Genet 2020; 11:462. [PMID: 32595694 PMCID: PMC7300213 DOI: 10.3389/fgene.2020.00462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
The objective of the study is to reveal the freezing tolerance mechanisms of wheat by combining the emerging single-molecule real-time (SMRT) sequencing technology PacBio Sequel and Illumina sequencing. Commercial semiwinter wheat Zhoumai 18 was exposed to -6°C for 4 h at the four-leave stage. Leaves of the control group and freezing-treated group were used to perform cDNA library construction. PacBio SMRT sequencing yielded 51,570 high-quality isoforms from leaves of control sample of Zhoumai 18, encoded by 20,366 gene loci. In total, 73,695 transcript isoforms, corresponding to 23,039 genes, were identified from the freezing-treated leaves. Compared with transcripts from the International Wheat Genome Sequencing Consortium RefSeq v1.1, 57,667 novel isoforms were discovered, which were annotated 21,672 known gene loci, as well as 3,399 novel gene loci. Transcriptome characterization including alterative spliced events, alternative polydenylation sites, transcription factors, and fusion transcripts were also analyzed. Freezing-responsive genes and signals were uncovered and proved that the ICE-ERF-COR pathway and ABA signal transduction play a vital role in the freezing response of wheat. In this study, PacBio sequencing and Illumina sequencing were applied to investigate the freezing tolerance in common wheat, and the transcriptome results provide insights into the molecular regulation mechanisms under freezing treatment.
Collapse
Affiliation(s)
- Xingwei Zheng
- Institute of Cotton Research, Shanxi Agricultural University, Yuncheng, China
| | - Mengmeng Shi
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Jian Wang
- Institute of Cotton Research, Shanxi Agricultural University, Yuncheng, China
| | - Na Yang
- Institute of Cotton Research, Shanxi Agricultural University, Yuncheng, China
| | - Ke Wang
- Institute of Cotton Research, Shanxi Agricultural University, Yuncheng, China
| | - Jilong Xi
- Institute of Cotton Research, Shanxi Agricultural University, Yuncheng, China
| | - Caixia Wu
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Tianyuan Xi
- Institute of Cotton Research, Shanxi Agricultural University, Yuncheng, China
| | - Jun Zheng
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Jiancheng Zhang
- Institute of Cotton Research, Shanxi Agricultural University, Yuncheng, China
| |
Collapse
|
32
|
Shi Y, Phan H, Liu Y, Cao S, Zhang Z, Chu C, Schläppi MR. Glycosyltransferase OsUGT90A1 helps protect the plasma membrane during chilling stress in rice. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2723-2739. [PMID: 31974553 PMCID: PMC7210772 DOI: 10.1093/jxb/eraa025] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/23/2020] [Indexed: 05/09/2023]
Abstract
Due to its subtropical origins, rice (Oryza sativa) is sensitive to low-temperature stress. In this study, we identify LOC_Os04g24110, annotated to encode the UDP-glycosyltransferase enzyme UGT90A1, as a gene associated with the low-temperature seedling survivability (LTSS) quantitative trait locus qLTSS4-1. Differences between haplotypes in the control region of OsUGT90A1 correlate with chilling tolerance phenotypes, and reflect differential expression between tolerant and sensitive accessions rather than differences in protein sequences. Expression of OsUGT90A1 is initially enhanced by low temperature, and its overexpression helps to maintain membrane integrity during cold stress and promotes leaf growth during stress recovery, which are correlated with reduced levels of reactive oxygen species due to increased activities of antioxidant enzymes. In addition, overexpression of OsUGT90A1 in Arabidopsis improves freezing survival and tolerance to salt stress, again correlated with enhanced activities of antioxidant enzymes. Overexpression of OsUGT90A1 in rice decreases root lengths in 3-week-old seedlings while gene-knockout increases the length, indicating that its differential expression may affect phytohormone activities. We conclude that higher OsUGT90A1 expression in chilling-tolerant accessions helps to maintain cell membrane integrity as an abiotic stress-tolerance mechanism that prepares plants for the resumption of growth and development during subsequent stress recovery.
Collapse
Affiliation(s)
- Yao Shi
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
- Present address: The University of Pennsylvania School of Dental Medicine, Levy Building, Biochemistry Department, Rm538, 240 S 40th St, Philadelphia, PA 19104, USA
| | - Huy Phan
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
| | - Yaju Liu
- National Sweet Potato Improvement Center, Sweet Potato Research Institute, Xuzhou, P.R. China
| | - Shouyun Cao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Zhihua Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Michael R Schläppi
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
- Correspondence:
| |
Collapse
|
33
|
Han B, Ma X, Cui D, Wang Y, Geng L, Cao G, Zhang H, Han L. Comprehensive Evaluation and Analysis of the Mechanism of Cold Tolerance Based on the Transcriptome of Weedy Rice Seedlings. RICE (NEW YORK, N.Y.) 2020; 13:12. [PMID: 32056019 PMCID: PMC7018935 DOI: 10.1186/s12284-019-0363-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
In this study, the cold-tolerance capacity of 133 varieties of weedy rice was evaluated based on the comprehensive evaluation index D, with Kongyu 131 used as a cold-tolerant control. A total of 39.8% of the 133 varieties were considered 'strong', indicating that weedy rice populations indeed have relatively strong cold-tolerance capacity as a whole, and the robust cold-tolerant varieties WR29 and WR157 were identified. Regression analysis showed that the metrics including the nitrogen recovery index, superoxide dismutase (SOD) content and malondialdehyde (MDA) content correlated significantly (P < 0.05) with cold tolerance and could be used as indicators of cold tolerance. On the basis of a transcriptome analysis of WR157, a robust cold-tolerant variety identified in this study, a total of 4645 putative DEGs were identified in treated groups compared to the control groups, with 2123 upregulated DEGs and 2522 downregulated DEGs. All upregulated DEGs were enriched on 1388 terms, all downregulated DEGs were enriched on 1566 terms; 911 of the 2123 upregulated DEGs fell into 98 KEGG categories and 1103 of the 2522 downregulated DEGs were in 115 categories. Further analysis showed that GO:0019740 and GO:0006808 are involved in nitrogen utilization; GO:0009269 and GO:0009414 are related to the stress response; and GO:0016491 and GO:0016614 are related to oxidoreductase activity. BACKGROUND: Weedy rice (Oryza) is a related pest species of cultivated rice (Oryza sativa L.) that has strong abiotic stress resistance; however, the comprehensive mechanism governing its cold tolerance is poorly understood. CONCLUSION: Our comprehensive evaluation based on five morphological indices and nine physiological indicators revealed outstanding levels of cold-tolerance capacity among weedy rice varieties from different regions and revealed some terms related to cold tolerance via transcriptome analysis. Our results underscored the reliable evaluation methods for additional cold tolerance studies and revealed several genes related to cold tolerance, which will help researchers breed cultivated rice varieties to increase their cold-tolerance capacity. These traits have the ability to increase seedling survival rate and growth, as well as future yields.
