1
|
Steinfeld N, Ma CIJ, Maxfield FR. Signaling pathways regulating the extracellular digestion of lipoprotein aggregates by macrophages. Mol Biol Cell 2024; 35:ar5. [PMID: 37910189 PMCID: PMC10881170 DOI: 10.1091/mbc.e23-06-0239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023] Open
Abstract
The interaction between aggregated low-density lipoprotein (agLDL) and macrophages in arteries plays a major role in atherosclerosis. Macrophages digest agLDL and generate free cholesterol in an extracellular, acidic, hydrolytic compartment known as the lysosomal synapse. Macrophages form a tight seal around agLDL through actin polymerization and deliver lysosomal contents into this space in a process termed digestive exophagy. Our laboratory has identified TLR4 activation of MyD88/Syk as critical for digestive exophagy. Here we use pharmacological agents and siRNA knockdown to characterize signaling pathways downstream of Syk that are involved in digestive exophagy. Syk activates Bruton's tyrosine kinase (BTK) and phospholipase Cγ2 (PLCγ2). We show that PLCγ2 and to a lesser extent BTK regulate digestive exophagy. PLCγ2 cleaves PI(4,5)P2 into diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). Soluble IP3 activates release of Ca2+ from the endoplasmic reticulum (ER). We demonstrate that Ca2+ release from the ER is upregulated by agLDL and plays a key role in digestive exophagy. Both DAG and Ca2+ activate protein kinase Cα (PKCα). We find that PKCα is an important regulator of digestive exophagy. These results expand our understanding of the mechanisms of digestive exophagy, which could be useful in developing therapeutic interventions to slow development of atherosclerosis.
Collapse
Affiliation(s)
- Noah Steinfeld
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065
| | - Cheng-I J. Ma
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065
| | | |
Collapse
|
2
|
Gainullina A, Mogilenko DA, Huang LH, Todorov H, Narang V, Kim KW, Yng LS, Kent A, Jia B, Seddu K, Krchma K, Wu J, Crozat K, Tomasello E, Dress R, See P, Scott C, Gibbings S, Bajpai G, Desai JV, Maier B, This S, Wang P, Aguilar SV, Poupel L, Dussaud S, Zhou TA, Angeli V, Blander JM, Choi K, Dalod M, Dzhagalov I, Gautier EL, Jakubzick C, Lavine K, Lionakis MS, Paidassi H, Sieweke MH, Ginhoux F, Guilliams M, Benoist C, Merad M, Randolph GJ, Sergushichev A, Artyomov MN. Network analysis of large-scale ImmGen and Tabula Muris datasets highlights metabolic diversity of tissue mononuclear phagocytes. Cell Rep 2023; 42:112046. [PMID: 36708514 PMCID: PMC10372199 DOI: 10.1016/j.celrep.2023.112046] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/06/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
The diversity of mononuclear phagocyte (MNP) subpopulations across tissues is one of the key physiological characteristics of the immune system. Here, we focus on understanding the metabolic variability of MNPs through metabolic network analysis applied to three large-scale transcriptional datasets: we introduce (1) an ImmGen MNP open-source dataset of 337 samples across 26 tissues; (2) a myeloid subset of ImmGen Phase I dataset (202 MNP samples); and (3) a myeloid mouse single-cell RNA sequencing (scRNA-seq) dataset (51,364 cells) assembled based on Tabula Muris Senis. To analyze such large-scale datasets, we develop a network-based computational approach, genes and metabolites (GAM) clustering, for unbiased identification of the key metabolic subnetworks based on transcriptional profiles. We define 9 metabolic subnetworks that encapsulate the metabolic differences within MNP from 38 different tissues. Obtained modules reveal that cholesterol synthesis appears particularly active within the migratory dendritic cells, while glutathione synthesis is essential for cysteinyl leukotriene production by peritoneal and lung macrophages.
Collapse
Affiliation(s)
- Anastasiia Gainullina
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Computer Technologies Department, ITMO University, St. Petersburg 197101, Russia; Laboratory of Bioinformatics and Molecular Genetics, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow 119334, Russia
| | - Denis A Mogilenko
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Li-Hao Huang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Helena Todorov
- Laboratory of Immunoregulation, Inflammation Research Centre, VIB Ghent University, 9052 Ghent, Belgium
| | - Vipin Narang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore 138648, Singapore
| | - Ki-Wook Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lim Sheau Yng
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Department of Microbiology and Immunology, National University of Singapore, Singapore 117545, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117545, Singapore
| | - Andrew Kent
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Baosen Jia
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Kumba Seddu
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Karen Krchma
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jun Wu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Karine Crozat
- Aix Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, 13288 Marseille, France
| | - Elena Tomasello
- Aix Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, 13288 Marseille, France
| | - Regine Dress
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore 138648, Singapore
| | - Peter See
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore 138648, Singapore
| | - Charlotte Scott
- Laboratory of Immunoregulation, Inflammation Research Centre, VIB Ghent University, 9052 Ghent, Belgium
| | - Sophie Gibbings
- Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA
| | - Geetika Bajpai
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Jigar V Desai
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barbara Maier
- Immunology Institute and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sébastien This
- Centre International de Recherche en Infectiologie (CIRI), University Lyon, Inserm, U1111, Université Claude Bernard Lyon ,1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Peter Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Stephanie Vargas Aguilar
- Aix Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, 13288 Marseille, France; Center for Regenerative Therapies (CRTD), TU Dresden, 01307 Dresden, Germany; Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtzgemeinschaft (MDC), 13125 Berlin, Germany
| | - Lucie Poupel
- INSERM UMR-S 1166, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
| | - Sébastien Dussaud
- INSERM UMR-S 1166, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
| | - Tyng-An Zhou
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan
| | - Veronique Angeli
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Department of Microbiology and Immunology, National University of Singapore, Singapore 117545, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117545, Singapore
| | - J Magarian Blander
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Kyunghee Choi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marc Dalod
- Aix Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, 13288 Marseille, France
| | - Ivan Dzhagalov
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan
| | - Emmanuel L Gautier
- INSERM UMR-S 1166, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
| | - Claudia Jakubzick
- Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA
| | - Kory Lavine
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Helena Paidassi
- Centre International de Recherche en Infectiologie (CIRI), University Lyon, Inserm, U1111, Université Claude Bernard Lyon ,1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Michael H Sieweke
- Aix Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, 13288 Marseille, France; Center for Regenerative Therapies (CRTD), TU Dresden, 01307 Dresden, Germany; Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtzgemeinschaft (MDC), 13125 Berlin, Germany
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore 138648, Singapore
| | - Martin Guilliams
- Laboratory of Immunoregulation, Inflammation Research Centre, VIB Ghent University, 9052 Ghent, Belgium
| | | | - Miriam Merad
- Immunology Institute and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alexey Sergushichev
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Computer Technologies Department, ITMO University, St. Petersburg 197101, Russia.
