1
|
Andreas E, Penn A, Okada T, St. John JC. Supplementation of Oocytes by Microinjection with Extra Copies of mtDNA Alters Metabolite Profiles and Interactions with Expressed Genes in a Tissue-Specific Manner. Biomolecules 2024; 14:1477. [PMID: 39595653 PMCID: PMC11591607 DOI: 10.3390/biom14111477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
Mitochondrial DNA (mtDNA) supplementation can rescue poor oocyte quality and overcome embryonic arrest. Here, we investigated a series of sexually mature pigs generated through autologous and heterologous mtDNA supplementation. Brain, liver and heart tissues underwent metabolite profiling using gas chromatography-mass spectrometry and gene expression analysis through RNA-seq. They were then assessed for mRNA-metabolite interactions. The comparison between overall mtDNA supplemented and control pigs revealed that mtDNA supplementation reduced the lipids stearic acid and elaidic acid in heart tissue. However, heterologous mtDNA supplemented-derived pigs exhibited lower levels of abundance of metabolites when compared with autologous-derived pigs. In the brain, these included mannose, mannose 6-phosphate and fructose 6-phosphate. In the liver, maltose and cellobiose, and in the heart, glycine and glutamate were affected. mRNA-metabolite pathway analysis revealed a correlation between malate and CS, ACLY, IDH2 and PKLR in the liver and glutamate and PSAT1, PHGDH, CDO1 and ANPEP in the heart. Our outcomes demonstrate that mtDNA supplementation, especially heterologous supplementation, alters the metabolite and transcriptome profiles of brain, liver, and heart tissues. This is likely due to the extensive resetting of the balance between the nuclear and mitochondrial genomes in the preimplantation embryo, which induces a series of downstream effects.
Collapse
Affiliation(s)
| | | | | | - Justin C. St. John
- Experimental Mitochondrial Genetics Group, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide Health and Medical Sciences Building, Adelaide, SA 5000, Australia; (E.A.); (A.P.); (T.O.)
| |
Collapse
|
2
|
Lee J, You C, Kwon G, Noh J, Lee K, Kim K, Kang K, Kang K. Integration of epigenomic and transcriptomic profiling uncovers EZH2 target genes linked to cysteine metabolism in hepatocellular carcinoma. Cell Death Dis 2024; 15:801. [PMID: 39516467 PMCID: PMC11549485 DOI: 10.1038/s41419-024-07198-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Enhancer of zeste homolog 2 (EZH2), a key protein implicated in various cancers including hepatocellular carcinoma (HCC), is recognized for its association with epigenetic dysregulation and pathogenesis. Despite clinical explorations into EZH2-targeting therapies, the mechanisms underlying its role in gene suppression in HCC have remained largely unexplored. Here, we integrate epigenomic and transcriptomic analyses to uncover the transcriptional landscape modulated by selective EZH2 inhibition in HCC. By reanalyzing transcriptomic data of HCC patients, we demonstrate that EZH2 overexpression correlates with poor patient survival. Treatment with the EZH2 inhibitor tazemetostat restored expression of genes involved in cysteine-methionine metabolism and lipid homeostasis, while suppressing angiogenesis and oxidative stress-related genes. Mechanistically, we demonstrate EZH2-mediated H3K27me3 enrichment at cis-regulatory elements of transsulfuration pathway genes, which is reversed upon inhibition, leading to increased chromatin accessibility. Among 16 EZH2-targeted candidate genes, BHMT and CDO1 were notably correlated with poor HCC prognosis. Tazemetostat treatment of HCC cells increased BHMT and CDO1 expression while reducing levels of ferroptosis markers FSP1, NFS1, and SLC7A11. Functionally, EZH2 inhibition dose-dependently reduced cell viability and increased lipid peroxidation in HCC cells. Our findings reveal a novel epigenetic mechanism controlling lipid peroxidation and ferroptosis susceptibility in HCC, providing a rationale for exploring EZH2-targeted therapies in this malignancy.
Collapse
Affiliation(s)
- Jaehyun Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Chaelin You
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Geunho Kwon
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Junho Noh
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Kyubin Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Kyunghwan Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Keunsoo Kang
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, Korea.
| | - Kyuho Kang
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Korea.
| |
Collapse
|
3
|
Ma Y, Su J, Ma C. Causal relationship between amino acids and ovarian cancer in the European population: A bidirectional Mendelian randomization study and meta-analysis. Medicine (Baltimore) 2024; 103:e40189. [PMID: 39470531 PMCID: PMC11521036 DOI: 10.1097/md.0000000000040189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/30/2024] Open
Abstract
In recent years, an increasing number of observational studies have reported the impact of amino acids on ovarian cancer. However, Mendelian randomization studies have not yet been conducted to explore the causal relationship between them in the context of ovarian cancer. This study conducted Mendelian randomization (MR) analysis of 20 amino acids in relation to ovarian cancer data from 2 different sources within the European population, using a two-sample MR approach. The primary results from the inverse variance weighting analysis were then subjected to a meta-analysis, followed by multiple testing correction for the meta-analysis thresholds. Finally, reverse causality testing was performed on the positively associated amino acids and ovarian cancer. MR analyses were conducted for 20 amino acids with ovarian cancer data from both the Finngen R10 and Open genome-wide association study databases. The inverse variance weighted results from these 2 analyses were then combined through meta-analysis, with multiple corrections applied to the significance thresholds of the meta-analysis results. The findings showed that only cysteine had a significant association with ovarian cancer, with an (odds ratio) odds ratio value of 0.507 (95% confidence interval: 0.335-0.767, P = .025). The P-value of the combined MR and meta-analysis, after multiple testing correction, was 0.025, indicating statistical significance (P < .05). Additionally, cysteine did not show a reverse causal relationship with ovarian cancer in either data source. Cysteine is a protective factor for ovarian cancer, potentially reducing the risk of ovarian cancer and slowing the progression of the disease.
Collapse
Affiliation(s)
- Yingji Ma
- Jiaozhou Hospital of Tongji University Dongfang Hospital Qingdao, Shangdong, China
| | - Jiaqi Su
- Jiaozhou Hospital of Tongji University Dongfang Hospital Qingdao, Shangdong, China
| | - Changbo Ma
- Jiaozhou Hospital of Tongji University Dongfang Hospital Qingdao, Shangdong, China
| |
Collapse
|
4
|
Lee SCES, Pyo AHA, Mohammadi H, Zhang J, Dvorkin-Gheva A, Malbeteau L, Chung S, Khan S, Ciudad MT, Rondeau V, Cairns RA, Kislinger T, McGaha TL, Wouters BG, Reisz JA, Culp-Hill R, D’Alessandro A, Jones CL, Koritzinsky M. Cysteamine dioxygenase (ADO) governs cancer cell mitochondrial redox homeostasis through proline metabolism. SCIENCE ADVANCES 2024; 10:eadq0355. [PMID: 39356760 PMCID: PMC11446280 DOI: 10.1126/sciadv.adq0355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024]
Abstract
2-Aminoethanethiol dioxygenase (ADO) is a thiol dioxygenase that sulfinylates cysteamine and amino-terminal cysteines in polypeptides. The pathophysiological roles of ADO remain largely unknown. Here, we demonstrate that ADO expression represents a vulnerability in cancer cells, as ADO depletion led to loss of proliferative capacity and survival in cancer cells and reduced xenograft growth. In contrast, generation of the ADO knockout mouse revealed high tolerance for ADO depletion in adult tissues. To understand the mechanism underlying ADO's essentiality in cancer cells, we characterized the cell proteome and metabolome following depletion of ADO. This revealed that ADO depletion leads to toxic levels of polyamines which can be driven by ADO's substrate cysteamine. Polyamine accumulation in turn stimulated expression of proline dehydrogenase (PRODH) which resulted in mitochondrial hyperactivity and ROS production, culminating in cell toxicity. This work identifies ADO as a unique vulnerability in cancer cells, due to its essential role in maintenance of redox homeostasis through restraining polyamine levels and proline catabolism.
Collapse
Affiliation(s)
- Sandy Che-Eun S. Lee
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Andrea Hye An Pyo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Helia Mohammadi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Ji Zhang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Anna Dvorkin-Gheva
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Lucie Malbeteau
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Stephen Chung
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Shahbaz Khan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - M. Teresa Ciudad
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Vincent Rondeau
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Rob A. Cairns
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Tracy L. McGaha
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Bradly G. Wouters
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rachel Culp-Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Courtney L. Jones
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Marianne Koritzinsky
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| |
Collapse
|
5
|
Wang Y, Zhang Q. Leveraging programmed cell death signature to predict clinical outcome and immunotherapy benefits in postoperative bladder cancer. Sci Rep 2024; 14:22976. [PMID: 39363008 PMCID: PMC11450150 DOI: 10.1038/s41598-024-73571-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
Bladder cancer is the fourth most common malignancy in men with poor prognosis. Programmed cell death (PCD) exerts crucial functions in many biological processes and immunotherapy responses of cancers. Cell death signature (CDS) is novel gene signature comprehensively considering the characteristics of 15 patterns of programmed cell death, which could affect the prognosis and immunotherapy benefits of cancer patients. Integrative machine learning procedure including 10 algorithms was conducted to construct a prognostic CDS using TCGA, GSE13507, GSE31684, GSE32984 and GSE48276 datasets. Immunophenoscore, intratumor heterogeneity (ITH), tumor immune dysfunction and exclusion (TIDE) score and five immunotherapy cohorts were used to evaluate the predictive value of CDS in immunotherapy response. The prognostic CDS constructed by StepCox[backward] + Ridge algorithms was regarded as the optimal prognostic model. The CDS had a stable and powerful performance in predicting overall survival of bladder cancer patients with the AUCs at 3-year, 5-year, and 7-year ROC of 0.740, 0.763 and 0.820 in TCGA cohort. Moreover, CDS score acted as an independent risk factor for overall survival rate of bladder cancer patients. Low CDS score had a higher abundance of immuno-activated cells, higher PD1&CTLA4 immunophenoscore, higher TMB score, lower TIDE score, lower immune escape score, lower ITH score, lower cancer-related hallmarks score in bladder cancer. The CDS score was higher in non-responders in pan-cancer patients receiving immunotherapy. Our study constructed a novel prognostic CDS, which could serve as an indicator for predicting the prognosis in postoperative bladder cancer cases and immunotherapy benefits in pan-cancer. Low CDS score indicated a better prognosis and immunotherapy benefits.
Collapse
Affiliation(s)
- Yifan Wang
- Urology and Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Qi Zhang
- Urology and Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
6
|
Perri M, Licausi F. Thiol dioxygenases: from structures to functions. Trends Biochem Sci 2024; 49:545-556. [PMID: 38622038 DOI: 10.1016/j.tibs.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 04/17/2024]
Abstract
Thiol oxidation to dioxygenated sulfinic acid is catalyzed by an enzyme family characterized by a cupin fold. These proteins act on free thiol-containing molecules to generate central metabolism precursors and signaling compounds in bacteria, fungi, and animal cells. In plants and animals, they also oxidize exposed N-cysteinyl residues, directing proteins to proteolysis. Enzyme kinetics, X-ray crystallography, and spectroscopy studies prompted the formulation and testing of hypotheses about the mechanism of action and the different substrate specificity of these enzymes. Concomitantly, the physiological role of thiol dioxygenation in prokaryotes and eukaryotes has been studied through genetic and physiological approaches. Further structural characterization is necessary to enable precise and safe manipulation of thiol dioxygenases (TDOs) for therapeutic, industrial, and agricultural applications.
Collapse
Affiliation(s)
- Monica Perri
- Plant Molecular Biology Section, Department of Biology, University of Oxford, Oxford, UK
| | - Francesco Licausi
- Plant Molecular Biology Section, Department of Biology, University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
Ji M, Xu Q, Li X. Dietary methionine restriction in cancer development and antitumor immunity. Trends Endocrinol Metab 2024; 35:400-412. [PMID: 38383161 PMCID: PMC11096033 DOI: 10.1016/j.tem.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
Methionine restriction (MR) has been shown to suppress tumor growth and improve the responses to various anticancer therapies. However, methionine itself is required for the proliferation, activation, and differentiation of T cells that are crucial for antitumor immunity. The dual impact of methionine, that influences both tumor and immune cells, has generated concerns regarding the potential consequences of MR on T cell immunity and its possible role in promoting cancer. In this review we systemically examine current literature on the interactions between dietary methionine, cancer cells, and immune cells. Based on recent findings on MR in immunocompetent animals, we further discuss how tumor stage-specific methionine dependence of immune cells and cancer cells in the tumor microenvironment could ultimately dictate the response of tumors to MR.
Collapse
Affiliation(s)
- Ming Ji
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Qing Xu
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Xiaoling Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
8
|
Ocaña-Paredes B, Rivera-Orellana S, Ramírez-Sánchez D, Montalvo-Guerrero J, Freire MP, Espinoza-Ferrao S, Altamirano-Colina A, Echeverría-Espinoza P, Ramos-Medina MJ, Echeverría-Garcés G, Granda-Moncayo D, Jácome-Alvarado A, Andrade MG, López-Cortés A. The pharmacoepigenetic paradigm in cancer treatment. Front Pharmacol 2024; 15:1381168. [PMID: 38720770 PMCID: PMC11076712 DOI: 10.3389/fphar.2024.1381168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Epigenetic modifications, characterized by changes in gene expression without altering the DNA sequence, play a crucial role in the development and progression of cancer by significantly influencing gene activity and cellular function. This insight has led to the development of a novel class of therapeutic agents, known as epigenetic drugs. These drugs, including histone deacetylase inhibitors, histone acetyltransferase inhibitors, histone methyltransferase inhibitors, and DNA methyltransferase inhibitors, aim to modulate gene expression to curb cancer growth by uniquely altering the epigenetic landscape of cancer cells. Ongoing research and clinical trials are rigorously evaluating the efficacy of these drugs, particularly their ability to improve therapeutic outcomes when used in combination with other treatments. Such combination therapies may more effectively target cancer and potentially overcome the challenge of drug resistance, a significant hurdle in cancer therapy. Additionally, the importance of nutrition, inflammation control, and circadian rhythm regulation in modulating drug responses has been increasingly recognized, highlighting their role as critical modifiers of the epigenetic landscape and thereby influencing the effectiveness of pharmacological interventions and patient outcomes. Epigenetic drugs represent a paradigm shift in cancer treatment, offering targeted therapies that promise a more precise approach to treating a wide spectrum of tumors, potentially with fewer side effects compared to traditional chemotherapy. This progress marks a step towards more personalized and precise interventions, leveraging the unique epigenetic profiles of individual tumors to optimize treatment strategies.
