1
|
Gu Y, Jin CX, Tong ZH, Jiang T, Yao FC, Zhang Y, Huang J, Song FB, Sun JL, Luo J. Expression of genes related to gonadal development and construction of gonadal DNA methylation maps of Trachinotus blochii under hypoxia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173172. [PMID: 38740210 DOI: 10.1016/j.scitotenv.2024.173172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/12/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Chronic hypoxia can affect the growth and metabolism of fish and potentially impact gonadal development through epigenetic regulation. Trachinotus blochii (Golden pompano) is widely cultured near the coast and is sensitive to low oxygen conditions. We found that hypoxia and reoxygenation processes acted on multiple targets on the HPG axis, leading to endocrine disorders. Changes in the expression of key genes in the brain (gnrh), pituitary (fsh and lh), ovaries (cyp19a1a, foxl2, and er), and testes (dmrt1, ar, sox9, and gsdf) were associated with significant decreases in estrogen and testosterone levels. Hypoxia and reoxygenation lead to changes in DNA methylation levels in the gonads. Hypoxia upregulated the expression of dnmt1, dnmt3a, dnmt3b, tet1, and tet2 in females and dnmt3a and dnmt3b in males, while reoxygenation down-regulated the expression of dnmt1, dnmt3a, dnmt3b, tet1, and tet2 in males. Whole genome methylation sequencing showed that the number of differentially methylated regions was highest on chromosome 10 (5192) and lowest on chromosome 24 (275). Differentially methylated genes in females and males, as well as between males and females, were enriched in the oxytocin signaling pathway, fatty acid metabolism pathway, and HIF-1a pathway. In summary, hypoxia and reoxygenation can induce endocrine disorders, affect the expression of HPG axis genes, change the methylation pattern and modification pattern of gonad DNA, and then have potential effects on gonad development.
Collapse
Affiliation(s)
- Yue Gu
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Chun Xiu Jin
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Zai Hui Tong
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Tian Jiang
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Fu Cheng Yao
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Yu Zhang
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Jie Huang
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Fei Biao Song
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Jun Long Sun
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China.
| | - Jian Luo
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China.
| |
Collapse
|
2
|
Zhang Y, Ding J, Liu C, Luo S, Gao X, Wu Y, Wang J, Wang X, Wu X, Shen W, Zhu J. Genetics Responses to Hypoxia and Reoxygenation Stress in Larimichthys crocea Revealed via Transcriptome Analysis and Weighted Gene Co-Expression Network. Animals (Basel) 2021; 11:ani11113021. [PMID: 34827754 PMCID: PMC8614329 DOI: 10.3390/ani11113021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hypoxia, which occurs frequently in aquaculture, can cause serious harm to all aspects of the growth, reproduction and metabolism of cultured fish. Due to the intolerance of Larimichthys crocea to hypoxia, Larimichthys crocea often floats head or even dies under hypoxic environment. However, the molecular mechanism of hypoxia tolerance in Larimichthys crocea has not been fully described. Therefore, the aim of this study was to explore the hub regulatory genes under hypoxic stress environment by transcriptome analysis of three key tissues (liver, blood and gill) in Larimichthys crocea. We identified a number of important genes that exercise different regulatory functions. Overall, this study will provide important clues to the molecular mechanisms of hypoxia tolerance in Larimichthys crocea. Abstract The large yellow croaker (Larimichthys crocea) is an important marine economic fish in China; however, its intolerance to hypoxia causes widespread mortality. To understand the molecular mechanisms underlying hypoxia tolerance in L. crocea, the transcriptome gene expression profiling of three different tissues (blood, gills, and liver) of L. crocea exposed to hypoxia and reoxygenation stress were performed. In parallel, the gene relationships were investigated based on weighted gene co-expression network analysis (WGCNA). Accordingly, the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed that several pathways (e.g., energy metabolism, signal transduction, oxygen transport, and osmotic regulation) may be involved in the response of L. crocea to hypoxia and reoxygenation stress. In addition, also, four key modules (darkorange, magenta, saddlebrown, and darkolivegreen) that were highly relevant to the samples were identified by WGCNA. Furthermore, some hub genes within the association module, including RPS16, EDRF1, KCNK5, SNAT2, PFKL, GSK-3β, and PIK3CD, were found. This is the first study to report the co-expression patterns of a gene network after hypoxia stress in marine fish. The results provide new clues for further research on the molecular mechanisms underlying hypoxia tolerance in L. crocea.
Collapse
Affiliation(s)
- Yibo Zhang
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo 315832, China; (Y.Z.); (J.D.); (C.L.); (S.L.); (X.G.); (Y.W.); (J.W.)
- State Key Laboratory of Large Yellow Croaker Breeding, Ningbo Academy of Oceanology and Fishery, Juxian Road, Ningbo 315103, China; (X.W.); (X.W.)
| | - Jie Ding
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo 315832, China; (Y.Z.); (J.D.); (C.L.); (S.L.); (X.G.); (Y.W.); (J.W.)
- State Key Laboratory of Large Yellow Croaker Breeding, Ningbo Academy of Oceanology and Fishery, Juxian Road, Ningbo 315103, China; (X.W.); (X.W.)
| | - Cheng Liu
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo 315832, China; (Y.Z.); (J.D.); (C.L.); (S.L.); (X.G.); (Y.W.); (J.W.)
- State Key Laboratory of Large Yellow Croaker Breeding, Ningbo Academy of Oceanology and Fishery, Juxian Road, Ningbo 315103, China; (X.W.); (X.W.)
| | - Shengyu Luo
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo 315832, China; (Y.Z.); (J.D.); (C.L.); (S.L.); (X.G.); (Y.W.); (J.W.)
| | - Xinming Gao
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo 315832, China; (Y.Z.); (J.D.); (C.L.); (S.L.); (X.G.); (Y.W.); (J.W.)
| | - Yuanjie Wu
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo 315832, China; (Y.Z.); (J.D.); (C.L.); (S.L.); (X.G.); (Y.W.); (J.W.)
| | - Jingqian Wang
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo 315832, China; (Y.Z.); (J.D.); (C.L.); (S.L.); (X.G.); (Y.W.); (J.W.)
| | - Xuelei Wang
- State Key Laboratory of Large Yellow Croaker Breeding, Ningbo Academy of Oceanology and Fishery, Juxian Road, Ningbo 315103, China; (X.W.); (X.W.)
| | - Xiongfei Wu
- State Key Laboratory of Large Yellow Croaker Breeding, Ningbo Academy of Oceanology and Fishery, Juxian Road, Ningbo 315103, China; (X.W.); (X.W.)
| | - Weiliang Shen
- State Key Laboratory of Large Yellow Croaker Breeding, Ningbo Academy of Oceanology and Fishery, Juxian Road, Ningbo 315103, China; (X.W.); (X.W.)
