1
|
Li J, Yan K, Wang S, Wang P, Jiao J, Dong Y. Alteration of the intestinal microbiota and serum metabolites in a mouse model of Pon1 gene ablation. FASEB J 2024; 38:e23611. [PMID: 38597925 DOI: 10.1096/fj.202302344r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/15/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
Mutations in the Paraoxonase 1 (Pon1) gene underlie aging, cardiovascular disease, and impairments of the nervous and gastrointestinal systems and are linked to the intestinal microbiome. The potential role of Pon1 in modulating the intestinal microbiota and serum metabolites is poorly understood. The present study demonstrated that mice with genomic excision of Pon1 by a multiplexed guide RNA CRISPR/Cas9 approach exhibited disrupted gut microbiota, such as significantly depressed alpha-diversity and distinctly separated beta diversity, accompanied by varied profiles of circulating metabolites. Furthermore, genomic knock in of Pon1 exerted a distinct effect on the intestinal microbiome and serum metabolome, including dramatically enriched Aerococcus, linoleic acid and depleted Bacillus, indolelactic acid. Specifically, a strong correlation was established between bacterial alterations and metabolites in Pon1 knockout mice. In addition, we identified metabolites related to gut bacteria in response to Pon1 knock in. Thus, the deletion of Pon1 affects the gut microbiome and functionally modifies serum metabolism, which can lead to dysbiosis, metabolic dysfunction, and infection risk. Together, these findings put forth a role for Pon1 in microbial alterations that contribute to metabolism variations. The function of Pon1 in diseases might at least partially depend on the microbiome.
Collapse
Affiliation(s)
- Jing Li
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Kaixin Yan
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Siyuan Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Pan Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jie Jiao
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ying Dong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Yang S, Bai M, Kwok LY, Zhong Z, Sun Z. The intricate symbiotic relationship between lactic acid bacterial starters in the milk fermentation ecosystem. Crit Rev Food Sci Nutr 2023:1-18. [PMID: 37983125 DOI: 10.1080/10408398.2023.2280706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Fermentation is one of the most effective methods of food preservation. Since ancient times, food has been fermented using lactic acid bacteria (LAB). Fermented milk is a very intricate fermentation ecosystem, and the microbial metabolism of fermented milk largely determines its metabolic properties. The two most frequently used dairy starter strains are Streptococcus thermophilus (S. thermophilus) and Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus). To enhance both the culture growth rate and the flavor and quality of the fermented milk, it has long been customary to combine S. thermophilus and L. bulgaricus in milk fermentation due to their mutually beneficial and symbiotic relationship. On the one hand, the symbiotic relationship is reflected by the nutrient co-dependence of the two microbes at the metabolic level. On the other hand, more complex interaction mechanisms, such as quorum sensing between cells, are involved. This review summarizes the application of LAB in fermented dairy products and discusses the symbiotic mechanisms and interactions of milk LAB starter strains from the perspective of nutrient supply and intra- and interspecific quorum sensing. This review provides updated information and knowledge on microbial interactions in a fermented milk ecosystem.
Collapse
Affiliation(s)
- Shujuan Yang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Mei Bai
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Zhi Zhong
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| |
Collapse
|
3
|
Wang RJ, Chen K, Xing LS, Lin Z, Zou Z, Lu Z. Reactive oxygen species and antimicrobial peptides are sequentially produced in silkworm midgut in response to bacterial infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 110:103720. [PMID: 32344046 DOI: 10.1016/j.dci.2020.103720] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
The silkworm, Bombyx mori, is utilized as a research model in many aspects of biological studies, including genetics, development and immunology. Previous biochemical and genomic studies have elucidated the silkworm immunity in response to infections elicited by bacteria, fungi, microsporidia, and viruses. The intestine serves as the front line in the battle between insects and ingested harmful microorganisms. In this study, we performed RNA sequencing (RNA-seq) of the larval silkworm midgut after oral infection with the Gram-positive bacterium Bacillus bombysepticus and the Gram-negative bacterium Yersinia pseudotuberculosis. This enables us to get a comprehensive understanding of the midgut responses to bacterial infection. We found that B. bombysepticus induced much stronger immune responses than Y. pseudotuberculosis did. Bacterial infection resulted in more energy consumption including carbohydrates and fatty acids. The midgut immune system was characterized by the generation of reactive oxygen species and antimicrobial peptides. The former played a critical role in eliminating invading bacteria during early stage, while the latter executed during late stage. Our results provide an integrated insight into the midgut systematic responses to bacterial infection.
Collapse
Affiliation(s)
- Rui-Juan Wang
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China.
| | - Kangkang Chen
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China.
| | - Long-Sheng Xing
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, China.
