1
|
Morales ED, Wang D, Burke MJ, Han J, Devine DD, Zhang K, Duan D. Transcriptional changes of genes encoding sarcoplasmic reticulum calcium binding and up-taking proteins in normal and Duchenne muscular dystrophy dogs. BMC Musculoskelet Disord 2024; 25:811. [PMID: 39402529 PMCID: PMC11472500 DOI: 10.1186/s12891-024-07927-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Cytosolic calcium overload contributes to muscle degradation in Duchenne muscular dystrophy (DMD). The sarcoplasmic reticulum (SR) is the primary calcium storage organelle in muscle. The sarco-endoplasmic reticulum ATPase (SERCA) pumps cytosolic calcium to the SR during muscle relaxation. Calcium is kept in the SR by calcium-binding proteins. METHODS Given the importance of the canine DMD model in translational studies, we examined transcriptional changes of SERCA (SERCA1 and SERCA2a), SERCA regulators (phospholamban, sarcolipin, myoregulin, and dwarf open reading frame), and SR calcium-binding proteins (calreticulin, calsequestrin 1, calsequestrin 2, and sarcalumenin) in skeletal muscle (diaphragm and extensor carpi ulnaris) and heart (left ventricle) in normal and affected male dogs by droplet digital PCR before the onset (≤ 2-m-old), at the active stage (8 to 16-m-old), and at the terminal stage (30 to 50-m-old) of the disease. Since many of these proteins are expressed in a fiber type-specific manner, we also evaluated fiber type composition in skeletal muscle. RESULTS In affected dog skeletal muscle, SERCA and its regulators were down-regulated at the active stage, but calcium-binding proteins (except for calsequestrin 1) were upregulated at the terminal stage. Surprisingly, nominal differences were detected in the heart. We also examined whether there exists sex-biased expression in 8 to 16-m-old dogs. Multiple transcripts were significantly downregulated in the heart and extensor carpi ulnaris muscle of female dogs. In fiber type analysis, we found significantly more type I fiber in the diaphragm of 8 to 16-m-old affected dogs, and significantly more type II fibers in the extensor carpi ulnaris of 30 to 50-m-old affected dogs. However, no difference was detected between male and female dogs. CONCLUSIONS Our study adds new knowledge to the understanding of muscle calcium regulation in normal and dystrophic canines.
Collapse
Affiliation(s)
- Emily D Morales
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, 65212, USA
| | - Dongxin Wang
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, 65212, USA
| | - Matthew J Burke
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, 65212, USA
| | - Jin Han
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, 65212, USA
| | - Drake D Devine
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, 65212, USA
| | - Keqing Zhang
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, 65212, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, 65212, USA.
- Department of Neurology, School of Medicine, The University of Missouri, Columbia, MO, 65212, USA.
- Department of Chemical and Biomedical Engineering, College of Engineering, The University of Missouri, Columbia, MO, 65212, USA.
- Department of Biomedical Sciences, College of Veterinary Medicine, The University of Missouri, Columbia, MO, 65212, USA.
| |
Collapse
|
2
|
Riddell DO, Hildyard JCW, Harron RCM, Taylor-Brown F, Kornegay JN, Wells DJ, Piercy RJ. Longitudinal assessment of skeletal muscle functional mechanics in the DE50-MD dog model of Duchenne muscular dystrophy. Dis Model Mech 2023; 16:dmm050395. [PMID: 38050706 PMCID: PMC10753191 DOI: 10.1242/dmm.050395] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023] Open
Abstract
Duchenne muscular dystrophy (DMD), caused by mutations in the dystrophin (DMD) gene, is associated with fatal muscle degeneration and atrophy. Patients with DMD have progressive reductions in skeletal muscle strength and resistance to eccentric muscle stretch. Using the DE50-MD dog model of DMD, we assessed tibiotarsal joint (TTJ) flexor and extensor force dynamics, and the resistance of dystrophic muscle to eccentric stretch. Male DE50-MD and wild-type (WT) dogs were analysed every 3 months until 18 months of age. There was an age-associated decline in eccentric contraction resistance in DE50-MD TTJ flexors that discriminated, with high statistical power, WT from DE50-MD individuals. For isometric contraction, at the majority of timepoints, DE50-MD dogs had lower maximum absolute and relative TTJ flexor force, reduced TTJ muscle contraction times and prolonged relaxation compared to those in WT dogs. Cranial tibial muscles, the primary TTJ flexor, of 18-month-old DE50-MD dogs had significant numbers of regenerating fibres as expected, but also fewer type I fibres and more hybrid fibres than those in WT dogs. We conclude that these parameters, in particular, the eccentric contraction decrement, could be used as objective outcome measures for pre-clinical assessment in DE50-MD dogs.
Collapse
Affiliation(s)
- Dominique O. Riddell
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London NW10TU, UK
| | - John C. W. Hildyard
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London NW10TU, UK
| | - Rachel C. M. Harron
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London NW10TU, UK
| | - Frances Taylor-Brown
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London NW10TU, UK
| | - Joe N. Kornegay
- Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, College Station, TX 77843, USA
| | - Dominic J. Wells
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW10TU, UK
| | - Richard J. Piercy
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London NW10TU, UK
| |
Collapse
|
3
|
You JS, Kim Y, Lee S, Bashir R, Chen J. RhoA/ROCK signalling activated by ARHGEF3 promotes muscle weakness via autophagy in dystrophic mdx mice. J Cachexia Sarcopenia Muscle 2023. [PMID: 37311604 PMCID: PMC10401546 DOI: 10.1002/jcsm.13278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/16/2023] [Accepted: 05/01/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD), caused by dystrophin deficiency, leads to progressive and fatal muscle weakness through yet-to-be-fully deciphered molecular perturbations. Emerging evidence implicates RhoA/Rho-associated protein kinase (ROCK) signalling in DMD pathology, yet its direct role in DMD muscle function, and related mechanisms, are unknown. METHODS Three-dimensionally engineered dystrophin-deficient mdx skeletal muscles and mdx mice were used to test the role of ROCK in DMD muscle function in vitro and in situ, respectively. The role of ARHGEF3, one of the RhoA guanine nucleotide exchange factors (GEFs), in RhoA/ROCK signalling and DMD pathology was examined by generating Arhgef3 knockout mdx mice. The role of RhoA/ROCK signalling in mediating the function of ARHGEF3 was determined by evaluating the effects of wild-type or GEF-inactive ARHGEF3 overexpression with ROCK inhibitor treatment. To gain more mechanistic insights, autophagy flux and the role of autophagy were assessed in various conditions with chloroquine. RESULTS Inhibition of ROCK with Y-27632 improved muscle force production in 3D-engineered mdx muscles (+25% from three independent experiments, P < 0.05) and in mice (+25%, P < 0.001). Unlike suggested by previous studies, this improvement was independent of muscle differentiation or quantity and instead related to increased muscle quality. We found that ARHGEF3 was elevated and responsible for RhoA/ROCK activation in mdx muscles, and that depleting ARHGEF3 in mdx mice restored muscle quality (up to +36%, P < 0.01) and morphology without affecting regeneration. Conversely, overexpressing ARHGEF3 further compromised mdx muscle quality (-13% vs. empty vector control, P < 0.01) in GEF activity- and ROCK-dependent manner. Notably, ARHGEF3/ROCK inhibition exerted the effects by rescuing autophagy which is commonly impaired in dystrophic muscles. CONCLUSIONS Our findings uncover a new pathological mechanism of muscle weakness in DMD involving the ARHGEF3-ROCK-autophagy pathway and the therapeutic potential of targeting ARHGEF3 in DMD.
