1
|
Ong SM, Ng DZW, Chee TEZ, Sng AA, Heng CK, Lee YS, Chan ECY, Ooi DSQ. Plasma fatty acid esters of hydroxy fatty acids and surrogate fatty acid esters of hydroxy fatty acids hydrolysis activity in children with or without obesity and in adults with or without coronary artery disease. Diabetes Obes Metab 2024; 26:3429-3438. [PMID: 38812281 DOI: 10.1111/dom.15686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/31/2024]
Abstract
AIM Fatty acid esters of hydroxy fatty acids (FAHFA) are a class of bioactive lipids with anti-inflammatory, antidiabetic and cardioprotective properties. FAHFA hydrolysis into its fatty acid (FA) and hydroxy fatty acid (HFA) constituents can affect the bioavailability of FAHFA and its subsequent biological effects. We aimed to investigate FAHFA levels and FAHFA hydrolysis activity in children with or without obesity, and in adults with or without coronary artery disease (CAD). MATERIALS AND METHODS Our study cohort included 20 children without obesity, 40 children with obesity, 10 adults without CAD and 28 adults with CAD. We quantitated plasma levels of four families of FAHFA [palmitic acid hydroxy stearic acid (PAHSA), palmitoleic acid hydroxy stearic acid (POHSA), oleic acid hydroxy stearic acid (OAHSA), stearic acid hydroxy stearic acid] and their corresponding FA and HFA constituents using liquid chromatography-tandem mass spectrometry analysis. Surrogate FAHFA hydrolysis activity was estimated as the FA/FAHFA or HFA/FAHFA ratio. RESULTS Children with obesity had lower plasma PAHSA (p = .001), OAHSA (p = .006) and total FAHFA (p = .011) levels, and higher surrogate FAHFA hydrolysis activity represented by PA/PAHSA (p = .040) and HSA/OAHSA (p = .025) compared with children without obesity. Adults with CAD and a history of myocardial infarction (MI) had lower POHSA levels (p = .026) and higher PA/PAHSA (p = .041), POA/POHSA (p = .003) and HSA/POHSA (p = .038) compared with those without MI. CONCLUSION Altered FAHFA metabolism is associated with obesity and MI, and inhibition of FAHFA hydrolysis should be studied further as a possible therapeutic strategy in obesity and MI.
Collapse
Affiliation(s)
- Sze Min Ong
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore, Singapore
| | - Daniel Zhi Wei Ng
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Thaddeus En Zhe Chee
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Andrew Anjian Sng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore, Singapore
| | - Chew Kiat Heng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore, Singapore
| | - Yung Seng Lee
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore, Singapore
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Delicia Shu Qin Ooi
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore, Singapore
| |
Collapse
|
2
|
Tay KY, Wu KX, Chioh FWJ, Autio MI, Pek NMQ, Narmada BC, Tan SH, Low AFH, Lian MM, Chew EGY, Lau HH, Kao SL, Teo AKK, Foo JN, Foo RSY, Heng CK, Chan MYY, Cheung C. Trans-interaction of risk loci 6p24.1 and 10q11.21 is associated with endothelial damage in coronary artery disease. Atherosclerosis 2022; 362:11-22. [PMID: 36435092 DOI: 10.1016/j.atherosclerosis.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Single nucleotide polymorphism rs6903956 has been identified as one of the genetic risk factors for coronary artery disease (CAD). However, rs6903956 lies in a non-coding locus on chromosome 6p24.1. We aim to interrogate the molecular basis of 6p24.1 containing rs6903956 risk alleles in endothelial disease biology. METHODS AND RESULTS We generated induced pluripotent stem cells (iPSCs) from CAD patients (AA risk genotype at rs6903956) and non-CAD subjects (GG non-risk genotype at rs6903956). CRISPR-Cas9-based deletions (Δ63-89bp) on 6p24.1, including both rs6903956 and a short tandem repeat variant rs140361069 in linkage disequilibrium, were performed to generate isogenic iPSC-derived endothelial cells. Edited CAD endothelial cells, with removal of 'A' risk alleles, exhibited a global transcriptional downregulation of pathways relating to abnormal vascular physiology and activated endothelial processes. A CXC chemokine ligand on chromosome 10q11.21, CXCL12, was uncovered as a potential effector gene in CAD endothelial cells. Underlying this effect was the preferential inter-chromosomal interaction of 6p24.1 risk locus to a weak promoter of CXCL12, confirmed by chromatin conformation capture assays on our iPSC-derived endothelial cells. Functionally, risk genotypes AA/AG at rs6903956 were associated significantly with elevated levels of circulating damaged endothelial cells in CAD patients. Circulating endothelial cells isolated from patients with risk genotypes AA/AG were also found to have 10 folds higher CXCL12 transcript copies/cell than those with non-risk genotype GG. CONCLUSIONS Our study reveals the trans-acting impact of 6p24.1 with another CAD locus on 10q11.21 and is associated with intensified endothelial injury.
