1
|
Chu GE, Park JY, Park CH, Cho WG. Mitochondrial Reactive Oxygen Species in TRIF-Dependent Toll-like Receptor 3 Signaling in Bronchial Epithelial Cells against Viral Infection. Int J Mol Sci 2023; 25:226. [PMID: 38203397 PMCID: PMC10778811 DOI: 10.3390/ijms25010226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Toll-like receptor 3 (TLR3) plays an important role in double-stranded RNA recognition and triggers the innate immune response by acting as a key receptor against viral infections. Intracellular reactive oxygen species (ROS) are involved in TLR3-induced inflammatory responses during viral infections; however, their relationship with mitochondrial ROS (mtROS) remains largely unknown. In this study, we show that polyinosinic-polycytidylic acid (poly(I:C)), a mimic of viral RNA, induced TLR3-mediated nuclear factor-kappa B (NF-κB) signaling pathway activation and enhanced mtROS generation, leading to inflammatory cytokine production. TLR3-targeted small interfering RNA (siRNA) and Mito-TEMPO inhibited inflammatory cytokine production in poly(I:C)-treated BEAS-2B cells. Poly(I:C) recruited the TLR3 adaptor molecule Toll/IL-1R domain-containing adaptor, inducing IFN (TRIF) and activated NF-κB signaling. Additionally, TLR3-induced mtROS generation suppression and siRNA-mediated TRIF downregulation attenuated mitochondrial antiviral signaling protein (MAVS) degradation. Our findings provide insights into the TLR3-TRIF signaling pathway and MAVS in viral infections, and suggest TLR3-mtROS as a therapeutic target for the treatment of airway inflammatory and viral infectious diseases.
Collapse
Affiliation(s)
- Ga Eul Chu
- Department of Anatomy, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju 26426, Republic of Korea; (G.E.C.); (C.H.P.)
| | - Jun Young Park
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea;
| | - Chan Ho Park
- Department of Anatomy, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju 26426, Republic of Korea; (G.E.C.); (C.H.P.)
| | - Won Gil Cho
- Department of Anatomy, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju 26426, Republic of Korea; (G.E.C.); (C.H.P.)
| |
Collapse
|
2
|
Olímpio F, Andreata-Santos R, Rosa PC, Santos W, Oliveira C, Aimbire F. Lactobacillus rhamnosus Restores Antiviral Signaling and Attenuates Cytokines Secretion from Human Bronchial Epithelial Cells Exposed to Cigarette Smoke and Infected with SARS-CoV-2. Probiotics Antimicrob Proteins 2023; 15:1513-1528. [PMID: 36346611 PMCID: PMC9643982 DOI: 10.1007/s12602-022-09998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 11/11/2022]
Abstract
Individuals with chronic obstructive pulmonary disease (COPD) are more susceptible to exacerbation crisis triggered by secondary lung infections due to the dysfunction of antiviral signaling, principally via suppression of IFN-γ. Although the probiotic is known for controlling pulmonary inflammation in COPD, the influence of the Lactobacillus rhamnosus (Lr) on antiviral signaling in bronchial epithelium exposed to cigarette smoke extract (CSE) and viruses, remains unknown. Thus, the present study investigated the Lr effect on the antiviral signaling and the secretion of inflammatory mediators from bronchial epithelial cells (16HBE cells) exposed to CSE and SARS-CoV-2. The 16HBE cells were cultured, treated with Lr, stimulated with CSE, and infected with SARS-CoV-2. The cellular viability was evaluated using the MTT assay and cytotoxicity measured by lactate dehydrogenase (LDH) activity. The viral load, TLR2, TLR3, TLR4, TLR7, TLR8, MAVS, MyD88, and TRIF were quantified using specific PCR. The pro-inflammatory mediators were measured by a multiplex biometric immunoassay, and angiotensin converting enzyme 2 (ACE2) activity, NF-κB, RIG-I, MAD5, and IRF3 were measured using specific ELISA kits. Lr decreased viral load, ACE2, pro-inflammatory mediators, TLR2, TLR4, NF-κB, TLR3, TLR7, and TLR8 as well as TRIF and MyD88 expression in CSE and SARS-CoV-2 -exposed 16HBE cells. Otherwise, RIG-I, MAD5, IRF3, IFN-γ, and the MAVS expression were restored in 16HBE cells exposed to CSE and SARS-CoV-2 and treated with Lr. Lr induces antiviral signaling associated to IFN-γ secreting viral sensors and attenuates cytokine storm associated to NF-κB in bronchial epithelial cells, supporting its emerging role in prevention of COPD exacerbation.