Collapse
Affiliation(s)
- Jae-Sung You
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Nick J. Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yongdeok Kim
- Nick J. Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Soohyun Lee
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Rashid Bashir
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Nick J. Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, Urbana, Illinois, USA
| | - Jie Chen
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
4
|
Kiriaev L, Baumann CW, Lindsay A. Eccentric contraction-induced strength loss in dystrophin-deficient muscle: Preparations, protocols, and mechanisms. J Gen Physiol 2023; 155:213810. [PMID: 36651896 PMCID: PMC9856740 DOI: 10.1085/jgp.202213208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/01/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
The absence of dystrophin hypersensitizes skeletal muscle of lower and higher vertebrates to eccentric contraction (ECC)-induced strength loss. Loss of strength can be accompanied by transient and reversible alterations to sarcolemmal excitability and disruption, triad dysfunction, and aberrations in calcium kinetics and reactive oxygen species production. The degree of ECC-induced strength loss, however, appears dependent on several extrinsic and intrinsic factors such as vertebrate model, skeletal muscle preparation (in vivo, in situ, or ex vivo), skeletal muscle hierarchy (single fiber versus whole muscle and permeabilized versus intact), strength production, fiber branching, age, and genetic background, among others. Consistent findings across research groups show that dystrophin-deficient fast(er)-twitch muscle is hypersensitive to ECCs relative to wildtype muscle, but because preparations are highly variable and sensitivity to ECCs are used repeatedly to determine efficacy of many preclinical treatments, it is critical to evaluate the impact of skeletal muscle preparations on sensitivity to ECC-induced strength loss in dystrophin-deficient skeletal muscle. Here, we review and discuss variations in skeletal muscle preparations to evaluate the factors responsible for variations and discrepancies between research groups. We further highlight that dystrophin-deficiency, or loss of the dystrophin-glycoprotein complex in skeletal muscle, is not a prerequisite for accelerated strength loss-induced by ECCs.
Collapse
Affiliation(s)
- Leonit Kiriaev
- Muscle Research Group, Murdoch Children’s Research Institute, Parkville, Victoria, Australia,School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Cory W. Baumann
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, USA,Department of Biomedical Sciences, Ohio University, Athens, OH, USA
| | - Angus Lindsay
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia,Correspondence to Angus Lindsay:
| |
Collapse
|
5
|
Hakim CH, Teixeira J, Leach SB, Duan D. Physiological Assessment of Muscle, Heart, and Whole Body Function in the Canine Model of Duchenne Muscular Dystrophy. Methods Mol Biol 2023; 2587:67-103. [PMID: 36401025 DOI: 10.1007/978-1-0716-2772-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a lethal muscle disease caused by dystrophin deficiency. Patients gradually lose motor function, become wheelchair-bound, and die from respiratory and/or cardiac muscle failure. Dystrophin-null dogs have been used as a large animal model for DMD since 1988 and are considered an excellent bridge between rodent models and human patients. While numerous protocols have been published for studying muscle and heart physiology in mice, few such protocols exist for studying skeletal muscle contractility, heart function, and whole-body activity in dogs. Over the last 20 years, we have developed and adapted an array of assays to evaluate whole-body movement, gait, single muscle force, whole limb torque, cardiac electrophysiology, and hemodynamic function in normal and dystrophic dogs. In this chapter, we present detailed working protocols for these assays and lessons we learned during the development and use of these protocols.
Collapse
Affiliation(s)
- Chady H Hakim
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, USA
| | - James Teixeira
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, USA
| | - Stacy B Leach
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, The University of Missouri, Columbia, MO, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, USA.
- Department of Biomedical, Biological & Chemical Engineering, College of Engineering, The University of Missouri, Columbia, MO, USA.
- Department of Neurology, School of Medicine, The University of Missouri, Columbia, MO, USA.
- Department of Biomedical Sciences, College of Veterinary Medicine, The University of Missouri, Columbia, MO, USA.
| |
Collapse
|
6
|
Hakim CH, Yang HT, Burke MJ, Teixeira J, Jenkins GJ, Yang NN, Yao G, Duan D. Extensor carpi ulnaris muscle shows unexpected slow-to-fast fiber type switch in Duchenne muscular dystrophy dogs. Dis Model Mech 2021; 14:273743. [PMID: 34704592 PMCID: PMC8688408 DOI: 10.1242/dmm.049006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 10/20/2021] [Indexed: 11/22/2022] Open
Abstract
Aged dystrophin-null canines are excellent models for studying experimental therapies for Duchenne muscular dystrophy, a lethal muscle disease caused by dystrophin deficiency. To establish the baseline, we studied the extensor carpi ulnaris (ECU) muscle in 15 terminal age (3-year-old) male affected dogs and 15 age/sex-matched normal dogs. Affected dogs showed histological and anatomical hallmarks of dystrophy, including muscle inflammation and fibrosis, myofiber size variation and centralized myonuclei, as well as a significant reduction of muscle weight, muscle-to-body weight ratio and muscle cross-sectional area. To rigorously characterize the contractile properties of the ECU muscle, we developed a novel in situ assay. Twitch and tetanic force, contraction and relaxation rate, and resistance to eccentric contraction-induced force loss were significantly decreased in affected dogs. Intriguingly, the time-to-peak tension and half-relaxation time were significantly shortened in affected dogs. Contractile kinetics predicted an unforeseen slow-to-fast myofiber-type switch, which we confirmed at the protein and transcript level. Our study establishes a foundation for studying long-term and late-stage therapeutic interventions in dystrophic canines. The unexpected myofiber-type switch highlights the complexity of muscle remodeling in dystrophic large mammals. This article has an associated First Person interview with the first author of the paper. Summary: A slow-to-fast fiber-type switch in dystrophic canine ECU muscle is revealed by contraction kinetics and myosin protein and transcript expression. This highlights the complexity of muscle remodeling in Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Chady H Hakim
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, USA.,National Center for Advancing Translational Sciences, NIH, Bethesda, MD, USA
| | - Hsiao T Yang
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, USA
| | - Matthew J Burke
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, USA
| | - James Teixeira
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, USA
| | - Gregory J Jenkins
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, USA
| | - N N Yang
- National Center for Advancing Translational Sciences, NIH, Bethesda, MD, USA
| | - Gang Yao
- Department of Biomedical, Biological & Chemical Engineering, College of Engineering, The University of Missouri, Columbia, MO, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, USA.,Department of Biomedical, Biological & Chemical Engineering, College of Engineering, The University of Missouri, Columbia, MO, USA.,Department of Neurology, School of Medicine, The University of Missouri, Columbia, MO, USA.,Department of Biomedical Sciences, College of Veterinary Medicine, The University of Missouri, Columbia, MO, USA
| |
Collapse
|
7
|