Collapse
Affiliation(s)
- Kai Yi Tay
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Kan Xing Wu
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Florence Wen Jing Chioh
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Matias Ilmari Autio
- Genome Institute of Singapore, 60 Biopolis Street, 138672, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Balakrishnan Chakrapani Narmada
- Genome Institute of Singapore, 60 Biopolis Street, 138672, Singapore; Experimental Drug Development Centre, A*STAR, 10 Biopolis Road, Singapore, 138670
| | - Sock-Hwee Tan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Heart Centre, National University Health System, Singapore
| | - Adrian Fatt-Hoe Low
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Heart Centre, National University Health System, Singapore
| | - Michelle Mulan Lian
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Elaine Guo Yan Chew
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Hwee Hui Lau
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Proteos, 138673, Singapore; School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Shih Ling Kao
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Medicine, National University Hospital and National University Health System, Singapore
| | - Adrian Kee Keong Teo
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR, Proteos, 138673, Singapore
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore; Genome Institute of Singapore, 60 Biopolis Street, 138672, Singapore
| | - Roger Sik Yin Foo
- Genome Institute of Singapore, 60 Biopolis Street, 138672, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Heart Centre, National University Health System, Singapore
| | - Chew Kiat Heng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Khoo Teck Puat, National University Children's Medical Institute, National University Health System, Singapore
| | - Mark Yan Yee Chan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Heart Centre, National University Health System, Singapore
| | - Christine Cheung
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR, Proteos, 138673, Singapore.
| |
Collapse
|
3
|
Kee Z, Ong SM, Heng CK, Ooi DSQ. Androgen-dependent tissue factor pathway inhibitor regulating protein: a review of its peripheral actions and association with cardiometabolic diseases. J Mol Med (Berl) 2021; 100:185-196. [PMID: 34797389 DOI: 10.1007/s00109-021-02160-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 02/07/2023]
Abstract
The first genome-wide association study on coronary artery disease (CAD) in the Han Chinese population identified C6orf105 as a susceptibility gene. The C6orf105 gene was later found to encode for a protein that regulates tissue factor pathway inhibitor (TFPI) expression in endothelial cells in an androgen-dependent manner, and the novel protein was thus termed androgen-dependent TFPI-regulating protein (ADTRP). Since the identification of ADTRP, there have been several studies associating genetic variants on the ADTRP gene with CAD risk, as well as research providing mechanistic insights on this novel protein and its functional role. ADTRP is a membrane protein, whose expression is upregulated by androgen, GATA-binding protein 2, oxidized low-density lipoprotein, peroxisome proliferator-activated receptors, and low-density lipoprotein receptors. ADTRP regulates multiple downstream targets involved in coagulation, inflammation, endothelial function, and vascular integrity. In addition, ADTRP functions as a fatty acid esters of hydroxy fatty acid (FAHFA)-specific hydrolase that is involved in energy metabolism. Current evidence suggests that ADTRP may play a role in the pathogenesis of atherosclerosis, CAD, obesity, and metabolic disorders. This review summarizes the current literature on ADTRP, with a focus on the peripheral actions of ADTRP, including expression, genetic variations, signaling pathways, and function. The evidence linking ADTRP and cardiometabolic diseases will also be discussed.
Collapse
Affiliation(s)
- Zizheng Kee
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block Level 12, 1E Kent Ridge Road, 119228, Singapore
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Kent Ridge, Singapore
| | - Sze Min Ong
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block Level 12, 1E Kent Ridge Road, 119228, Singapore
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Kent Ridge, Singapore
| | - Chew-Kiat Heng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block Level 12, 1E Kent Ridge Road, 119228, Singapore
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Kent Ridge, Singapore
| | - Delicia Shu Qin Ooi
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block Level 12, 1E Kent Ridge Road, 119228, Singapore.
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Kent Ridge, Singapore.
| |
Collapse
|
4
|
Insights into the Functional Role of ADTRP (Androgen-Dependent TFPI-Regulating Protein) in Health and Disease. Int J Mol Sci 2021; 22:ijms22094451. [PMID: 33923232 PMCID: PMC8123165 DOI: 10.3390/ijms22094451] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 12/15/2022] Open
Abstract
The novel protein ADTRP, identified and described by us in 2011, is androgen-inducible and regulates the expression and activity of Tissue Factor Pathway Inhibitor, the major inhibitor of the Tissue Factor-dependent pathway of coagulation on endothelial cells. Single-nucleotide polymorphisms in ADTRP associate with coronary artery disease and myocardial infarction, and deep vein thrombosis/venous thromboembolism. Some athero-protective effects of androgen could exert through up-regulation of ADTRP expression. We discovered a critical role of ADTRP in vascular development and vessel integrity and function, manifested through Wnt signaling-dependent regulation of matrix metalloproteinase-9. ADTRP also hydrolyses fatty acid esters of hydroxy-fatty acids, which have anti-diabetic and anti-inflammatory effects and can control metabolic disorders. Here we summarize and analyze the knowledge on ADTRP and try to decipher its functions in health and disease.
Collapse
|
5
|
Luo C, Tang B, Qin S, Yuan C, Du Y, Yang J. GATA2 regulates the CAD susceptibility gene ADTRP rs6903956 through preferential interaction with the G allele. Mol Genet Genomics 2021; 296:799-808. [PMID: 33856550 DOI: 10.1007/s00438-021-01782-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Myocardial infarction (MI) is a frequent outcome of coronary artery disease (CAD) and the key factor contributing to worldwide disability and death. Genetic factors contribute to the pathogenesis of CAD/MI, and SNP rs6903956 in the ADTRP gene was first found associated with CAD/MI in the Chinese Han population, which was successfully replicated in other cohorts. However, whether rs6903956 is a functional SNP and its risk mechanism to CAD/MI remains unknown. The ADTRP gene-encoded androgen-dependent TFPI regulating protein regulates vascular endothelial cell function, endothelial-monocyte adhesion, and thrombosis. The allele A of rs6903956, in particular, is associated with lower ADTRP mRNA levels in lymphocytes. In the current study, we found that SNP rs6903956 exhibits allelic differences in transcriptional activity by interacting with GATA2. Also, the A allele conferred a greater risk of CAD and MI, lowered transcriptional activity, and GATA2 binding ability as compared to the G allele. Our findings provide details on how rs6903956 regulates the expression of ADTRP and may provide novel insights into CAD pathology and susceptibility.