- Correspondence: (W.S.); (J.Z.); Tel.: +86-153-8137-7660 (W.S.); +86-139-5784-1679 (J.Z.)
| | - Junquan Zhu
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo 315832, China; (Y.Z.); (J.D.); (C.L.); (S.L.); (X.G.); (Y.W.); (J.W.)
- Correspondence: (W.S.); (J.Z.); Tel.: +86-153-8137-7660 (W.S.); +86-139-5784-1679 (J.Z.)
| |
Collapse
|
3
|
Xin M, Vechtova P, Shaliutina-Kolesova A, Fussy Z, Loginov D, Dzyuba B, Linhart O, Boryshpolets S, Rodina M, Li P, Loginova Y, Sterba J. Transferrin Identification in Sterlet ( Acipenser ruthenus) Reproductive System. Animals (Basel) 2019; 9:ani9100753. [PMID: 31575042 PMCID: PMC6826671 DOI: 10.3390/ani9100753] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/22/2019] [Accepted: 09/24/2019] [Indexed: 01/06/2023] Open
Abstract
Transferrins are a superfamily of iron-binding proteins and are recognized as multifunctional proteins. In the present study, transcriptomic and proteomic methods were used to identify transferrins in the reproductive organs and sperm of out-of-spawning and spermiating sterlet (Acipenser ruthenus) males. The results showed that seven transferrin transcripts were identified in the transcriptome of sterlet, and these transcripts were qualified as two different transferrin genes, serotransferrin and melanotransferrin, with several isoforms present for serotransferrin. The relative abundance of serotransferrin isoforms was higher in the kidneys and Wolffian ducts in the spermiating males compared to out-of-spawning males. In addition, transferrin was immunodetected in sterlet seminal plasma, but not in sterlet spermatozoa extract. Mass spectrometry identification of transferrin in seminal plasma but not in spermatozoa corroborates immunodetection. The identification of transferrin in the reproductive organs and seminal plasma of sterlet in this study provides the potential function of transferrin during sturgeon male reproduction.
Collapse
Affiliation(s)
- Miaomiao Xin
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
- Sino-Czech Joint Laboratory of Fish Conservation and Biotechnology: Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Pavlina Vechtova
- Institute of Chemistry, Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 37005 Ceske Budejovice, Czech Republic.
- Biology Centre of Academy of Sciences of the Czech Republic, Institute of Parasitology, Branisovska 31, 37005 Ceske Budejovice, Czech Republic.
| | - Anna Shaliutina-Kolesova
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | - Zoltan Fussy
- Institute of Chemistry, Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 37005 Ceske Budejovice, Czech Republic.
| | - Dmitry Loginov
- Institute of Chemistry, Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 37005 Ceske Budejovice, Czech Republic.
- Biology Centre of Academy of Sciences of the Czech Republic, Institute of Parasitology, Branisovska 31, 37005 Ceske Budejovice, Czech Republic.
| | - Borys Dzyuba
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | - Otomar Linhart
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | - Serhii Boryshpolets
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | - Marek Rodina
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | - Ping Li
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
- Marine College, Shandong University (Weihai), Weihai 264209, Shandong, China.
| | - Yana Loginova
- Institute of Chemistry, Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 37005 Ceske Budejovice, Czech Republic.
| | - Jan Sterba
- Institute of Chemistry, Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 37005 Ceske Budejovice, Czech Republic.
- Biology Centre of Academy of Sciences of the Czech Republic, Institute of Parasitology, Branisovska 31, 37005 Ceske Budejovice, Czech Republic.
| |
Collapse
|
4
|
He Y, Pan X, Chi CF, Sun KL, Wang B. Ten new pentapeptides from protein hydrolysate of miiuy croaker (Miichthys miiuy) muscle: Preparation, identification, and antioxidant activity evaluation. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.01.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
5
|
Liu XL, Wang YK, Ouyang S, Zhu YY, Li W, Hong XY, Xu HY, Zhu XP. Evolutionary conservation of transferrin genomic organization and expression characterization in seven freshwater turtles. Biochem Biophys Res Commun 2018; 506:874-882. [PMID: 30392910 DOI: 10.1016/j.bbrc.2018.10.168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 10/27/2018] [Indexed: 01/28/2023]
Abstract
Serum transferrin (tf), encoding an iron-binding glycoprotein, has been revealed to play important roles in iron transportation and immune response, and it also has been demonstrated to be valuable for phylogenetic analysis in vertebrates. However, the evolutionary conservation, expression profiles and positive selection of transferrin genes among freshwater turtle species remain largely unclear. Here, the genomic DNA and coding sequences of transferrin genes were cloned and characterized in seven freshwater turtles including Mauremys mutica, Mauremys sinensis, Cyclemys dentate, Mauremyssi reevesi, Heosemys grandis, Trachemys scripta and Chrysemys picta. The isolated coding sequences of turtles' tf genes were 2118 bp or 2121 bp, encoding 706 or 707 amino acids. The predicted Tf proteins of turtles share high identities with M. mutica Tf, up to 91%-98% and the M. mutica Tf has the highest identity (91%) in amino acid with the Chelomia mydas Tf, the moderate with other reptiles' Tfs (65%-59%), chicken (58%), and Human Tf (∼55%), and the lowest with zebrafish Tf (41%). Additionally, tf genes were consistently composed of 17 exons and 16 introns with the same splicing sites in introns in all the turtles examined. Moreover, 12 positive selected sites were detected in these turtles' Tf and mainly distributed on the surface of transferrin protein. Importantly, it was found that transferrin genes in all turtles examined were predominantly expressed in adult liver via real-time quantitative PCR. The molecular characterizations and expression profiles of transferrin would shed new insights into understanding the conversations and divergences of transferrin genes in turtles, even in vertebrates.