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
3
|
Snarski P, Sukhanov S, Yoshida T, Higashi Y, Danchuk S, Chandrasekar B, Tian D, Rivera-Lopez V, Delafontaine P. Macrophage-Specific IGF-1 Overexpression Reduces CXCL12 Chemokine Levels and Suppresses Atherosclerotic Burden in Apoe-Deficient Mice. Arterioscler Thromb Vasc Biol 2022; 42:113-126. [PMID: 34852642 PMCID: PMC8792341 DOI: 10.1161/atvbaha.121.316090] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE IGF-1 (insulin-like growth factor 1) exerts pleiotropic effects including promotion of cellular growth, differentiation, survival, and anabolism. We have shown that systemic IGF-1 administration reduced atherosclerosis in Apoe-/- (apolipoprotein E deficient) mice, and this effect was associated with a reduction in lesional macrophages and a decreased number of foam cells in the plaque. Almost all cell types secrete IGF-1, but the effect of macrophage-derived IGF-1 on the pathogenesis of atherosclerosis is poorly understood. We hypothesized that macrophage-derived IGF-1 will reduce atherosclerosis. Approach and Results: We created macrophage-specific IGF-1 overexpressing mice on an Apoe-/- background. Macrophage-specific IGF-1 overexpression reduced plaque macrophages, foam cells, and atherosclerotic burden and promoted features of stable atherosclerotic plaque. Macrophage-specific IGF1 mice had a reduction in monocyte infiltration into plaque, decreased expression of CXCL12 (CXC chemokine ligand 12), and upregulation of ABCA1 (ATP-binding cassette transporter 1), a cholesterol efflux regulator, in atherosclerotic plaque and in peritoneal macrophages. IGF-1 prevented oxidized lipid-induced CXCL12 upregulation and foam cell formation in cultured THP-1 macrophages and increased lipid efflux. We also found an increase in cholesterol efflux in macrophage-specific IGF1-derived peritoneal macrophages. CONCLUSIONS Macrophage IGF-1 overexpression reduced atherosclerotic burden and increased features of plaque stability, likely via a reduction in CXCL12-mediated monocyte recruitment and an increase in ABCA1-dependent macrophage lipid efflux.
Collapse
Affiliation(s)
- Patricia Snarski
- Section of Cardiology, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA,Department of Physiology, Tulane University School of Medicine, New Orleans, LA
| | - Sergiy Sukhanov
- Section of Cardiology, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA,Department of Physiology, Tulane University School of Medicine, New Orleans, LA
| | - Tadashi Yoshida
- Section of Cardiology, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA,Department of Physiology, Tulane University School of Medicine, New Orleans, LA
| | - Yusuke Higashi
- Section of Cardiology, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA,Department of Physiology, Tulane University School of Medicine, New Orleans, LA
| | - Svitlana Danchuk
- Section of Cardiology, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA,Department of Physiology, Tulane University School of Medicine, New Orleans, LA
| | - Bysani Chandrasekar
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
| | - Di Tian
- Department of Pathology, Tulane University School of Medicine, New Orleans, LA
| | | | - Patrick Delafontaine
- Section of Cardiology, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA,Department of Physiology, Tulane University School of Medicine, New Orleans, LA,Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA
| |
Collapse
|
4
|
Abstract
Atherosclerosis is a lipid-driven inflammatory disorder that narrows the arterial lumen and can induce life-threatening complications from coronary artery disease, cerebrovascular disease, and peripheral artery disease. On a mechanistic level, the development of novel cellular-resolution intravital microscopy imaging approaches has recently enabled in vivo studies of underlying biological processes governing disease onset and progress. In particular, multiphoton microscopy has emerged as a promising intravital imaging tool utilizing two-photon-excited fluorescence and second-harmonic generation that provides subcellular resolution and increased imaging depths beyond confocal and epifluorescence microscopy. In this chapter, we describe the state-of-the-art multiphoton microscopy applied to the study of murine atherosclerosis.
Collapse
|
5
|
Härdtner C, Kornemann J, Krebs K, Ehlert CA, Jander A, Zou J, Starz C, Rauterberg S, Sharipova D, Dufner B, Hoppe N, Dederichs TS, Willecke F, Stachon P, Heidt T, Wolf D, von Zur Mühlen C, Madl J, Kohl P, Kaeser R, Boettler T, Pieterman EJ, Princen HMG, Ho-Tin-Noé B, Swirski FK, Robbins CS, Bode C, Zirlik A, Hilgendorf I. Inhibition of macrophage proliferation dominates plaque regression in response to cholesterol lowering. Basic Res Cardiol 2020; 115:78. [PMID: 33296022 PMCID: PMC7725697 DOI: 10.1007/s00395-020-00838-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/01/2020] [Indexed: 02/08/2023]
Abstract
Statins induce plaque regression characterized by reduced macrophage content in humans, but the underlying mechanisms remain speculative. Studying the translational APOE*3-Leiden.CETP mouse model with a humanized lipoprotein metabolism, we find that systemic cholesterol lowering by oral atorvastatin or dietary restriction inhibits monocyte infiltration, and reverses macrophage accumulation in atherosclerotic plaques. Contrary to current believes, none of (1) reduced monocyte influx (studied by cell fate mapping in thorax-shielded irradiation bone marrow chimeras), (2) enhanced macrophage egress (studied by fluorescent bead labeling and transfer), or (3) atorvastatin accumulation in murine or human plaque (assessed by mass spectrometry) could adequately account for the observed loss in macrophage content in plaques that undergo phenotypic regression. Instead, suppression of local proliferation of macrophages dominates phenotypic plaque regression in response to cholesterol lowering: the lower the levels of serum LDL-cholesterol and lipid contents in murine aortic and human carotid artery plaques, the lower the rates of in situ macrophage proliferation. Our study identifies macrophage proliferation as the predominant turnover determinant and an attractive target for inducing plaque regression.