Collapse
Affiliation(s)
- Belén Ocaña-Paredes
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | | | - David Ramírez-Sánchez
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | | | - María Paula Freire
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | | | | | | | - María José Ramos-Medina
- German Cancer Research Center (DKFZ), Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Gabriela Echeverría-Garcés
- Centro de Referencia Nacional de Genómica, Secuenciación y Bioinformática, Instituto Nacional de Investigación en Salud Pública “Leopoldo Izquieta Pérez”, Quito, Ecuador
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
| | | | - Andrea Jácome-Alvarado
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - María Gabriela Andrade
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - Andrés López-Cortés
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| |
Collapse
|
9
|
Chen J, Matye D, Dai Clayton Y, Du Y, Nazmul Hasan M, Gu L, Li T. Deletion of hepatocyte cysteine dioxygenase type 1, a bile acid repressed gene, enhances glutathione synthesis and ameliorates acetaminophen hepatotoxicity. Biochem Pharmacol 2024; 222:116103. [PMID: 38428825 PMCID: PMC10976970 DOI: 10.1016/j.bcp.2024.116103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/28/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Liver is a major organ that metabolizes sulfur amino acids cysteine, which is the substrate for the synthesis of many essential cellular molecules including GSH, taurine, and coenzyme A. Bile acid-activated farnesoid x receptor (FXR) inhibits cysteine dioxygenase type 1 (CDO1), which mediates hepatic cysteine catabolism and taurine synthesis. To define the impact of bile acid inhibition of CDO1 on hepatic sulfur amino acid metabolism and antioxidant capacity, we developed hepatocyte-specific CDO1 knockout mice (Hep-CDO1 KO) and hepatocyte specific CDO1 transgenic mice (Hep-CDO1 Tg). Liver metabolomics revealed that genetic deletion of hepatic CDO1 reduced de novo taurine synthesis but had no impact on hepatic taurine abundance or bile acid conjugation. Consistent with reduced cysteine catabolism, Hep-CDO1 KO mice showed increased hepatic cysteine abundance but unaltered methionine cycle intermediates and coenzyme A synthesis. Upon acetaminophen overdose, Hep-CDO1 KO mice showed increased GSH synthesis capacity and alleviated liver injury. In contrast, hepatic CDO1 overexpression in Hep-CDO1 Tg mice stimulated hepatic cysteine to taurine conversion, resulting in reduced hepatic cysteine abundance. However, Hep-CDO1 Tg mice and WT showed similar susceptibility to acetaminophen-induced liver injury. Hep-CDO1 Tg mice showed similar hepatic taurine and coenzyme A compared to WT mice. In summary, these findings suggest that bile acid and FXR signaling inhibition of CDO1-mediated hepatic cysteine catabolism preferentially modulates hepatic GSH synthesis capacity and antioxidant defense, but has minimal effect on hepatic taurine and coenzyme A abundance. Repression of hepatic CDO1 may contribute to the hepatoprotective effects of FXR activation under certain pathologic conditions.
Collapse
Affiliation(s)
- Jianglei Chen
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - David Matye
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Yung Dai Clayton
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Yanhong Du
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Mohammad Nazmul Hasan
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Lijie Gu
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Tiangang Li
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States.
| |
Collapse
|
10
|
Yadav S, Yadav V, Siegler MA, Moënne-Loccoz P, Jameson GNL, Goldberg DP. A Nonheme Iron(III) Superoxide Complex Leads to Sulfur Oxygenation. J Am Chem Soc 2024; 146:7915-7921. [PMID: 38488295 DOI: 10.1021/jacs.3c12337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
A new alkylthiolate-ligated nonheme iron complex, FeII(BNPAMe2S)Br (1), is reported. Reaction of 1 with O2 at -40 °C, or reaction of the ferric form with O2•- at -80 °C, gives a rare iron(III)-superoxide intermediate, [FeIII(O2)(BNPAMe2S)]+ (2), characterized by UV-vis, 57Fe Mössbauer, ATR-FTIR, EPR, and CSIMS. Metastable 2 then converts to an S-oxygenated FeII(sulfinate) product via a sequential O atom transfer mechanism involving an iron-sulfenate intermediate. These results provide evidence for the feasibility of proposed intermediates in thiol dioxygenases.
Collapse
Affiliation(s)
- Sudha Yadav
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Vishal Yadav
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Pierre Moënne-Loccoz
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Guy N L Jameson
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road,Parkville, Victoria 3010, Australia
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
11
|
Warnhoff K, Bhattacharya S, Snoozy J, Breen PC, Ruvkun G. Hypoxia-inducible factor induces cysteine dioxygenase and promotes cysteine homeostasis in Caenorhabditis elegans. eLife 2024; 12:RP89173. [PMID: 38349720 PMCID: PMC10942545 DOI: 10.7554/elife.89173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
Dedicated genetic pathways regulate cysteine homeostasis. For example, high levels of cysteine activate cysteine dioxygenase, a key enzyme in cysteine catabolism in most animal and many fungal species. The mechanism by which cysteine dioxygenase is regulated is largely unknown. In an unbiased genetic screen for mutations that activate cysteine dioxygenase (cdo-1) in the nematode Caenorhabditis elegans, we isolated loss-of-function mutations in rhy-1 and egl-9, which encode proteins that negatively regulate the stability or activity of the oxygen-sensing hypoxia inducible transcription factor (hif-1). EGL-9 and HIF-1 are core members of the conserved eukaryotic hypoxia response. However, we demonstrate that the mechanism of HIF-1-mediated induction of cdo-1 is largely independent of EGL-9 prolyl hydroxylase activity and the von Hippel-Lindau E3 ubiquitin ligase, the classical hypoxia signaling pathway components. We demonstrate that C. elegans cdo-1 is transcriptionally activated by high levels of cysteine and hif-1. hif-1-dependent activation of cdo-1 occurs downstream of an H2S-sensing pathway that includes rhy-1, cysl-1, and egl-9. cdo-1 transcription is primarily activated in the hypodermis where it is also sufficient to drive sulfur amino acid metabolism. Thus, the regulation of cdo-1 by hif-1 reveals a negative feedback loop that maintains cysteine homeostasis. High levels of cysteine stimulate the production of an H2S signal. H2S then acts through the rhy-1/cysl-1/egl-9 signaling pathway to increase HIF-1-mediated transcription of cdo-1, promoting degradation of cysteine via CDO-1.
Collapse
Affiliation(s)
- Kurt Warnhoff
- Pediatrics and Rare Diseases Group, Sanford ResearchSioux FallsUnited States
- Department of Pediatrics, Sanford School of Medicine, University of South DakotaSioux FallsUnited States
| | | | - Jennifer Snoozy
- Pediatrics and Rare Diseases Group, Sanford ResearchSioux FallsUnited States
| | - Peter C Breen
- Department of Molecular Biology, Massachusetts General HospitalBostonUnited States
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General HospitalBostonUnited States
| |
Collapse
|
12
|
Du C, Tan L, Xiao X, Xin B, Xiong H, Zhang Y, Ke Z, Yin J. Detection of the DNA methylation of seven genes contribute to the early diagnosis of lung cancer. J Cancer Res Clin Oncol 2024; 150:77. [PMID: 38315228 PMCID: PMC10844440 DOI: 10.1007/s00432-023-05588-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND Low-dose Computed Tomography (CT) is used for the detection of pulmonary nodules, but the ambiguous risk evaluation causes overdiagnosis. Here, we explored the significance of the DNA methylation of 7 genes including TAC1, CDO1, HOXA9, ZFP42, SOX17, RASSF1A and SHOX2 in the blood cfDNA samples in distinguishing lung cancer from benign nodules and healthy individuals. METHOD A total of 149 lung cancer patients [72 mass and 77 ground-glass nodules (GGNs)], 5 benign and 48 healthy individuals were tested and analyzed in this study. The lasso-logistic regression model was built for distinguishing cancer and control/healthy individuals or IA lung cancer and non-IA lung cancer cases. RESULTS The positive rates of methylation of 7 genes were higher in the cancer group as compared with the healthy group. We constructed a model using age, sex and the ΔCt value of 7 gene methylation to distinguish lung cancer from benign and healthy individuals. The sensitivity, specificity and AUC (area under the curve) were 86.7%, 81.4% and 0.891, respectively. Also, we assessed the significance of 7 gene methylation together with patients' age and sex in distinguishing of GGNs type from the mass type. The sensitivity, specificity and AUC were 77.1%, 65.8% and 0.753, respectively. Furthermore, the methylation positive rates of CDO1 and SHOX2 were different between I-IV stages of lung cancer. Specifically, the positive rate of CDO1 methylation was higher in the non-IA group as compared with the IA group. CONCLUSION Collectively, this study reveals that the methylation of 7 genes has a big significance in the diagnosis of lung cancer with high sensitivity and specificity. Also, the 7 genes present with certain significance in distinguishing the GGN type lung cancer, as well as different stages.
Collapse
Affiliation(s)
- Chaoxiang Du
- Department of Thoracic Surgery, Cancer Center, Zhongshan Hospital of Fudan University, Shanghai, China
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Lijie Tan
- Department of Thoracic Surgery, Cancer Center, Zhongshan Hospital of Fudan University, Shanghai, China
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Xiao Xiao
- School of Physics, Changchun University of Science and Technology, Changchun, 130022, China
- Shanghai Rightongene Biotechnology Co. Ltd., Shanghai, 201403, China
| | - Beibei Xin
- Shanghai Rightongene Biotechnology Co. Ltd., Shanghai, 201403, China
| | - Hui Xiong
- Shanghai Rightongene Biotechnology Co. Ltd., Shanghai, 201403, China
| | - Yuying Zhang
- Shanghai Rightongene Biotechnology Co. Ltd., Shanghai, 201403, China
| | - Zhonghe Ke
- Shanghai Rightongene Biotechnology Co. Ltd., Shanghai, 201403, China.
| | - Jun Yin
- Department of Thoracic Surgery, Cancer Center, Zhongshan Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Yan X, Qi Y, Yao X, Zhou N, Ye X, Chen X. DNMT3L inhibits hepatocellular carcinoma progression through DNA methylation of CDO1: insights from big data to basic research. J Transl Med 2024; 22:128. [PMID: 38308276 PMCID: PMC10837993 DOI: 10.1186/s12967-024-04939-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/27/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND DNMT3L is a crucial DNA methylation regulatory factor, yet its function and mechanism in hepatocellular carcinoma (HCC) remain poorly understood. Bioinformatics-based big data analysis has increasingly gained significance in cancer research. Therefore, this study aims to elucidate the role of DNMT3L in HCC by integrating big data analysis with experimental validation. METHODS Dozens of HCC datasets were collected to analyze the expression of DNMT3L and its relationship with prognostic indicators, and were used for molecular regulatory relationship evaluation. The effects of DNMT3L on the malignant phenotypes of hepatoma cells were confirmed in vitro and in vivo. The regulatory mechanisms of DNMT3L were explored through MSP, western blot, and dual-luciferase assays. RESULTS DNMT3L was found to be downregulated in HCC tissues and associated with better prognosis. Overexpression of DNMT3L inhibits cell proliferation and metastasis. Additionally, CDO1 was identified as a target gene of DNMT3L and also exhibits anti-cancer effects. DNMT3L upregulates CDO1 expression by competitively inhibiting DNMT3A-mediated methylation of CDO1 promoter. CONCLUSIONS Our study revealed the role and epi-transcriptomic regulatory mechanism of DNMT3L in HCC, and underscored the essential role and applicability of big data analysis in elucidating complex biological processes.
Collapse
Affiliation(s)
- Xiaokai Yan
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Yao Qi
- Shanghai Molecular Medicine Engineering Technology Research Center, Shanghai, 201203, China
- Shanghai National Engineering Research Center of Biochip, Shanghai, 201203, China
| | - Xinyue Yao
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Nanjing Zhou
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xinxin Ye
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xing Chen
- Department of Hepatopancreatobiliary Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
14
|
Li X, Zhang HS. Amino acid metabolism, redox balance and epigenetic regulation in cancer. FEBS J 2024; 291:412-429. [PMID: 37129434 DOI: 10.1111/febs.16803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/11/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
Amino acids act as versatile nutrients driving cell growth and survival, especially in cancer cells. Amino acid metabolism comprises numerous metabolic networks and is closely linked with intracellular redox balance and epigenetic regulation. Reprogrammed amino acid metabolism has been recognized as a ubiquitous feature in tumour cells. This review outlines the metabolism of several primary amino acids in cancer cells and highlights the pivotal role of amino acid metabolism in sustaining redox homeostasis and regulating epigenetic modification in response to oxidative and genetic stress in cancer cells.