Collapse
Affiliation(s)
- Bing Han
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xiaoding Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Di Cui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yanjie Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Leiyue Geng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
- Coastal Agriculture Institute, Hebei Academy of Agricultural and Forestry Sciences, Tangshan, 063299 China
| | - Guilan Cao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Hui Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Longzhi Han
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
34
|
Ke L, Lei W, Yang W, Wang J, Gao J, Cheng J, Sun Y, Fan Z, Yu D. Genome-wide identification of cold responsive transcription factors in Brassica napus L. BMC PLANT BIOLOGY 2020; 20:62. [PMID: 32028890 PMCID: PMC7006134 DOI: 10.1186/s12870-020-2253-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/16/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND Cold stress is one of the primary environmental factors that affect plant growth and productivity, especially for crops like Brassica napus that live through cold seasons. Till recently, although a number of genes and pathways involved in B. napus cold response have been revealed by independent studies, a genome-wide identification of the key regulators and the regulatory networks is still lack. In this study, we investigated the transcriptomes of cold stressed semi-winter and winter type rapeseeds in short day condition, mainly with the purpose to systematically identify the functional conserved transcription factors (TFs) in cold response of B. napus. RESULTS Global modulation of gene expression was observed in both the semi-winter type line (158A) and the winter type line (SGDH284) rapeseeds, in response to a seven-day chilling stress in short-day condition. Function analysis of differentially expressed genes (DEGs) revealed enhanced stresses response mechanisms and inhibited photosynthesis in both lines, as well as a more extensive inhibition of some primary biological processes in the semi-winter type line. Over 400 TFs were differentially expressed in response to cold stress, including 56 of them showed high similarity to the known cold response TFs and were consistently regulated in 158A and SGDH284, as well as 25 TFs which targets were over-represented in the total DEGs. A further investigation based on their interactions indicated the critical roles of several TFs in cold response of B. napus. CONCLUSION In summary, our results revealed the alteration of gene expression in cold stressed semi-winter and winter ecotype B. napus lines and provided a valuable collection of candidate key regulators involved in B. napus response to cold stress, which could expand our understanding of plant stress response and benefit the future improvement of the breed of rapeseeds.
Collapse
Affiliation(s)
- Liping Ke
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Weixia Lei
- Crop Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Weiguang Yang
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jinyu Wang
- Wenzhou - Kean University, Wenzhou, 325060, China
| | - Janfang Gao
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jinhua Cheng
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yuqiang Sun
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhixiong Fan
- Crop Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China.
| | - Dongliang Yu
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
35
|
Pradhan SK, Pandit E, Pawar S, Naveenkumar R, Barik SR, Mohanty SP, Nayak DK, Ghritlahre SK, Sanjiba Rao D, Reddy JN, Patnaik SSC. Linkage disequilibrium mapping for grain Fe and Zn enhancing QTLs useful for nutrient dense rice breeding. BMC PLANT BIOLOGY 2020; 20:57. [PMID: 32019504 PMCID: PMC7001215 DOI: 10.1186/s12870-020-2262-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 01/20/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND High yielding rice varieties are usually low in grain iron (Fe) and zinc (Zn) content. These two micronutrients are involved in many enzymatic activities, lack of which cause many disorders in human body. Bio-fortification is a cheaper and easier way to improve the content of these nutrients in rice grain. RESULTS A population panel was prepared representing all the phenotypic classes for grain Fe-Zn content from 485 germplasm lines. The panel was studied for genetic diversity, population structure and association mapping of grain Fe-Zn content in the milled rice. The population showed linkage disequilibrium showing deviation of Hardy-Weinberg's expectation for Fe-Zn content in rice. Population structure at K = 3 categorized the panel population into distinct sub-populations corroborating with their grain Fe-Zn content. STRUCTURE analysis revealed a common primary ancestor for each sub-population. Novel quantitative trait loci (QTLs) namely qFe3.3 and qFe7.3 for grain Fe and qZn2.2, qZn8.3 and qZn12.3 for Zn content were detected using association mapping. Four QTLs, namely qFe3.3, qFe7.3, qFe8.1 and qFe12.2 for grain Fe content were detected to be co-localized with qZn3.1, qZn7, qZn8.3 and qZn12.3 QTLs controlling grain Zn content, respectively. Additionally, some Fe-Zn controlling QTLs were co-localized with the yield component QTLs, qTBGW, OsSPL14 and qPN. The QTLs qFe1.1, qFe3.1, qFe5.1, qFe7.1, qFe8.1, qZn6, qZn7 and gRMm9-1 for grain Fe-Zn content reported in earlier studies were validated in this study. CONCLUSION Novel QTLs, qFe3.3 and qFe7.3 for grain Fe and qZn2.2, qZn8.3 and qZn12.3 for Zn content were detected for these two traits. Four Fe-Zn controlling QTLs and few yield component QTLs were detected to be co-localized. The QTLs, qFe1.1, qFe3.1, qFe5.1, qFe7.1, qFe8.1, qFe3.3, qFe7.3, qZn6, qZn7, qZn2.2, qZn8.3 and qZn12.3 will be useful for biofortification of the micronutrients. Simultaneous enhancement of Fe-Zn content may be possible with yield component traits in rice.