Collapse
Affiliation(s)
- Xiao-Li Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Ya-Kun Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; College of Life Science, Nanchang University, Nanchang 330031, China
| | - Shu Ouyang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; College of Life Science and Fisheries, Shanghai Ocean University, Shanghai 201306, China
| | - Yan-Yu Zhu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; College of Life Science and Fisheries, Shanghai Ocean University, Shanghai 201306, China
| | - Wei Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Xiao-You Hong
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Hong-Yan Xu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
| | - Xin-Ping Zhu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
| |
Collapse
|
6
|
Cui J, Gao Y, Chu Q, Bi D, Xu T. miRNA-8159 is involved in TLR signaling pathway regulation after pathogen infection by direct targeting TLR13 in miiuy croaker. FISH & SHELLFISH IMMUNOLOGY 2017; 66:531-539. [PMID: 28546024 DOI: 10.1016/j.fsi.2017.05.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 05/16/2017] [Accepted: 05/19/2017] [Indexed: 06/07/2023]
Abstract
Toll-like receptors (TLRs) play a crucial role in the recognition of immune reactions against invading pathogens. The molecular regulation mechanisms of TLR expression in aquatic organisms remain unclear. MicroRNAs (miRNAs) are small non-coding RNAs that are critical adjustors of immune signaling pathway at the post-transcriptional level and play critical roles in intricate networks of host-pathogen interactions and innate immunity. The critical role of TLRs in host defense for discerning certain kinds of pathogen associated molecular patternsand striking a cascade immune response in fish have been demonstrated. Miiuy croaker TLR13 significantly increased after infection with Vibrio anguillarum, which suggests that mmiTLR13 plays an important role in innate immunity. In this study, the role of miR-8159 was explored in regulating TLR13, which is involved in inflammatory responses in miiuy croakers. Bioinformatics was used to predict miR-8159, which has a direct negative regulatory effect on TLR13 in miiuy croaker. Afterward, the dual luciferase reporter assay containing miRNA mimics or inhibitors and pre-miR-8159 showed that miR-8159 was the direct negative regulator of TLR13 in miiuy croaker. Moreover, miR-8159 downregulated the expression of TLR13 in the transcription level. The expression of miR-8159 could be upregulated by V. anguillarum challenged miiuy croaker and LPS exposure macrophages. Thus, miR-8159 could be induced by V. anguillarum and may function as a negative regulator of TLR13 in the immune response of miiuy croakers.
Collapse
Affiliation(s)
- Junxia Cui
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yunhang Gao
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Qing Chu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Dekun Bi
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Tianjun Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
7
|
Yang Q, Cui J, Song W, Zhao X, Xu T. The evolution and functional characterization of miiuy croaker interferon regulatory factor 9 involved in immune response. FISH & SHELLFISH IMMUNOLOGY 2017; 66:524-530. [PMID: 28546020 DOI: 10.1016/j.fsi.2017.05.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/15/2017] [Accepted: 05/20/2017] [Indexed: 06/07/2023]
Abstract
Interferon regulatory factors (IRFs) are transcription factors which play important roles in regulating the expression of type I interferons (IFNs) and IFN-stimulated genes. IRF9 is one of the IRF family gene members which belongs to the IRF4 subfamily. Mammalian IRF9 has been known to be involved in antiviral responses as the DNA sequence recognition subunit of IFN-stimulated gene factor 3 (ISGF3) complex. In fish, only a few studies investigated the characteristics of IRF9 and the role in IFN signaling. In this study, we identified the IRF9 gene from miiuy croaker (mmiIRF9) and studied its feature and function. Sequence analysis showed the similarity of mmiIRF9 and other fish IRF9 genes. Structural and syntenic analysis showed the conservatism in fish IRF9 genes. The result of expression analysis in normal tissues and infected tissues and macrophages showed that mmiIRF9 expressed in all tested normal tissues and up-regulated expression in liver, kidney and macrophages after stimulated with poly(I:C). Luciferase reporter assays demonstrated the mmiIRF9 can induced IFNα and IFNβ luciferase reporters and the cellular localization of mmiIRF9 was mainly distributed in the cytoplasm in Hela cells. Furthermore, the evolutionary analysis of IRF4 subfamily showed the IRF4 and IRF8 may be the most ancient and conservative genes in the evolution of this subfamily.
Collapse
Affiliation(s)
- Qiong Yang
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Junxia Cui
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Weihua Song
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xueyan Zhao
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Tianjun Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
8
|
Li J, Chu Q, Xu T. A genome-wide survey of expansive NLR-C subfamily in miiuy croaker and characterization of the NLR-B30.2 genes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 61:116-125. [PMID: 26979266 DOI: 10.1016/j.dci.2016.03.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/10/2016] [Accepted: 03/10/2016] [Indexed: 06/05/2023]
Abstract
NOD-like receptors (NLRs) are essential intracellular pattern-recognition receptors that respond to pathogens and regulate innate immunity. NLRs include three distinct subfamilies: NLR-A, NLR-B and NLR-C, thereinto, NLR-C as a large subfamily is unique to bony fish and little research about it has been done. In the current study, we identified the members of NLR-B and NLR-C subfamilies containing 2 and 48 genes respectively in miiuy croaker. Compared with other teleosts except for zebrafish, NLR-C subfamily genes occurred expansion in miiuy croaker. The gene expansions of NLR-C subfamily may illustrate adaptive genome evolution in response to specific aquatic environments. Structural analysis showed that the N-terminus of NLR-C subfamily receptors has different characteristics of the domains including RING domain, FISNA domain or PYRIN domain. Interestingly, the C-terminus of 18 NLR-C subfamily members contains an extra B30.2 domain (named NLR-B30.2 genes) which plays an important role in antiviral immune recognition. Simultaneously, molecular evolutionary analysis indicated that the positively sites in miiuy croaker are mainly located in NACHT domain which was the vital region for signal transduction in immune response. Significantly, pathogens challenge in spleen and macrophages demonstrated that NLR-B30.2 genes exhibited more sensitive response to virus than bacteria, suggesting these genes play enhanced roles in innate antiviral immunity, which may represent a new family used for antiviral infection.
Collapse
Affiliation(s)
- Jinrui Li
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Qing Chu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Tianjun Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
9
|
Chu Q, Xu T. miR-192 targeting IL-1RI regulates the immune response in miiuy croaker after pathogen infection in vitro and in vivo. FISH & SHELLFISH IMMUNOLOGY 2016; 54:537-543. [PMID: 27164215 DOI: 10.1016/j.fsi.2016.05.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/04/2016] [Accepted: 05/05/2016] [Indexed: 06/05/2023]
Abstract
Activation of innate and acquired immune responses is regulated by detailed mechanisms to control their onset and termination. MicroRNAs have been implicated as negative regulators controlling the diverse of biophysical and biochemical processes at the post-transcriptional level. However, the physiological roles of miRNAs in aquatic organisms are largely unclear. In this study, we explored the potential roles of mmi-miR-192 in regulating interleukin 1 receptor type I (IL-1RI) involved in immune and inflammatory response in miiuy croakers. This was further evaluated by negative expression profiles in both LPS exposure macrophages and Vibrio anguillarum challenged miiuy croaker. By means of promoter analysis, mmi-miR-192 was found to be an AP-1 dependent gene. Importantly, the dual luciferase reporter assay presented the regulation between mmi-miR-192 and IL-1RI. The result of miiuy croaker miR-192 reduced the wild-type IL-1RI but not the mutant one luciferase levels suggested that mmi-miR-192 modulated IL-1RI expression by directly targeting the 3'UTR of IL-1RI mRNA. Overall, our study revealed the mechanism that the miR-192-IL1RI pathway regulated bacteria infection in miiuy croakers.