Collapse
Affiliation(s)
- Xiang Li
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Hong-Sheng Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| |
Collapse
|
15
|
Park SJ, Kang D, Lee M, Lee SY, Park YG, Oh T, Jang S, Hwang WJ, Kwon SJ, An S, Son JW, Jeong IB. Combination Analysis of PCDHGA12 and CDO1 DNA Methylation in Bronchial Washing Fluid for Lung Cancer Diagnosis. J Korean Med Sci 2024; 39:e28. [PMID: 38225788 PMCID: PMC10789528 DOI: 10.3346/jkms.2024.39.e28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/25/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND When suspicious lesions are observed on computer-tomography (CT), invasive tests are needed to confirm lung cancer. Compared with other procedures, bronchoscopy has fewer complications. However, the sensitivity of peripheral lesion through bronchoscopy including washing cytology is low. A new test with higher sensitivity through bronchoscopy is needed. In our previous study, DNA methylation of PCDHGA12 in bronchial washing cytology has a diagnostic value for lung cancer. In this study, combination of PCDHGA12 and CDO1 methylation obtained through bronchial washing cytology was evaluated as a diagnostic tool for lung cancer. METHODS A total of 187 patients who had suspicious lesions in CT were enrolled. PCDHGA12 methylation test, CDO1 methylation test, and cytological examination were performed using 3-plex LTE-qMSP test. RESULTS Sixty-two patients were diagnosed with benign diseases and 125 patients were diagnosed with lung cancer. The sensitivity of PCDHGA12 was 74.4% and the specificity of PCDHGA12 was 91.9% respectively. CDO1 methylation test had a sensitivity of 57.6% and a specificity of 96.8%. The combination of both PCDHGA12 methylation test and CDO1 methylation test showed a sensitivity of 77.6% and a specificity of 90.3%. The sensitivity of lung cancer diagnosis was increased by combining both PCDHGA12 and CDO1 methylation tests. CONCLUSION Checking DNA methylation of both PCDHGA12 and CDO1 genes using bronchial washing fluid can reduce the invasive procedure to diagnose lung cancer.
Collapse
Affiliation(s)
- Se Jin Park
- Division of Pulmonology, Department of Internal Medicine, Konyang University Hospital, Daejeon, Korea
| | - Daeun Kang
- Division of Pulmonology, Department of Internal Medicine, Konyang University Hospital, Daejeon, Korea
| | - Minhyeok Lee
- Division of Pulmonology, Department of Internal Medicine, Konyang University Hospital, Daejeon, Korea
| | - Su Yel Lee
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, Korea
| | - Young Gyu Park
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | - Wan Jin Hwang
- Department of Thoracic and Cardiovascular Surgery, Konyang University Hospital, Daejeon, Korea
| | - Sun Jung Kwon
- Division of Pulmonology, Department of Internal Medicine, Konyang University Hospital, Daejeon, Korea
| | | | - Ji Woong Son
- Division of Pulmonology, Department of Internal Medicine, Konyang University Hospital, Daejeon, Korea.
| | - In Beom Jeong
- Division of Pulmonology, Department of Internal Medicine, Konyang University Hospital, Daejeon, Korea.
| |
Collapse
|
16
|
Hipólito A, Mendes C, Martins F, Lemos I, Francisco I, Cunha F, Almodôvar T, Albuquerque C, Gonçalves LG, Bonifácio VDB, Vicente JB, Serpa J. H 2S-Synthesizing Enzymes Are Putative Determinants in Lung Cancer Management toward Personalized Medicine. Antioxidants (Basel) 2023; 13:51. [PMID: 38247476 PMCID: PMC10812562 DOI: 10.3390/antiox13010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Lung cancer is a lethal disease with no truly efficient therapeutic management despite the progresses, and metabolic profiling can be a way of stratifying patients who may benefit from new therapies. The present study is dedicated to profiling cysteine metabolic pathways in NSCLC cell lines and tumor samples. This was carried out by analyzing hydrogen sulfide (H2S) and ATP levels, examining mRNA and protein expression patterns of cysteine catabolic enzymes and transporters, and conducting metabolomics analysis using nuclear magnetic resonance (NMR) spectroscopy. Selenium-chrysin (SeChry) was tested as a therapeutic alternative with the aim of having an effect on cysteine catabolism and showed promising results. NSCLC cell lines presented different cysteine metabolic patterns, with A549 and H292 presenting a higher reliance on cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) to maintain H2S levels, while the PC-9 cell line presented an adaptive behavior based on the use of mercaptopyruvate sulfurtransferase (MST) and cysteine dioxygenase (CDO1), both contributing to the role of cysteine as a pyruvate source. The analyses of human lung tumor samples corroborated this variability in profiles, meaning that the expression of certain genes may be informative in defining prognosis and new targets. Heterogeneity points out individual profiles, and the identification of new targets among metabolic players is a step forward in cancer management toward personalized medicine.
Collapse
Affiliation(s)
- Ana Hipólito
- iNOVA4Health, NOVA Medical School, 1150-069 Lisbon, Portugal; (A.H.); (C.M.); (F.M.); (I.L.)
- Molecular Pathobiology Research Unit, fromThe Portuguese Institute of Oncology (IPOLFG), 1099-023 Lisbon, Portugal; (I.F.); (C.A.)
| | - Cindy Mendes
- iNOVA4Health, NOVA Medical School, 1150-069 Lisbon, Portugal; (A.H.); (C.M.); (F.M.); (I.L.)
- Molecular Pathobiology Research Unit, fromThe Portuguese Institute of Oncology (IPOLFG), 1099-023 Lisbon, Portugal; (I.F.); (C.A.)
| | - Filipa Martins
- iNOVA4Health, NOVA Medical School, 1150-069 Lisbon, Portugal; (A.H.); (C.M.); (F.M.); (I.L.)
- Molecular Pathobiology Research Unit, fromThe Portuguese Institute of Oncology (IPOLFG), 1099-023 Lisbon, Portugal; (I.F.); (C.A.)
| | - Isabel Lemos
- iNOVA4Health, NOVA Medical School, 1150-069 Lisbon, Portugal; (A.H.); (C.M.); (F.M.); (I.L.)
- Molecular Pathobiology Research Unit, fromThe Portuguese Institute of Oncology (IPOLFG), 1099-023 Lisbon, Portugal; (I.F.); (C.A.)
| | - Inês Francisco
- Molecular Pathobiology Research Unit, fromThe Portuguese Institute of Oncology (IPOLFG), 1099-023 Lisbon, Portugal; (I.F.); (C.A.)
| | - Fernando Cunha
- Pathology Department, The Portuguese Institute of Oncology (IPOLFG), 1099-023 Lisbon, Portugal;
| | - Teresa Almodôvar
- Pneumology Department, The Portuguese Institute of Oncology (IPOLFG), 1099-023 Lisbon, Portugal;
| | - Cristina Albuquerque
- Molecular Pathobiology Research Unit, fromThe Portuguese Institute of Oncology (IPOLFG), 1099-023 Lisbon, Portugal; (I.F.); (C.A.)
| | - Luís G. Gonçalves
- Institute of Chemical and Biological Technology António Xavier (ITQB NOVA), 2780-157 Oeiras, Portugal; (L.G.G.); (J.B.V.)
| | - Vasco D. B. Bonifácio
- IBB-Institute for Bioengineering and Biosciences, Associate Laboratory i4HB-Institute for Health and Bioeconomy, IST-Lisbon University, 1049-001 Lisbon, Portugal;
- Bioengineering Department, IST-Lisbon University, 1049-001 Lisbon, Portugal
| | - João B. Vicente
- Institute of Chemical and Biological Technology António Xavier (ITQB NOVA), 2780-157 Oeiras, Portugal; (L.G.G.); (J.B.V.)
| | - Jacinta Serpa
- iNOVA4Health, NOVA Medical School, 1150-069 Lisbon, Portugal; (A.H.); (C.M.); (F.M.); (I.L.)
- Molecular Pathobiology Research Unit, fromThe Portuguese Institute of Oncology (IPOLFG), 1099-023 Lisbon, Portugal; (I.F.); (C.A.)
| |
Collapse
|
17
|
Chen M, Zhu JY, Mu WJ, Luo HY, Li Y, Li S, Yan LJ, Li RY, Guo L. Cdo1-Camkk2-AMPK axis confers the protective effects of exercise against NAFLD in mice. Nat Commun 2023; 14:8391. [PMID: 38110408 PMCID: PMC10728194 DOI: 10.1038/s41467-023-44242-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023] Open
Abstract
Exercise is an effective non-pharmacological strategy for ameliorating nonalcoholic fatty liver disease (NAFLD), but the underlying mechanism needs further investigation. Cysteine dioxygenase type 1 (Cdo1) is a key enzyme for cysteine catabolism that is enriched in liver, whose role in NAFLD remains poorly understood. Here, we show that exercise induces the expression of hepatic Cdo1 via the cAMP/PKA/CREB signaling pathway. Hepatocyte-specific knockout of Cdo1 (Cdo1LKO) decreases basal metabolic rate of the mice and impairs the effect of exercise against NAFLD, whereas hepatocyte-specific overexpression of Cdo1 (Cdo1LTG) increases basal metabolic rate of the mice and synergizes with exercise to ameliorate NAFLD. Mechanistically, Cdo1 tethers Camkk2 to AMPK by interacting with both of them, thereby activating AMPK signaling. This promotes fatty acid oxidation and mitochondrial biogenesis in hepatocytes to attenuate hepatosteatosis. Therefore, by promoting hepatic Camkk2-AMPK signaling pathway, Cdo1 acts as an important downstream effector of exercise to combat against NAFLD.
Collapse
Affiliation(s)
- Min Chen
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, 200438, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
| | - Jie-Ying Zhu
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, 200438, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
| | - Wang-Jing Mu
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, 200438, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
| | - Hong-Yang Luo
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, 200438, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
| | - Yang Li
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, 200438, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
| | - Shan Li
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, 200438, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
| | - Lin-Jing Yan
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, 200438, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
| | - Ruo-Ying Li
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, 200438, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
| | - Liang Guo
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, 200438, China.
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China.
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
18
|
Warnhoff K, Bhattacharya S, Snoozy J, Breen PC, Ruvkun G. Hypoxia-inducible factor induces cysteine dioxygenase and promotes cysteine homeostasis in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.538701. [PMID: 37205365 PMCID: PMC10187278 DOI: 10.1101/2023.05.04.538701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Dedicated genetic pathways regulate cysteine homeostasis. For example, high levels of cysteine activate cysteine dioxygenase, a key enzyme in cysteine catabolism in most animal and many fungal species. The mechanism by which cysteine dioxygenase is regulated is largely unknown. In an unbiased genetic screen for mutations that activate cysteine dioxygenase (cdo-1) in the nematode C. elegans, we isolated loss-of-function mutations in rhy-1 and egl-9, which encode proteins that negatively regulate the stability or activity of the oxygen-sensing hypoxia inducible transcription factor (hif-1). EGL-9 and HIF-1 are core members of the conserved eukaryotic hypoxia response. However, we demonstrate that the mechanism of HIF-1-mediated induction of cdo-1 is largely independent of EGL-9 prolyl hydroxylase activity and the von Hippel-Lindau E3 ubiquitin ligase, the classical hypoxia signaling pathway components. We demonstrate that C. elegans cdo-1 is transcriptionally activated by high levels of cysteine and hif-1. hif-1-dependent activation of cdo-1 occurs downstream of an H2S-sensing pathway that includes rhy-1, cysl-1, and egl-9. cdo-1 transcription is primarily activated in the hypodermis where it is also sufficient to drive sulfur amino acid metabolism. Thus, the regulation of cdo-1 by hif-1 reveals a negative feedback loop that maintains cysteine homeostasis. High levels of cysteine stimulate the production of an H2S signal. H2S then acts through the rhy-1/cysl-1/egl-9 signaling pathway to increase HIF-1-mediated transcription of cdo-1, promoting degradation of cysteine via CDO-1.
Collapse
Affiliation(s)
- Kurt Warnhoff
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105 USA
| | - Sushila Bhattacharya
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Jennifer Snoozy
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Peter C. Breen
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
19
|
Crippa V, Malighetti F, Villa M, Graudenzi A, Piazza R, Mologni L, Ramazzotti D. Characterization of cancer subtypes associated with clinical outcomes by multi-omics integrative clustering. Comput Biol Med 2023; 162:107064. [PMID: 37267828 DOI: 10.1016/j.compbiomed.2023.107064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/03/2023] [Accepted: 05/27/2023] [Indexed: 06/04/2023]
Abstract
Cancer patients show heterogeneous phenotypes and very different outcomes and responses even to common treatments, such as standard chemotherapy. This state-of-affairs has motivated the need for the comprehensive characterization of cancer phenotypes and fueled the generation of large omics datasets, comprising multiple omics data reported for the same patients, which might now allow us to start deciphering cancer heterogeneity and implement personalized therapeutic strategies. In this work, we performed the analysis of four cancer types obtained from the latest efforts by The Cancer Genome Atlas, for which seven distinct omics data were available for each patient, in addition to curated clinical outcomes. We performed a uniform pipeline for raw data preprocessing and adopted the Cancer Integration via MultIkernel LeaRning (CIMLR) integrative clustering method to extract cancer subtypes. We then systematically review the discovered clusters for the considered cancer types, highlighting novel associations between the different omics and prognosis.
Collapse
Affiliation(s)
- Valentina Crippa
- Department of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy.
| | - Federica Malighetti
- Department of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy.
| | - Matteo Villa
- Department of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy.
| | - Alex Graudenzi
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milano, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy
| | - Luca Mologni
- Department of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy.
| | - Daniele Ramazzotti
- Department of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy.
| |
Collapse
|
20
|
Yang R, Zhou Y, Zhang T, Wang S, Wang J, Cheng Y, Li H, Jiang W, Yang Z, Zhang X. The transcription factor HBP1 promotes ferroptosis in tumor cells by regulating the UHRF1-CDO1 axis. PLoS Biol 2023; 21:e3001862. [PMID: 37406020 DOI: 10.1371/journal.pbio.3001862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 05/31/2023] [Indexed: 07/07/2023] Open
Abstract
The induction of ferroptosis in tumor cells is one of the most important mechanisms by which tumor progression can be inhibited; however, the specific regulatory mechanism underlying ferroptosis remains unclear. In this study, we found that transcription factor HBP1 has a novel function of reducing the antioxidant capacity of tumor cells. We investigated the important role of HBP1 in ferroptosis. HBP1 down-regulates the protein levels of UHRF1 by inhibiting the expression of the UHRF1 gene at the transcriptional level. Reduced levels of UHRF1 have been shown to regulate the ferroptosis-related gene CDO1 by epigenetic mechanisms, thus up-regulating the level of CDO1 and increasing the sensitivity of hepatocellular carcinoma and cervical cancer cells to ferroptosis. On this basis, we constructed metal-polyphenol-network coated HBP1 nanoparticles by combining biological and nanotechnological. MPN-HBP1 nanoparticles entered tumor cells efficiently and innocuously, induced ferroptosis, and inhibited the malignant proliferation of tumors by regulating the HBP1-UHRF1-CDO1 axis. This study provides a new perspective for further research on the regulatory mechanism underlying ferroptosis and its potential role in tumor therapy.