Al Tanoury Z, Zimmerman JF, Rao J, Sieiro D, McNamara HM, Cherrier T, Rodríguez-delaRosa A, Hick-Colin A, Bousson F, Fugier-Schmucker C, Marchiano F, Habermann B, Chal J, Nesmith AP, Gapon S, Wagner E, Gupta VA, Bassel-Duby R, Olson EN, Cohen AE, Parker KK, Pourquié O. Prednisolone rescues Duchenne muscular dystrophy phenotypes in human pluripotent stem cell-derived skeletal muscle in vitro. Proc Natl Acad Sci U S A 2021; 118:e2022960118. [PMID: 34260377 PMCID: PMC8285911 DOI: 10.1073/pnas.2022960118] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a devastating genetic disease leading to degeneration of skeletal muscles and premature death. How dystrophin absence leads to muscle wasting remains unclear. Here, we describe an optimized protocol to differentiate human induced pluripotent stem cells (iPSC) to a late myogenic stage. This allows us to recapitulate classical DMD phenotypes (mislocalization of proteins of the dystrophin-associated glycoprotein complex, increased fusion, myofiber branching, force contraction defects, and calcium hyperactivation) in isogenic DMD-mutant iPSC lines in vitro. Treatment of the myogenic cultures with prednisolone (the standard of care for DMD) can dramatically rescue force contraction, fusion, and branching defects in DMD iPSC lines. This argues that prednisolone acts directly on myofibers, challenging the largely prevalent view that its beneficial effects are caused by antiinflammatory properties. Our work introduces a human in vitro model to study the onset of DMD pathology and test novel therapeutic approaches.
Collapse
Affiliation(s)
- Ziad Al Tanoury
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, INSERM U964, Université de Strasbourg, 67411 Illkirch Graffenstaden, France
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Harvard Stem Cell Institute, Harvard University, Boston, MA 02138
| | - John F Zimmerman
- Harvard Stem Cell Institute, Harvard University, Boston, MA 02138
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Boston, MA 02134
| | - Jyoti Rao
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Harvard Stem Cell Institute, Harvard University, Boston, MA 02138
| | - Daniel Sieiro
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Harvard Stem Cell Institute, Harvard University, Boston, MA 02138
| | - Harold M McNamara
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- Department of Physics, Harvard University, Cambridge, MA 02138
| | - Thomas Cherrier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, INSERM U964, Université de Strasbourg, 67411 Illkirch Graffenstaden, France
| | - Alejandra Rodríguez-delaRosa
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Harvard Stem Cell Institute, Harvard University, Boston, MA 02138
| | | | - Fanny Bousson
- Anagenesis Biotechnologies, 67400 Illkirch Graffenstaden, France
| | | | - Fabio Marchiano
- Aix-Marseille University, CNRS, Institut de Biologie du Développement de Marseille UMR 7288, The Turing Center for Living Systems, 13009 Marseille, France
| | - Bianca Habermann
- Aix-Marseille University, CNRS, Institut de Biologie du Développement de Marseille UMR 7288, The Turing Center for Living Systems, 13009 Marseille, France
| | - Jérome Chal
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, INSERM U964, Université de Strasbourg, 67411 Illkirch Graffenstaden, France
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Harvard Stem Cell Institute, Harvard University, Boston, MA 02138
| | - Alexander P Nesmith
- Harvard Stem Cell Institute, Harvard University, Boston, MA 02138
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Boston, MA 02134
| | - Svetlana Gapon
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115
| | - Erica Wagner
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115
| | - Vandana A Gupta
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Adam E Cohen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- Department of Physics, Harvard University, Cambridge, MA 02138
| | - Kevin Kit Parker
- Harvard Stem Cell Institute, Harvard University, Boston, MA 02138
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Boston, MA 02134
| | - Olivier Pourquié
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, INSERM U964, Université de Strasbourg, 67411 Illkirch Graffenstaden, France;
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Harvard Stem Cell Institute, Harvard University, Boston, MA 02138
| |
Collapse
|
8
|
Kodippili K, Thorne PK, Laughlin MH, Duan D. Dystrophin deficiency impairs vascular structure and function in the canine model of Duchenne muscular dystrophy. J Pathol 2021; 254:589-605. [PMID: 33999411 DOI: 10.1002/path.5704] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/02/2021] [Accepted: 05/12/2021] [Indexed: 01/03/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a muscle-wasting disease caused by dystrophin deficiency. Vascular dysfunction has been suggested as an underlying pathogenic mechanism in DMD. However, this has not been thoroughly studied in a large animal model. Here we investigated structural and functional changes in the vascular smooth muscle and endothelium of the canine DMD model. The expression of dystrophin and endothelial nitric oxide synthase (eNOS), neuronal NOS (nNOS), and the structure and function of the femoral artery from 15 normal and 16 affected adult dogs were evaluated. Full-length dystrophin was detected in the endothelium and smooth muscle in normal but not affected dog arteries. Normal arteries lacked nNOS but expressed eNOS in the endothelium. NOS activity and eNOS expression were reduced in the endothelium of dystrophic dogs. Dystrophin deficiency resulted in structural remodeling of the artery. In affected dogs, the maximum tension induced by vasoconstrictor phenylephrine and endothelin-1 was significantly reduced. In addition, acetylcholine-mediated vasorelaxation was significantly impaired, whereas exogenous nitric oxide-induced vasorelaxation was significantly enhanced. Our results suggest that dystrophin plays a crucial role in maintaining the structure and function of vascular endothelium and smooth muscle in large mammals. Vascular defects may contribute to DMD pathogenesis. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kasun Kodippili
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | - Pamela K Thorne
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - M Harold Laughlin
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA.,Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.,Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA.,Department of Biomedical, Biological & Chemical Engineering, College of Engineering, University of Missouri, Columbia, MO, USA
| |
Collapse
|
9
|
Barthélémy I, Hitte C, Tiret L. The Dog Model in the Spotlight: Legacy of a Trustful Cooperation. J Neuromuscul Dis 2020; 6:421-451. [PMID: 31450509 PMCID: PMC6918919 DOI: 10.3233/jnd-190394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dogs have long been used as a biomedical model system and in particular as a preclinical proof of concept for innovative therapies before translation to humans. A recent example of the utility of this animal model is the promising myotubularin gene delivery in boys affected by X-linked centronuclear myopathy after successful systemic, long-term efficient gene therapy in Labrador retrievers. Mostly, this is due to unique features that make dogs an optimal system. The continuous emergence of spontaneous inherited disorders enables the identification of reliable complementary molecular models for human neuromuscular disorders (NMDs). Dogs’ characteristics including size, lifespan and unprecedented medical care level allow a comprehensive longitudinal description of diseases. Moreover, the highly similar pathogenic mechanisms with human patients yield to translational robustness. Finally, interindividual phenotypic heterogeneity between dogs helps identifying modifiers and anticipates precision medicine issues. This review article summarizes the present list of molecularly characterized dog models for NMDs and provides an exhaustive list of the clinical and paraclinical assays that have been developed. This toolbox offers scientists a sensitive and reliable system to thoroughly evaluate neuromuscular function, as well as efficiency and safety of innovative therapies targeting these NMDs. This review also contextualizes the model by highlighting its unique genetic value, shaped by the long-term coevolution of humans and domesticated dogs. Because the dog is one of the most protected research animal models, there is considerable opposition to include it in preclinical projects, posing a threat to the use of this model. We thus discuss ethical issues, emphasizing that unlike many other models, the dog also benefits from its contribution to comparative biomedical research with a drastic reduction in the prevalence of morbid alleles in the breeding stock and an improvement in medical care.