Collapse
Affiliation(s)
- Qing Chu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Tianjun Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
10
|
Xu G, Han J, Xu T. Comparative analysis of the small RNA transcriptomes of miiuy croaker revealed microRNA-mediated regulation of TLR signaling pathway response to Vibrio anguillarum infection. FISH & SHELLFISH IMMUNOLOGY 2016; 52:248-257. [PMID: 26980609 DOI: 10.1016/j.fsi.2016.03.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 03/01/2016] [Accepted: 03/10/2016] [Indexed: 06/05/2023]
Abstract
MicroRNAs (miRNAs) are an abundant class of endogenous noncoding small RNAs (sRNAs) that are partially complementary to their target messenger RNA (mRNA), which post-transcriptionally regulate various biological processes by repressing mRNA translation or inducing mRNA degradation. MiRNAs have been demonstrated to play crucial roles in the host response to infection by diverse pathogens. As an important bacterial pathogen, Vibrio anguillarum has been caused great economic losses in miiuy croaker aquaculture. To identify immune-related miRNAs of miiuy croaker in response to V. anguillarum infection, we constructed two sRNA libraries with or without bacterial infection. High-throughput deep sequencing and subsequent bioinformatic analysis identified 241 conserved and 137 novel miRNA precursors in miiuy croaker based on its whole genome sequences, encoding 293 and 124 mature miRNAs, respectively. Then we compared the expression patterns of miRNAs in the two libraries. There were significant differences in the expression of 12 miRNAs between the infection group (IG) and control group (CG). Further, the expressions of six miRNAs were validated by real-time quantitative PCR. The target gene prediction and function analysis were conducted for the 12 differential miRNAs. This analysis revealed that these miRNAs participated in the regulation multiple immune-related signaling pathways. Transcription factors in TLR signaling, such as AP-1, IRF5, NF-κB and IRF3, were activated by these miRNAs via post-transcriptionally regulating the expression of TLRs and TLR-associated signaling proteins, inducing effective host immune response to eradicate infectious pathogens. This is the first study of the identification and characterization of miiuy croaker miRNAs in response to V. anguillarum infection. The comprehensive analysis of the expression of miRNAs and the target gene and function prediction of differently expressed miRNAs may help to understand the regulatory mechanisms of miRNA in fish during the interaction between host and bacterial pathogens.
Collapse
Affiliation(s)
- Guoliang Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Jingjing Han
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Tianjun Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
11
|
Xu T, Liu J, Sun Y, Zhu Z, Liu T. Characterization of 40 full-length MHC class IIA functional alleles in miiuy croaker: Polymorphism and positive selection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 55:138-143. [PMID: 26598111 DOI: 10.1016/j.dci.2015.10.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 06/05/2023]
Abstract
The major histocompatibility complex is a highly polymorphic gene superfamily in vertebrates that plays an important role in adaptive immune response. In the present study, we identified 40 full-length miiuy croaker MHC class IIA (Mimi-DAA) functional alleles from 26 miiuy croaker individuals and found that the alleles encode 30 amino acid sequences. A high level of polymorphism in Mimi-DAA was detected in miiuy croaker. The rate of non-synonymous substitutions (d(N)) occurred at a significantly higher frequency than that of synonymous substitutions (d(S)) in the peptide-binding region (PBR) and non-PBR. This result suggests that balancing selection maintains polymorphisms at the Mimi-DAA locus. Phylogenetic analysis based on the full-length sequences showed that the Mimi-DAA alleles clustered into three groups. However, the phylogenetic tree constructed using the exon 2 sequences indicated that the Mimi-DAA alleles clustered into two groups. A total of 22 positively selected sites were identified on the Mimi-DAA alleles after testing for positive selection, and five sites were predicted to be associated with the binding of peptide antigen, suggesting that a few selected residues may play a significant role in immune function.
Collapse
Affiliation(s)
- Tianjun Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China.
| | - Jiang Liu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Yueyan Sun
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Zhihuang Zhu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Tianxing Liu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| |
Collapse
|
12
|
Hu Q, Meng Y, Tian H, Chen S, Xiao H. Cloning, expression of, and evidence of positive selection for, the prolactin receptor gene in Chinese giant salamander (Andrias davidianus). JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:707-19. [PMID: 26526303 DOI: 10.1002/jez.b.22659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 10/09/2015] [Indexed: 11/10/2022]
Abstract
Prolactin receptor (PRLR) is a protein associated with reproduction in mammals and with osmoregulation in fish. In this study, the complete length of Chinese giant salamander Andrias davidianus prolactin receptor (AD-prlr) was cloned. Andrias davidianus prlr expression was high in the kidney, pituitary, and ovary and low in other examined tissues. The AD-prlr levels were higher in ovary than in testis, and increased in ovaries with age from 1 to 6 years. To determine effect of exogenous androgen and aromatase inhibitor on AD-prlr expression, methyltestosterone (MT) and letrozole (LE) were injected, resulting in decreased AD-prlr in both brain and ovary, with MT repressing prlr transcription more rapidly than did LE. The molecular evolution of prlr was assessed, and found to have undergone a complex evolution process. The obranch-site test detected four positively selected sites in ancestral lineages prior to the separation of mammals and birds. Fourteen sites underwent positive selection in ancestral lineages of birds and six were positively selected in amphibians. The site model showed that 16, 7, and 30 sites underwent positive selection in extant mammals, amphibians, and birds, respectively. The positively selected sites in amphibians were located outside the transmembrane domain, with four in the extracellular and three in the intracellular domain, indicating that the transmembrane region might be conserved and essential for protein function. Our findings provide a basis for further studies of AD-prlr function and molecular evolution in Chinese giant salamander. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 707-719, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Qiaomu Hu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, China.,Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, China
| | - Haifeng Tian
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, China
| | - Songlin Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, China
| | - Hanbing Xiao
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, China
| |
Collapse
|
13
|
Li J, Kong L, Gao Y, Wu C, Xu T. Characterization of NLR-A subfamily members in miiuy croaker and comparative genomics revealed NLRX1 underwent duplication and lose in actinopterygii. FISH & SHELLFISH IMMUNOLOGY 2015; 47:397-406. [PMID: 26381931 DOI: 10.1016/j.fsi.2015.09.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/05/2015] [Accepted: 09/11/2015] [Indexed: 06/05/2023]
Abstract
The NOD-like receptors (NLRs, nucleotide-binding domain and leucine-rich repeat containing receptors) are a recently identified family of intracellular pathogen recognition receptors in vertebrates. Several subfamilies of NLRs have been characterized in mammals and implicated in immunity and apoptosis, but studies of NLRs in teleost species have been lacking. Here we analyzed three NLR-A subfamily members from miiuy croaker: NLRC3, NLRC5, and NLRX1. Structural analysis showed that miiuy croaker NLR-A subfamily members own the feature of 5'UTR intron which may influence their role in enhancing translation level. Comparative analysis revealed NLRX1 duplicated into NLRX1a and NLRX1b, then NLRX1a was lost in actinopterygii and NLRX1b formed NLRX1 that now we called. Simultaneously, molecular evolutionary analysis indicated that the ancestral lineages of NLRX1 in tetrapod and actinopterygii under positive selection pressure. The positively sites in actinopterygii are mainly located in NACHT domain which was the critical region for signal transduction, suggesting that the evolution of NLRX1 gene in the ancestor of actinopterygii is beneficial in immune response. Pathogens challenge demonstrated that the expressions of NLRC3 and NLRC5 in miiuy croaker were induced not only by Vibrio anguillarum but also by poly (I:C), whereas NLRX1 exhibited more sensitive response to bacteria than virus.