Collapse
Affiliation(s)
- S. K. Pradhan
- ICAR-National Rice Research Institute, Cuttack, Odisha India
| | - E. Pandit
- ICAR-National Rice Research Institute, Cuttack, Odisha India
| | - S. Pawar
- ICAR-National Rice Research Institute, Cuttack, Odisha India
| | - R. Naveenkumar
- ICAR-National Rice Research Institute, Cuttack, Odisha India
| | - S. R. Barik
- ICAR-National Rice Research Institute, Cuttack, Odisha India
| | - S. P. Mohanty
- ICAR-National Rice Research Institute, Cuttack, Odisha India
| | - D. K. Nayak
- ICAR-National Rice Research Institute, Cuttack, Odisha India
| | | | - D. Sanjiba Rao
- ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - J. N. Reddy
- ICAR-National Rice Research Institute, Cuttack, Odisha India
| | | |
Collapse
|
36
|
Cui G, Chai H, Yin H, Yang M, Hu G, Guo M, Yi R, Zhang P. Full-length transcriptome sequencing reveals the low-temperature-tolerance mechanism of Medicago falcata roots. BMC PLANT BIOLOGY 2019; 19:575. [PMID: 31864302 PMCID: PMC6925873 DOI: 10.1186/s12870-019-2192-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/08/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Low temperature is one of the main environmental factors that limits crop growth, development, and production. Medicago falcata is an important leguminous herb that is widely distributed worldwide. M. falcata is related to alfalfa but is more tolerant to low temperature than alfalfa. Understanding the low temperature tolerance mechanism of M. falcata is important for the genetic improvement of alfalfa. RESULTS In this study, we explored the transcriptomic changes in the roots of low-temperature-treated M. falcata plants by combining SMRT sequencing and NGS technologies. A total of 115,153 nonredundant sequences were obtained, and 8849 AS events, 73,149 SSRs, and 4189 lncRNAs were predicted. A total of 111,587 genes from SMRT sequencing were annotated, and 11,369 DEGs involved in plant hormone signal transduction, protein processing in endoplasmic reticulum, carbon metabolism, glycolysis/gluconeogenesis, starch and sucrose metabolism, and endocytosis pathways were identified. We characterized 1538 TF genes into 45 TF gene families, and the most abundant TF family was the WRKY family, followed by the ERF, MYB, bHLH and NAC families. A total of 134 genes, including 101 whose expression was upregulated and 33 whose expression was downregulated, were differentially coexpressed at all five temperature points. PB40804, PB75011, PB110405 and PB108808 were found to play crucial roles in the tolerance of M. falcata to low temperature. WGCNA revealed that the MEbrown module was significantly correlated with low-temperature stress in M. falcata. Electrolyte leakage was correlated with most genetic modules and verified that electrolyte leakage can be used as a direct stress marker in physiological assays to indicate cell membrane damage from low-temperature stress. The consistency between the qRT-PCR results and RNA-seq analyses confirmed the validity of the RNA-seq data and the analysis of the regulatory mechanism of low-temperature stress on the basis of the transcriptome. CONCLUSIONS The full-length transcripts generated in this study provide a full characterization of the transcriptome of M. falcata and may be useful for mining new low-temperature stress-related genes specific to M. falcata. These new findings could facilitate the understanding of the low-temperature-tolerance mechanism of M. falcata.
Collapse
Affiliation(s)
- Guowen Cui
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Hua Chai
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar, 161005, China
| | - Hang Yin
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Mei Yang
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Guofu Hu
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Mingying Guo
- Hulunbuir Grassland Station, Hulunbuir, 021008, China
| | - Rugeletu Yi
- Hulunbuir Grassland Station, Hulunbuir, 021008, China
| | - Pan Zhang
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
37
|
Buti M, Baldoni E, Formentin E, Milc J, Frugis G, Lo Schiavo F, Genga A, Francia E. A Meta-Analysis of Comparative Transcriptomic Data Reveals a Set of Key Genes Involved in the Tolerance to Abiotic Stresses in Rice. Int J Mol Sci 2019; 20:E5662. [PMID: 31726733 PMCID: PMC6888222 DOI: 10.3390/ijms20225662] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/05/2019] [Accepted: 11/10/2019] [Indexed: 12/16/2022] Open
Abstract
Several environmental factors, such as drought, salinity, and extreme temperatures, negatively affect plant growth and development, which leads to yield losses. The tolerance or sensitivity to abiotic stressors are the expression of a complex machinery involving molecular, biochemical, and physiological mechanisms. Here, a meta-analysis on previously published RNA-Seq data was performed to identify the genes conferring tolerance to chilling, osmotic, and salt stresses, by comparing the transcriptomic changes between tolerant and susceptible rice genotypes. Several genes encoding transcription factors (TFs) were identified, suggesting that abiotic stress tolerance involves upstream regulatory pathways. A gene co-expression network defined the metabolic and signalling pathways with a prominent role in the differentiation between tolerance and susceptibility: (i) the regulation of endogenous abscisic acid (ABA) levels, through the modulation of genes that are related to its biosynthesis/catabolism, (ii) the signalling pathways mediated by ABA and jasmonic acid, (iii) the activity of the "Drought and Salt Tolerance" TF, involved in the negative regulation of stomatal closure, and (iv) the regulation of flavonoid biosynthesis by specific MYB TFs. The identified genes represent putative key players for conferring tolerance to a broad range of abiotic stresses in rice; a fine-tuning of their expression seems to be crucial for rice plants to cope with environmental cues.
Collapse
Affiliation(s)
- Matteo Buti
- Department of Life Sciences, Centre BIOGEST-SITEIA, University of Modena and Reggio Emilia, Via Amendola 2, 42124 Reggio Emilia, Italy; (M.B.); (J.M.); (E.F.)
- Present address: Department of Agriculture, Food, Environment and Forestry, University of Florence, 50144 Florence, Italy
| | - Elena Baldoni
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Via Bassini 15, 20133 Milano, Italy;
- CNR-IBBA, Rome Unit, via Salaria Km. 29,300, 00015 Monterotondo Scalo (Roma), Italy;
| | - Elide Formentin
- Department of Biology, University of Padova, 35131 Padova, Italy; (E.F.); (F.L.S.)
- Botanical Garden, University of Padova, 35123 Padova, Italy
| | - Justyna Milc
- Department of Life Sciences, Centre BIOGEST-SITEIA, University of Modena and Reggio Emilia, Via Amendola 2, 42124 Reggio Emilia, Italy; (M.B.); (J.M.); (E.F.)
| | - Giovanna Frugis
- CNR-IBBA, Rome Unit, via Salaria Km. 29,300, 00015 Monterotondo Scalo (Roma), Italy;
| | - Fiorella Lo Schiavo
- Department of Biology, University of Padova, 35131 Padova, Italy; (E.F.); (F.L.S.)
