1
|
Cho SI, Jo ER, Jang HS. Urolithin A prevents age-related hearing loss in C57BL/6J mice likely by inducing mitophagy. Exp Gerontol 2024; 197:112589. [PMID: 39307249 DOI: 10.1016/j.exger.2024.112589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/31/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Mitochondrial dysfunction with aging is associated with the development of age-related hearing loss. Mitophagy is a cardinal mechanism to maintain a healthy mitochondrial population through the turnover of damaged mitochondria. Declining mitophagy with age causes a buildup of damaged mitochondria, leading to sensory organ dysfunction. The effect of Urolithin A (UA), a mitophagy inducer, was investigated on age-related hearing loss in a mouse model. C57BL/6J mice were treated with UA from 6 to 10 months of age. UA attenuated an auditory brainstem responses (ABR) threshold shift at 8, 16, and 32 kHz frequencies, and improved mitochondrial DNA integrity and ATP production in the cochlea and auditory cortex. The mRNA levels of mitophagy-related genes and protein levels of PINK1, Parkin, BNIP3, and LC3B increased in the cochlea and auditory cortex. The expression of mitophagosomes and mitophagolysosomes in the cochlea, spiral ganglion, auditory cortex, and inferior colliculus increased, together with the expression of Parkin and BNIP3 in the cochlea, spiral ganglion, auditory cortex, and inferior colliculus. These results indicate that UA counteracted mitophagy decline in the auditory system and prevented age-related hearing loss. UA can be used as a potential agent to prevent age-related hearing loss.
Collapse
Affiliation(s)
- Sung Il Cho
- Department of Otolaryngology-Head and Neck Surgery, Chosun University College of Medicine, Gwangju, Republic of Korea.
| | - Eu-Ri Jo
- Department of Otolaryngology-Head and Neck Surgery, Chosun University College of Medicine, Gwangju, Republic of Korea; Department of Biomedical Sciences, Graduate School of Chosun University, Gwangju, Republic of Korea
| | - Hee Sun Jang
- Department of Otolaryngology-Head and Neck Surgery, Chosun University College of Medicine, Gwangju, Republic of Korea
| |
Collapse
|
2
|
Zhu WD, Rao J, Zhang LH, Xue KM, Li L, Li JJ, Chen QZ, Fu R. OMA1 competitively binds to HSPA9 to promote mitophagy and activate the cGAS-STING pathway to mediate GBM immune escape. J Immunother Cancer 2024; 12:e008718. [PMID: 38604814 PMCID: PMC11015223 DOI: 10.1136/jitc-2023-008718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Immunotherapy with checkpoint inhibitors, especially those targeting programmed death receptor 1 (PD-1)/PD-1 ligand (PD-L1), is increasingly recognized as a highly promising therapeutic modality for malignancies. Nevertheless, the efficiency of immune checkpoint blockade therapy in treating glioblastoma (GBM) is constrained. Hence, it is imperative to expand our comprehension of the molecular mechanisms behind GBM immune escape (IE). METHODS Protein chip analysis was performed to screen aberrantly expressed OMA1 protein in PD-1 inhibitor sensitive or resistant GBM. Herein, public databases and bioinformatics analysis were employed to investigate the OMA1 and PD-L1 relation. Then, this predicted relation was verified in primary GBM cell lines through distinct experimental methods. To investigate the molecular mechanism behind OMA1 in immunosuppression, a series of experimental methods were employed, including Western blotting, co-immunoprecipitation (Co-IP), mass spectrometry (MS), immunofluorescence, immunohistochemistry, and qRT-PCR. RESULTS Our findings revealed that OMA1 competitively binds to HSPA9 to induce mitophagy and mediates the IE of GBM. Data from TCGA indicated a significant correlation between OMA1 and immunosuppression. OMA1 promoted PD-L1 levels in primary cells from patients with GBM. Next, the results of Co-IP and MS conducted on GBM primary cells revealed that OMA1 interacts with HSPA9 and induces mitophagy. OMA1 promoted not only cGAS-STING activity by increasing mitochondrial DNA release but also PD-L1 transcription by activating cGAS-STING. Eventually, OMA1 has been found to induce immune evasion in GBM through its regulation of PD-1 binding and PD-L1 mediated T cell cytotoxicity. CONCLUSIONS The OMA1/HSPA9/cGAS/PD-L1 axis is elucidated in our study as a newly identified immune therapeutic target in GBM.