Collapse
Affiliation(s)
- Chunyan Luo
- Department of Microbiology and Immunology, Medical College, China Three Gorges University, No.8, Da Xue Road, Yichang, 443002, Hubei Province, People's Republic of China. .,The Institute of Infection and Inflammation, China Three Gorges University, Yichang, 443002, Hubei, China.
| | - Bo Tang
- Department of Pharmacology, Institute of Material Medical, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Subo Qin
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chengfu Yuan
- Department of Biochemistry, China Three Gorges University, Yichang, 443002, Hubei, China
| | - Youqin Du
- Department of Microbiology and Immunology, Medical College, China Three Gorges University, No.8, Da Xue Road, Yichang, 443002, Hubei Province, People's Republic of China
| | - Jian Yang
- Department of Cardiology, The People's Hospital of China Three Gorges University, Yichang, 443000, Hubei Province, China.
| |
Collapse
|
6
|
Naji DH, Tan C, Han F, Zhao Y, Wang J, Wang D, Fa J, Li S, Chen S, Chen Q, Xu C, Wang QK. Significant genetic association of a functional TFPI variant with circulating fibrinogen levels and coronary artery disease. Mol Genet Genomics 2017; 293:119-128. [PMID: 28894953 DOI: 10.1007/s00438-017-1365-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 08/29/2017] [Indexed: 01/17/2023]
Abstract
The tissue factor pathway inhibitor (TFPI) gene encodes a protease inhibitor with a critical role in regulation of blood coagulation. Some genomic variants in TFPI were previously associated with plasma TFPI levels, however, it remains to be further determined whether TFPI variants are associated with other coagulation factors. In this study, we carried out a large population-based study with 2313 study subjects for blood coagulation data, including fibrinogen levels, prothrombin time (PT), activated partial thromboplastin time (APTT), and thrombin time (TT). We identified significant association of TFPI variant rs10931292 (a functional promoter variant with reduced transactivation) with increased plasma fibrinogen levels (P = 0.017 under a recessive model), but not with PT, APTT or TT (P > 0.05). Using a large case-control association study population with 4479 CAD patients and 3628 controls, we identified significant association between rs10931292 and CAD under a recessive model (OR 1.23, P = 0.005). For the first time, we show that a TFPI variant is significantly associated with fibrinogen levels and risk of CAD. Our finding contributes significantly to the elucidation of the genetic basis and biological pathways responsible for fibrinogen levels and development of CAD.
Collapse
Affiliation(s)
- Duraid Hamid Naji
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Chengcheng Tan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Fabin Han
- The Institute for Translational Medicine, The Second Affiliated Hospital, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yuanyuan Zhao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Junhan Wang
- University Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Dan Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jingjing Fa
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Sisi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Shanshan Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Qiuyun Chen
- Department of Molecular Cardiology, Center for Cardiovascular Genetics, Cleveland Clinic, Cleveland, OH, 44195, USA. .,Department of Molecular Medicine/CCLCM, Case Western Reserve University, Cleveland, OH, 44195, USA.
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| | - Qing K Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China. .,Department of Molecular Cardiology, Center for Cardiovascular Genetics, Cleveland Clinic, Cleveland, OH, 44195, USA. .,Department of Molecular Medicine/CCLCM, Case Western Reserve University, Cleveland, OH, 44195, USA. .,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44195, USA.
| |
Collapse
|
7
|
Wang L, Wang X, Wang L, Yousaf M, Li J, Zuo M, Yang Z, Gou D, Bao B, Li L, Xiang N, Jia H, Xu C, Chen Q, Wang QK. Identification of a new adtrp1-tfpi regulatory axis for the specification of primitive myelopoiesis and definitive hematopoiesis. FASEB J 2017; 32:183-194. [PMID: 28877957 DOI: 10.1096/fj.201700166rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/21/2017] [Indexed: 12/13/2022]
Abstract
A genomic variant in the human ADTRP [androgen-dependent tissue factor (TF) pathway inhibitor (TFPI) regulating protein] gene increases the risk of coronary artery disease, the leading cause of death worldwide. TFPI is the TF pathway inhibitor that is involved in coagulation. Here, we report that adtrp and tfpi form a regulatory axis that specifies primitive myelopoiesis and definitive hematopoiesis, but not primitive erythropoiesis or vasculogenesis. In zebrafish, there are 2 paralogues for adtrp (i.e., adtrp1 and adtrp2). Knockdown of adtrp1 expression inhibits the specification of hemangioblasts, as shown by decreased expression of the hemangioblast markers, etsrp, fli1a, and scl; blocks primitive hematopoiesis, as shown by decreased expression of pu.1, mpo, and l-plastin; and disrupts the specification of hematopoietic stem cells (definitive hematopoiesis), as shown by decreased expression of runx1 and c-myb However, adtrp1 knockdown does not affect erythropoiesis during primitive hematopoiesis (no effect on gata1 or h-bae1) or vasculogenesis (no effect on kdrl, ephb2a, notch3, dab2, or flt4). Knockdown of adtrp2 expression does not have apparent effects on all markers tested. Knockdown of adtrp1 reduced the expression of tfpi, and hematopoietic defects in adtrp1 morphants were rescued by tfpi overexpression. These data suggest that the regulation of tfpi expression is one potential mechanism by which adtrp1 regulates primitive myelopoiesis and definitive hematopoiesis.-Wang, L., Wang, X., Wang, L., Yousaf, M., Li, J., Zuo, M., Yang, Z., Gou, D., Bao, B., Li, L., Xiang, N., Jia, H., Xu, C., Chen, Q., Wang, Q. K. Identification of a new adtrp1-tfpi regulatory axis for the specification of primitive myelopoiesis and definitive hematopoiesis.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojing Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Longfei Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Muhammad Yousaf