Collapse
Affiliation(s)
- Jinrui Li
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Lingcong Kong
- College of Animal Science and Veterinary Medicine, Jilin Agriculture University, Changchun, 130118, China
| | - Yunhang Gao
- College of Animal Science and Veterinary Medicine, Jilin Agriculture University, Changchun, 130118, China
| | - Changwen Wu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China.
| | - Tianjun Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
14
|
Ding Z, Zhao X, Su L, Zhou F, Chen N, Wu J, Fu X, Wu F, Wang W, Liu H. The Megalobrama amblycephala transferrin and transferrin receptor genes: molecular cloning, characterization and expression during early development and after Aeromonas hydrophila infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:290-297. [PMID: 25530094 DOI: 10.1016/j.dci.2014.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 12/13/2014] [Accepted: 12/15/2014] [Indexed: 06/04/2023]
Abstract
Both transferrin (TF) and transferrin receptor (TFR) play vital roles in iron homeostasis, which is essential for cellular growth and survival. Besides, TF and TFR are also reported to be involved in immune response against bacterial infection. In the present study, we cloned and characterized the Tf and TfR genes in Megalobrama amblycephala. The M. amblycephala Tf gene contained 17 exons and 16 introns, encoding 651 amino acids, while the M. amblycephala TfR gene contained 18 exons and 17 introns, encoding 768 amino acids. In healthy fish, Tf mRNA was most abundant in the liver, and TfR was highly expressed in the blood and brain. During early development, the expression of Tf increased from 12 hpf (hour post fertilization) to 26 hpf, followed by a diminution at 32 hpf, then increased significantly to the peak level at 2 dph (day post hatching). The expression pattern of TfR was similar to that of Tf, fluctuating from 0 hpf to 32 hpf and dramatically increasing to the peak at 2 dph. Additionally, both Tf and TfR genes responded to Aeromonas hydrophila infection, by increasing their expression in the liver, spleen and kidney at both mRNA and protein levels, indicating that they were involved in M. amblycephala immune response. Immunohistochemical analysis and Prussian blue staining verified the internalization of TF-receptor system with bound-iron in the liver of M. amblycephala.
Collapse
Affiliation(s)
- Zhujin Ding
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Xiaoheng Zhao
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Lina Su
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Fengjuan Zhou
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Nan Chen
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Junjie Wu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Xiaoqin Fu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Fan Wu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Weimin Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Liu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
| |
Collapse
|
15
|
Meng F, Sun Y, Xu T. Comparative genomic of the BAFF and BAFF-like genes and immune response to bacteria of miiuy croaker (Miichthys miiuy). FISH & SHELLFISH IMMUNOLOGY 2015; 43:191-199. [PMID: 25542380 DOI: 10.1016/j.fsi.2014.12.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/11/2014] [Accepted: 12/16/2014] [Indexed: 06/04/2023]
Abstract
As a member of the tumor necrosis factor (TNF) family, B cell activating factor (BAFF), also known as TNF ligand superfamily member 13B (TNF13B), playing a critical role in enhancing immune responses. BAFF is a central cytokine for B-cell survival, proliferation, maturation and immunoglobulin secretion. In the present study, we describe the identification of the miiuy croaker BAFF (designed MmBAFF) and BAFF-like (designed MmBAFF-like) genes. The cDNA of MmBAFF contains an open reading frame (ORF) of 795 nucleotides that are translated into a predicted 264 amino acids. The ORF of MmBAFF-like consists of 705 bases encoding 234 amino acids. Amino acid sequence comparison indicated that MmBAFF and MmBAFF-like possessed the TNF signatures, a predicted transmembrane domain, three conserved cysteine residues and a putative furin protease cleavage site, which were the typical characteristics of TNF gene in mammals and birds. The predicted three-dimensional (3D) structure of the MmBAFF and MmBAFF-like monomer analyzed by comparative protein modeling revealed that they were very similar to human counterpart. Comparative genomic analysis revealed that the locations of MmBAFF and MmBAFF-like genes are conserved among the bony fish. Phylogenetic analysis shows the MmBAFF is most closely related to other teleost BAFFs with the highest similarity to Epinephelus awoara. And BAFF-like cluster get together first to BAFF cluster than three closely related TNF superfamily (TNFSF) members. Real-time quantitative PCR analysis shows the MmBAFF and MmBAFF-like transcripts are expressed in a wide range of tissues with the highest expression in skin and lymphoid tissue spleen. Upon induction by Vibrio anguillarum, their expressions are significantly upregulated in liver, spleen and kidney as compared to phosphate-buffered saline injected control fish. The association of increased BAFF expression after bacterial infection suggests that it plays a potentially important role in immune system of fish.