Collapse
Affiliation(s)
- Ruixiang Yang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, China
| | - Yue Zhou
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, China
| | - Tongjia Zhang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, China
| | - Shujie Wang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, China
| | - Jiyin Wang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, China
| | - Yuning Cheng
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, China
| | - Hui Li
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, China
| | - Wei Jiang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, China
| | - Zhe Yang
- Department of pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Xiaowei Zhang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, China
| |
Collapse
|
21
|
Yoon SJ, Combs JA, Falzone A, Prieto-Farigua N, Caldwell S, Ackerman HD, Flores ER, DeNicola GM. Comprehensive Metabolic Tracing Reveals the Origin and Catabolism of Cysteine in Mammalian Tissues and Tumors. Cancer Res 2023; 83:1426-1442. [PMID: 36862034 PMCID: PMC10152234 DOI: 10.1158/0008-5472.can-22-3000] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/11/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023]
Abstract
Cysteine plays critical roles in cellular biosynthesis, enzyme catalysis, and redox metabolism. The intracellular cysteine pool can be sustained by cystine uptake or de novo synthesis from serine and homocysteine. Demand for cysteine is increased during tumorigenesis for generating glutathione to deal with oxidative stress. While cultured cells have been shown to be highly dependent on exogenous cystine for proliferation and survival, how diverse tissues obtain and use cysteine in vivo has not been characterized. We comprehensively interrogated cysteine metabolism in normal murine tissues and cancers that arise from them using stable isotope 13C1-serine and 13C6-cystine tracing. De novo cysteine synthesis was highest in normal liver and pancreas and absent in lung tissue, while cysteine synthesis was either inactive or downregulated during tumorigenesis. In contrast, cystine uptake and metabolism to downstream metabolites was a universal feature of normal tissues and tumors. However, differences in glutathione labeling from cysteine were evident across tumor types. Thus, cystine is a major contributor to the cysteine pool in tumors, and glutathione metabolism is differentially active across tumor types. SIGNIFICANCE Stable isotope 13C1-serine and 13C6-cystine tracing characterizes cysteine metabolism in normal murine tissues and its rewiring in tumors using genetically engineered mouse models of liver, pancreas, and lung cancers.
Collapse
Affiliation(s)
- Sang Jun Yoon
- Department of Metabolism and Physiology, H. Lee. Moffitt Cancer Center, Tampa, Florida
- Cancer Biology and Evolution Program, H. Lee. Moffitt Cancer Center, Tampa, Florida
| | - Joseph A. Combs
- Department of Metabolism and Physiology, H. Lee. Moffitt Cancer Center, Tampa, Florida
- Cancer Biology and Evolution Program, H. Lee. Moffitt Cancer Center, Tampa, Florida
| | - Aimee Falzone
- Department of Metabolism and Physiology, H. Lee. Moffitt Cancer Center, Tampa, Florida
- Cancer Biology and Evolution Program, H. Lee. Moffitt Cancer Center, Tampa, Florida
| | - Nicolas Prieto-Farigua
- Department of Metabolism and Physiology, H. Lee. Moffitt Cancer Center, Tampa, Florida
- Cancer Biology and Evolution Program, H. Lee. Moffitt Cancer Center, Tampa, Florida
| | - Samantha Caldwell
- Department of Metabolism and Physiology, H. Lee. Moffitt Cancer Center, Tampa, Florida
- Cancer Biology and Evolution Program, H. Lee. Moffitt Cancer Center, Tampa, Florida
| | - Hayley D. Ackerman
- Cancer Biology and Evolution Program, H. Lee. Moffitt Cancer Center, Tampa, Florida
- Department of Molecular Oncology, H. Lee. Moffitt Cancer Center, Tampa, Florida
| | - Elsa R. Flores
- Cancer Biology and Evolution Program, H. Lee. Moffitt Cancer Center, Tampa, Florida
- Department of Molecular Oncology, H. Lee. Moffitt Cancer Center, Tampa, Florida
| | - Gina M. DeNicola
- Department of Metabolism and Physiology, H. Lee. Moffitt Cancer Center, Tampa, Florida
- Cancer Biology and Evolution Program, H. Lee. Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
22
|
Kurevlev SV, Tskhovrebova LV, Aghajanyan AV, Fatkhudinov TK, Gordon KB, Azova MM. Methylation of the tumor associated genes in head and neck squamous cell carcinoma. HEAD AND NECK TUMORS (HNT) 2023. [DOI: 10.17650/2222-1468-2022-12-4-61-70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Introduction. Head and neck cancer is a heterogenous group of malignant tumors of different etiologies, molecular mechanisms of which are still insufficiently studied.Aim. Investigation of DNA methylation status of some tumor associated genes (RASSF1A, RASSF2, RASSF5, CDO1, MEST and WIF1) in patients with head and neck squamous cell carcinoma.Materials and methods. The DNA methylation level of normal and tumor tissues was analyzed using bisulfite conversion and methylation-sensitive high-resolution melting in 25 patients (21 men and 4 women) diagnosed with neck squamous cell carcinoma.Results. There were significant differences in levels of DNA methylation between tumor and normal tissues in the CDO1 and WIF1 genes in all groups and subgroups of patients (larynx and other cancers, squamous cell carcinoma keratinizing and non-keratinizing, primary and recurrent tumor, smokers and non-smokers). The methylation level in the CDO1 gene in tumor tissue was significantly increased in the T4 and T3 stage subgroups compared to T2.Conclusion. The increased level of methylation of the CDO1 and WIF1 genes, as well as changes in their expression are among the molecular mechanisms involved in the neck squamous cell carcinoma development. They can be considered as prognostic and diagnostic markers for this pathology.
Collapse
Affiliation(s)
| | | | | | | | - K. B. Gordon
- Рeoples’ Friendship University of Russia; A.F. Tsyb Medical Radiological Research Center – branch of the National Medical Research Center of Radiology, Ministry of Health of Russia
| | | |
Collapse
|
23
|
Cysteine dioxygenase 1 attenuates the proliferation via inducing oxidative stress and integrated stress response in gastric cancer cells. Cell Death Dis 2022; 8:493. [PMID: 36526626 PMCID: PMC9758200 DOI: 10.1038/s41420-022-01277-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
Whereas cysteine dioxygenase 1 (CDO1) expression is lost due to its hypermethylated promoter across a range of cancer types including gastric cancer (GC), its functions and molecular underpinnings remain largely unknown. Here we demonstrate that reduced CDO1 expression is indicative of unfavorable prognosis in patients with GC. CDO1 overexpression in GC cells markedly inhibits cellular proliferation in vitro and in vivo. Mechanistically, CDO1 exerts this cytostatic effect via increasing oxidative stress and thus activating integrated stress response (ISR) in GC cells. High throughput screening (HTS) of antioxidants library identifies that Engeletin, a flavanonol glycoside, blunts oxidative stress and the ISR to relieve the inhibitory effect of CDO1 on the proliferation in GC cells. Additionally, genetic disruption or pharmaceutical inhibition of the ISR boosts the growth in the GC cells with CDO1 expression. Our data uncover the molecular mechanisms underlying the cytostatic function of CDO1 in the proliferation of GC cells.
Collapse
|
24
|
Zang J, Sun J, Xiu W, Liu X, Chai Y, Zhou Y. Low Expression of AGPAT5 Is Associated With Clinical Stage and Poor
Prognosis in Colorectal Cancer and Contributes to Tumour
Progression. Clin Med Insights Oncol 2022; 16:11795549221137399. [PMCID: PMC9716453 DOI: 10.1177/11795549221137399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/20/2022] [Indexed: 12/05/2022] Open
Abstract
Background: Colorectal cancer (CRC) has a high prevalence and poor prognosis. This study
aimed to identify biomarkers related to the clinical stage (I-IV) of
CRC. Methods: The LinkedOmics database was used as the discovery cohort, and two Gene
Expression Omnibus (GEO) databases (GSE41258 and GSE422848) served as
validation cohorts. The trend test of genes related to clinical stage (I-IV)
of CRC patients was identified by the Jonckheere-Terpstra test. The
cBioPortal database, Gene Expression Profiling Interactive Analysis (GEPIA)
and PrognoScan databases were used to explore the expression change and
prognostic value of clinical stage-related genes in CRC patients. CRC cells
overexpressed AGPAT5 were constructed and used for cell counting kit-8
(CCK-8), flow cytometric, and wound healing assays in vitro. Results: We identified four clinical stage-related genes, GSR, AGPAT5, CRLF1, and
NPR3, in CRC. The CNA frequencies of GSR, CRLF1, AGPAT5, and NPR3 occurred
in 11%, 2.4%, 13%, and 3% of patients, respectively. The expression of GSR
and AGPAT5 tended to decrease with CRC stage (I-IV) progression, and the
expression of CRLF1 and NPR3 tended to increase with CRC stage (I-IV)
progression. Compared with the normal group, AGPAT5 expression was markedly
decreased in stage IV CRC. Higher GSR and AGPAT5 expression levels were
associated with better overall survival (OS) and disease-free survival (DFS)
in CRC patients. Lower CRLF1 and NPR3 expression levels were associated with
better OS and DFS in CRC. GSR, CRLF1, AGPAT5, and NPR3 expression were
related to CRC progression, microsatellite instability, and tumour purity in
CRC. Furthermore, AGPAT5 was downregulated in CRC cell lines, and
overexpression of AGPAT5 inhibited cell proliferation and migration and
promoted cell apoptosis in CRC cells. Conclusion: Low AGPAT5 expression may serve as a poor prognostic factor and clinical
stage biomarker in CRC. In addition, AGPAT5 acts as a tumour suppressor in
CRC progression.
Collapse
Affiliation(s)
- Jia Zang
- Department of Colorectal Surgery,
Shanghai Changzheng Hospital, Shanghai, P.R. China
| | - Juanjuan Sun
- Department of Colorectal Surgery,
Shanghai Changzheng Hospital, Shanghai, P.R. China
| | - WenChao Xiu
- The Second Ward of Anorectal
Department, Qilu Hospital of Shandong University (Qingdao), China
| | - Xiaoshuang Liu
- Department of General Surgery, Shuguang
Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R.
China
| | - Yunsheng Chai
- Department of Colorectal Surgery,
Shanghai Changzheng Hospital, Shanghai, P.R. China,Yunsheng Chai, Department of Colorectal
Surgery, Shanghai Changzheng Hospital, No. 415, FengYang Road, Shanghai 200003,
P.R. China.
| | - Yanyan Zhou
- Department of Colorectal Surgery,
Shanghai Changzheng Hospital, Shanghai, P.R. China
| |
Collapse
|
25
|
Pidsley R, Lam D, Qu W, Peters TJ, Luu P, Korbie D, Stirzaker C, Daly RJ, Stricker P, Kench JG, Horvath LG, Clark SJ. Comprehensive methylome sequencing reveals prognostic epigenetic biomarkers for prostate cancer mortality. Clin Transl Med 2022; 12:e1030. [PMID: 36178085 PMCID: PMC9523674 DOI: 10.1002/ctm2.1030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Prostate cancer is a clinically heterogeneous disease with a subset of patients rapidly progressing to lethal-metastatic prostate cancer. Current clinicopathological measures are imperfect predictors of disease progression. Epigenetic changes are amongst the earliest molecular changes in tumourigenesis. To find new prognostic biomarkers to enable earlier intervention and improved outcomes, we performed methylome sequencing of DNA from patients with localised prostate cancer and long-term clinical follow-up. METHODS We used whole-genome bisulphite sequencing (WGBS) to comprehensively map and compare DNA methylation of radical prostatectomy tissue between patients with lethal disease (n = 7) and non-lethal (n = 8) disease (median follow-up 19.5 years). Validation of differentially methylated regions (DMRs) was performed in an independent cohort (n = 185, median follow-up 15 years) using targeted multiplex bisulphite sequencing of candidate regions. Survival was assessed via univariable and multivariable analyses including clinicopathological measures (log-rank and Cox regression models). RESULTS WGBS data analysis identified cancer-specific methylation patterns including CpG island hypermethylation, and hypomethylation of repetitive elements, with increasing disease risk. We identified 1420 DMRs associated with prostate cancer-specific mortality (PCSM), which showed enrichment for gene sets downregulated in prostate cancer and de novo methylated in cancer. Through comparison with public prostate cancer datasets, we refined the DMRs to develop an 18-gene prognostic panel. Applying this panel to an independent cohort, we found significant associations between PCSM and hypermethylation at EPHB3, PARP6, TBX1, MARCH6 and a regulatory element within CACNA2D4. Strikingly in a multivariable model, inclusion of CACNA2D4 methylation was a better predictor of PCSM versus grade alone (Harrell's C-index: 0.779 vs. 0.684). CONCLUSIONS Our study provides detailed methylome maps of non-lethal and lethal prostate cancer and identifies novel genic regions that distinguish these patient groups. Inclusion of our DNA methylation biomarkers with existing clinicopathological measures improves prognostic models of prostate cancer mortality, and holds promise for clinical application.