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Mengxia Zuo
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Zhongcheng Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Dongzhi Gou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Binghao Bao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Xiang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haibo Jia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuyun Chen
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; .,Department of Molecular Medicine, Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Qing Kenneth Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China; .,Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Molecular Medicine, Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
8
|
Shin DH, Oh CS, Hong JH, Kim Y, Lee SD, Lee E. Paleogenetic study on the 17th century Korean mummy with atherosclerotic cardiovascular disease. PLoS One 2017; 12:e0183098. [PMID: 28813480 PMCID: PMC5559090 DOI: 10.1371/journal.pone.0183098] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/27/2017] [Indexed: 12/20/2022] Open
Abstract
While atherosclerotic cardiovascular disease (ASCVD) is known to be common among modern people exposed to various risk factors, recent paleopathological studies have shown that it affected ancient populations much more frequently than expected. In 2010, we investigated a 17th century Korean female mummy with presumptive ASCVD signs. Although the resulting report was a rare and invaluable conjecture on the disease status of an ancient East Asian population, the diagnosis had been based only on anatomical and radiological techniques, and so could not confirm the existence of ASCVD in the mummy. In the present study, we thus performed a paleogenetic analysis to supplement the previous conventional diagnosis of ASCVD. In aDNA extracted from the same Korean mummy, we identified the risk alleles of seven different SNPs (rs5351, rs10757274, rs2383206, rs2383207, rs10757278, rs4380028 and rs1333049) that had already been revealed to be the major risk loci of ASCVD in East Asian populations. The reliability of this study could be enhanced by cross-validation using two different analyses: Sanger and SNaPshot techniques. We were able to establish that the 17th century Korean female had a strong genetic predisposition to increased risk of ASCVD. The current paleogenetic diagnosis, the first of its kind outside Europe, re-confirms its utility as an adjunct modality for confirmatory diagnosis of ancient ASCVD.
Collapse
Affiliation(s)
- Dong Hoon Shin
- Bioanthropology and Paleopathology Lab, Department of Anatomy, Seoul National University College of Medicine, Seoul, South Korea
- Institute of Forensic Science, Seoul National University College of Medicine, Seoul, South Korea
| | - Chang Seok Oh
- Bioanthropology and Paleopathology Lab, Department of Anatomy, Seoul National University College of Medicine, Seoul, South Korea
| | - Jong Ha Hong
- Bioanthropology and Paleopathology Lab, Department of Anatomy, Seoul National University College of Medicine, Seoul, South Korea
| | - Yusu Kim
- Bioanthropology and Paleopathology Lab, Department of Anatomy, Seoul National University College of Medicine, Seoul, South Korea
| | - Soong Deok Lee
- Institute of Forensic Science, Seoul National University College of Medicine, Seoul, South Korea
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Eunju Lee
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- * E-mail:
| |
Collapse
|
9
|
Luo C, Wang F, Ren X, Ke T, Xu C, Tang B, Qin S, Yao Y, Chen Q, Wang QK. Identification of a molecular signaling gene-gene regulatory network between GWAS susceptibility genes ADTRP and MIA3/TANGO1 for coronary artery disease. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1640-1653. [PMID: 28341552 DOI: 10.1016/j.bbadis.2017.03.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/24/2017] [Accepted: 03/19/2017] [Indexed: 11/15/2022]
Abstract
Coronary artery disease (CAD) is the leading cause of death worldwide. GWAS have identified >50 genomic loci for CAD, including ADTRP and MIA3/TANGO1. However, it is important to determine whether the GWAS genes form a molecular network. In this study, we have uncovered a novel molecular network between ADTRP and MIA3/TANGO1 for the pathogenesis of CAD. We showed that knockdown of ADTRP expression markedly down-regulated expression of MIA3/TANGO1. Mechanistically, ADTRP positively regulates expression of PIK3R3 encoding the regulatory subunit 3 of PI3K, which leads to activation of AKT, resulting in up-regulation of MIA3/TANGO1. Both ADTRP and MIA3/TANGO1 are involved in endothelial cell (EC) functions relevant to atherosclerosis. Knockdown of ADTRP expression by siRNA promoted oxidized-LDL-mediated monocyte adhesion to ECs and transendothelial migration of monocytes, inhibited EC proliferation and migration, and increased apoptosis, which was reversed by expression of constitutively active AKT1 and MIA3/TANGO1 overexpression, while the over-expression of ADTRP in ECs blunted these processes. Knockdown of MIA3/TANGO1 expression also promoted monocyte adhesion to ECs and transendothelial migration of monocytes, and vice versa for overexpression of MIA3/TANGO1. We found that ADTRP negatively regulates the levels of collagen VII and ApoB in HepG2 and endothelial cells, which are downstream regulatory targets of MIA3/TANGOI. In conclusion, we have uncovered a novel molecular signaling pathway for the pathogenesis of CAD, which involves a novel gene-gene regulatory network. We show that ADTRP positively regulates PIK3R3 expression, which leads to activation of AKT and up-regulation of MIA3/TANGO1, thereby regulating endothelial cell functions directly relevant to atherosclerosis.