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
4
|
Association of Paraoxonase1 enzyme and its genetic single nucleotide polymorphisms with cardio-metabolic and neurodegenerative diseases. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Individual variations in cardiovascular-disease-related protein levels are driven by genetics and gut microbiome. Nat Genet 2018; 50:1524-1532. [PMID: 30250126 PMCID: PMC6241851 DOI: 10.1038/s41588-018-0224-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 08/02/2018] [Indexed: 02/05/2023]
Abstract
Despite a growing body of evidence, the role of the gut microbiome in cardiovascular diseases (CVDs) is still unclear. Here we present a systems-genome-wide and metagenome-wide association study on plasma concentrations of 92 CVD-related proteins in the population cohort Lifelines-DEEP. We identified genetic components for 73 proteins and microbial associations for 41 proteins, of which 31 were associated to both. The genetic and microbial factors identified mostly exert additive effects and collectively explain up to 76.6% of inter-individual variation (17.5% on average). Genetics contributes most to concentrations of immune-related proteins, while the gut microbiome contributes most to proteins involved in metabolism and intestinal health. We found several host-microbe interactions that impact proteins involved in epithelial function, lipid metabolism and central nervous system function. This study reveals important evidence for a joint genetic and microbial effect in cardiovascular disease and provides directions for future applications in personalized medicine.
Collapse
|
6
|
Grandclément C, Tannières M, Moréra S, Dessaux Y, Faure D. Quorum quenching: role in nature and applied developments. FEMS Microbiol Rev 2015; 40:86-116. [PMID: 26432822 DOI: 10.1093/femsre/fuv038] [Citation(s) in RCA: 359] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2015] [Indexed: 12/11/2022] Open
Abstract
Quorum sensing (QS) refers to the capacity of bacteria to monitor their population density and regulate gene expression accordingly: the QS-regulated processes deal with multicellular behaviors (e.g. growth and development of biofilm), horizontal gene transfer and host-microbe (symbiosis and pathogenesis) and microbe-microbe interactions. QS signaling requires the synthesis, exchange and perception of bacterial compounds, called autoinducers or QS signals (e.g. N-acylhomoserine lactones). The disruption of QS signaling, also termed quorum quenching (QQ), encompasses very diverse phenomena and mechanisms which are presented and discussed in this review. First, we surveyed the QS-signal diversity and QS-associated responses for a better understanding of the targets of the QQ phenomena that organisms have naturally evolved and are currently actively investigated in applied perspectives. Next the mechanisms, targets and molecular actors associated with QS interference are presented, with a special emphasis on the description of natural QQ enzymes and chemicals acting as QS inhibitors. Selected QQ paradigms are detailed to exemplify the mechanisms and biological roles of QS inhibition in microbe-microbe and host-microbe interactions. Finally, some QQ strategies are presented as promising tools in different fields such as medicine, aquaculture, crop production and anti-biofouling area.
Collapse
Affiliation(s)
- Catherine Grandclément
- Institut for Integrative Biology of the Cell, Department of Microbiology, CNRS CEA Paris-Sud University, Saclay Plant Sciences, Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | - Mélanie Tannières
- Institut for Integrative Biology of the Cell, Department of Microbiology, CNRS CEA Paris-Sud University, Saclay Plant Sciences, Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | - Solange Moréra
- Institut for Integrative Biology of the Cell, Department of Structural Biology, CNRS CEA Paris-Sud University, Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | - Yves Dessaux
- Institut for Integrative Biology of the Cell, Department of Microbiology, CNRS CEA Paris-Sud University, Saclay Plant Sciences, Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | - Denis Faure
- Institut for Integrative Biology of the Cell, Department of Microbiology, CNRS CEA Paris-Sud University, Saclay Plant Sciences, Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
7
|
Mackness M, Mackness B. Human paraoxonase-1 (PON1): Gene structure and expression, promiscuous activities and multiple physiological roles. Gene 2015; 567:12-21. [PMID: 25965560 DOI: 10.1016/j.gene.2015.04.088] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/21/2015] [Accepted: 04/27/2015] [Indexed: 12/12/2022]
Abstract
Human PON1 is a HDL-associated lipolactonase capable of preventing LDL and cell membrane oxidation and is therefore considered to be atheroprotective. PON1 contributes to the antioxidative function of HDL and reductions in HDL-PON1 activity, prevalent in a wide variety of diseases with an inflammatory component, are believed to lead to dysfunctional HDL which can promote inflammation and atherosclerosis. However, PON1 is multifunctional and may contribute to other HDL functions such as in innate immunity, preventing infection by quorum sensing gram negative bacteria by destroying acyl lactone mediators of quorum sensing, and putative new roles in cancer development and the promotion of healthy ageing. In this review we explore the physiological roles of PON1 in disease development, as well as PON1 gene and protein structure, promiscuous activities and the roles of SNPs and ethnicity in determining PON1 activity.