Collapse
Affiliation(s)
- Wen de Zhu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jin Rao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Hua Zhang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ka Ming Xue
- Department of Traditional Chinese Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lin Li
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun Jun Li
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qian Zhi Chen
- Department of Breast and Thyroid Surgery, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rong Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
3
|
Zhang H, Ge F, Shui X, Xiang Y, Wang X, Liao C, Wang J. NIX protein enhances antioxidant capacity of and reduces the apoptosis induced by HSP90 inhibitor luminespib/NVP-AUY922 in PC12 cells. Cell Stress Chaperones 2021; 26:495-504. [PMID: 33629253 PMCID: PMC8065087 DOI: 10.1007/s12192-021-01193-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 11/29/2022] Open
Abstract
Pheochromocytomas and paragangliomas (PCPGs) are catecholamine-producing neuroendocrine tumors. Accumulating evidences indicate that the blockade of antioxidative pathways might be a novel therapeutic approach to the treatment of PCPG. NIX has been confirmed to play a key role in maintaining redox homeostasis in tumors, while the function of NIX in PCPG remains unclear. In this study, the analyses of the disease-free survival (DFS) showed that high NIX protein level is related to poor prognosis in patients of PCPG. Consistent with this, high level of NIX protein upregulates the level of p-NF-κB and promotes the migration of PC12 cells. In NIX-over-expressing PC12 cells, the level of reactive oxygen species (ROS) is decreased while trolox-equivalent antioxidant capacity (TEAC) increased. But in NIX-silencing cells, ROS level is increased, while TEAC reversely reduced, consequently antioxidase and phase II enzymes of NRF2 signaling were activated, and elevated endoplasmic reticulum (ER) stress was observed. Additionally, the apoptosis induced by luminespib/NVP-AUY922, an inhibitor of heat shock protein 90 (HSP90, a cellular stress response factor), was enhanced in NIX-silencing cells but reduced in the NIX-over-expressing cells. All of these results indicated that high NIX protein level enhances antioxidant capacity of PC12 cells and reduces the apoptosis caused by cell stress, such as induced by luminespib/NVP-AUY922. Therefore, luminespib/NVP-AUY922 might be effective only for PCPG with low NIX level, while targeting NIX could be a further supplement to the therapeutic treatment strategy for PCPG patients with high NIX protein level.
Collapse
Affiliation(s)
- Hong Zhang
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Fanghui Ge
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Xindong Shui
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, Sichuan, China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Yuling Xiang
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, Sichuan, China
- College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Xinxin Wang
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Chang Liao
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Jiandong Wang
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, Sichuan, China.
- Collaborative Innovation Center of Sichuan for Elderly Care and Health, Chengdu Medical College, Chengdu, 610500, Sichuan, China.
| |
Collapse
|
4
|
Oh J, Youn CK, Jun Y, Jo ER, Cho SI. Reduced mitophagy in the cochlea of aged C57BL/6J mice. Exp Gerontol 2020; 137:110946. [DOI: 10.1016/j.exger.2020.110946] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/26/2020] [Accepted: 04/06/2020] [Indexed: 01/08/2023]
|
5
|
Mitophagy in Cancer: A Tale of Adaptation. Cells 2019; 8:cells8050493. [PMID: 31121959 PMCID: PMC6562743 DOI: 10.3390/cells8050493] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023] Open
Abstract
:In the past years, we have learnt that tumors co-evolve with their microenvironment, and that the active interaction between cancer cells and stromal cells plays a pivotal role in cancer initiation, progression and treatment response. Among the players involved, the pathways regulating mitochondrial functions have been shown to be crucial for both cancer and stromal cells. This is perhaps not surprising, considering that mitochondria in both cancerous and non-cancerous cells are decisive for vital metabolic and bioenergetic functions and to elicit cell death. The central part played by mitochondria also implies the existence of stringent mitochondrial quality control mechanisms, where a specialized autophagy pathway (mitophagy) ensures the selective removal of damaged or dysfunctional mitochondria. Although the molecular underpinnings of mitophagy regulation in mammalian cells remain incomplete, it is becoming clear that mitophagy pathways are intricately linked to the metabolic rewiring of cancer cells to support the high bioenergetic demand of the tumor. In this review, after a brief introduction of the main mitophagy regulators operating in mammalian cells, we discuss emerging cell autonomous roles of mitochondria quality control in cancer onset and progression. We also discuss the relevance of mitophagy in the cellular crosstalk with the tumor microenvironment and in anti-cancer therapy responses.