Collapse
Affiliation(s)
- Chunyan Luo
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, Hubei Province, PR China
| | - Fan Wang
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Molecular Medicine, Department of Genetics and Genome Science, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Xiang Ren
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, Hubei Province, PR China
| | - Tie Ke
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, Hubei Province, PR China
| | - Chengqi Xu
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, Hubei Province, PR China
| | - Bo Tang
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, Hubei Province, PR China
| | - Subo Qin
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, Hubei Province, PR China
| | - Yufeng Yao
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, Hubei Province, PR China
| | - Qiuyun Chen
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Molecular Medicine, Department of Genetics and Genome Science, Case Western Reserve University, Cleveland, OH 44195, USA.
| | - Qing Kenneth Wang
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, Hubei Province, PR China; Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Molecular Medicine, Department of Genetics and Genome Science, Case Western Reserve University, Cleveland, OH 44195, USA.
| |
Collapse
|
10
|
Chang X, Chin HL, Quek SC, Goh DYT, Dorajoo R, Friedlander Y, Heng CK. The genetic variation rs6903956 in the novel androgen-dependent tissue factor pathway inhibitor regulating protein ( ADTRP) gene is not associated with levels of plasma coagulation factors in the Singaporean Chinese. Thromb J 2017; 15:1. [PMID: 28074087 PMCID: PMC5219704 DOI: 10.1186/s12959-016-0124-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 12/08/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genome-wide association study (GWAS) has reported that rs6903956 within the first intron of androgen-dependent tissue factor pathway inhibitor (TFPI) regulating protein (ADTRP) gene is associated with coronary artery disease (CAD) risk in the Chinese population. Although ADTRP is believed to be involved in the upregulation of TFPI, the underlying mechanism involved is largely unknown. This study investigated the association of rs6903956 with plasma Factor VII coagulant activity (FVIIc) and fibrinogen levels, which are regulated by TFPI and are independent risk predictors for CAD. METHODS We conducted the analysis in both Chinese adult (N = 309) and neonatal cohorts (N = 447). The genotypes of the rs6903956 single nucleotide polymorphism (SNP) were determined by the polymerase chain reaction restriction fragment length polymorphism method (PCR-RFLP). FVIIc and fibrinogen level were measured from citrated plasma. The association between rs6903956 and coagulation factors was tested by linear regression with adjustment for possible confounders. Analysis was carried out in adults and neonates separately. RESULTS No significant association was observed between rs6903956 and plasma FVIIc nor fibrinogen levels with adjustment for age, gender, body mass index (BMI) and cigarette smoking in adults (P for FVIIc = 0.464; P for fibrinogen = 0.349). The SNP was also not associated with these two coagulation factors in the neonates (P for FVIIc = 0.579; P for fibrinogen = 0.359) after adjusting for gestational age, gender and birth weight. CONCLUSIONS SNP rs6903956 on ADTRP gene was not associated with plasma FVIIc nor fibrinogen levels.
Collapse
Affiliation(s)
- Xuling Chang
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 12, 1E Kent Ridge Road, Singapore, 119228 Singapore ; Khoo Teck Puat - National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Hui-Lin Chin
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 12, 1E Kent Ridge Road, Singapore, 119228 Singapore ; Khoo Teck Puat - National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Swee-Chye Quek
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 12, 1E Kent Ridge Road, Singapore, 119228 Singapore ; Khoo Teck Puat - National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Daniel Y T Goh
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 12, 1E Kent Ridge Road, Singapore, 119228 Singapore ; Khoo Teck Puat - National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Yechiel Friedlander
- School of Public Health and Community Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Chew-Kiat Heng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 12, 1E Kent Ridge Road, Singapore, 119228 Singapore ; Khoo Teck Puat - National University Children's Medical Institute, National University Health System, Singapore, Singapore
| |
Collapse
|
11
|
Dechamethakun S, Muramatsu M. Long noncoding RNA variations in cardiometabolic diseases. J Hum Genet 2016; 62:97-104. [PMID: 27305986 DOI: 10.1038/jhg.2016.70] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/27/2016] [Accepted: 05/06/2016] [Indexed: 12/18/2022]
Abstract
Cardiometabolic diseases are characterized as a combination of multiple risk factors for cardiovascular disease (CVD) and metabolic diseases including diabetes mellitus, dyslipidemia, hypertension and abdominal obesity. This cluster of abnormalities individually and interdependently leads to atherosclerosis and CVD morbidity and mortality. In the past decade, genome-wide association studies (GWASs) have identified a series of cardiometabolic disease-associated variants that can collectively explain a small proportion of the variability. Intriguingly, the susceptibility variants imputed from GWASs usually do not reside in the coding regions, suggesting a crucial role of the noncoding elements of the genome. In recent years, emerging evidence suggests that noncoding RNA (ncRNA) is functional for physiology and pathophysiology of human diseases. These include microRNAs and long noncoding RNAs (lncRNAs) that are now implicated in human diseases. The ncRNAs can interact with each other and with proteins, to interfere gene expressions, leading to the development of many human disorders. Although evidence suggests the functional role of lncRNAs in cardiometabolic traits, the molecular mechanisms of gene regulation underlying cardiometabolic diseases remain to be better defined. Here, we summarize the recent discoveries of lncRNA variations in the context of cardiometabolic diseases.