Collapse
Affiliation(s)
- Fanqiang Meng
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yuena Sun
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Tianjun Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
16
|
Che R, Wang R, Xu T. Comparative genomic of the teleost cathepsin B and H and involvement in bacterial induced immunity of miiuy croaker. FISH & SHELLFISH IMMUNOLOGY 2014; 41:163-171. [PMID: 25181651 DOI: 10.1016/j.fsi.2014.08.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 08/06/2014] [Accepted: 08/18/2014] [Indexed: 06/03/2023]
Abstract
Cathepsins are a family of lysosomal proteases play different roles at physiological and pathological states and present in almost all animals as well as other organisms. Cathepsins B and H are both cysteine proteases of cathepsins. Cathepsin B and H have been studied playing parts in protein degradation/turnover, antigen presentation/processing and hormone maturation in mammals. However, little is known about the structures and functions of cathepsin B and H in teleosts. In the present study, we identified and characterized the full-length miiuy croaker (Miichthys miiuy) cathepsin B and H genes. The sequence analysis results showed that both cathepsin B and H contain the characteristics of papain family with a signal peptide, propeptide and mature peptide regions. The comparison of the genomic organizations and locations indicated the conserved synteny and mild evolution in the cathepsin B and H genes adjacent regions. In addition, the gene synteny analysis showed that miiuy croaker cathepsin B has a closer relationship to stickleback and fugu than to cave fish and zebrafish, and cathepsin H was most similar with the 2 subtype in tilapia and fugu. By phylogenetic analysis, miiuy croaker cathepsin B and H were all assigned to cysteine proteases, and with a close relationship to Salmo salar cathepsin B and Oplegnathus fasciatus cathepsin H, respectively. Quantitative real-time RT-PCR analysis results confirmed that cathepsin B and H genes expressed ubiquitously in all tested healthy tissues from miiuy croaker. Furthermore, up-regulated expression of the cathepsin B and H transcripts in liver, spleen and kidney after exposure upon Vibrio anguillarum suggested that they may play important roles in innate immune response and antigen processing of miiuy croaker.
Collapse
Affiliation(s)
- Rongbo Che
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Rixin Wang
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Tianjun Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
17
|
Poochai W, Choowongkomon K, Srisapoome P, Unajak S, Areechon N. Characterization and expression analysis of the transferrin gene in Nile tilapia (Oreochromis niloticus) and its upregulation in response to Streptococcus agalactiae infection. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1473-1485. [PMID: 24770882 DOI: 10.1007/s10695-014-9941-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 04/11/2014] [Indexed: 06/03/2023]
Abstract
In this study, full-length tilapia transferrin (OnTF) isolated from liver cDNA of Nile tilapia (Oreochromis niloticus) was found to have an open reading frame of 2,091-bp encoding 696 amino acid residues. Two additional amino acids: Gly(369) and Gly(370) were observed compared with the reported Nile tilapia transferrin protein sequence. Pre-mature protein has a predicted molecular weight of 78.2 kDa, while mature protein is 73.28 kDa in size. Comparative sequence analysis with transferrin from other species revealed two major putative iron-binding domains designated as the N-lobe and the C-lobe in accordance with the transferrin protein characteristics. The predicted tertiary structure of tilapia transferrin confirmed the presence of iron and anion-binding sites on both lobes that are conserved among transferrins from other species. Quantitative real-time PCR analysis showed significantly higher expression of tilapia transferrin gene in liver than in other tissues (p < 0.05). Transferrin expression in tilapia experimentally infected with 10(6) and 10(8) colony-forming units mL(-1) of Streptococcus agalactiae was significantly upregulated at 24 and 12 h post-infection (hpi), respectively, and decreased afterward. Iron-deficiency in serum of bacterially infected fish was detected at 48 and 24 hpi, respectively. The expression pattern of the transferrin gene and the iron levels of infected tilapia in this study were consistent with the function of transferrin in innate immunity.
Collapse
Affiliation(s)
- Watsida Poochai
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand
| | | | | | | | | |
Collapse
|
18
|
Wang S, Wang R, Xu T. Genomic characterization and expression pattern of Bf/C2 and C4 in miiuy croaker and molecular evolution analysis on mammals and fishes. FISH & SHELLFISH IMMUNOLOGY 2014; 39:423-431. [PMID: 24927880 DOI: 10.1016/j.fsi.2014.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 05/30/2014] [Accepted: 06/02/2014] [Indexed: 06/03/2023]
Abstract
The complement system plays an important role in both innate and adaptive host defense against the invading microorganisms in vertebrates. It can be activated by three pathways: the classical, alternative and lectin pathways. Bf/C2 and C4, as members of complement, play a pivotal role in the activation of the complement system. In our study, we identified Bf/C2 and C4 genes and genomic structure in miiuy croaker, and expression patterns of Bf/C2 and C4 genes was analyzed. In healthy miiuy croaker tissues, Bf/C2 and C4 genes were found to be ubiquitously expressed in all ten tested tissues. Analysis of expression of Bf/C2 and C4 genes after bacterial infection showed a significant up-regulated in liver. The evolutionary analysis showed that the ancestral lineages of Bf/C2 and C4 genes in mammals and fishes experienced positive selection indicated that the ancestors of mammals and fishes had further evolved to adapt to their environment, respectively. A series of maximum likelihood (ML) methods were used to study the evolution on vertebrates' Bf/C2 and C4 genes. One and five positive selection sites were found in mammals of Bf/C2 and C4 genes, but no positive selection site was found in fishes of Bf/C2 and C4 genes, indicating that Bf/C2 and C4 genes in mammals and fishes underwent different evolutionary patterns.
Collapse
Affiliation(s)
- Shanchen Wang
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Rixin Wang
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Tianjun Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
19
|
Meng F, Wang R, Xu T. Identification of 21 novel immune-type receptors in miiuy croaker and expression pattern of three typical inhibitory members. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 45:269-277. [PMID: 24704213 DOI: 10.1016/j.dci.2014.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 03/21/2014] [Accepted: 03/24/2014] [Indexed: 06/03/2023]
Abstract
Novel immune-type receptor (NITR) genes belong to the immunoglobulin superfamily and are encoded by clusters of multigene families. NITRs encode type I transmembrane proteins and are only found in teleosts. In the current study, total 21 NITR genes are identified from miiuy croaker (Miichthys miiuy) and named as MmNITR1 to MmNITR21. Miiuy croaker NITR genes that encoded one or two extracellular immunoglobulin (Ig) domains, a transmembrane (TM) region, an immunoreceptor tyrosine-based inhibitor motif (ITIM) in the cytoplasmic (Cyt) region. The majority of MmNITRs possess cytoplasmic ITIM that can be classified as inhibitory receptors. However, a smaller number of NITRs (MmNITR8, MmNITR15 and MmNITR16) can be classified as activating receptors by the lack of cytoplasmic ITIMs and presence of a positively charged residue within their transmembrane domain. As typical inhibitory receptors, MmNITR1, MmNITR2 and MmNITR3 have different characteristics of the structure. In MmNITR1 gene, variable (V) and intermediate (I) domains are encoded by two separate exons. In contrast to MmNITR1, MmNITR3 gene encode V and I domains in a single exon. And MmNITR2 gene is characterized by the presence of only one Ig-like (V-type) extracellular domain and lack of J or J-like motifs. Also MmNITR2 gene displays an additional exon which is 48bp long between the V domain and the TM region. Two and four potential N-link giycosylation sites (N-X-S/T) are present in the extracellular Ig domains. Real-time RT-PCR results showed that upon induction with Vibrio anguillarum, NITR gene expressions were induced by bacteria in kidney, liver and spleen. Meanwhile, NITRs are also primarily detected in different tissues. Phylogenetic analyses of NITR V domains indicate that MmNITR1 and MmNITR2 are more similar than MmNITR3.