Collapse
Affiliation(s)
- Carmen Härdtner
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, University of Freiburg, 55 Hugstetter St, 79106, Freiburg, Germany
| | - Jan Kornemann
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, University of Freiburg, 55 Hugstetter St, 79106, Freiburg, Germany
| | - Katja Krebs
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, University of Freiburg, 55 Hugstetter St, 79106, Freiburg, Germany
| | - Carolin A Ehlert
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, University of Freiburg, 55 Hugstetter St, 79106, Freiburg, Germany
| | - Alina Jander
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, University of Freiburg, 55 Hugstetter St, 79106, Freiburg, Germany
| | - Jiadai Zou
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, University of Freiburg, 55 Hugstetter St, 79106, Freiburg, Germany
| | - Christopher Starz
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, University of Freiburg, 55 Hugstetter St, 79106, Freiburg, Germany
| | - Simon Rauterberg
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, University of Freiburg, 55 Hugstetter St, 79106, Freiburg, Germany
| | - Diana Sharipova
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, University of Freiburg, 55 Hugstetter St, 79106, Freiburg, Germany
| | - Bianca Dufner
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, University of Freiburg, 55 Hugstetter St, 79106, Freiburg, Germany
| | - Natalie Hoppe
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, University of Freiburg, 55 Hugstetter St, 79106, Freiburg, Germany
| | - Tsai-Sang Dederichs
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, University of Freiburg, 55 Hugstetter St, 79106, Freiburg, Germany
| | - Florian Willecke
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, University of Freiburg, 55 Hugstetter St, 79106, Freiburg, Germany
| | - Peter Stachon
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, University of Freiburg, 55 Hugstetter St, 79106, Freiburg, Germany
| | - Timo Heidt
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, University of Freiburg, 55 Hugstetter St, 79106, Freiburg, Germany
| | - Dennis Wolf
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, University of Freiburg, 55 Hugstetter St, 79106, Freiburg, Germany
| | - Constantin von Zur Mühlen
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, University of Freiburg, 55 Hugstetter St, 79106, Freiburg, Germany
| | - Josef Madl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Rafael Kaeser
- Department of Medicine II, Faculty of Medicine, Medical Center-University Freiburg, University of Freiburg, Freiburg, Germany
| | - Tobias Boettler
- Department of Medicine II, Faculty of Medicine, Medical Center-University Freiburg, University of Freiburg, Freiburg, Germany
| | - Elsbeth J Pieterman
- The Netherlands Organization for Applied Scientific Research (TNO)-Metabolic Health Research, Leiden, Netherlands
| | - Hans M G Princen
- The Netherlands Organization for Applied Scientific Research (TNO)-Metabolic Health Research, Leiden, Netherlands
| | - Benoît Ho-Tin-Noé
- INSERM Unit 1148, University Paris Diderot, and Laboratory for Vascular Translational Science, Sorbonne Paris Cité, Paris, France
| | - Filip K Swirski
- Center of Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Clinton S Robbins
- Peter Munk Cardiac Centre, University Health Network, Toronto, Canada
| | - Christoph Bode
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, University of Freiburg, 55 Hugstetter St, 79106, Freiburg, Germany
| | - Andreas Zirlik
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, University of Freiburg, 55 Hugstetter St, 79106, Freiburg, Germany.,Department of Cardiology, University of Graz, Graz, Austria
| | - Ingo Hilgendorf
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, University of Freiburg, 55 Hugstetter St, 79106, Freiburg, Germany.
| |
Collapse
|
6
|
Hamers AAJ, Dinh HQ, Thomas GD, Marcovecchio P, Blatchley A, Nakao CS, Kim C, McSkimming C, Taylor AM, Nguyen AT, McNamara CA, Hedrick CC. Human Monocyte Heterogeneity as Revealed by High-Dimensional Mass Cytometry. Arterioscler Thromb Vasc Biol 2019; 39:25-36. [PMID: 30580568 DOI: 10.1161/atvbaha.118.311022] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Objective- Three distinct human monocyte subsets have been identified based on the surface marker expression of CD14 and CD16. We hypothesized that monocytes were likely more heterogeneous in composition. Approach and Results- We used the high dimensionality of mass cytometry together with the FlowSOM clustering algorithm to accurately identify and define monocyte subsets in blood of healthy human subjects and those with coronary artery disease (CAD). To study the behavior and functionality of the newly defined monocyte subsets, we performed RNA sequencing, transwell migration, and efferocytosis assays. Here, we identify 8 human monocyte subsets based on their surface marker phenotype. We found that 3 of these subsets fall within the CD16+ nonclassical monocyte population and 4 subsets belong to the CD14+ classical monocytes, illustrating significant monocyte heterogeneity in humans. As nonclassical monocytes are important in modulating atherosclerosis in mice, we studied the functions of our 3 newly identified nonclassical monocytes in subjects with CAD. We found a marked expansion of a Slan+CXCR6+ nonclassical monocyte subset in CAD subjects, which was positively correlated with CAD severity. This nonclassical subset can migrate towards CXCL16 and shows an increased efferocytosis capacity, indicating it may play an atheroprotective role. Conclusions- Our data demonstrate that human nonclassical monocytes are a heterogeneous population, existing of several subsets with functional differences. These subsets have changed frequencies in the setting of severe CAD. Understanding how these newly identified subsets modulate CAD will be important for CAD-based therapies that target myeloid cells.