Collapse
Affiliation(s)
- Inès Barthélémy
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, UPEC, EFS, École nationale vétérinaire d'Alfort, Maisons-Alfort, France
| | - Christophe Hitte
- CNRS, University of Rennes 1, UMR 6290, IGDR, Faculty of Medicine, SFR Biosit, Rennes, France
| | - Laurent Tiret
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, UPEC, EFS, École nationale vétérinaire d'Alfort, Maisons-Alfort, France
| |
Collapse
|
10
|
Story BD, Miller ME, Bradbury AM, Million ED, Duan D, Taghian T, Faissler D, Fernau D, Beecy SJ, Gray-Edwards HL. Canine Models of Inherited Musculoskeletal and Neurodegenerative Diseases. Front Vet Sci 2020; 7:80. [PMID: 32219101 PMCID: PMC7078110 DOI: 10.3389/fvets.2020.00080] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/31/2020] [Indexed: 12/11/2022] Open
Abstract
Mouse models of human disease remain the bread and butter of modern biology and therapeutic discovery. Nonetheless, more often than not mouse models do not reproduce the pathophysiology of the human conditions they are designed to mimic. Naturally occurring large animal models have predominantly been found in companion animals or livestock because of their emotional or economic value to modern society and, unlike mice, often recapitulate the human disease state. In particular, numerous models have been discovered in dogs and have a fundamental role in bridging proof of concept studies in mice to human clinical trials. The present article is a review that highlights current canine models of human diseases, including Alzheimer's disease, degenerative myelopathy, neuronal ceroid lipofuscinosis, globoid cell leukodystrophy, Duchenne muscular dystrophy, mucopolysaccharidosis, and fucosidosis. The goal of the review is to discuss canine and human neurodegenerative pathophysiologic similarities, introduce the animal models, and shed light on the ability of canine models to facilitate current and future treatment trials.
Collapse
Affiliation(s)
- Brett D. Story
- Auburn University College of Veterinary Medicine, Auburn, AL, United States
- University of Florida College of Veterinary Medicine, Gainesville, FL, United States
| | - Matthew E. Miller
- Auburn University College of Veterinary Medicine, Auburn, AL, United States
| | - Allison M. Bradbury
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Emily D. Million
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States
- Department of Biomedical, Biological and Chemical Engineering, College of Engineering, University of Missouri, Columbia, MO, United States
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Toloo Taghian
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
| | - Dominik Faissler
- Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, United States
| | - Deborah Fernau
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
| | - Sidney J. Beecy
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, United States
| | - Heather L. Gray-Edwards
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
11
|
Widrick JJ, Kawahara G, Alexander MS, Beggs AH, Kunkel LM. Discovery of Novel Therapeutics for Muscular Dystrophies using Zebrafish Phenotypic Screens. J Neuromuscul Dis 2020; 6:271-287. [PMID: 31282429 PMCID: PMC6961982 DOI: 10.3233/jnd-190389] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The recent availability and development of mutant and transgenic zebrafish strains that model human muscular dystrophies has created new research opportunities for therapeutic development. Not only do these models mimic many pathological aspects of human dystrophies, but their small size, large clutch sizes, rapid ex utero development, body transparency, and genetic tractability enable research approaches that would be inconceivable with mammalian model systems. Here we discuss the use of zebrafish models of muscular dystrophy to rapidly screen hundreds to thousands of bioactive compounds in order to identify novel therapeutic candidates that modulate pathologic phenotypes. We review the justification and rationale behind this unbiased approach, including how zebrafish screens have identified FDA-approved drugs that are candidates for treating Duchenne and limb girdle muscular dystrophies. Not only can these drugs be re-purposed for treating dystrophies in a fraction of the time and cost of new drug development, but their identification has revealed novel, unexpected directions for future therapy development. Phenotype-driven zebrafish drug screens are an important compliment to the more established mammalian, target-based approaches for rapidly developing and validating therapeutics for muscular dystrophies.
Collapse
Affiliation(s)
- Jeffrey J Widrick
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Genri Kawahara
- Department of Pathophysiology, Tokyo Medical University, Tokyo, Japan
| | - Matthew S Alexander
- Department of Pediatrics, Division of Neurology at the University of Alabama at Birmingham and Children's of Alabama; University of Alabama at Birmingham Center for Exercise Medicine; University of Alabama at Birmingham Civitan International Research Center; University of Alabama at Birmingham Department of Genetics; Birmingham, Alabama, USA
| | - Alan H Beggs
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Louis M Kunkel
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
12
|
Wasala NB, Hakim CH, Chen SJ, Yang NN, Duan D. Questions Answered and Unanswered by the First CRISPR Editing Study in a Canine Model of Duchenne Muscular Dystrophy. Hum Gene Ther 2019; 30:535-543. [PMID: 30648435 PMCID: PMC6534086 DOI: 10.1089/hum.2018.243] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/11/2019] [Indexed: 12/17/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) editing is being considered as a potential gene repair therapy to treat Duchenne muscular dystrophy, a dystrophin-deficient lethal muscle disease affecting all muscles in the body. A recent preliminary study from the Olson laboratory (Amoasii et al. Science 2018;362:89-91) showed robust dystrophin restoration in a canine Duchenne muscular dystrophy model following intramuscular or intravenous delivery of the CRISPR editing machinery by adeno-associated virus serotype 9. Despite the limitation of the small sample size, short study duration, and the lack of muscle function data, the Olson lab findings have provided important proof of principle for scaling up CRISPR therapy from rodents to large mammals. Future large-scale, long-term, and comprehensive studies are warranted to establish the safety and efficacy of CRISPR editing therapy in large mammals.