Collapse
|
6
|
Selective Autophagy Regulates Innate Immunity Through Cargo Receptor Network. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1209:145-166. [DOI: 10.1007/978-981-15-0606-2_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Hong L, Ya-wei L, Hai W, Qiang Z, Jun-jie L, Huang A, Song-tao Q, Yun-tao L. MiR-519a functions as a tumor suppressor in glioma by targeting the oncogenic STAT3 pathway. J Neurooncol 2016; 128:35-45. [DOI: 10.1007/s11060-016-2095-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/28/2016] [Indexed: 10/22/2022]
|
8
|
He H, Yao M, Zhang W, Tao B, Liu F, Li S, Dong Y, Zhang C, Meng Y, Li Y, Hu G, Luo C, Zong H, Lu Y. MEK2 is a prognostic marker and potential chemo-sensitizing target for glioma patients undergoing temozolomide treatment. Cell Mol Immunol 2015; 13:658-68. [PMID: 26189368 DOI: 10.1038/cmi.2015.46] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 04/30/2015] [Accepted: 05/01/2015] [Indexed: 02/06/2023] Open
Abstract
Although temozolomide (TMZ) is the first-line chemotherapeutic agent for glioblastoma, it is often non-curative due to drug resistance. To overcome the resistance of glioblastoma cells to TMZ, it is imperative to identify prognostic markers for outcome prediction and to develop chemo-sensitizing agents. Here, the gene expression profiles of TMZ-resistant and TMZ-sensitive samples were compared by microarray analysis, and mitogen-activated protein kinase kinase 2 (MEK2) was upregulated specifically in resistant glioma cells but not in sensitive tumor cells or non-tumor tissues. Moreover, a comprehensive analysis of patient data revealed that the increased level of MEK2 expression correlated well with the advancement of glioma grade and worse prognosis in response to TMZ treatment. Furthermore, reducing the level of MEK2 in U251 glioma cell lines or xenografted glioma models through shRNA-mediated gene knockdown inhibited cell proliferation and enhanced the sensitivity of cells toward TMZ treatment. Further analysis of tumor samples from glioma patients by real-time PCR indicated that an increased MEK2 expression level was closely associated with the activation of many drug resistance genes. Finally, these resistance genes were downregulated after MEK2 was silenced in vitro, suggesting that the mechanism of MEK2-induced chemo-resistance could be mediated by the transcriptional activation of these resistance genes. Collectively, our data indicated that the expression level of MEK2 could serve as a prognostic marker for glioma chemotherapy and that MEK2 antagonists can be used as chemo-sensitizers to enhance the treatment efficacy of TMZ.
Collapse
Affiliation(s)
- Hua He
- Department of Neurosurgery, Changzheng Hospital, Second Affiliated Hospital of Second Military Medical University, 415 Fengyang Road, Shanghai 200003, P.R.China
| | - Maojin Yao
- Department of Microbiology, Immunology and Cancer Biology, School of Medicine, University of Virginia, USA
| | - Wenhao Zhang
- Department of Hematology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Bangbao Tao
- Department of Neurosurgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Feili Liu
- Department of Neurosurgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shu Li
- Department of Pathophysiology, Wannan Medical College, 22 Wenchang Road Wuhu 241002, China
| | - Yan Dong
- Department of Neurosurgery, Changzheng Hospital, Second Affiliated Hospital of Second Military Medical University, 415 Fengyang Road, Shanghai 200003, P.R.China
| | - Chenran Zhang
- Department of Neurosurgery, Changzheng Hospital, Second Affiliated Hospital of Second Military Medical University, 415 Fengyang Road, Shanghai 200003, P.R.China
| | - Yicheng Meng
- Department of Neurosurgery, Changzheng Hospital, Second Affiliated Hospital of Second Military Medical University, 415 Fengyang Road, Shanghai 200003, P.R.China
| | - Yuxin Li
- Department of Neurosurgery, Changzheng Hospital, Second Affiliated Hospital of Second Military Medical University, 415 Fengyang Road, Shanghai 200003, P.R.China
| | - Guohan Hu
- Department of Neurosurgery, Changzheng Hospital, Second Affiliated Hospital of Second Military Medical University, 415 Fengyang Road, Shanghai 200003, P.R.China
| | - Chun Luo
- Department of Neurosurgery, Changzheng Hospital, Second Affiliated Hospital of Second Military Medical University, 415 Fengyang Road, Shanghai 200003, P.R.China
| | - Hui Zong
- Department of Microbiology, Immunology and Cancer Biology, School of Medicine, University of Virginia, USA
| | - Yicheng Lu
- Department of Neurosurgery, Changzheng Hospital, Second Affiliated Hospital of Second Military Medical University, 415 Fengyang Road, Shanghai 200003, P.R.China
| |
Collapse
|
9
|
Puliyappadamba VT, Hatanpaa KJ, Chakraborty S, Habib AA. The role of NF-κB in the pathogenesis of glioma. Mol Cell Oncol 2014; 1:e963478. [PMID: 27308348 PMCID: PMC4905061 DOI: 10.4161/23723548.2014.963478] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/04/2014] [Accepted: 08/12/2014] [Indexed: 12/11/2022]
Abstract
Activation of NF-κB affects multiple aspects of cancer biology including cell survival and resistance to treatment. Glioblastoma (GBM) is the most common primary malignant tumor of the brain in adults and is resistant to treatment. Recent studies have reported that NF-κB activation in GBM is widespread and have elucidated the underlying regulatory mechanisms. EGFR gene amplification and mutation are among the key genetic alterations in GBM, and aberrant EGFR signaling is a key activator of NF-κB in GBM. In this review we discuss the evidence for activation of NF-κB in GBM and the key signaling pathways involved. Substantial evidence suggests a role for NF-κB in the pathogenesis of GBM and its resistance to treatment, indicating that NF-κB pathways may be useful targets for treatment.