Collapse
Affiliation(s)
- Anouk A J Hamers
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA (A.A.J.H., H.Q.D., G.D.T., P.M., A.B., C.S.N., C.C.H.)
| | - Huy Q Dinh
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA (A.A.J.H., H.Q.D., G.D.T., P.M., A.B., C.S.N., C.C.H.)
| | - Graham D Thomas
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA (A.A.J.H., H.Q.D., G.D.T., P.M., A.B., C.S.N., C.C.H.)
| | - Paola Marcovecchio
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA (A.A.J.H., H.Q.D., G.D.T., P.M., A.B., C.S.N., C.C.H.)
| | - Amy Blatchley
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA (A.A.J.H., H.Q.D., G.D.T., P.M., A.B., C.S.N., C.C.H.)
| | - Catherine S Nakao
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA (A.A.J.H., H.Q.D., G.D.T., P.M., A.B., C.S.N., C.C.H.)
| | - Cheryl Kim
- Flow Cytometry Core Facility, La Jolla Institute for Allergy and Immunology, CA (C.K.)
| | - Chantel McSkimming
- Robert M. Berne Cardiovascular Research Center and Division of Cardiology, University of Virginia, Charlottesville (C.M., A.M.T., A.T.N., C.A.M.)
| | - Angela M Taylor
- Robert M. Berne Cardiovascular Research Center and Division of Cardiology, University of Virginia, Charlottesville (C.M., A.M.T., A.T.N., C.A.M.)
| | - Anh T Nguyen
- Robert M. Berne Cardiovascular Research Center and Division of Cardiology, University of Virginia, Charlottesville (C.M., A.M.T., A.T.N., C.A.M.)
| | - Coleen A McNamara
- Robert M. Berne Cardiovascular Research Center and Division of Cardiology, University of Virginia, Charlottesville (C.M., A.M.T., A.T.N., C.A.M.)
| | - Catherine C Hedrick
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA (A.A.J.H., H.Q.D., G.D.T., P.M., A.B., C.S.N., C.C.H.)
| |
Collapse
|
7
|
Gomez D, Baylis RA, Durgin BG, Newman AAC, Alencar GF, Mahan S, St Hilaire C, Müller W, Waisman A, Francis SE, Pinteaux E, Randolph GJ, Gram H, Owens GK. Interleukin-1β has atheroprotective effects in advanced atherosclerotic lesions of mice. Nat Med 2018; 24:1418-1429. [PMID: 30038218 PMCID: PMC6130822 DOI: 10.1038/s41591-018-0124-5] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/30/2018] [Indexed: 11/09/2022]
Abstract
Despite decades of research, our understanding of the processes controlling late-stage atherosclerotic plaque stability remains poor. A prevailing hypothesis is that reducing inflammation may improve advanced plaque stability, as recently tested in the Canakinumab Anti-inflammatory Thrombosis Outcome Study (CANTOS) trial, in which post-myocardial infarction subjects were treated with an IL-1β antibody. Here, we performed intervention studies in which smooth muscle cell (SMC) lineage-tracing Apoe-/- mice with advanced atherosclerosis were treated with anti-IL-1β or IgG control antibodies. Surprisingly, we found that IL-1β antibody treatment between 18 and 26 weeks of Western diet feeding induced a marked reduction in SMC and collagen content, but increased macrophage numbers in the fibrous cap. Moreover, although IL-1β antibody treatment had no effect on lesion size, it completely inhibited beneficial outward remodeling. We also found that SMC-specific knockout of Il1r1 (encoding IL-1 receptor type 1) resulted in smaller lesions nearly devoid of SMCs and lacking a fibrous cap, whereas macrophage-selective loss of IL-1R1 had no effect on lesion size or composition. Taken together, these results show that IL-1β has multiple beneficial effects in late-stage murine atherosclerosis, including promotion of outward remodeling and formation and maintenance of an SMC- and collagen-rich fibrous cap.
Collapse
Affiliation(s)
- Delphine Gomez
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Richard A Baylis
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Brittany G Durgin
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Alexandra A C Newman
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Gabriel F Alencar
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Sidney Mahan
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cynthia St Hilaire
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Werner Müller
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Sheila E Francis
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Emmanuel Pinteaux
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hermann Gram
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Gary K Owens
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA.
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
8
|
Gonçalvez KDO, Vieira DP, Courrol LC. Study of THP-1 Macrophage Viability after Sonodynamic Therapy Using Methyl Ester of 5-Aminolevulinic Acid Gold Nanoparticles. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:2009-2017. [PMID: 29936026 DOI: 10.1016/j.ultrasmedbio.2018.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 05/03/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
Sonodynamic therapy (SDT) is emerging as new atherosclerosis treatment. The use of gold nanoparticles (AuNPs) as the vehicle for a sensitizer delivery improves reactive oxygen species formation. In this study, methyl ester of aminolevulinic acid (MALA) gold nanoparticles (MALA:AuNPs) functionalized with polyethylene glycol (PEG) were synthesized by photoreduction and characterized by ultraviolet/visible optical absorption, zeta potential and electron microscopy. The reactive oxygen species generation induced by ultrasound irradiation of MALA:AuNPs solutions was studied by observing the decrease in the 1,3-diphenylisobenzofuran emission band. The potential use of MALA:AuNPs as sensitizer for sonodynamic therapy was investigated on THP-1 macrophages. The cytotoxicity test was also described. The findings suggested that ultrasound combined with MALA:AuNPs provides impressive results in in vitro studies. Sonodynamic therapy with MALA:AuNPs through 2 minutes of ultrasound exposure (1 MHz and 1 W/cm2) culminated with total macrophage reduction. Thus, sonodynamic therapy combined with MALA:AuNPs has potential as a treatment for atherosclerosis.