Collapse
Affiliation(s)
- Nalinda B. Wasala
- Department of Molecular Microbiology, College of Veterinary Medicine, The University of Missouri, Columbia
| | - Chady H. Hakim
- Department of Molecular Microbiology, College of Veterinary Medicine, The University of Missouri, Columbia
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Shi-Jie Chen
- Department of Physics, College of Veterinary Medicine, The University of Missouri, Columbia
- Department of Biochemistry, College of Veterinary Medicine, The University of Missouri, Columbia
| | - N. Nora Yang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Dongsheng Duan
- Department of Molecular Microbiology, College of Veterinary Medicine, The University of Missouri, Columbia
- Department of Neurology, School of Medicine, College of Veterinary Medicine, The University of Missouri, Columbia
- Department of Bioengineering, College of Veterinary Medicine, The University of Missouri, Columbia
- Department of Biomedical Sciences, College of Veterinary Medicine, The University of Missouri, Columbia
| |
Collapse
|
13
|
Kodippili K, Hakim CH, Yang HT, Pan X, Yang NN, Laughlin MH, Terjung RL, Duan D. Nitric oxide-dependent attenuation of noradrenaline-induced vasoconstriction is impaired in the canine model of Duchenne muscular dystrophy. J Physiol 2018; 596:5199-5216. [PMID: 30152022 DOI: 10.1113/jp275672] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/08/2018] [Indexed: 12/31/2022] Open
Abstract
KEY POINTS We developed a novel method to study sympatholysis in dogs. We showed abolishment of sarcolemmal nNOS, and reduction of total nNOS and total eNOS in the canine Duchenne muscular dystrophy (DMD) model. We showed sympatholysis in dogs involving both nNOS-derived NO-dependent and NO-independent mechanisms. We showed that the loss of sarcolemmal nNOS compromised sympatholysis in the canine DMD model. We showed that NO-independent sympatholysis was not affected in the canine DMD model. ABSTRACT The absence of dystrophin in Duchenne muscular dystrophy (DMD) leads to the delocalization of neuronal nitric oxide synthase (nNOS) from the sarcolemma. Sarcolemmal nNOS plays an important role in sympatholysis, a process of attenuating reflex sympathetic vasoconstriction during exercise to ensure blood perfusion in working muscle. Delocalization of nNOS compromises sympatholysis resulting in functional ischaemia and muscle damage in DMD patients and mouse models. Little is known about the contribution of membrane-associated nNOS to blood flow regulation in dystrophin-deficient DMD dogs. We tested the hypothesis that the loss of sarcolemmal nNOS abolishes protective sympatholysis in contracting muscle of affected dogs. Haemodynamic responses to noradrenaline in the brachial artery were evaluated at rest and during contraction in the absence and presence of NOS inhibitors. We found sympatholysis was significantly compromised in DMD dogs, as well as in normal dogs treated with a selective nNOS inhibitor, suggesting that the absence of sarcolemmal nNOS underlies defective sympatholysis in the canine DMD model. Surprisingly, inhibition of all NOS isoforms did not completely abolish sympatholysis in normal dogs, suggesting sympatholysis in canine muscle also involves NO-independent mechanism(s). Our study established a foundation for using the dog model to test therapies aimed at restoring nNOS homeostasis in DMD.
Collapse
Affiliation(s)
- Kasun Kodippili
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | - Chady H Hakim
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA.,National Center for Advancing Translational Sciences (NCATS), Bethesda, MD, USA
| | - Hsiao T Yang
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA.,Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Xiufang Pan
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | - N Nora Yang
- National Center for Advancing Translational Sciences (NCATS), Bethesda, MD, USA
| | - Maurice H Laughlin
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Ronald L Terjung
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA.,Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.,Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA.,Department of Bioengineering, University of Missouri, Columbia, MO, USA
| |
Collapse
|
14
|
Kodippili K, Hakim CH, Pan X, Yang HT, Yue Y, Zhang Y, Shin JH, Yang NN, Duan D. Dual AAV Gene Therapy for Duchenne Muscular Dystrophy with a 7-kb Mini-Dystrophin Gene in the Canine Model. Hum Gene Ther 2017; 29:299-311. [PMID: 28793798 DOI: 10.1089/hum.2017.095] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Dual adeno-associated virus (AAV) technology was developed in 2000 to double the packaging capacity of the AAV vector. The proof of principle has been demonstrated in various mouse models. Yet, pivotal evidence is lacking in large animal models of human diseases. Here we report expression of a 7-kb canine ΔH2-R15 mini-dystrophin gene using a pair of dual AAV vectors in the canine model of Duchenne muscular dystrophy (DMD). The ΔH2-R15 minigene is by far the most potent synthetic dystrophin gene engineered for DMD gene therapy. We packaged minigene dual vectors in Y731F tyrosine-modified AAV-9 and delivered to the extensor carpi ulnaris muscle of a 12-month-old affected dog at the dose of 2 × 1013 viral genome particles/vector/muscle. Widespread mini-dystrophin expression was observed 2 months after gene transfer. The missing dystrophin-associated glycoprotein complex was restored. Treatment also reduced muscle degeneration and fibrosis and improved myofiber size distribution. Importantly, dual AAV therapy greatly protected the muscle from eccentric contraction-induced force loss. Our data provide the first clear evidence that dual AAV therapy can be translated to a diseased large mammal. Further development of dual AAV technology may lead to effective therapies for DMD and many other diseases in human patients.