Collapse
Affiliation(s)
- Ruth Pidsley
- Garvan Institute of Medical ResearchSydneyNew South WalesAustralia,School of Clinical MedicineSt Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW SydneySydneyNew South WalesAustralia
| | - Dilys Lam
- Garvan Institute of Medical ResearchSydneyNew South WalesAustralia,Present address:
School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia,Present address:
Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
| | - Wenjia Qu
- Garvan Institute of Medical ResearchSydneyNew South WalesAustralia
| | - Timothy J. Peters
- Garvan Institute of Medical ResearchSydneyNew South WalesAustralia,School of Clinical MedicineSt Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW SydneySydneyNew South WalesAustralia
| | - Phuc‐Loi Luu
- Garvan Institute of Medical ResearchSydneyNew South WalesAustralia,School of Clinical MedicineSt Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW SydneySydneyNew South WalesAustralia
| | - Darren Korbie
- Centre for Personalised NanomedicineAustralian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Clare Stirzaker
- Garvan Institute of Medical ResearchSydneyNew South WalesAustralia,School of Clinical MedicineSt Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW SydneySydneyNew South WalesAustralia
| | - Roger J. Daly
- Cancer Research Program and Department of Biochemistry and Molecular BiologyBiomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
| | - Phillip Stricker
- Garvan Institute of Medical ResearchSydneyNew South WalesAustralia,School of Clinical MedicineSt Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW SydneySydneyNew South WalesAustralia,Department of UrologySt. Vincent's Prostate Cancer CentreSydneyNew South WalesAustralia
| | - James G. Kench
- Garvan Institute of Medical ResearchSydneyNew South WalesAustralia,Department of Tissue PathologyNSW Health PathologyRoyal Prince Alfred HospitalCamperdownSydneyNew South WalesAustralia
| | - Lisa G. Horvath
- Garvan Institute of Medical ResearchSydneyNew South WalesAustralia,School of Clinical MedicineSt Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW SydneySydneyNew South WalesAustralia,Chris O'Brien Lifehouse, CamperdownSydneyNew South WalesAustralia,University of SydneySydneyNew South WalesAustralia
| | - Susan J. Clark
- Garvan Institute of Medical ResearchSydneyNew South WalesAustralia,School of Clinical MedicineSt Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW SydneySydneyNew South WalesAustralia
| |
Collapse
|
26
|
Li JJ, Xia XP, Wu LM, Zhu Z, Shi YN, Zhang XC, Xia YS, Lu GR. Cancer suppression by ferroptosis and its role in digestive system tumors. Shijie Huaren Xiaohua Zazhi 2022; 30:718-728. [DOI: 10.11569/wcjd.v30.i16.718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cancer is the second leading cause of death worldwide, and digestive system tumors remain the leading malignancy in China, seriously endangering national health and imposing a huge economic burden. Ferroptosis is a form of cell death characterized by increased intracellular reduced iron and accumulated lipid peroxide. Recent studies have revealed that ferroptosis is closely related to the occurrence and treatment of cancer. Therefore, this paper reviews the studies on ferroptosis and cancer to explore the potential of ferroptosis in the treatment of malignant tumors, especially digestive system tumors, and to provide a new direction for developing treatment options.
Collapse
Affiliation(s)
- Jia-Jia Li
- Department of Gastroenterology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Xuan-Ping Xia
- Department of Gastroenterology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Li-Min Wu
- Department of Gastroenterology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Zheng Zhu
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Yu-Ning Shi
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Xu-Chao Zhang
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Yu-Shan Xia
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Guang-Rong Lu
- Department of Gastroenterology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| |
Collapse
|
27
|
Marinelli LM, Kisiel JB, Slettedahl SW, Mahoney DW, Lemens MA, Shridhar V, Taylor WR, Staub JK, Cao X, Foote PH, Burger KN, Berger CK, O'Connell MC, Doering KA, Giakoumopoulos M, Berg H, Volkmann C, Solsrud A, Allawi HT, Kaiser M, Vaccaro AM, Albright Crawford C, Moehlenkamp C, Shea G, Deist MS, Schoolmeester JK, Kerr SE, Sherman ME, Bakkum-Gamez JN. Methylated DNA markers for plasma detection of ovarian cancer: Discovery, validation, and clinical feasibility. Gynecol Oncol 2022; 165:568-576. [PMID: 35370009 PMCID: PMC9133226 DOI: 10.1016/j.ygyno.2022.03.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Aberrant DNA methylation is an early event in carcinogenesis which could be leveraged to detect ovarian cancer (OC) in plasma. METHODS DNA from frozen OC tissues, benign fallopian tube epithelium (FTE), and buffy coats from cancer-free women underwent reduced representation bisulfite sequencing (RRBS) to identify OC MDMs. Candidate MDM selection was based on receiver operating characteristic (ROC) discrimination, methylation fold change, and low background methylation among controls. Blinded biological validation was performed using methylated specific PCR on DNA extracted from independent OC and FTE FFPE tissues. MDMs were tested using Target Enrichment Long-probe Quantitative Amplified Signal (TELQAS) assays in pre-treatment plasma from women newly diagnosed with OC and population-sampled healthy women. A random forest modeling analysis was performed to generate predictive probability of disease; results were 500-fold in silico cross-validated. RESULTS Thirty-three MDMs showed marked methylation fold changes (10 to >1000) across all OC subtypes vs FTE. Eleven MDMs (GPRIN1, CDO1, SRC, SIM2, AGRN, FAIM2, CELF2, RIPPLY3, GYPC, CAPN2, BCAT1) were tested on plasma from 91 women with OC (73 (80%) high-grade serous (HGS)) and 91 without OC; the cross-validated 11-MDM panel highly discriminated OC from controls (96% (95% CI, 89-99%) specificity; 79% (69-87%) sensitivity, and AUC 0.91 (0.86-0.96)). Among the 5 stage I/II HGS OCs included, all were correctly identified. CONCLUSIONS Whole methylome sequencing, stringent filtering criteria, and biological validation yielded candidate MDMs for OC that performed with high sensitivity and specificity in plasma. Larger plasma-based OC MDM studies, including testing of pre-diagnostic specimens, are warranted.
Collapse
Affiliation(s)
- Lisa M Marinelli
- Department of Pathology and Area Laboratory Services, San Antonio Military Medical Center, San Antonio, TX, United States of America
| | - John B Kisiel
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States of America
| | - Seth W Slettedahl
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, United States of America
| | - Douglas W Mahoney
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, United States of America
| | - Maureen A Lemens
- Obstetrics and Gynecology, Division of Gynecologic Oncology Surgery, Mayo Clinic, Rochester, MN, United States of America
| | - Vijayalakshmi Shridhar
- Department of Laboratory Medicine and Pathology, Experimental Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - William R Taylor
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States of America
| | - Julie K Staub
- Department of Laboratory Medicine and Pathology, Experimental Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Xiaoming Cao
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States of America
| | - Patrick H Foote
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States of America
| | - Kelli N Burger
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, United States of America
| | - Calise K Berger
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States of America
| | - Maria C O'Connell
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States of America
| | - Karen A Doering
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States of America
| | | | - Hannah Berg
- Exact Sciences, Madison, WI, United States of America
| | | | - Adam Solsrud
- Exact Sciences, Madison, WI, United States of America
| | | | | | | | | | | | - Gracie Shea
- Exact Sciences, Madison, WI, United States of America
| | | | - J Kenneth Schoolmeester
- Department of Laboratory Medicine and Pathology, Anatomic Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Sarah E Kerr
- Hospital Pathology Associates, Minneapolis, MN, United States of America
| | - Mark E Sherman
- Quantitative Health Sciences, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Jamie N Bakkum-Gamez
- Obstetrics and Gynecology, Division of Gynecologic Oncology Surgery, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
28
|
Chen M, Zhu JY, Mu WJ, Guo L. Cysteine dioxygenase type 1 (CDO1): its functional role in physiological and pathophysiological processes. Genes Dis 2022. [DOI: 10.1016/j.gendis.2021.12.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
29
|
Li X, Huang J, Chen J, Zhan Y, Zhang R, Lu E, Li C, Zhang Y, Wang Y, Li Y, Zheng J, Geng W. A Novel Prognostic Signature Based on Ferroptosis-Related Genes Predicts the Prognosis of Patients With Advanced Bladder Urothelial Carcinoma. Front Oncol 2021; 11:726486. [PMID: 34966666 PMCID: PMC8710446 DOI: 10.3389/fonc.2021.726486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/24/2021] [Indexed: 12/14/2022] Open
Abstract
Bladder Urothelial Carcinoma (BLCA) is the major subtype of bladder cancer, and the prognosis prediction of BLCA is difficult. Ferroptosis is a newly discovered iron-dependent cell death pathway. However, the clinical value of ferroptosis-related genes (FRGs) on the prediction of BLCA prognosis is still uncertain. In this study, we aimed to construct a novel prognostic signature to improve the prognosis prediction of advanced BLCA based on FRGs. In the TCGA cohort, we identified 23 differentially expressed genes (DEGs) associated with overall survival (OS) via univariate Cox analysis (all P < 0.05). 8 optimal DEGs were finally screened to generate the prognostic risk signature through LASSO regression analysis. Patients were divided into two risk groups based on the median risk score. Survival analyses revealed that the OS rate in the high-risk group was significantly lower than that in the low-risk group. Moreover, the risk score was determined as an independent predictor of OS by the multivariate Cox regression analysis (Hazard ratio > 1, 95% CI = 1.724-2.943, P < 0.05). Many potential ferroptosis-related pathways were identified in the enrichment analysis in BLCA. With the aid of an external FAHWMU cohort (n = 180), the clinical predication value of the signature was further verified. In conclusion, the prognosis of advanced BLCA could be accurately predicted by this novel FRG-signature.
Collapse
Affiliation(s)
- Xiaoqi Li
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Junting Huang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ji Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yating Zhan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rongrong Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Enze Lu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chunxue Li
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuxiao Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yajing Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yeping Li
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianjian Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wujun Geng
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Wenzhou Key Laboratory of Perioperative Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
30
|
Tariq M, Ozbek P, Moin ST. Hydration modulates oxygen channel residues for oxygenation of cysteine dioxygenase: Perspectives from molecular dynamics simulations. J Mol Graph Model 2021; 110:108060. [PMID: 34768230 DOI: 10.1016/j.jmgm.2021.108060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 11/26/2022]
Abstract
Cysteine dioxygenase (CDO) regulates the concentration of l-cysteine substrate by its oxidation in the body to prevent different diseases, including neurodegenerative and autoimmune diseases. CDO catalyzes the oxidation of thiol group of l-cysteine to l-cysteine sulfinic acid using molecular oxygen. In this study, molecular dynamics simulations were applied to ligand-free CDO, cysteine-bound CDO, and oxygen-bound CDO-cysteine complex which were primarily subjected to the evaluation of their structural and dynamical properties. The simulation data provided significant information not only on the conformational changes of the enzyme after its ligation but also on the co-ligation by sequential binding of l-cysteine and molecular oxygen. It was found that the ligation and co-ligation perturbed the active site region as well as the overall protein dynamics which were analyzed in terms of root mean square deviation, root mean square fluctuation and dynamic cross correlation matrices as well as principal component analysis. Furthermore, oxygen transport pathways were successfully explored by taking various tunnel clusters into account and one of those clusters was given preference based on the throughput value. The bottleneck formed by different amino acid residues was examined to figure out their role in the oxygenation process of the enzyme. The residues forming the tunnel's bottleneck and their dynamics mediated by water molecules were further investigated using radial distribution functions which gave insights into the hydration behavior of these residues. The findings based on the hydration behavior in turn served to explore the water-mediated dynamics of these residues in the modulation of the pathway, including tunnel gating for the oxygen entry and diffusion to the active site, which is essential for the CDO's catalytic function.
Collapse
Affiliation(s)
- Muhammad Tariq
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Pemra Ozbek
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, 34722, Turkey.
| | - Syed Tarique Moin
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
31
|
Zhong X, Zhong G. Prognostic biomarker identification and tumor classification in breast cancer patients by methylation and transcriptome analysis. FEBS Open Bio 2021. [PMID: 34056873 PMCID: PMC8329782 DOI: 10.1002/2211-5463.13211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/10/2021] [Accepted: 05/28/2021] [Indexed: 12/21/2022] Open
Abstract
Breast cancer is one of the most common and heterogeneous malignancies. Although the prognosis of breast cancer has improved with the development of early screening, the mechanisms underlying tumorigenesis and progression remain incompletely understood. DNA methylation has been implicated in tumorigenesis and tumor development and, in the present study. we screened methylation-driven genes and explored their prognostic values in breast cancer. RNA-sequencing (RNA-Seq) transcriptome data and DNA methylation data of the TCGA-BRCA dataset were obtained from The Cancer Genome Atlas. Differentially expressed genes and differentially methylated genes were identified separately. The intersected 783 samples with both RNA-Seq data and DNA methylation data were selected for further analysis. Fifty-six methylation-driven genes were identified using the MethylMix r package and 10 prognosis methylation-driven genes (CDO1, CELF2, ITPAIPL1, KCNH8, PTK6, RAB25, RIC3, USP44, ZSCAN1 and ZSCAN23) were further screened by combined methylation and gene expression analysis. Based on the methylation data of the screened 10 methylation-driven genes, six subgroups were identified with the ConsensusClusterPlus r package. The protein levels of the 10 prognostic methylation-driven genes were detected by immunohistochemical experiments. Moreover, based on the RNA-Seq data, a signature calculating the risk score of each patient was developed with stepwise regression. The risk score and other clinical features (age and stage) were confirmed to be independent prognostic factors by univariate and multivariate Cox regression analyses. Finally, a prognostic nomogram incorporating all the significant factors was integrated to predict the 3-, 5- and 7-year overall survival. Taken together, the methylation-driven genes identified here may be potential biomarkers of breast cancer.
Collapse
Affiliation(s)
- Xiongdong Zhong
- Department of Cardiothoracic Surgery, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), China
| | - Guoying Zhong
- Department of Cardiothoracic Surgery, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), China
| |
Collapse
|
32
|
Krasnyi AM, Kurevlev SV, Sadekova AA, Sefikhanov TG, Kometova VV, Rodionov VV. [Methylation profiles of genes in breast cancer luminal HER2-negative primary tumor during regional lymphnode metastasis]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2021; 67:88-94. [PMID: 33645526 DOI: 10.18097/pbmc20216701088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Aberrant methylation is strongly associated with development of cancer, but limited data exist on correlation between methylation and regional lymph node metastasis (RLNM). The aim of this research was to study using of methylation levels of WIF1, RASSF1A, CDO1 and MEST aberrant methylated genes in a primary breast cancer for prediction of regional lymph node metastases. We used MS-HRM (Methylation Sensitive High Resolution Melting) to assess methylation levels. The results were confirmed by pyrosequencing. The study included 66 women with LumA and 46 women with HER2- (LumB-), 22 and 26 of them had metastasis in at least one lymph node respectively. It was found that methylation levels between LumA and LumB subtypes differed significantly in genes: WIF1 (p<0.001), CDO1 (p=0.002) and MEST (p=0.033). In the Lum A subtype statistically significant differences in level of methylation of WIF1 gene between patients with metastases in RLNM and patients without metastases were found (p=0.03). Analysis of tumors longer than 2 cm in the LumA subtype, revealed an increase of statistical significance of WIF1 gene - p=0.009 (AUC (95%CI) = 0.76 (0.59-0.93)). In LumB- subtype RASSF1A, CDO1 and MEST had statistically significant differences in methylation level between groups (p=0.03, p=0.048 and p=0.045 respectively). ROC analysis showed that combining of three genes by logistic regression, AUC (95%CI) was 0.74 (0.6-0.88). Analysis of tumors longer than 2 cm, did not increase statistical significance for these genes (p=0.046; p=0.089 and p=0.076, respectively). Thus, the study of methylation in primary tumors may be useful for prediction of lymph node metastasis, as well as for better understanding of biological process inside breast cancer.