Collapse
Affiliation(s)
- Karina de Oliveira Gonçalvez
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Departamento de Física, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - Daniel Perez Vieira
- Centro de Biotecnologia, Instituto de Pesquisas Energéticas e Nucleares, São Paulo, São Paulo, Brazil
| | - Lilia Coronato Courrol
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Departamento de Física, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil.
| |
Collapse
|
9
|
Williams JW, Martel C, Potteaux S, Esaulova E, Ingersoll MA, Elvington A, Saunders BT, Huang LH, Habenicht AJ, Zinselmeyer BH, Randolph GJ. Limited Macrophage Positional Dynamics in Progressing or Regressing Murine Atherosclerotic Plaques-Brief Report. Arterioscler Thromb Vasc Biol 2018; 38:1702-1710. [PMID: 29903736 PMCID: PMC6202234 DOI: 10.1161/atvbaha.118.311319] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 05/22/2018] [Indexed: 01/19/2023]
Abstract
Objective- Macrophages play important roles in the pathogenesis of atherosclerosis, but their dynamics within plaques remain obscure. We aimed to quantify macrophage positional dynamics within progressing and regressing atherosclerotic plaques. Approach and Results- In a stable intravital preparation, large asymmetrical foamy macrophages in the intima of carotid artery plaques were sessile, but smaller rounded cells nearer plaque margins, possibly newly recruited monocytes, mobilized laterally along plaque borders. Thus, to test macrophage dynamics in plaques over a longer period of time in progressing and regressing disease, we quantified displacement of nondegradable phagocytic particles within macrophages for up to 6 weeks. In progressing plaques, macrophage-associated particles appeared to mobilize to deeper layers in plaque, whereas in regressing plaques, the label was persistently located near the lumen. By measuring the distance of the particles from the floor of the plaque, we discovered that particles remained at the same distance from the floor regardless of plaque progression or regression. The apparent deeper penetration of labeled cells in progressing conditions could be attributed to monocyte recruitment that generated new superficial layers of macrophages over the labeled phagocytes. Conclusions- Although there may be individual exceptions, as a population, newly differentiated macrophages fail to penetrate significantly deeper than the limited depth they reside on initial entry, regardless of plaque progression, or regression. These limited dynamics may prevent macrophages from escaping areas with unfavorable conditions (such as hypoxia) and pose a challenge for newly recruited macrophages to clear debris through efferocytosis deep within plaque.
Collapse
Affiliation(s)
- Jesse W. Williams
- Department of Pathology & Immunology, Washington University School of Medicine, St Louis, MO 63110 USA
| | - Catherine Martel
- Department of Pathology & Immunology, Washington University School of Medicine, St Louis, MO 63110 USA
| | - Stephane Potteaux
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, NY 10029 USA
| | - Ekaterina Esaulova
- Department of Pathology & Immunology, Washington University School of Medicine, St Louis, MO 63110 USA
| | - Molly A. Ingersoll
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, NY 10029 USA
| | - Andrew Elvington
- Department of Pathology & Immunology, Washington University School of Medicine, St Louis, MO 63110 USA
| | - Brian T. Saunders
- Department of Pathology & Immunology, Washington University School of Medicine, St Louis, MO 63110 USA
| | - Li-Hao Huang
- Department of Pathology & Immunology, Washington University School of Medicine, St Louis, MO 63110 USA
| | - Andreas J. Habenicht
- Institute of Vascular Prevention; Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Bernd H. Zinselmeyer
- Department of Pathology & Immunology, Washington University School of Medicine, St Louis, MO 63110 USA
| | - Gwendalyn J. Randolph
- Department of Pathology & Immunology, Washington University School of Medicine, St Louis, MO 63110 USA
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, NY 10029 USA
| |
Collapse
|
10
|
Jain M, Wu B, Pisapia D, Salvatore S, Mukherjee S, Narula N. A component-by-component characterisation of high-risk atherosclerotic plaques by multiphoton microscopic imaging. J Microsc 2017; 268:39-44. [PMID: 28556893 DOI: 10.1111/jmi.12584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/03/2017] [Accepted: 04/28/2017] [Indexed: 12/17/2022]
Abstract
AIMS Atherosclerotic plaques vulnerable to rupture are almost always inflamed, and carry a large lipid core covered by a thin fibrous cap. The other components may include neovascularisation, intraplaque haemorrhage and spotty calcification. In contrast, stable plaques are characterised by a predominance of smooth muscle cells and collagen, and lipid core is usually deep seated or absent. This study is a proof of principle experiment to evaluate the feasibility of multiphoton microscopy (MPM) to identify aforementioned plaque components. METHODS AND RESULTS MPM is a nonlinear optical technique that allows imaging based on intrinsic tissue signals including autofluorescence and higher-order scattering. In our study, MPM imaging was performed on morphologically diverse aortic and coronary artery plaques obtained during autopsy. Various histologically verified plaque components including macrophages, cholesterol crystals, haemorrhage, collagen and calcification were recognised by MPM. CONCLUSIONS Recognition of the distinct signatures of various plaque components suggests that MPM has the potential to offer next-generation characterisation of atherosclerotic plaques. The higher lateral resolution (comparable to histology) images generated by MPM for identifying plaque components might complement larger field of view and greater imaging depth currently available with optical coherence tomography imaging. As the next step MPM would need to be evaluated for intact vessel imaging ex vivo and in vivo.