Collapse
Affiliation(s)
- Kasun Kodippili
- 1 Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri , Columbia, Missouri
| | - Chady H Hakim
- 1 Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri , Columbia, Missouri.,2 National Center for Advancing Translational Sciences , Bethesda, Maryland
| | - Xiufang Pan
- 1 Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri , Columbia, Missouri
| | - Hsiao T Yang
- 1 Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri , Columbia, Missouri.,3 Department of Biomedical Sciences, College of Veterinary Medicine, The University of Missouri , Columbia, Missouri
| | - Yongping Yue
- 1 Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri , Columbia, Missouri
| | - Yadong Zhang
- 1 Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri , Columbia, Missouri
| | - Jin-Hong Shin
- 1 Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri , Columbia, Missouri
| | - N Nora Yang
- 2 National Center for Advancing Translational Sciences , Bethesda, Maryland
| | - Dongsheng Duan
- 1 Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri , Columbia, Missouri.,3 Department of Biomedical Sciences, College of Veterinary Medicine, The University of Missouri , Columbia, Missouri.,4 Department of Neurology, School of Medicine, The University of Missouri , Columbia, Missouri.,5 Department of Bioengineering, The University of Missouri , Columbia, Missouri
| |
Collapse
|
15
|
Hakim CH, Mijailovic A, Lessa TB, Coates JR, Shin C, Rutkove SB, Duan D. Non-invasive evaluation of muscle disease in the canine model of Duchenne muscular dystrophy by electrical impedance myography. PLoS One 2017; 12:e0173557. [PMID: 28339469 PMCID: PMC5365102 DOI: 10.1371/journal.pone.0173557] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/23/2017] [Indexed: 02/07/2023] Open
Abstract
Dystrophin-deficient dogs are by far the best available large animal models for Duchenne muscular dystrophy (DMD), the most common lethal childhood muscle degenerative disease. The use of the canine DMD model in basic disease mechanism research and translational studies will be greatly enhanced with the development of reliable outcome measures. Electrical impedance myography (EIM) is a non-invasive painless procedure that provides quantitative data relating to muscle composition and histology. EIM has been extensively used in neuromuscular disease research in both human patients and rodent models. Recent studies suggest that EIM may represent a highly reliable and convenient outcome measure in DMD patients and the mdx mouse model of DMD. To determine whether EIM can be used as a biomarker of disease severity in the canine model, we performed the assay in fourteen young (~6.6-m-old; 6 normal and 8 affected) and ten mature (~16.9-m-old; 4 normal and 6 affected) dogs of mixed background breeds. EIM was well tolerated with good inter-rater reliability. Affected dogs showed higher resistance, lower reactance and phase. The difference became more straightforward in mature dogs. Importantly, we observed a statistically significant correlation between the EIM data and muscle fibrosis. Our results suggest that EIM is a valuable objective measurement in the canine DMD model.
Collapse
Affiliation(s)
- Chady H. Hakim
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, United States of America
| | - Alex Mijailovic
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Thais B. Lessa
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, United States of America
| | - Joan R. Coates
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States of America
| | - Carmen Shin
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Seward B. Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, United States of America
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States of America
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, United States of America
- Department of Bioengineering, University of Missouri, Columbia, MO, United States of America
| |
Collapse
|
16
|
Widrick JJ, Alexander MS, Sanchez B, Gibbs DE, Kawahara G, Beggs AH, Kunkel LM. Muscle dysfunction in a zebrafish model of Duchenne muscular dystrophy. Physiol Genomics 2016; 48:850-860. [PMID: 27764767 DOI: 10.1152/physiolgenomics.00088.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/29/2016] [Indexed: 01/10/2023] Open
Abstract
Sapje zebrafish lack the protein dystrophin and are the smallest vertebrate model of Duchenne muscular dystrophy (DMD). Their small size makes them ideal for large-scale drug discovery screens. However, the extent that sapje mimic the muscle dysfunction of higher vertebrate models of DMD is unclear. We used an optical birefringence assay to differentiate affected dystrophic sapje larvae from their unaffected siblings and then studied trunk muscle contractility at 4-7 days postfertilization. Preparation cross-sectional area (CSA) was similar for affected and unaffected larvae, yet tetanic forces of affected preparations were only 30-60% of normal. ANCOVA indicated that the linear relationship observed between tetanic force and CSA for unaffected preparations was absent in the affected population. Consequently, the average force/CSA of affected larvae was depressed 30-70%. Disproportionate reductions in twitch vs. tetanic force, and a slowing of twitch tension development and relaxation, indicated that the myofibrillar disorganization evident in the birefringence assay could not explain the entire force loss. Single eccentric contractions, in which activated preparations were lengthened 5-10%, resulted in tetanic force deficits in both groups of larvae. However, deficits of affected preparations were three- to fivefold greater at all strains and ages, even after accounting for any recovery. Based on these functional assessments, we conclude that the sapje mutant zebrafish is a phenotypically severe model of DMD. The severe contractile deficits of sapje larvae represent novel physiological endpoints for therapeutic drug screening.
Collapse
Affiliation(s)
- Jeffrey J Widrick
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts; .,Department of Pediatrics and Genetics, Harvard Medical School, Boston, Massachusetts
| | - Matthew S Alexander
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts.,Department of Pediatrics and Genetics, Harvard Medical School, Boston, Massachusetts
| | - Benjamin Sanchez
- Department of Neurology, Division of Neuromuscular Diseases, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Devin E Gibbs
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts
| | - Genri Kawahara
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts.,Department of Pediatrics and Genetics, Harvard Medical School, Boston, Massachusetts
| | - Alan H Beggs
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts; and
| | - Louis M Kunkel
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts.,Department of Pediatrics and Genetics, Harvard Medical School, Boston, Massachusetts.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts; and.,Harvard Stem Cell Institute, Cambridge, Massachusetts
| |
Collapse
|
17
|
McGreevy JW, Hakim CH, McIntosh MA, Duan D. Animal models of Duchenne muscular dystrophy: from basic mechanisms to gene therapy. Dis Model Mech 2015; 8:195-213. [PMID: 25740330 PMCID: PMC4348559 DOI: 10.1242/dmm.018424] [Citation(s) in RCA: 316] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disorder. It is caused by loss-of-function mutations in the dystrophin gene. Currently, there is no cure. A highly promising therapeutic strategy is to replace or repair the defective dystrophin gene by gene therapy. Numerous animal models of DMD have been developed over the last 30 years, ranging from invertebrate to large mammalian models. mdx mice are the most commonly employed models in DMD research and have been used to lay the groundwork for DMD gene therapy. After ~30 years of development, the field has reached the stage at which the results in mdx mice can be validated and scaled-up in symptomatic large animals. The canine DMD (cDMD) model will be excellent for these studies. In this article, we review the animal models for DMD, the pros and cons of each model system, and the history and progress of preclinical DMD gene therapy research in the animal models. We also discuss the current and emerging challenges in this field and ways to address these challenges using animal models, in particular cDMD dogs.
Collapse
Affiliation(s)
- Joe W McGreevy
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Chady H Hakim
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Mark A McIntosh
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA Department of Neurology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
18
|
Hakim CH, Peters AA, Feng F, Yao G, Duan D. Night Activity Reduction is a Signature Physiological Biomarker for Duchenne Muscular Dystrophy Dogs. J Neuromuscul Dis 2015; 2:397-407. [PMID: 27812508 PMCID: PMC5089072 DOI: 10.3233/jnd-150114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is an X-linked lethal muscle disease. Dystrophic dogs are excellent models to test novel therapies for DMD. However, the use of the dog model has been hindered by the lack of an effective method to evaluate whole-body mobility. We recently showed that night activity is a good indicator of dog mobility. However, our published method relies on frame-by-frame manual processing of a 12-hour video for each dog. This labor-intensive and time-consuming approach makes it unrealistic to use this assay as a routine outcome measurement. OBJECTIVE To solve this problem, we developed an automatic video-capturing/imaging processing system. The new system reduces the data analysis time over 1,000 fold and also provides a more detailed activity profile of the dog. METHODS Using the new system, we analyzed more than 120 twelve-hour recordings from 12 normal and 22 affected dogs. RESULTS We observed similar activity profiles during repeated recording of the same dog. Throughout the night, normal dogs were in motion 10.4 ± 0.9% of the time while affected dogs were in motion 4.6 ± 0.2% of the time (p < 0.0001). Further, normal dogs made significantly more movements (p < 0.0001) while affected dogs rested significantly longer (p < 0.0001) during the period of recording (from 6 pm to 6 am next day). Importantly, statistical significance persisted irrespective of the coat color, gender and mutation type. CONCLUSIONS Our results suggest that night activity reduction is a robust, quantitative physiological biomarker for dystrophic dogs. The new system may be applicable to study mobility in other species.