Collapse
Affiliation(s)
- A M Krasnyi
- Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - S V Kurevlev
- Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - A A Sadekova
- Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - T G Sefikhanov
- Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - V V Kometova
- Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - V V Rodionov
- Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, Russia
| |
Collapse
|
33
|
Bonifácio VDB, Pereira SA, Serpa J, Vicente JB. Cysteine metabolic circuitries: druggable targets in cancer. Br J Cancer 2021; 124:862-879. [PMID: 33223534 PMCID: PMC7921671 DOI: 10.1038/s41416-020-01156-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 09/03/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
To enable survival in adverse conditions, cancer cells undergo global metabolic adaptations. The amino acid cysteine actively contributes to cancer metabolic remodelling on three different levels: first, in its free form, in redox control, as a component of the antioxidant glutathione or its involvement in protein s-cysteinylation, a reversible post-translational modification; second, as a substrate for the production of hydrogen sulphide (H2S), which feeds the mitochondrial electron transfer chain and mediates per-sulphidation of ATPase and glycolytic enzymes, thereby stimulating cellular bioenergetics; and, finally, as a carbon source for epigenetic regulation, biomass production and energy production. This review will provide a systematic portrayal of the role of cysteine in cancer biology as a source of carbon and sulphur atoms, the pivotal role of cysteine in different metabolic pathways and the importance of H2S as an energetic substrate and signalling molecule. The different pools of cysteine in the cell and within the body, and their putative use as prognostic cancer markers will be also addressed. Finally, we will discuss the pharmacological means and potential of targeting cysteine metabolism for the treatment of cancer.
Collapse
Affiliation(s)
- Vasco D B Bonifácio
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Sofia A Pereira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal
| | - Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal.
| | - João B Vicente
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Avenida da República (EAN), 2780-157, Oeiras, Portugal
| |
Collapse
|
34
|
Harada H, Soeno T, Nishizawa N, Washio M, Sakuraya M, Ushiku H, Niihara M, Hosoda K, Kumamoto Y, Naitoh T, Sangai T, Hiki N, Yamashita K. Prospective study to validate the clinical utility of DNA diagnosis of peritoneal fluid cytology test in gastric cancer. Cancer Sci 2021; 112:1644-1654. [PMID: 33576114 PMCID: PMC8019217 DOI: 10.1111/cas.14850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/13/2021] [Accepted: 02/09/2021] [Indexed: 12/23/2022] Open
Abstract
The clinical efficacy of DNA cytology test (CY) in gastric cancer (GC) has been retrospectively proposed using cancer‐specific methylation of cysteine dioxygenase type 1 (CDO1). We confirmed the clinical utility of DNA CY in a prospective cohort. Four hundred GC samples were prospectively collected for washing cytology (UMIN000026191), and detection of the DNA methylation of CDO1 was assessed by quantitative methylation‐specific PCR in the sediments. Endpoint was defined as the match rate between conventional CY1 and DNA CY1 (diagnostic sensitivity), and the DNA CY0 rate (diagnostic specificity) in pStage IA. DNA CY1 was detected in 45 cases (12.5%), while CY1 was seen in 31 cases (8.6%) of 361 chemotherapy‐naïve samples, where the sensitivity and specificity of the DNA CY in the peritoneal solutions were 74.2% and 96.5%, respectively. The DNA CY was positive for 3.5/0/4.9/11.4/58.8% in pStage IA/IB/II/III/IV, respectively (P < .01). In the multivariate analysis, DNA CY1 was independently correlated with pathological tumor depth (pT) (P = .0012), female gender (P = .0099), CY1 (P = .0135), P1 (P = .019), and carcinoembryonic antigen (CEA) (P = .036). The combination of DNA CY1 and P factor nearly all covered the potential peritoneal dissemination (P1 and/or CY1 and/or DNA CY1) (58/61:95.1%). DNA CY1 had a significantly poorer prognosis than DNA CY0 in GC patients (P < .0001). DNA CY1 detected by CDO1 promoter DNA methylation has a great value to detect minimal residual disease of the peritoneum in GC clinics, representing poor prognosis as a novel single DNA marker.
Collapse
Affiliation(s)
- Hiroki Harada
- Department of Upper-gastrointestinal Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Takafumi Soeno
- Department of Upper-gastrointestinal Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Nobuyuki Nishizawa
- Department of General, Pediatric and Hepatobiliary-Pancreatic Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Marie Washio
- Department of Upper-gastrointestinal Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Mikiko Sakuraya
- Department of Upper-gastrointestinal Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Hideki Ushiku
- Department of Upper-gastrointestinal Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Masahiro Niihara
- Department of Upper-gastrointestinal Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Kei Hosoda
- Department of Upper-gastrointestinal Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Yusuke Kumamoto
- Department of General, Pediatric and Hepatobiliary-Pancreatic Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Takeshi Naitoh
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Takafumi Sangai
- Department of Breast and Thyroid Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Naoki Hiki
- Department of Upper-gastrointestinal Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Keishi Yamashita
- Department of Upper-gastrointestinal Surgery, Kitasato University School of Medicine, Kanagawa, Japan.,Division of Advanced Surgical Oncology, Department of Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Kanagawa, Japan
| |
Collapse
|
35
|
Liu Z, Liu L, Lu T, Wang L, Li Z, Jiao D, Han X. Hypoxia Molecular Characterization in Hepatocellular Carcinoma Identifies One Risk Signature and Two Nomograms for Clinical Management. JOURNAL OF ONCOLOGY 2021; 2021:6664386. [PMID: 33552157 PMCID: PMC7846409 DOI: 10.1155/2021/6664386] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/06/2021] [Accepted: 01/09/2021] [Indexed: 12/24/2022]
Abstract
Hypoxia is a universal feature in the tumor microenvironment (TME). Nonetheless, the heterogeneous hypoxia patterns of TME have still not been elucidated in hepatocellular carcinoma (HCC). Using consensus clustering algorithm and public datasets, we identified heterogeneous hypoxia subtypes. We also revealed the specific biological and clinical characteristics via bioinformatic methods. The principal component analysis algorithm was employed to develop a hypoxia-associated risk score (HARS). We identified the two hypoxia subtypes: low hypoxia pattern (C1) and high hypoxia pattern (C2). C1 was less sensitive to immunotherapy compared to C2, consistent with the lack of immune cells and immune checkpoints (ICPs) in C1, whereas C2 was the opposite. C2 displayed worse prognosis and higher sensitivity to obatoclax relative to C1, while C1 was more sensitive to sorafenib. The two subtypes also demonstrated subtype-specific genomic variations including mutation, copy number alteration, and methylation. Moreover, we developed and validated a risk signature: HARS, which had excellent performance for predicting prognosis and immunotherapy. We revealed two hypoxia subtypes with distinct biological and clinical characteristics in HCC, which enhanced the understanding of hypoxia pattern. The risk signature was a promising biomarker for predicting prognosis and immunotherapy.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou 450052, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Taoyuan Lu
- Department of Cerebrovascular Disease, Zhengzhou University People's Hospital, Zhengzhou 450003, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhaonan Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou 450052, China
| | - Dechao Jiao
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou 450052, China
| |
Collapse
|
36
|
Kubota Y, Tanabe S, Azuma M, Horio K, Fujiyama Y, Soeno T, Furue Y, Wada T, Watanabe A, Ishido K, Katada C, Yamashita K, Koizumi W, Kusano C. Predictive Significance of Promoter DNA Methylation of Cysteine Dioxygenase Type 1 (CDO1) in Metachronous Gastric Cancer. J Gastric Cancer 2021; 21:379-391. [PMID: 35079440 PMCID: PMC8753284 DOI: 10.5230/jgc.2021.21.e35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/06/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022] Open
Abstract
Purpose Promoter DNA methylation of various genes has been associated with metachronous gastric cancer (MGC). The cancer-specific methylation gene, cysteine dioxygenase type 1 (CDO1), has been implicated in the occurrence of residual gastric cancer. We evaluated whether DNA methylation of CDO1 could be a predictive biomarker of MGC using specimens of MGC developing on scars after endoscopic submucosal dissection (ESD). Materials and Methods CDO1 methylation values (TaqMeth values) were compared between 33 patients with early gastric cancer (EGC) with no confirmed metachronous lesions at >3 years after ESD (non-MGC: nMGC group) and 11 patients with MGC developing on scars after ESD (MGCSE groups: EGC at the first ESD [MGCSE-1 group], EGC at the second ESD for treating MGC developing on scars after ESD [MGCSE-2 group]). Each EGC specimen was measured at five locations (at tumor [T] and the 4-point tumor-adjacent noncancerous mucosa [TAM]). Results In the nMGC group, the TaqMeth values for T were significantly higher than that for TAM (P=0.0006). In the MGCSE groups, TAM (MGCSE-1) exhibited significantly higher TaqMeth values than TAM (nMGC) (P<0.0001) and TAM (MGCSE-2) (P=0.0041), suggesting that TAM (MGCSE-1) exhibited CDO1 hypermethylation similar to T (P=0.3638). The area under the curve for discriminating the highest TaqMeth value of TAM (MGCSE-1) from that of TAM (nMGC) was 0.81, and using the cut-off value of 43.4, CDO1 hypermethylation effectively enriched the MGCSE groups (P<0.0001). Conclusions CDO1 hypermethylation has been implicated in the occurrence of MGC, suggesting its potential as a promising MGC predictor.
Collapse
Affiliation(s)
- Yo Kubota
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Satoshi Tanabe
- Division of Therapeutic Endoscopy, Department of Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Sagamihara, Japan
| | - Mizutomo Azuma
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kazue Horio
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yoshiki Fujiyama
- Division of Advanced Surgical Oncology, Department of Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Sagamihara, Japan
| | - Takafumi Soeno
- Division of Advanced Surgical Oncology, Department of Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yasuaki Furue
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Takuya Wada
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Akinori Watanabe
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kenji Ishido
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Chikatoshi Katada
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Keishi Yamashita
- Division of Advanced Surgical Oncology, Department of Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Sagamihara, Japan
| | - Wasaburo Koizumi
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Chika Kusano
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
37
|
Xu C, Dolby GA, Drake KK, Esque TC, Kusumi K. Immune and sex-biased gene expression in the threatened Mojave desert tortoise, Gopherus agassizii. PLoS One 2020; 15:e0238202. [PMID: 32846428 PMCID: PMC7449761 DOI: 10.1371/journal.pone.0238202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/11/2020] [Indexed: 11/18/2022] Open
Abstract
The immune system of ectotherms, particularly non-avian reptiles, remains poorly characterized regarding the genes involved in immune function, and their function in wild populations. We used RNA-Seq to explore the systemic response of Mojave desert tortoise (Gopherus agassizii) gene expression to three levels of Mycoplasma infection to better understand the host response to this bacterial pathogen. We found over an order of magnitude more genes differentially expressed between male and female tortoises (1,037 genes) than differentially expressed among immune groups (40 genes). There were 8 genes differentially expressed among both variables that can be considered sex-biased immune genes in this tortoise. Among experimental immune groups we find enriched GO biological processes for cysteine catabolism, regulation of type 1 interferon production, and regulation of cytokine production involved in immune response. Sex-biased transcription involves iron ion transport, iron ion homeostasis, and regulation of interferon-beta production to be enriched. More detailed work is needed to assess the seasonal response of the candidate genes found here. How seasonal fluctuation of testosterone and corticosterone modulate the immunosuppression of males and their susceptibility to Mycoplasma infection also warrants further investigation, as well as the importance of iron in the immune function and sex-biased differences of this species. Finally, future transcriptional studies should avoid drawing blood from tortoises via subcarapacial venipuncture as the variable aspiration of lymphatic fluid will confound the differential expression of genes.
Collapse
Affiliation(s)
- Cindy Xu
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Greer A. Dolby
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - K. Kristina Drake
- Western Ecological Research Center, U.S. Geological Survey, Henderson, Nevada, United States of America
| | - Todd C. Esque
- Western Ecological Research Center, U.S. Geological Survey, Henderson, Nevada, United States of America
| | - Kenro Kusumi
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
38
|
Harada H, Soeno T, Yokoi K, Nishizawa N, Ushiku H, Hosoda K, Hiki N, Yamashita K. Prediction of Efficacy of Postoperative Chemotherapy by DNA Methylation of CDO1 in Gastric Cancer. J Surg Res 2020; 256:404-412. [PMID: 32777557 DOI: 10.1016/j.jss.2020.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 07/08/2020] [Accepted: 07/11/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND CDO1 is a presumed tumor suppressor gene in human cancers, the expression of which is silenced by promoter DNA methylation. Moreover, CDO1 harbors functionally oncogenic aspects through modification of mitochondrial membrane potential. We recently proposed that this oncogenic feature allows for the prediction of the efficacy of postoperative chemotherapy in colon cancer. The present study aims to elucidate the efficacy of prediction of success of postoperative chemotherapy in advanced gastric cancer to improve the treatment strategy of patients. MATERIALS AND METHODS Forced expression of CDO1 in gastric cancer cell lines was assessed using the JC-1 assay. Promoter DNA methylation was investigated in quantitative TaqMan methylation-specific polymerase chain reaction in 321 pathological stage II/III advanced gastric cancer cases treated by curative gastrectomy with or without postoperative chemotherapy. RESULTS (1) Forced expression of CDO1 led to increased mitochondrial membrane potential, accompanied by augmented survival in gastric cancer cells under anaerobic conditions. These results suggest that CDO1-expressing cancer cells survive more easily in anaerobic lesions which are inaccessible to anticancer drugs. (2) Intriguingly, in cases with the highest CDO1 methylation (ranging from 15% to 40%), patients with postoperative chemotherapy showed significantly better survival than those with no postoperative chemotherapy. (3) A robust prognostic difference was observed that was explained by differential recurrences of distant metastasis (P = 0.0031), followed by lymph node (P = 0.0142) and peritoneal dissemination (P = 0.0472). CONCLUSIONS The oncogenic aspects of CDO1 can be of use to determine patients with gastric cancer who will likely respond to treatment of invisible systemic dissemination by postoperative adjuvant chemotherapy.