Collapse
Affiliation(s)
- M Jain
- Department of Dermatology, Memorial Sloan Kettering Cancer Center, NY, U.S.A.,Department of Pathology, Weill Cornell Medical College, NY, U.S.A
| | - B Wu
- Department of Biochemistry, Weill Cornell Medical College, NY, U.S.A.,Department of Physics, Southern Connecticut State University, New Haven, CT, U.S.A
| | - D Pisapia
- Department of Pathology, Weill Cornell Medical College, NY, U.S.A
| | - S Salvatore
- Department of Pathology, Weill Cornell Medical College, NY, U.S.A
| | - S Mukherjee
- Department of Biochemistry, Weill Cornell Medical College, NY, U.S.A
| | - N Narula
- Department of Pathology, Weill Cornell Medical College, NY, U.S.A
| |
Collapse
|
11
|
Abstract
Sections of paraffin embedded tissues are routinely used for studying tissue histology and histopathology. However, it is difficult to determine what the three-dimensional tissue morphology is from such sections. In addition, the sections of tissues examined may not contain the region within the tissue that is necessary for the purpose of the ongoing study. This latter limitation hinders histopathological studies of blood vessels since vascular lesions develop in a focalized manner. This requires a method that enables us to survey a wide area of the blood vessel wall, from its surface to deeper regions. A whole mount en face preparation of blood vessels fulfills this requirement. In this article, we will demonstrate how to make en face preparations of the mouse aorta and carotid artery and to immunofluorescently stain them for confocal microscopy and other types of fluorescence-based imaging.
Collapse
Affiliation(s)
- Kyung Ae Ko
- Department of Cardiology, Division of Internal Medicine, University of Texas MD Anderson Cancer Center
| | - Keigi Fujiwara
- Department of Cardiology, Division of Internal Medicine, University of Texas MD Anderson Cancer Center
| | - Sunil Krishnan
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center
| | - Jun-Ichi Abe
- Department of Cardiology, Division of Internal Medicine, University of Texas MD Anderson Cancer Center;
| |
Collapse
|
12
|
Walker ME, Souza PR, Colas RA, Dalli J. 13-Series resolvins mediate the leukocyte-platelet actions of atorvastatin and pravastatin in inflammatory arthritis. FASEB J 2017; 31:3636-3648. [PMID: 28465323 PMCID: PMC5503705 DOI: 10.1096/fj.201700268] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/13/2017] [Indexed: 02/06/2023]
Abstract
Rheumatoid arthritis is an inflammatory condition characterized by overzealous inflammation that leads to joint damage and is associated with an increased incidence of cardiovascular disease. Statins are frontline therapeutics for patients with cardiovascular disease and exert beneficial actions in rheumatoid arthritis. The mechanism that mediates the beneficial actions of statins in rheumatoid arthritis remains of interest. In the present study, we found that the administration of 2 clinically relevant statins—atorvastatin (0.2 mg/kg) or pravastatin (0.2 mg/kg)—to mice during inflammatory arthritis up-regulated systemic and tissue amounts of a novel family of proresolving mediators, termed 13-series resolvins (RvTs), and significantly reduced joint disease. Of note, administration of simvastatin (0.2 mg/kg) did not significantly up-regulate RvTs or reduce joint inflammation. We also found that atorvastatin and pravastatin each reduced systemic leukocyte activation, including platelet-monocyte aggregates (∼25–60%). These statins decreased neutrophil trafficking to the joint as well as joint monocyte and macrophage numbers. Atorvastatin and pravastatin produced significant reductions (∼30–50%) in expression of CD11b and major histocompatibility complex class II on both monocytes and monocyte-derived macrophages in joints. Administration of an inhibitor to cyclooxygenase-2, the initiating enzyme in the RvT pathway, reversed the protective actions of these statins on both joint and systemic inflammation. Together, these findings provide evidence for the role of RvTs in mediating the protective actions of atorvastatin and pravastatin in reducing local and vascular inflammation, and suggest that RvTs may be useful in measuring the anti-inflammatory actions of statins.—Walker, M. E., Souza, P. R., Colas, R. A., Dalli, J. 13-Series resolvins mediate the leukocyte-platelet actions of atorvastatin and pravastatin in inflammatory arthritis.
Collapse
Affiliation(s)
- Mary E Walker
- Lipid Mediator Unit, Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Patricia R Souza
- Lipid Mediator Unit, Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Romain A Colas
- Lipid Mediator Unit, Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Jesmond Dalli
- Lipid Mediator Unit, Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
13
|
Herbin O, Regelmann AG, Ramkhelawon B, Weinstein EG, Moore KJ, Alexandropoulos K. Monocyte Adhesion and Plaque Recruitment During Atherosclerosis Development Is Regulated by the Adapter Protein Chat-H/SHEP1. Arterioscler Thromb Vasc Biol 2016; 36:1791-801. [PMID: 27417580 PMCID: PMC5001917 DOI: 10.1161/atvbaha.116.308014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 07/04/2016] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The chronic inflammation associated with atherosclerosis is caused by lipid deposition followed by leukocyte recruitment to the arterial wall. We previously showed that the hematopoietic cell-specific adaptor protein Cas- and Hef1-associated signal transducer hematopoietic isoform (Chat-H)/SHEP1 regulated lymphocyte adhesion and migration. In this study, we analyzed the role of Chat-H in atherosclerosis development. APPROACH AND RESULTS Using Chat-H-deficient bone marrow transplantation in low-density lipoprotein receptor-deficient mice, we found that Chat-H regulated atherosclerotic plaque formation. Chat-H deficiency in hematopoietic cells associated with lower plaque complexity and fewer leukocytes in the lesions, whereas myeloid-specific deletion of Chat-H was sufficient for conferring atheroprotection. Chat-H deficiency resulted in reduced recruitment of classical Ly6c(high) and nonclassical Ly6c(low) monocytes to the plaques, which was accompanied by increased numbers of both monocyte subsets in the blood. This associated with defective adhesion of Chat-H-deficient Ly6c(high) and Ly6c(low) monocytes to vascular cell adhesion molecule-1 in vitro and impaired infiltration of fluorescent bead-loaded monocytes to atherosclerotic plaques. In contrast, Chat-H was dispensable for CX3CL1 and CCR1/CCR5-dependent migration of monocytes. CONCLUSIONS Our findings highlight Chat-H as a key protein that regulates atherosclerosis development by controlling monocyte adhesion and recruitment to the plaques and identify a novel target that may be exploited for treating atherosclerosis.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/deficiency
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Antigens, Ly/metabolism
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Bone Marrow Transplantation
- Cell Adhesion
- Cells, Cultured
- Chemotaxis, Leukocyte
- Disease Models, Animal
- Genotype
- Macrophages/metabolism
- Macrophages/pathology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Monocytes/metabolism
- Monocytes/pathology
- Neutrophils/metabolism
- Neutrophils/pathology
- Phenotype
- Plaque, Atherosclerotic
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Signal Transduction
- Vascular Cell Adhesion Molecule-1/metabolism
Collapse
Affiliation(s)
- Olivier Herbin
- From the Icahn School of Medicine at Mount Sinai, Department of Medicine, The Immunology Institute, New York (O.H., E.G.W., K.A.); Quartzy, Inc, Palo Alto, CA (A.G.R.); and Leon H. Charney Division of Cardiology, Department of Medicine, NYU School of Medicine, New York (B.R., K.J.M.)