Collapse
Affiliation(s)
- Chady H Hakim
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Austin A Peters
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Feng Feng
- Department of Electrical and Computer Engineering, College of Engineering, University of Missouri, Columbia, MO, USA
| | - Gang Yao
- Department of Bioengineering, College of Engineering, University of Missouri, Columbia, MO, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
19
|
Yue Y, Pan X, Hakim CH, Kodippili K, Zhang K, Shin JH, Yang HT, McDonald T, Duan D. Safe and bodywide muscle transduction in young adult Duchenne muscular dystrophy dogs with adeno-associated virus. Hum Mol Genet 2015; 24:5880-90. [PMID: 26264580 DOI: 10.1093/hmg/ddv310] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/28/2015] [Indexed: 12/17/2022] Open
Abstract
The ultimate goal of muscular dystrophy gene therapy is to treat all muscles in the body. Global gene delivery was demonstrated in dystrophic mice more than a decade ago using adeno-associated virus (AAV). However, translation to affected large mammals has been challenging. The only reported attempt was performed in newborn Duchenne muscular dystrophy (DMD) dogs. Unfortunately, AAV injection resulted in growth delay, muscle atrophy and contracture. Here we report safe and bodywide AAV delivery in juvenile DMD dogs. Three ∼2-m-old affected dogs received intravenous injection of a tyrosine-engineered AAV-9 reporter or micro-dystrophin (μDys) vector at the doses of 1.92-6.24 × 10(14) viral genome particles/kg under transient or sustained immune suppression. DMD dogs tolerated injection well and their growth was not altered. Hematology and blood biochemistry were unremarkable. No adverse reactions were observed. Widespread muscle transduction was seen in skeletal muscle, the diaphragm and heart for at least 4 months (the end of the study). Nominal expression was detected in internal organs. Improvement in muscle histology was observed in μDys-treated dogs. In summary, systemic AAV gene transfer is safe and efficient in young adult dystrophic large mammals. This may translate to bodywide gene therapy in pediatric patients in the future.
Collapse
Affiliation(s)
- Yongping Yue
- Department of Molecular Microbiology and Immunology, School of Medicine
| | - Xiufang Pan
- Department of Molecular Microbiology and Immunology, School of Medicine
| | - Chady H Hakim
- Department of Molecular Microbiology and Immunology, School of Medicine
| | - Kasun Kodippili
- Department of Molecular Microbiology and Immunology, School of Medicine
| | - Keqing Zhang
- Department of Molecular Microbiology and Immunology, School of Medicine
| | - Jin-Hong Shin
- Department of Molecular Microbiology and Immunology, School of Medicine
| | - Hsiao T Yang
- Department of Biomedical Sciences, College of Veterinary Medicine, The University of Missouri, Columbia, MO, USA
| | - Thomas McDonald
- Department of Molecular Microbiology and Immunology, School of Medicine
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, Department of Neurology and
| |
Collapse
|
20
|
Duan D. Duchenne muscular dystrophy gene therapy in the canine model. HUM GENE THER CL DEV 2015; 26:57-69. [PMID: 25710459 PMCID: PMC4442571 DOI: 10.1089/humc.2015.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 12/12/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked lethal muscle disease caused by dystrophin deficiency. Gene therapy has significantly improved the outcome of dystrophin-deficient mice. Yet, clinical translation has not resulted in the expected benefits in human patients. This translational gap is largely because of the insufficient modeling of DMD in mice. Specifically, mice lacking dystrophin show minimum dystrophic symptoms, and they do not respond to the gene therapy vector in the same way as human patients do. Further, the size of a mouse is hundredfolds smaller than a boy, making it impossible to scale-up gene therapy in a mouse model. None of these limitations exist in the canine DMD (cDMD) model. For this reason, cDMD dogs have been considered a highly valuable platform to test experimental DMD gene therapy. Over the last three decades, a variety of gene therapy approaches have been evaluated in cDMD dogs using a number of nonviral and viral vectors. These studies have provided critical insight for the development of an effective gene therapy protocol in human patients. This review discusses the history, current status, and future directions of the DMD gene therapy in the canine model.
Collapse
Affiliation(s)
- Dongsheng Duan
- Department of Molecular Microbiology and Immunology, Department of Neurology School of Medicine, University of Missouri , Columbia, MO 65212
| |
Collapse
|
21
|
Kodippili K, Vince L, Shin JH, Yue Y, Morris GE, McIntosh MA, Duan D. Characterization of 65 epitope-specific dystrophin monoclonal antibodies in canine and murine models of duchenne muscular dystrophy by immunostaining and western blot. PLoS One 2014; 9:e88280. [PMID: 24516626 PMCID: PMC3917863 DOI: 10.1371/journal.pone.0088280] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/09/2014] [Indexed: 11/18/2022] Open
Abstract
Epitope-specific monoclonal antibodies can provide unique insights for studying cellular proteins. Dystrophin is one of the largest cytoskeleton proteins encoded by 79 exons. The absence of dystrophin results in Duchenne muscular dystrophy (DMD). Over the last two decades, dozens of exon-specific human dystrophin monoclonal antibodies have been developed and successfully used for DMD diagnosis. Unfortunately, the majority of these antibodies have not been thoroughly characterized in dystrophin-deficient dogs, an outstanding large animal model for translational research. To fill the gap, we performed a comprehensive study on 65 dystrophin monoclonal antibodies in normal and dystrophic dogs (heart and skeletal muscle) by immunofluorescence staining and western blot. For comparison, we also included striated muscles from normal BL10 and dystrophin-null mdx mice. Our analysis revealed distinctive species, tissue and assay-dependent recognition patterns of different antibodies. Importantly, we identified 15 antibodies that can consistently detect full-length canine dystrophin in both immunostaining and western blot. Our results will serve as an important reference for studying DMD in the canine model.