- Botanical Garden, University of Padova, 35123 Padova, Italy
| | - Annamaria Genga
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Via Bassini 15, 20133 Milano, Italy;
| | - Enrico Francia
- Department of Life Sciences, Centre BIOGEST-SITEIA, University of Modena and Reggio Emilia, Via Amendola 2, 42124 Reggio Emilia, Italy; (M.B.); (J.M.); (E.F.)
| |
Collapse
|
38
|
Guo H, Wu T, Li S, He Q, Yang Z, Zhang W, Gan Y, Sun P, Xiang G, Zhang H, Deng H. The Methylation Patterns and Transcriptional Responses to Chilling Stress at the Seedling Stage in Rice. Int J Mol Sci 2019; 20:ijms20205089. [PMID: 31615063 PMCID: PMC6829347 DOI: 10.3390/ijms20205089] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/09/2019] [Accepted: 10/12/2019] [Indexed: 01/22/2023] Open
Abstract
Chilling stress is considered the major abiotic stress affecting the growth, development, and yield of rice. To understand the transcriptomic responses and methylation regulation of rice in response to chilling stress, we analyzed a cold-tolerant variety of rice (Oryza sativa L. cv. P427). The physiological properties, transcriptome, and methylation of cold-tolerant P427 seedlings under low-temperature stress (2–3 °C) were investigated. We found that P427 exhibited enhanced tolerance to low temperature, likely via increasing antioxidant enzyme activity and promoting the accumulation of abscisic acid (ABA). The Methylated DNA Immunoprecipitation Sequencing (MeDIP-seq) data showed that the number of methylation-altered genes was highest in P427 (5496) and slightly lower in Nipponbare (Nip) and 9311 (4528 and 3341, respectively), and only 2.7% (292) of methylation genes were detected as common differentially methylated genes (DMGs) related to cold tolerance in the three varieties. Transcriptome analyses revealed that 1654 genes had specifically altered expression in P427 under cold stress. These genes mainly belonged to transcription factor families, such as Myeloblastosis (MYB), APETALA2/ethylene-responsive element binding proteins (AP2-EREBP), NAM-ATAF-CUC (NAC) and WRKY. Fifty-one genes showed simultaneous methylation and expression level changes. Quantitative RT-PCR (qRT-PCR) results showed that genes involved in the ICE (inducer of CBF expression)-CBF (C-repeat binding factor)—COR (cold-regulated) pathway were highly expressed under cold stress, including the WRKY genes. The homologous gene Os03g0610900 of the open stomatal 1 (OST1) in rice was obtained by evolutionary tree analysis. Methylation in Os03g0610900 gene promoter region decreased, and the expression level of Os03g0610900 increased, suggesting that cold stress may lead to demethylation and increased gene expression of Os03g0610900. The ICE-CBF-COR pathway plays a vital role in the cold tolerance of the rice cultivar P427. Overall, this study demonstrates the differences in methylation and gene expression levels of P427 in response to low-temperature stress, providing a foundation for further investigations of the relationship between environmental stress, DNA methylation, and gene expression in rice.
Collapse
Affiliation(s)
- Hui Guo
- State Key Laboratory of Hybrid Rice, Longping Branch of Graduate School, Central South University, Changsha 410013, China.
- Rice Research Institute, Guizhou Academy of Agriculture Sciences, Guiyang 550006, China.
| | - Tingkai Wu
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Shuxing Li
- Rice Research Institute, Guizhou Academy of Agriculture Sciences, Guiyang 550006, China.
| | - Qiang He
- Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Zhanlie Yang
- Rice Research Institute, Guizhou Academy of Agriculture Sciences, Guiyang 550006, China.
| | - Wuhan Zhang
- Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Yu Gan
- Rice Research Institute, Guizhou Academy of Agriculture Sciences, Guiyang 550006, China.
| | - Pingyong Sun
- Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Guanlun Xiang
- Rice Research Institute, Guizhou Academy of Agriculture Sciences, Guiyang 550006, China.
| | - Hongyu Zhang
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Huafeng Deng
- State Key Laboratory of Hybrid Rice, Longping Branch of Graduate School, Central South University, Changsha 410013, China.
- Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| |
Collapse
|
39
|
Liu C, Yang X, Yan Z, Fan Y, Feng G, Liu D. Analysis of differential gene expression in cold-tolerant vs. cold-sensitive varieties of snap bean (Phaseolus vulgaris L.) in response to low temperature stress. Genes Genomics 2019; 41:1445-1455. [PMID: 31535316 DOI: 10.1007/s13258-019-00870-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/04/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND Snap bean, Phaseolus vulgaris L., as a warm-season vegetable, low temperature stress seriously affect the yield and quality. At present, little is known about the genes and molecular regulation mechanism in cold response in snap bean exposed to low temperature. OBJECTIVES Our objectives were to identify the low temperature response genes in snap bean and to examine differences in the gene response between cold-tolerant and cold-sensitive genotypes. METHODS We used two highly inbred snap bean lines in this study, the cold-tolerant line '120', and the cold-sensitive line '093'. The plants were grown to the three leaf and one heart stage and exposed to 4 °C low temperature. We used RNA sequencing (RNA-seq) to analyze the differences of gene expression. RESULTS 988 and 874 cold-responsive genes were identified in 'T120 vs CK120' and 'T093 vs CK093' ('T' stands for low temperature treatment, and 'CK' stands for control at room temperature), respectively. Of these, 555 and 442 genes were unique to cold-stressed lines '120' and '093', respectively compared to the control. Our analysis of these differentially expressed genes indicates that Ca2+, ROS, and hormones act as signaling molecules that play important roles in low temperature response in P. vulgaris. Altering the expression of genes in these signaling pathways activates expression of downstream response genes which can interact with other signaling regulatory networks. This may maintained the balance of ROS and hormones, making line '120' more cold-tolerant than line '093'. CONCLUSION Our results provide a preliminarily understanding of the molecular basis of low temperature response in snap bean, and also establish a foundation for the future genetic improvement of cold sensitivity in snap bean by incorporating genes for cold tolerance.