Collapse
Affiliation(s)
- Sariya Dechamethakun
- Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaaki Muramatsu
- Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
12
|
Luo C, Wang F, Qin S, Chen Q, Wang QK. Coronary artery disease susceptibility gene ADTRP regulates cell cycle progression, proliferation, and apoptosis by global gene expression regulation. Physiol Genomics 2016; 48:554-64. [PMID: 27235449 DOI: 10.1152/physiolgenomics.00028.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/26/2016] [Indexed: 12/19/2022] Open
Abstract
The ADTRP gene encodes the androgen-dependent TFPI-regulating protein and is a susceptibility gene for contrary artery disease (CAD). We performed global gene expression profiling for ADTRP knock-down using microarrays in human HepG2 cells. Follow-up real-time RT-PCR analysis demonstrated that ADTRP knock-down regulates a diverse set of genes, including upregulation of seven histone genes, downregulation of multiple cell cycle genes (CCND1, CDK4, and CDKN1A), and upregulation of apoptosis genes (CASP7 and PDCD2) in HepG2 cells and endothelial cells. Consistently, ADTRP increases the number of S phase cells during cell cycle, promotes cell proliferation, and inhibits apoptosis. Our study provides novel insights into the function of ADTRP and biological pathways involving ADTRP, which may be involved in the pathogenesis of CAD.
Collapse
Affiliation(s)
- Chunyan Luo
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Fan Wang
- Department of Molecular Cardiology, Lerner Research Institute, Center for Cardiovascular Genetics, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio; and Department of Molecular Medicine, Department of Genetics and Genome Science, Case Western Reserve University, Cleveland, Ohio
| | - Subo Qin
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qiuyun Chen
- Department of Molecular Cardiology, Lerner Research Institute, Center for Cardiovascular Genetics, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio; and Department of Molecular Medicine, Department of Genetics and Genome Science, Case Western Reserve University, Cleveland, Ohio
| | - Qing K Wang
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Department of Molecular Cardiology, Lerner Research Institute, Center for Cardiovascular Genetics, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio; and Department of Molecular Medicine, Department of Genetics and Genome Science, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
13
|
Chen S, Wang X, Wang J, Zhao Y, Wang D, Tan C, Fa J, Zhang R, Wang F, Xu C, Huang Y, Li S, Yin D, Xiong X, Li X, Chen Q, Tu X, Yang Y, Xia Y, Xu C, Wang QK. Genomic variant in CAV1 increases susceptibility to coronary artery disease and myocardial infarction. Atherosclerosis 2016; 246:148-156. [PMID: 26775120 DOI: 10.1016/j.atherosclerosis.2016.01.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 12/11/2015] [Accepted: 01/06/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND The CAV1 gene encodes caveolin-1 expressed in cell types relevant to atherosclerosis. Cav-1-null mice showed a protective effect on atherosclerosis under the ApoE(-/-) background. However, it is unknown whether CAV1 is linked to CAD and MI in humans. In this study we analyzed a tagSNP for CAV1 in intron 2, rs3807989, for potential association with CAD. METHODS AND RESULTS We performed case-control association studies in three independent Chinese Han populations from GeneID, including 1249 CAD cases and 841 controls in Population I, 1260 cases and 833 controls in Population II and 790 cases and 1212 controls in Population III (a total of 3299 cases and 2886 controls). We identified significant association between rs3807989 and CAD in three independent populations and in the combined population (Padj = 2.18 × 10(-5), OR = 1.19 for minor allele A). We also detected significant association between rs3807989 and MI (Padj = 5.43 × 10(-5), OR = 1.23 for allele A). Allele A of SNP rs3807989 was also associated with a decreased level of LDL cholesterol. Although rs3807989 is a tagSNP for both CAV1 and nearby CAV2, allele A of SNP rs3807989 was associated with an increased expression level of CAV1 (both mRNA and protein), but not CAV2. CONCLUSIONS The data in this study demonstrated that rs3807989 at the CAV1/CAV2 locus was associated with significant risk of CAD and MI by increasing expression of CAV1 (but not CAV2). Thus, CAV1 becomes a strong candidate susceptibility gene for CAD/MI in humans.
Collapse
Affiliation(s)
- Shanshan Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojing Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Junhan Wang
- Department of Clinical Laboratory, University Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Zhao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Chengcheng Tan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Jingjing Fa
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Rongfeng Zhang
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fan Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoping Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yufeng Huang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Sisi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Yin
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Xiong
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xiuchun Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuyun Chen
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Cleveland Clinic, and Department of Molecular Medicine, CCLCM, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Xin Tu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yanzong Yang
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yonglong Xia
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qing K Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China.,Center for Cardiovascular Genetics, Department of Molecular Cardiology, Cleveland Clinic, and Department of Molecular Medicine, CCLCM, Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
14
|
Huang EW, Peng LY, Zheng JX, Wang D, Xu QY, Huang L, Wu QP, Tang SB, Luo B, Liu SP, Liu XS, Li ZH, Quan L, Li Y, Shi H, Lv GL, Zhao J, Cheng JD, Liu C. Common Variants in Promoter of ADTRP Associate with Early-Onset Coronary Artery Disease in a Southern Han Chinese Population. PLoS One 2015; 10:e0137547. [PMID: 26375920 PMCID: PMC4574160 DOI: 10.1371/journal.pone.0137547] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 08/18/2015] [Indexed: 01/03/2023] Open
Abstract
The first genome-wide association study for coronary artery disease (CAD) in the Han Chinese population, we reported recently, had identified rs6903956 in gene ADTRP on chromosome 6p24.1 as a novel susceptibility locus for CAD. The risk allele of rs6903956 was associated with decreased mRNA expression of ADTRP. To further study the correlation of ADTRP expression and CAD, in this study we evaluated the associations of eight common variants in the expression-regulating regions of ADTRP with CAD in the Southern Han Chinese population. Rs169790 in 3’UTR, rs2076189 in 5’UTR, four SNPs (rs2076188, rs7753407, rs11966356 and rs1018383) in promoter, and two SNPs (rs3734273, rs80355771) in the last intron of ADTRP were genotyped in 1716 CAD patients and 1572 controls. The correlations between these loci and total or early-onset CAD were investigated. None of these loci was discovered to associate with total CAD (P > 0.05). However, with early-onset CAD, significant both allelic and genotypic associations of rs7753407, rs11966356 and rs1018383 were identified, after adjustment for risk factors of age, gender, hypertension, diabetes, lipid profiles and smoking (adjusted P < 0.05). A haplotype AGCG (constructed by rs2076188, rs7753407, rs11966356 and rs1018383) was identified to protect subjects from early-onset CAD (OR = 0.332, 95% CI = 0.105–0.879, adjusted P = 0.010). Real-time quantitative reverse transcription polymerase chain reaction assay showed that the risk alleles of the associated loci were significantly associated with decreased expression of ADTRP mRNA. Moreover, the average level of ADTRP mRNA expression in early-onset CAD cases was significantly lower than that in controls. Our results provide new evidence supporting the association of ADTRP with the pathogenesis of early-onset CAD.