Collapse
Affiliation(s)
- Kasun Kodippili
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, United States of America
| | - Lauren Vince
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, United States of America
| | - Jin-Hong Shin
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, United States of America
| | - Yongping Yue
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, United States of America
| | - Glenn E. Morris
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, and Keele University, Keele, Staffordshire, United Kingdom
| | - Mark A. McIntosh
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, United States of America
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
22
|
Araujo KPC, Bonuccelli G, Duarte CN, Gaiad TP, Moreira DF, Feder D, Belizario JE, Miglino MA, Lisanti MP, Ambrosio CE. Bortezomib (PS-341) treatment decreases inflammation and partially rescues the expression of the dystrophin-glycoprotein complex in GRMD dogs. PLoS One 2013; 8:e61367. [PMID: 23579193 PMCID: PMC3620287 DOI: 10.1371/journal.pone.0061367] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 03/12/2013] [Indexed: 12/01/2022] Open
Abstract
Golden retriever muscular dystrophy (GRMD) is a genetic myopathy corresponding to Duchenne muscular dystrophy (DMD) in humans. Muscle atrophy is known to be associated with degradation of the dystrophin-glycoprotein complex (DGC) via the ubiquitin-proteasome pathway. In the present study, we investigated the effect of bortezomib treatment on the muscle fibers of GRMD dogs. Five GRMD dogs were examined; two were treated (TD- Treated dogs) with the proteasome inhibitor bortezomib, and three were control dogs (CD). Dogs were treated with bortezomib using the same treatment regimen used for multiple myeloma. Pharmacodynamics were evaluated by measuring the inhibition of 20S proteasome activity in whole blood after treatment and comparing it to that in CD. We performed immunohistochemical studies on muscle biopsy specimens to evaluate the rescue of dystrophin and dystrophin-associated proteins in the muscles of GRMD dogs treated with bortezomib. Skeletal tissue from TD had lower levels of connective tissue deposition and inflammatory cell infiltration than CD as determined by histology, collagen morphometry and ultrastructural analysis. The CD showed higher expression of phospho-NFκB and TGF-β1, suggesting a more pronounced activation of anti-apoptotic factors and inflammatory molecules and greater connective tissue deposition, respectively. Immunohistochemical analysis demonstrated that dystrophin was not present in the sarcoplasmic membrane of either group. However, bortezomib-TD showed higher expression of α- and β-dystroglycan, indicating an improved disease histopathology phenotype. Significant inhibition of 20S proteasome activity was observed 1 hour after bortezomib administration in the last cycle when the dose was higher. Proteasome inhibitors may thus improve the appearance of GRMD muscle fibers, lessen connective tissue deposition and reduce the infiltration of inflammatory cells. In addition, proteasome inhibitors may rescue some dystrophin-associated proteins in the muscle fiber membrane.
Collapse
Affiliation(s)
- Karla P. C. Araujo
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Gloria Bonuccelli
- Department of Stem Cell Biology and Regenerative Medicine and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Caio N. Duarte
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Thais P. Gaiad
- Department of Physiotherapy, Faculty of Biological Science and Health, UFVJM, Diamantina, MG, Brazil
| | - Dayson F. Moreira
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil
| | - David Feder
- Department of Pharmacology, ABC School of Medicine, Santo Andre, SP, Brazil
| | - José E. Belizario
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil
| | - Maria A. Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Michael P. Lisanti
- Department of Stem Cell Biology and Regenerative Medicine and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Breakthrough Breast Cancer Research Unit, Institute of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Carlos E. Ambrosio
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| |
Collapse
|
23
|
Shin JH, Greer B, Hakim CH, Zhou Z, Chung YC, Duan Y, He Z, Duan D. Quantitative phenotyping of Duchenne muscular dystrophy dogs by comprehensive gait analysis and overnight activity monitoring. PLoS One 2013; 8:e59875. [PMID: 23544107 PMCID: PMC3609742 DOI: 10.1371/journal.pone.0059875] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/19/2013] [Indexed: 11/18/2022] Open
Abstract
The dystrophin-deficient dog is excellent large animal model for testing novel therapeutic modalities for Duchenne muscular dystrophy (DMD). Despite well-documented descriptions of dystrophic symptoms in these dogs, very few quantitative studies have been performed. Here, we developed a comprehensive set of non-invasive assays to quantify dog gait (stride length and speed), joint angle and limb mobility (for both forelimb and hind limb), and spontaneous activity at night. To validate these assays, we examined three 8-m-old mix-breed dystrophic dogs. We also included three age-matched siblings as the normal control. High-resolution video recorders were used to digitize dog walking and spontaneous movement at night. Stride speed and length were significantly decreased in affected dogs. The mobility of the limb segments (forearm, front foot, lower thigh, rear foot) and the carpus and hock joints was significantly reduced in dystrophic dogs. There was also a significant reduction of the movement in affected dogs during overnight monitoring. In summary, we have established a comprehensive set of outcome measures for clinical phenotyping of DMD dogs. These non-invasive end points would be valuable in monitoring disease progression and therapeutic efficacy in translational studies in the DMD dog model.
Collapse
Affiliation(s)
- Jin-Hong Shin
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, Missouri, United States of America
| | - Brian Greer
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, Missouri, United States of America
| | - Chady H. Hakim
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, Missouri, United States of America
| | - Zhongna Zhou
- Department of Electrical and Computer Engineering, The University of Missouri, Columbia, Missouri, United States of America
| | - Yu-chia Chung
- Department of Electrical and Computer Engineering, The University of Missouri, Columbia, Missouri, United States of America
| | - Ye Duan
- Department of Computer Science, The University of Missouri, Columbia, Missouri, United States of America
| | - Zhihai He
- Department of Electrical and Computer Engineering, The University of Missouri, Columbia, Missouri, United States of America
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
24
|
Microdystrophin ameliorates muscular dystrophy in the canine model of duchenne muscular dystrophy. Mol Ther 2013; 21:750-7. [PMID: 23319056 DOI: 10.1038/mt.2012.283] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Dystrophin deficiency results in lethal Duchenne muscular dystrophy (DMD). Substituting missing dystrophin with abbreviated microdystrophin has dramatically alleviated disease in mouse DMD models. Unfortunately, translation of microdystrophin therapy has been unsuccessful in dystrophic dogs, the only large mammalian model. Approximately 70% of the dystrophin-coding sequence is removed in microdystrophin. Intriguingly, loss of ≥50% dystrophin frequently results in severe disease in patients. To test whether the small gene size constitutes a fundamental design error for large mammalian muscle, we performed a comprehensive study using 22 dogs (8 normal and 14 dystrophic). We delivered the ΔR2-15/ΔR18-19/ΔR20-23/ΔC microdystrophin gene to eight extensor carpi ulnaris (ECU) muscles in six dystrophic dogs using Y713F tyrosine mutant adeno-associated virus (AAV)-9 (2.6 × 10(13) viral genome (vg) particles/muscle). Robust expression was observed 2 months later despite T-cell infiltration. Major components of the dystrophin-associated glycoprotein complex (DGC) were restored by microdystrophin. Treated muscle showed less inflammation, fibrosis, and calcification. Importantly, therapy significantly preserved muscle force under the stress of repeated cycles of eccentric contraction. Our results have established the proof-of-concept for microdystrophin therapy in dystrophic muscles of large mammals and set the stage for clinical trial in human patients.
Collapse
|