Collapse
Affiliation(s)
- Fabiana Olímpio
- Department of Medicine, Postgraduate Program in Translational Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro De Toledo 720 - 2° Andar, Vila Clementino, São Paulo, SP, 04039-002, Brazil
- Department of Science and Technology, Lab. Immunopharmacology, Federal University of São Paulo (UNIFESP), Rua Talim, 330, Vila Nair, São José dos Campos, SP, 12231-280, Brazil
| | - Robert Andreata-Santos
- Department of Microbiology, Immunology, and Parasitology, Lab. Retrovirology, Federal University of São Paulo, Rua Botucatu 862 - 6° Andar, Vila Clementino, São Paulo, SP, 04023-062, Brazil
| | - Paloma Cristina Rosa
- Department of Science and Technology, Lab. Immunopharmacology, Federal University of São Paulo (UNIFESP), Rua Talim, 330, Vila Nair, São José dos Campos, SP, 12231-280, Brazil
| | - Wellington Santos
- Nucleus of Research in Biotechnology - State University of Piaui, Teresina, PI, CEP, 64003-120, Brazil
| | - Carlos Oliveira
- Department of Science and Technology, Postgraduate Program in Biomedical Engineering, Federal University of São Paulo (UNIFESP), Rua Talim, 330, Vila Nair, São José dos Campos, SP, 12231-280, Brazil
| | - Flavio Aimbire
- Department of Medicine, Postgraduate Program in Translational Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro De Toledo 720 - 2° Andar, Vila Clementino, São Paulo, SP, 04039-002, Brazil.
- Department of Science and Technology, Lab. Immunopharmacology, Federal University of São Paulo (UNIFESP), Rua Talim, 330, Vila Nair, São José dos Campos, SP, 12231-280, Brazil.
| |
Collapse
|
3
|
Tao W, Su K, Huang Y, Lu Z, Wang Y, Yang L, Zhang G, Liu W. Zuojinwan ameliorates CUMS-induced depressive-like behavior through inducing ubiquitination of MyD88 via SPOP/MyD88/NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116487. [PMID: 37059253 DOI: 10.1016/j.jep.2023.116487] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/24/2023] [Accepted: 04/09/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zuojinwan (ZJW) is a traditional Chinese medicine compound, which is often used clinically to treat gastritis and has anti-inflammatory activity. It was found that ZJW is involved in suppressing the expression of inflammatory factors, and neuroinflammation is thought to be associated with the development of depression. AIM OF THE STUDY In this study, we investigated whether ZJW could exert antidepressant effects by regulating MyD88 ubiquitination in depressed mice and attempted to elucidate the possible mechanisms. MATERIALS AND METHODS Six active compounds of Zuojinwan (ZJW) were identified by HPLC. Then, the effects of ZJW on depression-like behavior in mice were investigated by constructing a chronic unpredictable mild stimulation (CUMS) mouse model. Meanwhile, the effect of ZJW on hippocampal neurons was investigated by Nissl staining. In addition, western blotting, PCR, ELISA, co-immunoprecipitation and immunostaining were used to explore whether ZJW could inhibit neuroinflammation through SPOP/MyD88/NF-κB pathway and thus produce antidepressant effects. Finally, we constructed the AAV-Sh-SPOP virus vector to silence SPOP and verify the mechanism of ZJW's antidepressant action. RESULTS ZJW could dramatically ameliorate the depressive behavior induced by CUMS stimulation and alleviate hippocampal neuronal damage. CUMS stimulation resulted in decreased SPOP expression, impaired MyD88 ubiquitination, and activation of downstream NF-κB signaling, which could be reversed by ZJW. In addition, ZJW could significantly ameliorate the abnormal activation of microglia, and the excessive levels of pro-inflammatory factors were inhibited. By blocking the expression of SPOP, we found that ZJW exerted anti-inflammatory and antidepressant effects mainly by promoting the ubiquitination of MyD88 and inhibiting the activation of downstream inflammatory signals. CONCLUSION In conclusion, ZJW possesses alleviating effects on depression induced by CUMS stimulation. ZJW can inhibit neuroinflammation and improve neuroinflammation-induced depression-like behaviors through SPOP/MyD88/NF-κB pathway.