Collapse
Affiliation(s)
- Chang Liu
- Horticulture Department, Academy of Crop Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150000, Heilongjiang, China.,Work Station of Science and Technique for Post-doctoral in Sugar Beet Institute Affiliated to Heilongjiang University, 74 Xuefu Road, Harbin, 150000, Heilongjiang, China.,Post-doctoral Research Station Affiliated To Northeast Agricultural University, 59 Mucai Road, Harbin, 150000, Heilongjiang, China
| | - Xiaoxu Yang
- Horticulture Department, Academy of Crop Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150000, Heilongjiang, China.,Work Station of Science and Technique for Post-doctoral in Sugar Beet Institute Affiliated to Heilongjiang University, 74 Xuefu Road, Harbin, 150000, Heilongjiang, China.,Post-doctoral Research Station Affiliated To Northeast Agricultural University, 59 Mucai Road, Harbin, 150000, Heilongjiang, China
| | - Zhishan Yan
- Horticulture Department, Academy of Crop Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150000, Heilongjiang, China
| | - Youjun Fan
- Horticulture Department, Academy of Crop Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150000, Heilongjiang, China
| | - Guojun Feng
- Horticulture Department, Academy of Crop Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150000, Heilongjiang, China.
| | - Dajun Liu
- Horticulture Department, Academy of Crop Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150000, Heilongjiang, China.
| |
Collapse
|
40
|
Pradhan SK, Pandit E, Nayak DK, Behera L, Mohapatra T. Genes, pathways and transcription factors involved in seedling stage chilling stress tolerance in indica rice through RNA-Seq analysis. BMC PLANT BIOLOGY 2019; 19:352. [PMID: 31412781 PMCID: PMC6694648 DOI: 10.1186/s12870-019-1922-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 07/03/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Rice plants show yellowing, stunting, withering, reduced tillering and utimately low productivity in susceptible varieties under low temperature stress. Comparative transcriptome analysis was performed to identify novel transcripts, gain new insights into different gene expression and pathways involved in cold tolerance in rice. RESULTS Comparative transcriptome analyses of 5 treatments based on chilling stress exposure revealed more down regulated genes in susceptible and higher up regulated genes in tolerant genotypes. A total of 13930 and 10599 differentially expressed genes (DEGs) were detected in cold susceptible variety (CSV) and cold tolerant variety (CTV), respectively. A continuous increase in DEGs at 6, 12, 24 and 48 h exposure of cold stress was detected in both the genotypes. Gene ontology (GO) analysis revealed 18 CSV and 28 CTV term significantly involved in molecular function, cellular component and biological process. GO classification showed a significant role of transcription regulation, oxygen, lipid binding, catalytic and hydrolase activity for tolerance response. Absence of photosynthesis related genes, storage products like starch and synthesis of other classes of molecules like fatty acids and terpenes during the stress were noticed in susceptible genotype. However, biological regulations, generation of precursor metabolites, signal transduction, photosynthesis, regulation of cellular process, energy and carbohydrate metabolism were seen in tolerant genotype during the stress. KEGG pathway annotation revealed more number of genes regulating different pathways resulting in more tolerant. During early response phase, 24 and 11 DEGs were enriched in CTV and CSV, respectively in energy metabolism pathways. Among the 1583 DEG transcription factors (TF) genes, 69 WRKY, 46 bZIP, 41 NAC, 40 ERF, 31/14 MYB/MYB-related, 22 bHLH, 17 Nin-like 7 HSF and 4C3H were involved during early response phase. Late response phase showed 30 bHLH, 65 NAC, 30 ERF, 26/20 MYB/MYB-related, 11 C3H, 12 HSF, 86 Nin-like, 41 AP2/ERF, 55 bZIP and 98 WRKY members TF genes. The recovery phase included 18 bHLH, 50 NAC, 31 ERF, 24/13 MYB/MYB-related, 4 C3H, 4 HSF, 14 Nin-like, 31 bZIP and 114 WRKY TF genes. CONCLUSIONS Transcriptome analysis of contrasting genotypes for cold tolerance detected the genes, pathways and transcription factors involved in the stress tolerance.
Collapse
Affiliation(s)
- Sharat Kumar Pradhan
- Crop Improvement Division, National Rice Research Institute, Cuttack, Odisha India
| | - Elssa Pandit
- Crop Improvement Division, National Rice Research Institute, Cuttack, Odisha India
| | - Deepak Kumar Nayak
- Crop Improvement Division, National Rice Research Institute, Cuttack, Odisha India
| | - Lambodar Behera
- Crop Improvement Division, National Rice Research Institute, Cuttack, Odisha India
| | | |
Collapse
|
41
|
Pradhan SK, Pandit E, Nayak DK, Behera L, Mohapatra T. Genes, pathways and transcription factors involved in seedling stage chilling stress tolerance in indica rice through RNA-Seq analysis. BMC PLANT BIOLOGY 2019; 19:352. [PMID: 31412781 DOI: 10.1186/s12870-12019-11922-12878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 07/03/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Rice plants show yellowing, stunting, withering, reduced tillering and utimately low productivity in susceptible varieties under low temperature stress. Comparative transcriptome analysis was performed to identify novel transcripts, gain new insights into different gene expression and pathways involved in cold tolerance in rice. RESULTS Comparative transcriptome analyses of 5 treatments based on chilling stress exposure revealed more down regulated genes in susceptible and higher up regulated genes in tolerant genotypes. A total of 13930 and 10599 differentially expressed genes (DEGs) were detected in cold susceptible variety (CSV) and cold tolerant variety (CTV), respectively. A continuous increase in DEGs at 6, 12, 24 and 48 h exposure of cold stress was detected in both the genotypes. Gene ontology (GO) analysis revealed 18 CSV and 28 CTV term significantly involved in molecular function, cellular component and biological process. GO classification showed a significant role of transcription regulation, oxygen, lipid binding, catalytic and hydrolase activity for tolerance response. Absence of photosynthesis related genes, storage products like starch and synthesis of other classes of molecules like fatty acids and terpenes during the stress were noticed in susceptible genotype. However, biological regulations, generation of precursor metabolites, signal transduction, photosynthesis, regulation of cellular process, energy and carbohydrate metabolism were seen in tolerant genotype during the stress. KEGG pathway annotation revealed more number of genes regulating different pathways resulting in more tolerant. During early response phase, 24 and 11 DEGs were enriched in CTV and CSV, respectively in energy metabolism pathways. Among the 1583 DEG transcription factors (TF) genes, 69 WRKY, 46 bZIP, 41 NAC, 40 ERF, 31/14 MYB/MYB-related, 22 bHLH, 17 Nin-like 7 HSF and 4C3H were involved during early response phase. Late response phase showed 30 bHLH, 65 NAC, 30 ERF, 26/20 MYB/MYB-related, 11 C3H, 12 HSF, 86 Nin-like, 41 AP2/ERF, 55 bZIP and 98 WRKY members TF genes. The recovery phase included 18 bHLH, 50 NAC, 31 ERF, 24/13 MYB/MYB-related, 4 C3H, 4 HSF, 14 Nin-like, 31 bZIP and 114 WRKY TF genes. CONCLUSIONS Transcriptome analysis of contrasting genotypes for cold tolerance detected the genes, pathways and transcription factors involved in the stress tolerance.