| | - Adam G Regelmann
- From the Icahn School of Medicine at Mount Sinai, Department of Medicine, The Immunology Institute, New York (O.H., E.G.W., K.A.); Quartzy, Inc, Palo Alto, CA (A.G.R.); and Leon H. Charney Division of Cardiology, Department of Medicine, NYU School of Medicine, New York (B.R., K.J.M.)
| | - Bhama Ramkhelawon
- From the Icahn School of Medicine at Mount Sinai, Department of Medicine, The Immunology Institute, New York (O.H., E.G.W., K.A.); Quartzy, Inc, Palo Alto, CA (A.G.R.); and Leon H. Charney Division of Cardiology, Department of Medicine, NYU School of Medicine, New York (B.R., K.J.M.)
| | - Erica G Weinstein
- From the Icahn School of Medicine at Mount Sinai, Department of Medicine, The Immunology Institute, New York (O.H., E.G.W., K.A.); Quartzy, Inc, Palo Alto, CA (A.G.R.); and Leon H. Charney Division of Cardiology, Department of Medicine, NYU School of Medicine, New York (B.R., K.J.M.)
| | - Kathryn J Moore
- From the Icahn School of Medicine at Mount Sinai, Department of Medicine, The Immunology Institute, New York (O.H., E.G.W., K.A.); Quartzy, Inc, Palo Alto, CA (A.G.R.); and Leon H. Charney Division of Cardiology, Department of Medicine, NYU School of Medicine, New York (B.R., K.J.M.)
| | - Konstantina Alexandropoulos
- From the Icahn School of Medicine at Mount Sinai, Department of Medicine, The Immunology Institute, New York (O.H., E.G.W., K.A.); Quartzy, Inc, Palo Alto, CA (A.G.R.); and Leon H. Charney Division of Cardiology, Department of Medicine, NYU School of Medicine, New York (B.R., K.J.M.).
| |
Collapse
|
14
|
McArdle S, Mikulski Z, Ley K. Live cell imaging to understand monocyte, macrophage, and dendritic cell function in atherosclerosis. J Exp Med 2016; 213:1117-31. [PMID: 27270892 PMCID: PMC4925021 DOI: 10.1084/jem.20151885] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/28/2016] [Indexed: 02/06/2023] Open
Abstract
Ley et al. provide a review of the technology and accomplishments of dynamic imaging of myeloid cells in atherosclerosis. Intravital imaging is an invaluable tool for understanding the function of cells in healthy and diseased tissues. It provides a window into dynamic processes that cannot be studied by other techniques. This review will cover the benefits and limitations of various techniques for labeling and imaging myeloid cells, with a special focus on imaging cells in atherosclerotic arteries. Although intravital imaging is a powerful tool for understanding cell function, it alone does not provide a complete picture of the cell. Other techniques, such as flow cytometry and transcriptomics, must be combined with intravital imaging to fully understand a cell's phenotype, lineage, and function.
Collapse
Affiliation(s)
- Sara McArdle
- Division of Inflammation Biology and Microscopy Core, La Jolla Institute of Allergy and Immunology, La Jolla, CA 92037
| | - Zbigniew Mikulski
- Division of Inflammation Biology and Microscopy Core, La Jolla Institute of Allergy and Immunology, La Jolla, CA 92037
| | - Klaus Ley
- Division of Inflammation Biology and Microscopy Core, La Jolla Institute of Allergy and Immunology, La Jolla, CA 92037
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW This review relates recent findings that highlight the role of the spleen as an active donor of monocytes during inflammation, with a special focus on atherosclerosis. RECENT FINDINGS The contribution of hypercholesterolemia and monocytes/macrophages to atherosclerotic lesion formation is undisputable. The origin of plaque macrophages is, however, still a subject of debate as to whether they derive from local amplification of (resident) macrophages or from continuous recruitment and differentiation of monocytes. Recently, the spleen has emerged as an important reservoir of monocytes that contributes to lesion growth. The regulation of monocyte mobilization from the splenic compartment has, therefore, raised a keen interest in understanding the cellular and molecular mechanisms involved in this process. SUMMARY Impaired regulation of cholesterol metabolism increases the proliferation of hematopoietic stem and progenitor cells in both the bone marrow and the spleen. Recent findings identified the implication of angiotensin II, red pulp macrophages and B-lymphocytes as partners of monocyte expansion in, and mobilization from the spleen. Future studies will help in understanding the mechanisms of monocyte mobilization and its precise roles in atherosclerosis, and whether modulation of the splenic components may become a promising future direction in the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Stephane Potteaux
- aINSERM UMR-S 970, Paris Cardiovascular Research Center (PARCC), Université Paris Descartes, Sorbonne Paris Cité bRéanimation médicale, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Paris, France cDepartment of Medicine, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
16
|
Lin JB, Phillips EH, Riggins TE, Sangha GS, Chakraborty S, Lee JY, Lycke RJ, Hernandez CL, Soepriatna AH, Thorne BRH, Yrineo AA, Goergen CJ. Imaging of small animal peripheral artery disease models: recent advancements and translational potential. Int J Mol Sci 2015; 16:11131-77. [PMID: 25993289 PMCID: PMC4463694 DOI: 10.3390/ijms160511131] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 03/10/2015] [Indexed: 12/11/2022] Open
Abstract
Peripheral artery disease (PAD) is a broad disorder encompassing multiple forms of arterial disease outside of the heart. As such, PAD development is a multifactorial process with a variety of manifestations. For example, aneurysms are pathological expansions of an artery that can lead to rupture, while ischemic atherosclerosis reduces blood flow, increasing the risk of claudication, poor wound healing, limb amputation, and stroke. Current PAD treatment is often ineffective or associated with serious risks, largely because these disorders are commonly undiagnosed or misdiagnosed. Active areas of research are focused on detecting and characterizing deleterious arterial changes at early stages using non-invasive imaging strategies, such as ultrasound, as well as emerging technologies like photoacoustic imaging. Earlier disease detection and characterization could improve interventional strategies, leading to better prognosis in PAD patients. While rodents are being used to investigate PAD pathophysiology, imaging of these animal models has been underutilized. This review focuses on structural and molecular information and disease progression revealed by recent imaging efforts of aortic, cerebral, and peripheral vascular disease models in mice, rats, and rabbits. Effective translation to humans involves better understanding of underlying PAD pathophysiology to develop novel therapeutics and apply non-invasive imaging techniques in the clinic.