Collapse
Affiliation(s)
- Hiroki Harada
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Takafumi Soeno
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Keigo Yokoi
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Nobuyuki Nishizawa
- Department of General Pediatric Hepatobiliary Pancreatic Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Hideki Ushiku
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Kei Hosoda
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Naoki Hiki
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Keishi Yamashita
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, Kanagawa, Japan; Division of Advanced Surgical Oncology, Department of Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Kanagawa, Japan.
| |
Collapse
|
39
|
Yin W, Wang X, Li Y, Wang B, Song M, Hulbert A, Chen C, Yu F. Promoter hypermethylation of cysteine dioxygenase type 1 in patients with non-small cell lung cancer. Oncol Lett 2020; 20:967-973. [PMID: 32566027 DOI: 10.3892/ol.2020.11592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 02/28/2020] [Indexed: 12/19/2022] Open
Abstract
In the present study, promoter hypermethylation of cysteine dioxygenase type 1 (CDO1) was evaluated in non-small cell lung cancer (NSCLC) tissues to assess the value of CDO1 as a novel biomarker to improve the diagnosis of NSCLC. Tumor tissue samples and corresponding normal lung tissue samples from 42 patients with NSCLC were obtained at the Department of Thoracic Surgery, The Second Xiangya Hospital (Changsha, China). Conventional methylation-specific PCR (cMSP) and methylation-on-beads followed by quantitative methylation-specific PCR (MOB-qMSP) were used to analyze the tumor and normal lung tissue samples. Using these two methods, promoter DNA hypermethylation of the CDO1 gene was detected in 59.4 and 71.0% of tumor tissues of patients with NSCLC and in 9.4 and 0% of normal lung tissue, respectively. Compared with the rate of methylation in the well-differentiated NSCLC tissues (15.4 and 55.6%, respectively), the rate of CDO1 gene promoter methylation was higher in the poorly differentiated tissues (89.5 and 92.3%, respectively). Overall, it was demonstrated that the MOB-qMSP method had a higher positive detection rate for CDO1 hypermethylation compared with the cMSP method. In conclusion, CDO1 gene promoter hypermethylation was more frequently observed in NSCLC tissues compared with in normal lung tissues, and a high methylation frequency of the CDO1 gene in biopsy specimens of NSCLC was associated with the degree of differentiation.
Collapse
Affiliation(s)
- Wei Yin
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Xiang Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yunping Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Bin Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Mingzhe Song
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Alicia Hulbert
- Department of Surgery, University of Illinois at Chicago School of Medicine, Chicago, IL 60607, USA
| | - Chen Chen
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Fenglei Yu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
40
|
Zwakenberg SR, Burgess S, Sluijs I, Weiderpass E, Beulens JWJ, van der Schouw YT. Circulating phylloquinone, inactive Matrix Gla protein and coronary heart disease risk: A two-sample Mendelian Randomization study. Clin Nutr 2020; 39:1131-1136. [PMID: 31103344 PMCID: PMC7612948 DOI: 10.1016/j.clnu.2019.04.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/02/2019] [Accepted: 04/17/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIMS Multiple observational studies and small-scale intervention studies suggest that high vitamin K intake is associated with improved markers for cardiovascular health. Circulating phylloquinone solely represents phylloquinone (vitamin K1) intake, while dephosphorylated uncarboxylated Matrix Gla Protein (dp-ucMGP) represents both phylloquinone and menaquinone (vitamin K2) intake. This study aims to investigate the causal relationship between genetically predicted vitamin K concentrations and the risk of CHD via a two-sample Mendelian Randomization approach. DESIGN We used data from three studies: the European Prospective Investigation into Cancer and Nutrition (EPIC)-CVD case-cohort study, CARDIOGRAMplusC4D and the UK Biobank, resulting in 103,097 CHD cases. Genetically predicted vitamin K concentrations were measured using SNPs related to circulating phylloquinone and dp-ucMGP. We calculated a genetic risk score (GRS) including four SNPs (rs2108622, rs2192574, rs4645543 and rs6862071) related to circulating phylloquinone levels from a genome wide association study. Rs4236 was used as an instrumental variable for dp-ucMGP. Inverse-variance weighted (IVW) analysis was used to obtain Risk Ratios (RRs) for the causal relationship between phylloquinone and dp-ucMGP concentrations and CHD risk. RESULTS Using the genetic score for circulating phylloquinone, we found that circulating phylloquinone was not causally related to CHD risk (RR 1.00 (95%-CI: 0.98; 1.04)). Lower genetically predicted dp-ucMGP concentration was associated with a lower CHD risk with a RR of 0.96 (95%-CI: 0.93; 0.99) for every 10 μg/L decrease in dp-ucMGP. CONCLUSIONS This study did not confirm a causal relationship between circulating phylloquinone and lower CHD risk. However, lower dp-ucMGP levels may be causally related with a decreased CHD risk. This inconsistent result may reflect the influence of menaquinones in the association with CHD.
Collapse
Affiliation(s)
- Sabine R Zwakenberg
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, the Netherlands
| | - Stephen Burgess
- Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, UK; MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Ivonne Sluijs
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, the Netherlands
| | - Elisabete Weiderpass
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Joline W J Beulens
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, the Netherlands; Department of Epidemiology & Biostatistics, Amsterdam Public Health Research Institute, VU University Medical Center, Amsterdam, the Netherlands
| | - Yvonne T van der Schouw
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, the Netherlands.
| |
Collapse
|
41
|
Fujiyama Y, Kumamoto Y, Nishizawa N, Nakamoto S, Harada H, Yokota K, Tanaka Y, Igarashi K, Oiki H, Okuwaki K, Iwai T, Kajita S, Takahashi H, Tajima H, Kaizu T, Sasaki J, Watanabe M, Yamashita K. Promoter DNA Hypermethylation of the Cysteine Dioxygenase 1 (CDO1) Gene in Intraductal Papillary Mucinous Neoplasm (IPMN). Ann Surg Oncol 2020; 27:4007-4016. [PMID: 32144623 DOI: 10.1245/s10434-020-08291-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Intraductal papillary mucinous neoplasm (IPMN) involves adenoma (IPMA), a precancerous lesion, cancer (IPMC) including high-grade dysplasia (HGD), and invasive carcinoma (IC). DNA markers of IPMN are required for detection of invasive disease, and cysteine dioxygenase 1 (CDO1) gene promoter hypermethylation is a potential candidate. However, it has never been investigated in the context of IPMN. PATIENTS AND METHODS A total of 107 IPMN tumor tissues, including 41 IPMC and 66 IPMA, were studied. CDO1 promoter methylation was quantified using TaqMan quantitative methylation-specific polymerase chain reaction (qMSP) in patients with IPMN and other pancreatic cystic disorders after pancreatectomy. RESULTS The methylation values (TaqMeth Vs) of CDO1 increased when noncancerous pancreas tissues were compared with IPMA and HGD (p < 0.0001). Among IPMC, the TaqMeth Vs in IC were not significantly higher than in HGD. The TaqMeth Vs of the solid tumors were higher than those of the cystic tumors (p = 0.0016), which were in turn higher than the corresponding noncancerous tissues (p < 0.0001). Prognostic analysis revealed that high TaqMeth Vs (≥ 14.1) resulted in a poorer prognosis than low TaqMeth Vs (< 14.1) (p < 0.0001). In other pancreatic cystic diseases, only malignant mucinous cystic neoplasm showed DNA hypermethylation of its promoter. A pilot study in pancreatic juice confirmed methylation in all IPMN samples but not in benign pancreatic diseases (p = 0.0277). CONCLUSIONS CDO1 promoter hypermethylation is extremely specific to IPMN and may accumulate with IPMN tumor progression during the adenoma-carcinoma sequence. It might be a promising candidate as a diagnostic marker of pancreatic cystic diseases.
Collapse
Affiliation(s)
- Yoshiki Fujiyama
- Department of Surgery, Kitasato University School of Medicine, Kitasato 1-15-1, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yusuke Kumamoto
- Department of Surgery, Kitasato University School of Medicine, Kitasato 1-15-1, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Nobuyuki Nishizawa
- Department of Surgery, Kitasato University School of Medicine, Kitasato 1-15-1, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Shuji Nakamoto
- Department of Surgery, Kitasato University School of Medicine, Kitasato 1-15-1, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Hiroki Harada
- Department of Surgery, Kitasato University School of Medicine, Kitasato 1-15-1, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Kazuko Yokota
- Department of Surgery, Kitasato University School of Medicine, Kitasato 1-15-1, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yoko Tanaka
- Department of Surgery, Kitasato University School of Medicine, Kitasato 1-15-1, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Kazuharu Igarashi
- Department of Surgery, Kitasato University School of Medicine, Kitasato 1-15-1, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Hironobu Oiki
- Department of Surgery, Kitasato University School of Medicine, Kitasato 1-15-1, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Kosuke Okuwaki
- Department of Gastroenterology, Kitasato University School of Medicine, Kitasato 1-15-1, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Tomohisa Iwai
- Department of Gastroenterology, Kitasato University School of Medicine, Kitasato 1-15-1, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Sabine Kajita
- Department of Pathology, Kitasato University School of Medicine, Kitasato 1-15-1, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Hiroyuki Takahashi
- Department of Pathology, Kitasato University School of Medicine, Kitasato 1-15-1, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Hiroshi Tajima
- Department of Surgery, Kitasato University School of Medicine, Kitasato 1-15-1, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Takashi Kaizu
- Department of Surgery, Kitasato University School of Medicine, Kitasato 1-15-1, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Jiichiro Sasaki
- Multidisciplinary Cancer Care and Treatment Center, Kitasato University School of Medicine, Kitasato 1-15-1, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Masahiko Watanabe
- Department of Surgery, Kitasato University School of Medicine, Kitasato 1-15-1, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Keishi Yamashita
- Department of Surgery, Kitasato University School of Medicine, Kitasato 1-15-1, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan. .,Division of Advanced Surgical Oncology, Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Kitasato 1-15-1, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan.
| |
Collapse
|
42
|
Maekawa H, Ito T, Orita H, Kushida T, Sakurada M, Sato K, Hulbert A, Brock MV. Analysis of the methylation of CpG islands in the CDO1, TAC1 and CHFR genes in pancreatic ductal cancer. Oncol Lett 2020; 19:2197-2204. [PMID: 32194717 PMCID: PMC7039134 DOI: 10.3892/ol.2020.11340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/12/2019] [Indexed: 12/15/2022] Open
Abstract
No difference in the gene methylation status of tumor-suppression genes between pancreatic cancer tissues and adjacent non-cancer tissues is observed. The present study investigated whether the promoter CpG islands of the cysteine dioxygenase 1 (CDO1), tachykinin precursor 1 (TAC1) and checkpoint with forkhead and ring finger domains (CHFR) genes were methylated in pancreatic cancer and adjacent non-cancerous pancreatic tissue in order to determine if they could be considered as markers for the detection of pancreatic cancer. A total of 38 Formalin-fixed and paraffin-embedded pancreatic adenocarcinoma tissues and their adjacent non-cancerous specimens from patients with pancreatic cancer, as well as 9 non-cancerous pancreatic samples from patients without pancreatic adenocarcinoma were obtained following surgical resection. The hypermethylation of CpG islands was detected using a methylation-specific quantitative PCR. The methylation values were calculated using the ∆Cq method and were expressed as 2−ΔCq. The 2−ΔCq value of the CDO1 promoter from pancreatic adenocarcinoma specimens was significantly higher compared with that of adjacent non-cancerous and tumor-free pancreatic tissues (P<0.0001 and P=0.0008, respectively). The 2−ΔCq value of the TAC1 promoter of pancreatic adenocarcinoma was also significantly higher compared with that of adjacent non-cancerous tissues and tumor-free pancreatic samples (both P<0.0001). However, there was no significant difference in the 2−ΔCq value of the CHFR promoter among the pancreatic cancer, adjacent non-cancer tissue and tumor-free pancreatic samples. Furthermore, 12 out of the 38 pancreatic adenocarcinoma cases (31.6%) presented some methylation in the CHFR promoter. The results from Kaplan-Meier analysis between CHFR promoter methylation values and the clinicopathological characteristics of patients with pancreatic adenocarcinoma demonstrated that CHFR promoter methylation was significantly associated with lymph node metastasis. The methylation values of CDO1 and TAC1 promoters in cancer tissues were higher compared with adjacent tissues. However, whether hypermethylation of CDO1 and TAC1 promoters may serve as a biomarker in the diagnosis of pancreatic adenocarcinoma remains unclear.