Collapse
Affiliation(s)
- Fanqiang Meng
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Rixin Wang
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Tianjun Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
20
|
Xu T, Zhu Z, Sun Y, Ren L, Wang R. Characterization and expression of the CXCR1 and CXCR4 in miiuy croaker and evolutionary analysis shows the strong positive selection pressures imposed in mammal CXCR1. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 44:133-144. [PMID: 24333436 DOI: 10.1016/j.dci.2013.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/29/2013] [Accepted: 12/02/2013] [Indexed: 06/03/2023]
Abstract
The innate immune system can recognize non-self, danger signals, and pathogen associated molecular patterns and provides a first line of antimicrobial host defense. Therefore, it plays an instructive role and is pretty important in vertebrates. In innate immune responses, CXCRs act as the main receptors of CXC chemokines and play a vital role in host defense and inflammation. In present study, we cloned two cDNA molecules of CXCR1 and CXCR4 in Miichthys miiuy (miiuy croaker). In these two genes, we found the most highly conserved DRY motif in the second intracellular loop adjacent to the third transmembrane domain. The expressions of CXCR1 and CXCR4 showed that they were ubiquitously expressed in ten normal tissues. After infection with Vibrio anguillarum and Vibrio harveyi, the expressions of CXCRs in the immune tissues were significantly regulated in most of tissues except that of CXCR1 in the kidney after V. harveyi injection. Evolutionary analysis showed that only the ancestral lineages of CXCR4 in amphibians underwent positive selection, indicating that the ancestors of amphibians boarded the land and had to further evolve to adapt to terrestrial environments. Multiple ML methods were implemented to detect the robust positively selected candidates for sites. In total, we detected 12 and 3 positively selected sites in the subsets of current mammal and fish CXCR1 genes, and only one site under positive selection was found in mammalian CXCR4 subsets. These positively selected sites were mainly located in the extracellular domains of CXCRs. The sliding window analysis and evolution test tended to favor positive selection acting on the N-terminal domain of CXCR1, which was the critical region for ligand/receptor signaling for neutrophils and receptor-ligand interaction, indicating that the N-terminal of CXCR1 in mammals underwent more positive selection than that of fish.
Collapse
Affiliation(s)
- Tianjun Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, PR China.
| | - Zhihuang Zhu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, PR China
| | - Yuena Sun
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, PR China
| | - Liping Ren
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, PR China
| | - Rixin Wang
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, PR China
| |
Collapse
|
21
|
Ren L, Sun Y, Wang R, Xu T. Gene structure, immune response and evolution: comparative analysis of three 2-Cys peroxiredoxin members of miiuy croaker, Miichthys miiuy. FISH & SHELLFISH IMMUNOLOGY 2014; 36:409-416. [PMID: 24378678 DOI: 10.1016/j.fsi.2013.12.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/04/2013] [Accepted: 12/18/2013] [Indexed: 06/03/2023]
Abstract
Peroxiredoxin family was a superfamily of selenium independent peroxidases. It was divided into six subtypes: Prx1-4 (typical 2-Cys), Prx5 (atypical 2-Cys) and Prx6 (1-Cys). This study reports the isolation and characterization three 2-Cys peroxiredoxin members of full cDNA and genomic clones from miiuy croaker (Miichthys miiuy). The genetic structure analysis showed that the C-terminal catalytic Cys positioned within GEVCPAXW. This sequence was different between Prx3 and Prx4, but was conservative in different species of the same gene, the X base was S in Prx3 but G in Prx4. Tissues expression analysis showed that the expressions of Prx3 in liver and brain were much higher than other tissues; the values of Prx4 in spleen, intestine and kidney were significantly higher than others; and the expression of Prx5 in muscle was higher than that of other tissues. Real-time PCR results showed that there were highest values of these three Prxs emerging with the time post challenge of Vibrio anguillarum in liver, spleen and kidney although the highest value time differed from each other and the expression of these three genes also changed with the change of infection time. These results indicated that expression analysis of these three genes play some positive function against pathogenic bacteria infection in miiuy croaker.
Collapse
Affiliation(s)
- Liping Ren
- Laboratory of Fish Biogenetics and Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316000, China
| | - Yuena Sun
- Laboratory of Fish Biogenetics and Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316000, China
| | - Rixin Wang
- Laboratory of Fish Biogenetics and Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316000, China.
| | - Tianjun Xu
- Laboratory of Fish Biogenetics and Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316000, China.
| |
Collapse
|
22
|
Meng F, Wang R, Gao Y, Xu T. Genomic organization, single nucleotide polymorphism and functional characterization of natural killer enhancing factor (NKEF-A) in Miichthys miiuy. Mol Biol Rep 2013; 41:651-63. [DOI: 10.1007/s11033-013-2903-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 12/10/2013] [Indexed: 10/25/2022]
|
23
|
Zhu Z, Wang R, Ren L, Xu T. Characterization of the CCR3 and CCR9 genes in miiuy croaker and different selection pressures imposed on different domains between mammals and teleosts. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:631-643. [PMID: 23817141 DOI: 10.1016/j.dci.2013.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 06/22/2013] [Accepted: 06/24/2013] [Indexed: 06/02/2023]
Abstract
The innate immune system can recognize non-self through pattern recognition receptors and provides a first line of antimicrobial host defense. Thus innate immunity plays a very important role in resistance against major bacterial disease in vertebrates. In the innate immune responses, the chemokine receptors act as the main receptors of chemokines which are released at the sites of infection, inflammation and injury. In this study, the Miichthys miiuy CCR3 and CCR9 genes were cloned and characterized, showing that MIMI-CCR3 possesses a highly conserved DRYLA motif similar to that of other fishes. MIMI-CCR3 and CCR9 were ubiquitously expressed in all tested tissues and the expressions were significantly up-regulated after infection with Vibrio anguillarum except that of CCR9 in spleen. Evolutionary analysis showed that all the ancestral lineages of CCR3 and CCR9 in mammals and teleosts underwent positive selection, indicating that the ancestor of terrestrial animals further evolved to adapt to terrestrial environments and the continuous intrusion of microbes stimulated the evolution of CCR genes in the ancestor of teleost. Multiple ML methods were used to detect the robust candidates for sites under positive selection. In total, 11 and 8 positively selected sites were found in the subsets of current mammal and teleost CCR3 genes, and 3 and 2 sites were detected in the subsets of current mammals and teleosts in CCR9. Interestingly, for mammal CCR3 and CCR9 genes, the robust candidates of positively selected sites were mainly located in the extracellular domains which were the ligand binding and pathogen interaction regions. For teleost CCR3 and CCR9 genes, the positively selected sites were not only located in the extracellular domains but also in the C-terminal and intracellular domains, indicating mammals and teleosts experienced different selection pressures upon their N-terminus, C-terminus and intracellular loops of CCRs.