Collapse
Affiliation(s)
- Er-Wen Huang
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangzhou Forensic Science Institute, Guangzhou, Guangdong, China
| | - Long-Yun Peng
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jin-Xiang Zheng
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Dan Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qu-Yi Xu
- Guangzhou Forensic Science Institute, Guangzhou, Guangdong, China
| | - Lei Huang
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qiu-Ping Wu
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shuang-Bo Tang
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Bin Luo
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shui-Ping Liu
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiao-Shan Liu
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhao-Hui Li
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Li Quan
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yue Li
- Guangzhou Forensic Science Institute, Guangzhou, Guangdong, China
| | - He Shi
- Guangzhou Forensic Science Institute, Guangzhou, Guangdong, China
| | - Guo-Li Lv
- Guangzhou Forensic Science Institute, Guangzhou, Guangdong, China
| | - Jian Zhao
- Guangzhou Forensic Science Institute, Guangzhou, Guangdong, China
| | - Jian-Ding Cheng
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- * E-mail: (CL); (JDC)
| | - Chao Liu
- Guangzhou Forensic Science Institute, Guangzhou, Guangdong, China
- * E-mail: (CL); (JDC)
| |
Collapse
|
15
|
Zhang LW, Li JP, Duan FF, Liu ZK, Zhan SY, Hu YH, Jiang J, Zhang Y, Huo Y, Chen DF. Interaction of type 2 diabetes mellitus with chromosome 9p21 rs10757274 polymorphism on the risk of myocardial infarction: a case-control study in Chinese population. BMC Cardiovasc Disord 2014; 14:170. [PMID: 25430018 PMCID: PMC4255939 DOI: 10.1186/1471-2261-14-170] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 11/18/2014] [Indexed: 11/10/2022] Open
Abstract
Background Myocardial infarction (MI) is a serious complication of Coronary Artery Disease (CAD). Previous studies have identified genetic variants on chromosome 9p21 and 6p24 that are associated with CAD, but further studies need to be conducted to investigate whether these genetic variants are associated with the pathogenesis of MI. We therefore performed this study to assess the association between the risk of MI and SNP rs10757274 on chromosome 9p21 and SNP rs6903956 on chromosome 6p24, and to explore the gene-environment interactions in a Chinese population. Methods A hospital-based case–control study, consisting of 502 MI patients and 308 controls, was conducted in a Chinese population. Demographic, behavioral information and clinical characteristics were collected, and genotyping of the two SNPs was performed using single base primer extension genotyping technology. The unconditional logistic regression (ULR) method was adopted to assess the association of the two SNPs with MI risk. Both generalized multifactor dimensionality reduction (GMDR) and ULR methods were applied to explore the effect of gene-environment interactions on the risk of MI. Results After adjusting for covariates, it was observed that SNP rs10757274 on chromosome 9p21 was significantly associated with MI. Compared with subjects carrying the AA genotype, subjects carrying the GA or GG genotypes had a higher MI risk (ORa = 1.52, 95% CI:1.06–2.19, pa = 0.0227; ORa = 2.40, 95% CI:1.51–3.81, pa = 0.0002, respectively). Furthermore, a two-factor gene-environment interaction model of CDKN2A/B (rs10757274) and type 2 diabetes mellitus (T2DM) was identified to be the best model by GMDR (p = 0.0107), with a maximum prediction accuracy of 59.18%, and a maximum Cross-validation Consistency of 10/10. By using the ULR method, additive interaction analysis found that the combined effect resulted in T2DM-positive subjects with genotype GG/GA having an MI risk 4.38 times that of T2DM-negative subjects with genotype AA (ORadd = 4.38, 95% CI:2.56–7.47, padd < 0.0001). Conclusions These results show that gene polymorphism of CDKN2A/B (rs10757274) is associated with MI risk in a Chinese population. Furthermore, T2DM is likely to have an interaction with CDKN2A/B (rs10757274) that contributes to the risk of MI. Electronic supplementary material The online version of this article (doi:10.1186/1471-2261-14-170) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Jian-ping Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100191, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Xu C, Yang Q, Xiong H, Wang L, Cai J, Wang F, Li S, Chen J, Wang C, Wang D, Xiong X, Wang P, Zhao Y, Wang X, Huang Y, Chen S, Yin D, Li X, Liu Y, Liu J, Wang J, Li H, Ke T, Ren X, Wu Y, Wu G, Wan J, Zhang R, Wu T, Wang J, Xia Y, Yang Y, Cheng X, Liao Y, Chen Q, Zhou Y, He Q, Tu X, Wang QK. Candidate pathway-based genome-wide association studies identify novel associations of genomic variants in the complement system associated with coronary artery disease. ACTA ACUST UNITED AC 2014; 7:887-94. [PMID: 25249547 DOI: 10.1161/circgenetics.114.000738] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Genomic variants identified by genome-wide association studies (GWAS) explain <20% of heritability of coronary artery disease (CAD), thus many risk variants remain missing for CAD. Identification of new variants may unravel new biological pathways and genetic mechanisms for CAD. To identify