Collapse
Affiliation(s)
- Hiroshi Maekawa
- Department of Surgery, Juntendo University Shizuoka Hospital, Juntendo University School of Medicine, Izunokuni, Shizuoka 410-2295, Japan
| | - Tomoaki Ito
- Department of Surgery, Juntendo University Shizuoka Hospital, Juntendo University School of Medicine, Izunokuni, Shizuoka 410-2295, Japan.,Department of Surgery, The Sidney Kimmel Cancer Center, The Johns Hopkins University, School of Medicine, Baltimore, MD 21287, USA
| | - Hajime Orita
- Department of Surgery, Juntendo University Shizuoka Hospital, Juntendo University School of Medicine, Izunokuni, Shizuoka 410-2295, Japan
| | - Tomoyuki Kushida
- Department of Surgery, Juntendo University Shizuoka Hospital, Juntendo University School of Medicine, Izunokuni, Shizuoka 410-2295, Japan
| | - Mutsumi Sakurada
- Department of Surgery, Juntendo University Shizuoka Hospital, Juntendo University School of Medicine, Izunokuni, Shizuoka 410-2295, Japan
| | - Koichi Sato
- Department of Surgery, Juntendo University Shizuoka Hospital, Juntendo University School of Medicine, Izunokuni, Shizuoka 410-2295, Japan
| | - Alicia Hulbert
- Department of Surgery, The Sidney Kimmel Cancer Center, The Johns Hopkins University, School of Medicine, Baltimore, MD 21287, USA.,Department of Surgery, University of Illinois at Chicago School of Medicine, Chicago, IL 60607, USA
| | - Malcolm V Brock
- Department of Surgery, The Sidney Kimmel Cancer Center, The Johns Hopkins University, School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
43
|
Xu R, Xu Q, Huang G, Yin X, Zhu J, Peng Y, Song J. Combined Analysis of the Aberrant Epigenetic Alteration of Pancreatic Ductal Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9379864. [PMID: 31956659 PMCID: PMC6949667 DOI: 10.1155/2019/9379864] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/02/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) remains one of the most fatal malignancies due to its high morbidity and mortality. DNA methylation exerts a vital part in the development of PDAC. However, a mechanistic role of mutual interactions between DNA methylation and mRNA as epigenetic regulators on transcriptomic alterations and its correlation with clinical outcomes such as survival have remained largely uncovered in cancer. Therefore, elucidation of aberrant epigenetic alteration in the development of PDAC is an urgent problem to be solved. In this work, we conduct an integrative epigenetic analysis of PDAC to identify aberrant DNA methylation-driven cancer genes during the occurrence of cancer. METHODS DNA methylation matrix and mRNA profile were obtained from the TCGA database. The integration of methylation and gene expression datasets was analyzed using an R package MethylMix. The genes with hypomethylation/hypermethylation were further validated in the Kaplan-Meier analysis. The correlation analysis of gene expression and aberrant DNA methylation was also conducted. We performed a pathway analysis on aberrant DNG methylation genes identified by MethylMix criteria using ConsensusPathDB. RESULTS 188 patients with both methylation data and mRNA data were considered eligible. A mixture model was constructed, and differential methylation genes in normal and tumor groups using the Wilcoxon rank test was performed. With the inclusion criteria, 95 differential methylation genes were detected. Among these genes, 74 hypermethylation and 21 hypomethylation genes were found. The pathway analysis revealed an increase in hypermethylation of genes involved in ATP-sensitive potassium channels, Robo4, and VEGF signaling pathways crosstalk, and generic transcription pathway. CONCLUSION Integrated analysis of the aberrant epigenetic alteration in pancreatic ductal adenocarcinoma indicated that differentially methylated genes could play a vital role in the occurrence of PDAC by bioinformatics analysis. The present work can help clinicians to elaborate on the function of differentially methylated expressed genes and pathways in PDAC. CDO1, GJD2, ID4, NOL4, PAX6, TRIM58, and ZNF382 might act as aberrantly DNA-methylated biomarkers for early screening and therapy of PDAC in the future.
Collapse
Affiliation(s)
- Rui Xu
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Qiuyan Xu
- Department of Oral and Maxillofacial Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Guanglei Huang
- Department of Oral and Maxillofacial Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Xinhai Yin
- Department of Oral and Maxillofacial Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Jianguo Zhu
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Yikun Peng
- Department of Otorhinolaryngology-Head and Neck Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Jukun Song
- Department of Oral and Maxillofacial Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| |
Collapse
|
44
|
Sun Y, Liu Y, Zhang J, Li Y. Structure‐Reactivity Relationship in ES Models of Co(II)‐Containing Quercetin 2,4‐Dioxygenase. ChemistrySelect 2019. [DOI: 10.1002/slct.201903205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ying‐Ji Sun
- Department of ChemistryDalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Yan‐Fang Liu
- Department of ChemistryDalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Jian‐Jun Zhang
- Department of ChemistryDalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Yan‐Qin Li
- Department of ChemistryDalian University of Technology 2 Linggong Road Dalian 116024 China
| |
Collapse
|
45
|
Yan P, Yang X, Wang J, Wang S, Ren H. A novel CpG island methylation panel predicts survival in lung adenocarcinomas. Oncol Lett 2019; 18:1011-1022. [PMID: 31423161 PMCID: PMC6607393 DOI: 10.3892/ol.2019.10431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 02/27/2018] [Indexed: 12/23/2022] Open
Abstract
The lack of clinically useful biomarkers compromise the personalized management of lung adenocarcinomas (ADCs); epigenetic events and DNA methylation in particular have exhibited potential value as biomarkers. By comparing genome-wide DNA methylation data of paired lung ADCs and normal tissues from 6 public datasets, cancer-specific CpG island (CGI) methylation changes were identified with a pre-specified criterion. Correlations between DNA methylation and expression data for each gene were assessed by Pearson correlation analysis. A prognostically relevant CGI methylation signature was constructed by risk-score analysis, and was validated using a training-validation approach. Survival data were analyzed by log-rank test and Cox regression model. In total, 134 lung ADC-specific CGI CpGs were identified, among which, a panel of 9 CGI loci were selected as prognostic candidates, and were used to construct a risk-score signature. The novel CGI methylation signature was identified to classify distinct prognostic subgroups across different datasets, and was demonstrated to be a potent independent prognostic factor for overall survival time of patients with lung ADCs. In addition, it was identified that cancer-specific CGI hypomethylation of RPL39L, along with the corresponding gene expression, provided optimized prognostication of lung ADCs. In summary, cancer-specific CGI methylation aberrations are optimal candidates for novel biomarkers of lung ADCs; the 9-CpG methylation panel and hypomethylation of RPL39L exhibited particularly promising significance.
Collapse
Affiliation(s)
- Pingzhao Yan
- Department of General Surgery, People's Hospital of Tongchuan, Tongchuan, Shaanxi 727000, P.R. China
| | - Xiaohua Yang
- Department of Respiratory and Hematology Medicine, People's Hospital of Tongchuan, Tongchuan, Shaanxi 727000, P.R. China
| | - Jianhua Wang
- Department of General Surgery, People's Hospital of Tongchuan, Tongchuan, Shaanxi 727000, P.R. China
| | - Shichang Wang
- Department of General Surgery, People's Hospital of Tongchuan, Tongchuan, Shaanxi 727000, P.R. China
| | - Hong Ren
- Department of Oncology Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
46
|
Nishizawa N, Harada H, Kumamoto Y, Kaizu T, Katoh H, Tajima H, Ushiku H, Yokoi K, Igarashi K, Fujiyama Y, Okuwaki K, Iwai T, Watanabe M, Yamashita K. Diagnostic potential of hypermethylation of the cysteine dioxygenase 1 gene (CDO1) promoter DNA in pancreatic cancer. Cancer Sci 2019; 110:2846-2855. [PMID: 31325200 PMCID: PMC6726695 DOI: 10.1111/cas.14134] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 07/07/2019] [Accepted: 07/10/2019] [Indexed: 12/17/2022] Open
Abstract
DNA markers for pancreatic ductal adenocarcinoma (PDAC) are urgently needed for detection of minimally invasive disease. The epigenetic relevance of the cysteine dioxygenase 1 gene (CDO1) has been never investigated in PDAC. Three studies, including cellular experiments, tissue validation, and pilot testing for pancreatic cytology, were carried out. Promoter DNA methylation value (MV) of CDO1 was quantified by quantitative methylation‐specific PCR. CDO1 expression was consistent with its promoter DNA methylation in 7 PDAC cell lines. In 160 retrospectively collected primary PDAC tumor tissues, MV was significantly higher compared to the corresponding noncancerous pancreas (area under the receiver operating characteristic curve [AUC] = 0.97, P < .0001), and CDO1 hypermethylation was highly specific to PDAC tumor tissues. CDO1 hypermethylation group (MV over 19) was significantly associated with diverse prognostic factors in PDAC. Surprisingly, it was significantly higher in prospectively collected PDAC cytology samples (n = 37), including both pancreatic juice (n = 12) and endoscopic ultrasound‐fine needle aspiration (EUS‐FNA) cytology (n = 25) compared to pancreatic benign diseases (AUC = 0.96, P < .0001). Detection of PDAC was confirmed by DNA testing in 35 of 37 patients (95% sensitivity); thus, it was more sensitive than cytology (33%) or EUS‐FNA cytology (88%). Promoter DNA methylation of CDO1 is extremely specific for PDAC tumors, and accumulates with PDAC tumor progression. It could be a definitive diagnostic marker of PDAC in pancreatic juice or EUS‐FNA cytology.
Collapse
Affiliation(s)
| | - Hiroki Harada
- Department of Surgery, Kitasato University Hospital, Sagamihara, Japan
| | - Yusuke Kumamoto
- Department of Surgery, Kitasato University Hospital, Sagamihara, Japan
| | - Takashi Kaizu
- Department of Surgery, Kitasato University Hospital, Sagamihara, Japan
| | - Hiroshi Katoh
- Department of Surgery, Kitasato University Hospital, Sagamihara, Japan
| | - Hiroshi Tajima
- Department of Surgery, Kitasato University Hospital, Sagamihara, Japan
| | - Hideki Ushiku
- Department of Surgery, Kitasato University Hospital, Sagamihara, Japan
| | - Keigo Yokoi
- Department of Surgery, Kitasato University Hospital, Sagamihara, Japan
| | - Kazuharu Igarashi
- Department of Surgery, Kitasato University Hospital, Sagamihara, Japan
| | - Yoshiki Fujiyama
- Department of Surgery, Kitasato University Hospital, Sagamihara, Japan
| | - Kosuke Okuwaki
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Tomohisa Iwai
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Masahiko Watanabe
- Department of Surgery, Kitasato University Hospital, Sagamihara, Japan
| | - Keishi Yamashita
- Department of Surgery, Kitasato University Hospital, Sagamihara, Japan.,Division of Advanced Surgical Oncology, Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
47
|
O’Keefe CM, Kaushik AM, Wang TH. Highly Efficient Real-Time Droplet Analysis Platform for High-Throughput Interrogation of DNA Sequences by Melt. Anal Chem 2019; 91:11275-11282. [DOI: 10.1021/acs.analchem.9b02346] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Christine M. O’Keefe
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Aniruddha M. Kaushik
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
48
|
Ward NP, DeNicola GM. Sulfur metabolism and its contribution to malignancy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 347:39-103. [PMID: 31451216 DOI: 10.1016/bs.ircmb.2019.05.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metabolic dysregulation is an appreciated hallmark of cancer and a target for therapeutic intervention. Cellular metabolism involves a series of oxidation/reduction (redox) reactions that yield the energy and biomass required for tumor growth. Cells require diverse molecular species with constituent sulfur atoms to facilitate these processes. For humans, this sulfur is derived from the dietary consumption of the proteinogenic amino acids cysteine and methionine, as only lower organisms (e.g., bacteria, fungi, and plants) can synthesize them de novo. In addition to providing the sulfur required to sustain redox chemistry, the metabolism of these sulfur-containing amino acids yield intermediate metabolites that constitute the cellular antioxidant system, mediate inter- and intracellular signaling, and facilitate the epigenetic regulation of gene expression, all of which contribute to tumorigenesis.
Collapse
Affiliation(s)
- Nathan P Ward
- Department of Cancer Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Gina M DeNicola
- Department of Cancer Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, United States.
| |
Collapse
|
49
|
Baig MH, Adil M, Khan R, Dhadi S, Ahmad K, Rabbani G, Bashir T, Imran MA, Husain FM, Lee EJ, Kamal MA, Choi I. Enzyme targeting strategies for prevention and treatment of cancer: Implications for cancer therapy. Semin Cancer Biol 2019; 56:1-11. [DOI: 10.1016/j.semcancer.2017.12.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/22/2017] [Accepted: 12/08/2017] [Indexed: 12/16/2022]
|
50
|
KIBI MEGUMI, NISHIUMI SHIN, KOBAYASHI TAKASHI, KODAMA YUZO, YOSHIDA MASARU. GC/MS and LC/MS-based Tissue Metabolomic Analysis Detected Increased Levels of Antioxidant Metabolites in Colorectal Cancer. THE KOBE JOURNAL OF MEDICAL SCIENCES 2019; 65:E19-E27. [PMID: 31341153 PMCID: PMC6668592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/05/2019] [Indexed: 06/10/2023]
Abstract
Late-stage colorectal cancer is resistant to current treatments. Understanding the biological processes responsible for the development and progression of colorectal cancer could aid the development of new diagnostic and treatment approaches. We used gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry-based metabolomic analysis to measure metabolite levels in pairs of colorectal cancer tissue samples and samples of the adjacent macroscopically normal mucosal tissue from 10 colon cancer patients. Regarding nucleotide metabolomic intermediates, the colorectal cancer tissue contained lower levels of ribulose 5-phosphate and higher levels of xanthine, adenine, and hypoxanthine than the normal tissue. The levels of antioxidant metabolites, such as sulfur-containing amino acids, were also significantly higher in the colorectal cancer tissue. The level of tryptophan was decreased, and the levels of molecules downstream of the tryptophan pathway, such as kynurenine and quinolinic acid, which protect colorectal cancer against the host's immune system and function in de novo nicotinamide adenine dinucleotide synthesis, were increased in the colorectal cancer tissue. The colorectal cancer tissue samples also contained higher levels of lysophospholipids and fatty acids, especially stearic acid and polyunsaturated fatty acids, including arachidonic acid and docosahexaenoic acid. Thus, understanding these cancer-specific alterations could make it possible to detect colorectal cancer early and aid the development of additional treatments for the disease, leading to improvements in colorectal cancer patients' quality of life.
Collapse
Affiliation(s)
- MEGUMI KIBI
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - SHIN NISHIUMI
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - TAKASHI KOBAYASHI
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - YUZO KODAMA
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - MASARU YOSHIDA
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Metabolomics Research, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan
- AMED-CREST, AMED, Kobe, Japan
| |
Collapse
|