Collapse
Affiliation(s)
- Jenny B Lin
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Evan H Phillips
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Ti'Air E Riggins
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Gurneet S Sangha
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Sreyashi Chakraborty
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Janice Y Lee
- Psychological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | - Roy J Lycke
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Clarissa L Hernandez
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Arvin H Soepriatna
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Bradford R H Thorne
- School of Sciences, Neuroscience, Purdue University, West Lafayette, IN 47907, USA.
| | - Alexa A Yrineo
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| |
Collapse
|
17
|
Thomas G, Tacke R, Hedrick CC, Hanna RN. Nonclassical patrolling monocyte function in the vasculature. Arterioscler Thromb Vasc Biol 2015; 35:1306-16. [PMID: 25838429 DOI: 10.1161/atvbaha.114.304650] [Citation(s) in RCA: 220] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/23/2015] [Indexed: 12/23/2022]
Abstract
Nonclassical patrolling monocytes are characterized by their unique ability to actively patrol the vascular endothelium under homeostatic and inflammatory conditions. Patrolling monocyte subsets (CX3CR1(high)Ly6C(-) in mouse and CX3CR1(high)CD14(dim)CD16(+) in humans) are distinct from the classical monocyte subsets (CCR2(high)Ly6C(+) in mouse and CCR2(high)CD14(+)CD16(-) in humans) and exhibit unique functions in the vasculature and inflammatory disease. Patrolling monocytes function in several disease settings to remove damaged cells and debris from the vasculature and have been associated with wound healing and the resolution of inflammation in damaged tissues. This review highlights the unique functions of these patrolling monocytes in the vasculature and during inflammation.
Collapse
Affiliation(s)
- Graham Thomas
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA
| | - Robert Tacke
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA
| | - Catherine C Hedrick
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA
| | - Richard N Hanna
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA.
| |
Collapse
|
18
|
Abstract
Mononuclear phagocytes (MPs) relevant to atherosclerosis include monocytes, macrophages, and dendritic cells. A decade ago, studies on macrophage behavior in atherosclerotic lesions were often limited to quantification of total macrophage area in cross-sections of plaques. Although technological advances are still needed to examine plaque MP populations in an increasingly dynamic and informative manner, innovative methods to interrogate the biology of MPs in atherosclerotic plaques developed in the past few years point to several mechanisms that regulate the accumulation and function of MPs within plaques. Here, I review the evolution of atherosclerotic plaques with respect to changes in the MP compartment from the initiation of plaque to its progression and regression, discussing the roles that recruitment, proliferation, and retention of MPs play at these different disease stages. Additional work in the future will be needed to better distinguish macrophages and dendritic cells in plaque and to address some basic unknowns in the field, including just how cholesterol drives accumulation of macrophages in lesions to build plaques in the first place and how macrophages as major effectors of innate immunity work together with components of the adaptive immune response to drive atherosclerosis. Answers to these questions are sought with the goal in mind of reversing disease where it exists and preventing its development where it does not.
Collapse
Affiliation(s)
- Gwendalyn J Randolph
- From the Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO.
| |
Collapse
|
19
|
Abstract
Cardiovascular disease is the leading cause of death in several countries. The underlying process is atherosclerosis, a slowly progressing chronic disorder that can lead to intravascular thrombosis. There is overwhelming evidence for the underlying importance of our immune system in atherosclerosis. Monocytes, which comprise part of the innate immune system, can be recruited to inflamed endothelium and this recruitment has been shown to be proportional to the extent of atherosclerotic disease. Monocytes undergo migration into the vasculature, they differentiate into macrophage phenotypes, which are highly phagocytic and can scavenge modified lipids, leading to foam cell formation and development of the lipid-rich atheroma core. This increased influx leads to a highly inflammatory environment and along with other immune cells can increase the risk in the development of the unstable atherosclerotic plaque phenotype. The present review provides an overview and description of the immunological aspect of innate and adaptive immune cell subsets in atherosclerosis, by defining their interaction with the vascular environment, modified lipids and other cellular exchanges. There is a particular focus on monocytes and macrophages, but shorter descriptions of dendritic cells, lymphocyte populations, neutrophils, mast cells and platelets are also included.
Collapse
|