Collapse
Affiliation(s)
- Sharat Kumar Pradhan
- Crop Improvement Division, National Rice Research Institute, Cuttack, Odisha, India.
| | - Elssa Pandit
- Crop Improvement Division, National Rice Research Institute, Cuttack, Odisha, India.
| | - Deepak Kumar Nayak
- Crop Improvement Division, National Rice Research Institute, Cuttack, Odisha, India
| | - Lambodar Behera
- Crop Improvement Division, National Rice Research Institute, Cuttack, Odisha, India
| | | |
Collapse
|
42
|
Dong J, Zhao J, Zhang S, Yang T, Liu Q, Mao X, Fu H, Yang W, Liu B. Physiological and genome-wide gene expression analyses of cold-induced leaf rolling at the seedling stage in rice (Oryza sativa L.). ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.cj.2019.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
43
|
Moghimi N, Desai JS, Bheemanahalli R, Impa SM, Vennapusa AR, Sebela D, Perumal R, Doherty CJ, Jagadish SVK. New candidate loci and marker genes on chromosome 7 for improved chilling tolerance in sorghum. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3357-3371. [PMID: 30949711 DOI: 10.1093/jxb/erz143] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
Sorghum is often exposed to suboptimal low temperature stress under field conditions, particularly at the seedling establishment stage. Enhancing chilling tolerance will facilitate earlier planting and so minimize the negative impacts of other stresses experienced at later growth stages. Genome-wide association mapping was performed on a sorghum association panel grown under control (30/20 °C; day/night) and chilling (20/10 °C) conditions. Genomic regions on chromosome 7, controlling the emergence index and seedling (root and shoot) vigor, were associated with increased chilling tolerance but they did not co-localize with undesirable tannin content quantitative trait loci (QTLs). Shoot and root samples from highly contrasting haplotype pairs expressing differential responses to chilling stress were used to identify candidate genes. Three candidate genes (an alpha/beta hydrolase domain protein, a DnaJ/Hsp40 motif-containing protein, and a YTH domain-containing RNA-binding protein) were expressed at significantly higher levels under chilling stress in the tolerant haplotype compared with the sensitive haplotype and BTx623. Moreover, two CBF/DREB1A transcription factors on chromosome 2 showed a divergent response to chilling in the contrasting haplotypes. These studies identify haplotype differences on chromosome 7 that modulate chilling tolerance by either regulating CBF or feeding back into this signaling pathway. We have identified new candidate genes that will be useful markers in ongoing efforts to develop tannin-free chilling-tolerant sorghum hybrids.
Collapse
Affiliation(s)
- Naghmeh Moghimi
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Jigar S Desai
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | | | - Somayanda M Impa
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | | | - David Sebela
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Ramasamy Perumal
- Agricultural Research Center, Kansas State University, Hays, KS, USA
| | - Colleen J Doherty
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | | |
Collapse
|
44
|
Campos Mantello C, Boatwright L, da Silva CC, Scaloppi EJ, de Souza Goncalves P, Barbazuk WB, Pereira de Souza A. Deep expression analysis reveals distinct cold-response strategies in rubber tree (Hevea brasiliensis). BMC Genomics 2019; 20:455. [PMID: 31164105 PMCID: PMC6549365 DOI: 10.1186/s12864-019-5852-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 05/28/2019] [Indexed: 01/08/2023] Open
Abstract
Background Natural rubber, an indispensable commodity used in approximately 40,000 products, is fundamental to the tire industry. The rubber tree species Hevea brasiliensis (Willd. ex Adr. de Juss.) Muell-Arg., which is native the Amazon rainforest, is the major producer of latex worldwide. Rubber tree breeding is time consuming, expensive and requires large field areas. Thus, genetic studies could optimize field evaluations, thereby reducing the time and area required for these experiments. In this work, transcriptome sequencing was used to identify a full set of transcripts and to evaluate the gene expression involved in the different cold-response strategies of the RRIM600 (cold-resistant) and GT1 (cold-tolerant) genotypes. Results We built a comprehensive transcriptome using multiple database sources, which resulted in 104,738 transcripts clustered in 49,304 genes. The RNA-seq data from the leaf tissues sampled at four different times for each genotype were used to perform a gene-level expression analysis. Differentially expressed genes (DEGs) were identified through pairwise comparisons between the two genotypes for each time series of cold treatments. DEG annotation revealed that RRIM600 and GT1 exhibit different chilling tolerance strategies. To cope with cold stress, the RRIM600 clone upregulates genes promoting stomata closure, photosynthesis inhibition and a more efficient reactive oxygen species (ROS) scavenging system. The transcriptome was also searched for putative molecular markers (single nucleotide polymorphisms (SNPs) and microsatellites) in each genotype. and a total of 27,111 microsatellites and 202,949 (GT1) and 156,395 (RRIM600) SNPs were identified in GT1 and RRIM600. Furthermore, a search for alternative splicing (AS) events identified a total of 20,279 events. Conclusions The elucidation of genes involved in different chilling tolerance strategies associated with molecular markers and information regarding AS events provides a powerful tool for further genetic and genomic analyses of rubber tree breeding. Electronic supplementary material The online version of this article (10.1186/s12864-019-5852-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Camila Campos Mantello
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, SP, Brazil.,Department of Biology, University of Florida, Gainesville, FL, USA.,The John Bingham Laboratory, National Institute of Agricultural Botany, Cambridge, UK
| | - Lucas Boatwright
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Carla Cristina da Silva
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Erivaldo Jose Scaloppi
- Rubber Research Advanced Center (CAPSA), Agronomical Institute (IAC), Votuporanga, SP, Brazil
| | | | - W Brad Barbazuk
- Department of Biology, University of Florida, Gainesville, FL, USA.,Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Anete Pereira de Souza
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, SP, Brazil. .,Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
45
|
Abstract
Abnormal environmental temperature affects plant growth and threatens crop production. Understanding temperature signal sensing and the balance between defense and development in plants lays the foundation for improvement of temperature resilience. Here, we summarize the current understanding of cold signal perception/transduction as well as heat stress response. Dissection of plant responses to different levels of cold stresses (chilling and freezing) illustrates their common and distinct signaling pathways. Axillary bud differentiation in response to chilling is presented as an example of the trade-off between defense and development. Vernalization is a cold-dependent development adjustment mediated by O-GlcNAcylation and phosphorylation to sense long-term cold. Recent progress on major quantitative trait loci genes for heat tolerance has been summarized. Molecular mechanisms in utilizing temperature-sensitive sterility in super hybrid breeding in China are revealed. The way to improve crop temperature resilience using integrative knowledge of omics as well as systemic and synthetic biology, especially the molecular module program, is summarized.