Collapse
Affiliation(s)
- Mike Mackness
- Avenida Príncipe D'España, Miami Platja, 43892 Tarragona, Spain.
| | - Bharti Mackness
- Avenida Príncipe D'España, Miami Platja, 43892 Tarragona, Spain
| |
Collapse
|
8
|
Reddy ST. Paraoxonases. Atherosclerosis 2015. [DOI: 10.1002/9781118828533.ch21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Lowered plasma paraoxonase (PON)1 activity is a trait marker of major depression and PON1 Q192R gene polymorphism-smoking interactions differentially predict the odds of major depression and bipolar disorder. J Affect Disord 2014; 159:23-30. [PMID: 24679385 DOI: 10.1016/j.jad.2014.02.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 02/07/2014] [Accepted: 02/07/2014] [Indexed: 12/29/2022]
Abstract
BACKGROUND Major depression and bipolar disorder are accompanied by the activation of immune-inflammatory and Oxidative and Nitrosative Stress (O&NS) pathways and lowered levels of antioxidants. Paraoxonase (PON)1 (EC 3.1.8.1) is an antioxidant bound to High Density Lipoprotein (HDL). Polymorphisms in the PON1 Q192R coding sequence determine three functional genotypes, i.e. 192QQ, 192QR and 192RR. AIMS This study was carried out to delineate the associations of plasma PON1 activity and functional PON1 Q192R genotypes in major depression and bipolar disorder. METHODS PON1 status that is plasma PON1 abundance and three functional PON1 Q192R genotypes were assayed in 91 major depressed and 45 bipolar patients and compared to 199 normal controls. RESULTS Major depression, but not bipolar disorder, was accompanied by lowered PON1 activity. PON1 activity was decreased by smoking and a diagnosis by genotype interaction (i.e. lower PON1 in major depression with the QQ genotype). Logistic regression showed that smoking by QQ genotype significantly increased the odds of bipolar disorder and that major depression was predicted by plasma PON1 activity, serum HDL cholesterol and interactions between genotype×smoking. DISCUSSION The results suggest that lowered plasma PON1 activity is a trait marker of major depression and that PONQ192R gene-environment (smoking) interactions differentially predict the odds of depression and bipolar disorder. LIMITATIONS Association studies are prone to a risk of false positive findings and replication is essential. CONCLUSIONS The findings suggest that there are differential PON1 Q192R functional genotype×environment interactions in major depression and bipolar disorder. The effects of lowered PON1 activity may contribute to increased O&NS and immune-inflammatory burden in depression. PON1 status may contribute to the comorbidity between depression and other immune- and O&NS-related disorders, e.g. cardiovascular disorder.
Collapse
|
10
|
Panayidou S, Ioannidou E, Apidianakis Y. Human pathogenic bacteria, fungi, and viruses in Drosophila: disease modeling, lessons, and shortcomings. Virulence 2014; 5:253-69. [PMID: 24398387 DOI: 10.4161/viru.27524] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Drosophila has been the invertebrate model organism of choice for the study of innate immune responses during the past few decades. Many Drosophila-microbe interaction studies have helped to define innate immunity pathways, and significant effort has been made lately to decipher mechanisms of microbial pathogenesis. Here we catalog 68 bacterial, fungal, and viral species studied in flies, 43 of which are relevant to human health. We discuss studies of human pathogens in flies revealing not only the elicitation and avoidance of immune response but also mechanisms of tolerance, host tissue homeostasis, regeneration, and predisposition to cancer. Prominent among those is the emerging pattern of intestinal regeneration as a defense response induced by pathogenic and innocuous bacteria. Immunopathology mechanisms and many microbial virulence factors have been elucidated, but their relevance to human health conventionally necessitates validation in mammalian models of infection.
Collapse
Affiliation(s)
- Stavria Panayidou
- Department of Biological Sciences; University of Cyprus; Nicosia, Cyprus
| | - Eleni Ioannidou
- Department of Biological Sciences; University of Cyprus; Nicosia, Cyprus
| | | |
Collapse
|
11
|
Burcelin R, Serino M, Chabo C, Garidou L, Pomié C, Courtney M, Amar J, Bouloumié A. Metagenome and metabolism: the tissue microbiota hypothesis. Diabetes Obes Metab 2013; 15 Suppl 3:61-70. [PMID: 24003922 DOI: 10.1111/dom.12157] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/22/2013] [Indexed: 12/14/2022]
Abstract
Over the last decade, the research community has revealed the role of a new organ: the intestinal microbiota. It is considered as a symbiont that is part of our organism since, at birth, it educates the immune system and contributes to the development of the intestinal vasculature and most probably the nervous system. With the advent of new generation sequencing techniques, a catalogue of genes that belong to this microbiome has been established that lists more than 5 million non-redundant genes called the metagenome. Using germ free mice colonized with the microbiota from different origins, it has been formally demonstrated that the intestinal microbiota causes the onset of metabolic diseases. Further to the role of point mutations in our genome, the microbiota can explain the on-going worldwide pandemic of obesity and diabetes, its dissemination and family inheritance, as well as the diversity of the associated metabolic phenotypes. More recently, the discovery of bacterial DNA within host tissues, such as the liver, the adipose tissue and the blood, which establishes a tissue microbiota, introduces new opportunities to identify targets and predictive biomarkers based on the host to microbiota interaction, as well as to define new strategies for pharmacological, immunomodulatory vaccines and nutritional applications.
Collapse
Affiliation(s)
- Rémy Burcelin
- Institut National de Santé et de Recherche Médicale (INSERM), U1048, Toulouse, France.
| | | | | | | | | | | | | | | |
Collapse
|