new variants associated with CAD, we developed a candidate pathway-based GWAS by integrating expression quantitative loci analysis and mining of GWAS data with variants in a candidate pathway. METHODS AND RESULTS Mining of GWAS data was performed to analyze variants in 32 complement system genes for positive association with CAD. Functional variants in genes showing positive association were then identified by searching existing expression quantitative loci databases and validated by real-time reverse transcription polymerase chain reaction. A follow-up case-control design was then used to determine whether the functional variants are associated with CAD in 2 independent GeneID Chinese populations. Candidate pathway-based GWAS identified positive association between variants in C3AR1 and C6 and CAD. Two functional variants, rs7842 in C3AR1 and rs4400166 in C6, were found to be associated with expression levels of C3AR1 and C6, respectively. Significant association was identified between rs7842 and CAD (P=3.99×10(-6); odds ratio, 1.47) and between rs4400166 and CAD (P=9.30×10(-3); odds ratio, 1.24) in the validation cohort. The significant findings were confirmed in the replication cohort (P=1.53×10(-5); odds ratio, 1.37 for rs7842; P=8.41×10(-3); odds ratio, 1.21 for rs4400166). CONCLUSIONS Integration of GWAS with biological pathways and expression quantitative loci is effective in identifying new risk variants for CAD. Functional variants increasing C3AR1 and C6 expression were shown to confer significant risk of CAD for the first time.
Collapse
|
17
|
Dechamethakun S, Ikeda S, Arai T, Sato N, Sawabe M, Muramatsu M. Associations between the CDKN2A/B, ADTRP and PDGFD polymorphisms and the development of coronary atherosclerosis in Japanese patients. J Atheroscler Thromb 2014; 21:680-90. [PMID: 24573017 DOI: 10.5551/jat.22640] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Genome-wide association studies have identified a series of susceptibility loci for coronary artery disease(CAD). The present study attempted to replicate the results for eight of these loci, CDKN2A/B(rs1333049), ADTRP(rs6903956), PDGFD(rs974819), TCF21(rs12190287), COL4A1-A2(rs4773144), HHIPL1(rs2895811), ADAMTS7(rs4380028) and UBE2Z(rs46522), in patients with pathologically defined atherosclerosis of the coronary arteries. METHODS Autopsy cases of elderly Japanese subjects were enrolled in the JG-SNP study(n=1,536). Polymorphisms were genotyped, and their associations with the coronary stenosis index(CSI) and incidence of pathological myocardial infraction(MI) were investigated. The potential combinatorial effects of the susceptibility loci were also assessed. RESULTS Among the eight loci tested, three exhibited signs of positive associations. CDKN2A/B showed the most robust associations with CSI and MI(p=0.007 and OR=1.843, 95% CI 1.293-2.629, p=0.001, for CC+CG vs. GG). In addition, ADTRP demonstrated associations with CSI and MI, although the risk allele was opposite from that observed in the original report(p=0.008 and OR=1.652, 95% CI 1.027-2.656, p=0.038 for GG vs. AA+AG). Meanwhile, PDGFD displayed a suggestive association with CSI in women, but not men(p=0.023). CDKN2A/B and ADTRP were also found to be significantly associated with the severity of the CSI in a case-control setting. The cumulative risk allele counting of CDKN2A/B, ADTRP and PDGFD indicated an increased number of risk alleles to be associated with a higher CSI(p=4.61E-05). CONCLUSIONS The present study confirmed the association between CDKN2A/B and CAD and identified a different associated risk allele of ADTRP. PDGFD was found to exhibit a gender-specific association with CAD. The combination of multiple risk alleles may be associated with a higher risk of CAD.
Collapse
Affiliation(s)
- Sariya Dechamethakun
- Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University
| | | | | | | | | | | |
Collapse
|
18
|
Meta-analysis identifies robust association between SNP rs17465637 in MIA3 on chromosome 1q41 and coronary artery disease. Atherosclerosis 2013; 231:136-40. [PMID: 24125424 DOI: 10.1016/j.atherosclerosis.2013.08.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 08/18/2013] [Accepted: 08/26/2013] [Indexed: 12/20/2022]
Abstract
Several large-scale meta-GWAS identified significant association between SNP rs17465637 in the MIA3 gene and coronary artery disease (CAD) in the European ancestry populations. However, three follow-up replication studies in the Chinese populations yielded inconsistent results. In order to unequivocally determine whether SNP rs17465637 is associated with CAD, we performed an independent case control association study in the Chinese Han population and a follow-up large scale meta-analysis for SNP rs17465637. Our study included 2503 CAD patients and 2920 non-CAD controls of the Chinese Han origin. A significant association was found between SNP rs17465637 and CAD (P = 0.01, OR = 1.11). Meta-analysis included 7263 CAD patients and 8347 controls combined from five Asian populations. The association between SNP rs17465637 and CAD became highly significant (P = 4.97 × 10(-5), OR = 1.11). Similar analysis also identified significant association between SNP rs17465637 and MI (2424 cases vs. 6,536controls; P = 5.00 × 10(-3), OR = 1.10). We conclude that SNP rs17465637 in MIA3 is indeed a genetic risk factor for CAD across different ethnic populations.
Collapse
|