Collapse
Affiliation(s)
- Jingyu Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;
| | - Xin-Min Li
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hong-Xuan Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100093, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;
- University of Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
46
|
Kenchanmane Raju SK, Barnes AC, Schnable JC, Roston RL. Low-temperature tolerance in land plants: Are transcript and membrane responses conserved? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 276:73-86. [PMID: 30348330 DOI: 10.1016/j.plantsci.2018.08.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 05/20/2023]
Abstract
Plants' tolerance of low temperatures is an economically and ecologically important limitation on geographic distributions and growing seasons. Tolerance for low temperatures varies significantly across different plant species, and different mechanisms likely act in different species. In order to survive low-temperature stress, plant membranes must maintain their fluidity in increasingly cold and oxidative cellular environments. The responses of different species to low-temperature stress include changes to the types and desaturation levels of membrane lipids, though the precise lipids affected tend to vary by species. Regulation of membrane dynamics and other low-temperature tolerance factors are controlled by both transcriptional and post-transcriptional mechanisms. Here, we review low-temperature induced changes in both membrane lipid composition and gene transcription across multiple related plant species with differing degrees of low-temperature tolerance. We attempt to define a core set of changes for transcripts and lipids across species and treatment variations. Some responses appear to be consistent across all species for which data are available, while many others appear likely to be species or family-specific. Potential rationales are presented, including variance in testing, reporting and the importance of considering the level of stress perceived by the plant.
Collapse
Affiliation(s)
- Sunil Kumar Kenchanmane Raju
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA; Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Allison C Barnes
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - James C Schnable
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA; Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Rebecca L Roston
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA.
| |
Collapse
|
47
|
Avila LM, Obeidat W, Earl H, Niu X, Hargreaves W, Lukens L. Shared and genetically distinct Zea mays transcriptome responses to ongoing and past low temperature exposure. BMC Genomics 2018; 19:761. [PMID: 30342485 PMCID: PMC6196024 DOI: 10.1186/s12864-018-5134-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 10/01/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cold temperatures and their alleviation affect many plant traits including the abundance of protein coding gene transcripts. Transcript level changes that occur in response to cold temperatures and their alleviation are shared or vary across genotypes. In this study we identify individual transcripts and groups of functionally related transcripts that consistently respond to cold and its alleviation. Genes that respond differently to temperature changes across genotypes may have limited functional importance. We investigate if these genes share functions, and if their genotype-specific gene expression levels change in magnitude or rank across temperatures. RESULTS We estimate transcript abundances from over 22,000 genes in two unrelated Zea mays inbred lines during and after cold temperature exposure. Genotype and temperature contribute to many genes' abundances. Past cold exposure affects many fewer genes. Genes up-regulated in cold encode many cytokinin glucoside biosynthesis enzymes, transcription factors, signalling molecules, and proteins involved in diverse environmental responses. After cold exposure, protease inhibitors and cuticular wax genes are newly up-regulated, and environmentally responsive genes continue to be up-regulated. Genes down-regulated in response to cold include many photosynthesis, translation, and DNA replication associated genes. After cold exposure, DNA replication and translation genes are still preferentially downregulated. Lignin and suberin biosynthesis are newly down-regulated. DNA replication, reactive oxygen species response, and anthocyanin biosynthesis genes have strong, genotype-specific temperature responses. The ranks of genotypes' transcript abundances often change across temperatures. CONCLUSIONS We report a large, core transcriptome response to cold and the alleviation of cold. In cold, many of the core suite of genes are up or downregulated to control plant growth and photosynthesis and limit cellular damage. In recovery, core responses are in part to prepare for future stress. Functionally related genes are consistently and greatly up-regulated in a single genotype in response to cold or its alleviation, suggesting positive selection has driven genotype-specific temperature responses in maize.
Collapse
Affiliation(s)
- Luis M Avila
- Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1 Canada
| | - Wisam Obeidat
- Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1 Canada
| | - Hugh Earl
- Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1 Canada
| | - Xiaomu Niu
- Dupont/Pioneer, 7300 NW 62nd Ave, DuPont Pioneer, Johnston, Iowa, 50131 USA
| | - William Hargreaves
- Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1 Canada
| | - Lewis Lukens
- Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1 Canada
| |
Collapse
|
48
|
Amombo E, Li X, Wang G, An S, Wang W, Fu J. Comprehensive Transcriptome Profiling and Identification of Potential Genes Responsible for Salt Tolerance in Tall Fescue Leaves under Salinity Stress. Genes (Basel) 2018; 9:E466. [PMID: 30248970 PMCID: PMC6210376 DOI: 10.3390/genes9100466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 12/20/2022] Open
Abstract
Soil salinity is a serious threat to plant growth and crop productivity. Tall fescue utilization in saline areas is limited by its inferior salt tolerance. Thus, a transcriptome study is a prerequisite for future research aimed at providing deeper insights into the molecular mechanisms of tall fescue salt tolerance as well as molecular breeding. Recent advances in sequencing technology offer a platform to achieve this. Here, Illumina RNA sequencing of tall fescue leaves generated a total of 144,339 raw reads. After de novo assembly, unigenes with a total length of 129,749,938 base pairs were obtained. For functional annotations, the unigenes were aligned to various databases. Further structural analyses revealed 79,352 coding DNA sequences and 13,003 microsatellites distributed across 11,277 unigenes as well as single nucleotide polymorphisms. In total, 1862 unigenes were predicted to encode for 2120 transcription factors among which most were key salt-responsive. We determined differential gene expression and distribution per sample and most genes related to salt tolerance and photosynthesis were upregulated in 48 h vs. 24 h salt treatment. Protein interaction analysis revealed a high interaction of chaperonins and Rubisco proteins in 48 h vs. 24 h salt treatment. The gene expressions were finally validated using quantitative polymerase chain reaction (qPCR), which was coherent with sequencing results.