Collapse
Affiliation(s)
- Zhihuang Zhu
- Laboratory for Marine Living Resources and Molecular Engineering, College of Marine Science, Zhejiang Ocean University, Zhoushan, PR China
| | | | | | | |
Collapse
|
24
|
Wei T, Gao Y, Wang R, Xu T. A heat shock protein 90 β isoform involved in immune response to bacteria challenge and heat shock from Miichthys miiuy. FISH & SHELLFISH IMMUNOLOGY 2013; 35:429-37. [PMID: 23684810 DOI: 10.1016/j.fsi.2013.04.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 04/08/2013] [Accepted: 04/29/2013] [Indexed: 05/26/2023]
Abstract
Heat shock protein 90 (HSP90) is highly conserved molecular chaperone that plays a critical role in cellular stress response. In this study, we reported the identification and functional analysis of a heat shock protein 90 gene from miiuy croaker (designated Mimi-HSP90). Mimi-HSP90 contained five conserved HSP90 protein family signatures and shared 89.6%-99.5% similarity with other known HSP90 β isoform. Homology analysis and structure comparison further indicated that Mimi-HSP90 should be β isoform member of the HSP90 family. The molecular evolutionary analysis showed that HSP90 was under an overall strong purifying select pressure among fish species. Mimi-HSP90 gene was constitutively expressed in ten examined tissues, and the expression level of liver was higher than in other tissues. The expression level of Mimi-HSP90 gene under bacterial infection and heat shock were analyzed by real-time quantitative RT-PCR, resulted in significant changes in liver, spleen, and kidney tissues. The purified recombinant pET-HSP90 protein was used to produce the polyclonal antibody in mice. The specificity of the antibody was determined by Western blot analysis. All results suggested that Mimi-HSP90 was involved in thermal stress and immune response in miiuy croaker.
Collapse
Affiliation(s)
- Tao Wei
- Laboratory for Marine Living Resources and Molecular Engineering, College of Marine Science, Zhejiang Ocean University, 105 Wenhua Road, Zhoushan 316000, PR China
| | | | | | | |
Collapse
|
25
|
Sun Y, Wang R, Xu T. Conserved structural complement component C3 in miiuy croaker Miichthys miiuy and their involvement in pathogenic bacteria induced immunity. FISH & SHELLFISH IMMUNOLOGY 2013; 35:184-187. [PMID: 23643875 DOI: 10.1016/j.fsi.2013.04.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/25/2013] [Accepted: 04/17/2013] [Indexed: 06/02/2023]
Abstract
Complement component C3 is a key protein in the complement system whose activation is essential for all the important functions performed by this system. In this study, the complete C3 cDNA sequence was isolated from the miiuy croaker (Miichthys miiuy), which was high similarity to other complement C3. In this study, we report the primary sequence, the tissue expression profile, the polypeptide domain architecture and the phylogenetic analysis of miiuy croaker C3 gene. Rapid amplification of the cDNA ends (RACE) yielded the full open reading frame of this protein (4974 bp), and subsequent analysis indicated that the M. miiuy C3 gene encoded a protein of 1657 amino acids. The deduced amino acid sequence showed that M. miiuy C3 has conserved residues and domains known to be critical for C3 function. Phylogenetic analysis showed that miiuy croaker was most closely related to Epinephelus coioides. Expression analysis showed that C3 was expressed differentially in miiuy croaker tissues, while liver was the main source of C3 expression. Infection of miiuy croaker with Vibrio anguillarum resulted in significant changes expression of C3 gene in the immune-related tissues. These results showed that C3 gene might play an important role in immune mechanisms.
Collapse
Affiliation(s)
- Yueyan Sun
- Laboratory for Marine Living Resources and Molecular Engineering, College of Marine Science, Zhejiang Ocean University, Zhoushan 316000, PR China
| | | | | |
Collapse
|
26
|
Ren L, Xu T, Wang R, Sun Y. Miiuy croaker (Miichthys miiuy) Peroxiredoxin2: molecular characterization, genomic structure and immune response against bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2013; 34:556-563. [PMID: 23253493 DOI: 10.1016/j.fsi.2012.11.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/28/2012] [Accepted: 11/30/2012] [Indexed: 06/01/2023]
Abstract
Peroxiredoxin2 (Prx2) protein is an important member in cellular antioxidant protein superfamily. Prx2 exists widely in prokaryotes and eukaryotes, it not only plays a part in eliminate reactive oxygen, but also takes effect in many other metabolic activities, such as stimulate epithelial cell proliferation, participate in the signal transduction in cells and so on. After molecular cloning we got that the complete cDNA sequence of Prx2 consists 882 bp, including a 5'-UTR of 46 bp, an open reading frame (ORF) of 591 bp, and a 3'-UTR of 245 bp. The complete gene of miiuy croaker Prx2 has 5 exons and 4 introns. The deduced 197 amino acid residues of miiuy croaker Prx2 consists a Val-Cys-Pro (VCP) motifs. In order to better elucidate the immune mechanisms of the Prx2 in the lower vertebrates, we conducted a research about the Prx2 gene of miiuy croaker and its expression pattern after bacterial infection. Real-time PCR (RT-PCR) results showed that expression of Prx2 was up-regulated in kidney, liver and spleen under infection with Vibrio anguillarum, and expressed level differently in ten different uninjected tissues. Our results suggested that Prx2 might be involved in immune defence in miiuy croaker.
Collapse
Affiliation(s)
- Liping Ren
- Laboratory for Marine Living Resources and Molecular Engineering, College of Marine Science, Zhejiang Ocean University, Zhoushan 316000, PR China
| | | | | | | |
Collapse
|