Collapse
Affiliation(s)
- Vineshkumar Thidil Puliyappadamba
- Department of Neurology and Neurotherapeutics; University of Texas Southwestern Medical Center, Dallas, TX 75235; Current address: Department of Radiation Oncology, University of Alabama, Birmingham, Birmingham, AL 35294
| | - Kimmo J Hatanpaa
- Pathology at the University of Texas Southwestern Medical Center ; Dallas TX 75390
| | - Sharmistha Chakraborty
- Department of Neurology and Neurotherapeutics; University of Texas Southwestern Medical Center, Dallas, TX 75235; Current address: Department of Radiation Oncology, Methodist Research Institute, Houston TX 77030
| | - Amyn A Habib
- Department of Neurology and Neurotherapeutics; University of Texas Southwestern Medical Center, Dallas, TX 75235; VA North Texas Health Care System; Dallas TX 75216
| |
Collapse
|
10
|
Early molecular and behavioral response to lipopolysaccharide in the WAG/Rij rat model of absence epilepsy and depressive-like behavior, involves interplay between AMPK, AKT/mTOR pathways and neuroinflammatory cytokine release. Brain Behav Immun 2014; 42:157-68. [PMID: 24998197 DOI: 10.1016/j.bbi.2014.06.016] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/16/2014] [Accepted: 06/24/2014] [Indexed: 12/20/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) pathway has been recently indicated as a suitable drug target for the prevention of epileptogenesis. The mTOR pathway is known for its involvement in the control of the immune system. Since neuroinflammation is recognized as a major contributor to epileptogenesis, we wished to examine whether the neuroprotective effects of mTOR modulation could involve a suppression of the neuroinflammatory process in epileptic brain. We have investigated the early molecular mechanisms involved in the effects of intracerebral administration of the lipopolysaccharide (LPS) in the WAG/Rij rat model of absence epilepsy, in relation to seizure generation and depressive-like behavior; we also tested whether the effects of LPS could be modulated by treatment with rapamycin (RAP), a specific mTOR inhibitor. We determined, in specific rat brain areas, levels of p-mTOR/p-p70S6K and also p-AKT/p-AMPK as downstream or upstream indicators of mTOR activity and tested the effects of LPS and RAP co-administration. Changes in the brain levels of pro-inflammatory cytokines IL-1β and TNF-α and their relative mRNA expression levels were measured, and the involvement of nuclear factor-κB (NF-κB) was also examined in vitro. We confirmed that RAP inhibits the aggravation of absence seizures and depressive-like/sickness behavior induced by LPS in the WAG/Rij rats through the activation of mTOR and show that this effect is correlated with the ability of RAP to dampen and delay LPS increases in neuroinflammatory cytokines IL-1β and TNF-α, most likely through inhibition of the activation of NF-κB. Our results suggest that such a mechanism could contribute to the antiseizure, antiepileptogenic and behavioral effects of RAP and further highlight the potential therapeutic usefulness of mTOR inhibition in the management of human epilepsy and other neurological disorders. Furthermore, we show that LPS-dependent neuroinflammatory effects are also mediated by a complex interplay between AKT, AMPK and mTOR with specificity to selective brain areas. In conclusion, neuroinflammation appears to be a highly coordinated phenomenon, where timing of intervention may be carefully evaluated in order to identify the best suitable target.
Collapse
|