Collapse
Affiliation(s)
- Erick Amombo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture and Wuhan Botanical Garden, Chinese Academy of Sciences Wuhan, Wuhan 430074, China.
- The University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China.
| | - Xiaoning Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture and Wuhan Botanical Garden, Chinese Academy of Sciences Wuhan, Wuhan 430074, China.
- The University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China.
| | - Guangyang Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture and Wuhan Botanical Garden, Chinese Academy of Sciences Wuhan, Wuhan 430074, China.
- The University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China.
| | - Shao An
- The Institute of Advanced Studies in Coastal Ecology, Ludong University, Yantai 264000, China.
| | - Wei Wang
- The Institute of Advanced Studies in Coastal Ecology, Ludong University, Yantai 264000, China.
| | - Jinmin Fu
- The Institute of Advanced Studies in Coastal Ecology, Ludong University, Yantai 264000, China.
| |
Collapse
|
49
|
Chen HC, Cheng WH, Hong CY, Chang YS, Chang MC. The transcription factor OsbHLH035 mediates seed germination and enables seedling recovery from salt stress through ABA-dependent and ABA-independent pathways, respectively. RICE (NEW YORK, N.Y.) 2018; 11:50. [PMID: 30203325 PMCID: PMC6134479 DOI: 10.1186/s12284-018-0244-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/05/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Many transcription factors (TFs), such as those in the basic helix-loop-helix (bHLH) family, are important for regulating plant growth and plant responses to abiotic stress. The expression of OsbHLH035 is induced by drought and salinity. However, its functional role in rice growth, development, and the salt response is still unknown. RESULTS The bHLH TF OsbHLH035 is a salt-induced gene that is primarily expressed in germinating seeds and seedlings. Stable expression of GFP-fused OsbHLH035 in rice transgenic plants revealed that this protein is predominantly localized to the nucleus. Osbhlh035 mutants show delayed seed germination, particularly under salt-stress conditions. In parallel, abscisic acid (ABA) contents are over-accumulated, and the expression of the ABA biosynthetic genes OsABA2 and OsAAO3 is upregulated; furthermore, compared with that in wild-type (WT) seedlings, the salt-induced expression of OsABA8ox1, an ABA catabolic gene, in germinating Osbhlh035 mutant seeds is downregulated. Moreover, Osbhlh035 mutant seedlings are unable to recover from salt-stress treatment. Consistently, sodium is over-accumulated in aerial tissues but slightly reduced in terrestrial tissues from Osbhlh035 seedlings after salt treatment. Additionally, the expression of the sodium transporters OsHKT1;3 and 1;5 is reduced in Osbhlh035 aerial and terrestrial tissues, respectively. Furthermore, genetic complementation can restore both the delayed seed germination and the impaired recovery of salt-treated Osbhlh035 seedlings to normal growth. CONCLUSION OsbHLH035 mediates seed germination and seedling recovery after salt stress relief through the ABA-dependent and ABA-independent activation of OsHKT pathways, respectively.
Collapse
Affiliation(s)
- Hung-Chi Chen
- Department of Agronomy, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, Taiwan, Republic of China
| | - Wan-Hsing Cheng
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Chwan-Yang Hong
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Yu-Sen Chang
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Men-Chi Chang
- Department of Agronomy, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, Taiwan, Republic of China.
| |
Collapse
|
50
|
Li K, Qiu H, Zhou M, Lin Y, Guo Z, Lu S. Chloroplast Protein 12 Expression Alters Growth and Chilling Tolerance in Tropical Forage Stylosanthes guianensis (Aublet) Sw. FRONTIERS IN PLANT SCIENCE 2018; 9:1319. [PMID: 30237807 PMCID: PMC6135879 DOI: 10.3389/fpls.2018.01319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/22/2018] [Indexed: 05/29/2023]
Abstract
Stylosanthes guianensis (Aublet) Sw. is a tropical forage legume with soil acidity tolerance and excellent adaptation to infertile soils, but sensitive to chilling. To understand the molecular responses of S. guianensis to chilling, differentially expressed genes between a chilling tolerant mutant 7-1 and the wild type were identified using suppression subtractive hybridization, and eight of them were confirmed and the regulation pattern were analyzed using quantitative reverse transcription PCR (qRT-PCR). Chloroplast protein 12 (CP12) functions to regulate the Calvin cycle by forming a ternary complex with glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK). SgCP12 transcript was induced by chilling in both plants, and higher levels were observed in 7-1 than in the wild type, implying a potential role of SgCP12 in chilling tolerance. To confirm this, transgenic S. guianensis plants over-expressing or down-regulating SgCP12 were generated, respectively. Higher Fv/Fm and survival rate and lower ion leakage were observed in transgenic plants overexpressing SgCP12 as compared with the wild type after chilling treatment, while lower Fv/Fm and survival rate and higher ion leakage were found in SgCP12 antisense plants. SgCP12 overexpression plants showed promoted growth with increased plant height and fresh weight, while the antisense plants exhibited reduced growth with decreased plant height and fresh weight as compared with the wild type. The results indicated that regulation of SgCP12 expression alters plant growth and chilling tolerance in S. guianensis. In addition, higher levels of net photosynthetic rate (Pn), GAPDH and PRK activities were observed in SgCP12 overexpression transgenic plants, while lower levels in antisense plants than in the wild type under both control and chilling conditions, indicating that altered activities of GAPDH and PRK were associated with the changed Pn in transgenic S. guianensis. Our results suggest that SgCP12 regulates GAPDH and PRK activities, Pn, and chilling tolerance in S. guianensis.
Collapse
Affiliation(s)
- Kailong Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Grassland Science Engineering Research Center, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Hong Qiu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Grassland Science Engineering Research Center, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Min Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Grassland Science Engineering Research Center, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yang Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Grassland Science Engineering Research Center, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Zhenfei Guo
- College of Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Shaoyun Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Grassland Science Engineering Research Center, College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|