Collapse
Affiliation(s)
- Weiwei Tao
- Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China; School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Kunhan Su
- Department of Gastroenterology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, 210014, China
| | - Yuzhen Huang
- Department of Gastroenterology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, 210014, China
| | - Zihan Lu
- China Pharmaceutical University, Nanjing, 210009, China
| | - Yan Wang
- Department of Gastroenterology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, 210014, China; Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lu Yang
- Department of Gastroenterology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, 210014, China; Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Guoying Zhang
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wanli Liu
- Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China; Department of Gastroenterology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, 210014, China.
| |
Collapse
|
4
|
Matsumiya T, Shiba Y, Ding J, Kawaguchi S, Seya K, Imaizumi T. The double-stranded RNA-dependent protein kinase PKR negatively regulates the protein expression of IFN-β induced by RIG-I signaling. FASEB J 2023; 37:e22780. [PMID: 36651716 DOI: 10.1096/fj.202201520rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/27/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023]
Abstract
Retinoic acid-inducible gene-I (RIG-I) is a cytoplasmic RNA sensor that plays an important role in innate immune responses to viral RNAs. Double-stranded RNA (dsRNA)-dependent protein kinase (PKR) is a eukaryotic initiation factor 2α (eIF2α) kinase that is initially involved in the responses of the translational machinery to dsRNA. PKR is also thought to play an essential role in antiviral innate immunity. However, the coordinated mechanisms of RIG-I and PKR that induce the expression of type I interferons (IFNs), essential cytokines involved in antiviral defense, are not completely understood. In this study, we show that PKR negatively participates in the RIG-I-mediated induction of IFN-β expression. Stress granule (SG) formation is crucial to sequester mRNA to prevent aberrant protein synthesis by various stresses. SG formation in response to dsRNA was triggered by a PKR-mediated antiviral stress response. However, IFN-β mRNA was not sequestered in the SGs of dsRNA-treated cells. dsRNA-induced translational silencing was thought to be PKR dependent. However, our results indicated that some proteins, including IFN-β, were clearly translated despite PKR-mediated translational silencing. This study suggests that RIG-I responds mainly to IFN-β expression in cells to which non-self dsRNA is introduced. In addition, PKR negatively regulates IFN-β protein expression induced by RIG-I signaling. This may explain the essential role of PKR in fine-tuning the expression of IFN-β in RIG-I-mediated antiviral immune responses.
Collapse
Affiliation(s)
- Tomoh Matsumiya
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan.,Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yuko Shiba
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan.,Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Jiangli Ding
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shogo Kawaguchi
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kazuhiko Seya
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tadaatsu Imaizumi
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
5
|
Benavides A, Gutiérrez D, Epuyao N, Modak B, Imarai M, Valenzuela B. Alpinone: A positive regulator molecule of immune antiviral response in Atlantic salmon kidney cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104262. [PMID: 34543663 DOI: 10.1016/j.dci.2021.104262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Alpinone is a flavonoid obtained from the resinous exudate of Heliotropium huascoense. This flavonoid shows antiviral activity against the infectious salmon anemia virus (ISAV), which causes severe disease in farmed Atlantic salmon. Here, we aim to elucidate mechanisms underlying the antiviral effects of the flavonoid. In this regard, we evaluated whether Alpinone can act upregulating the pattern-recognition receptor genes, i.e., the RIG-I-like, TLR3, and TLR9 genes, and the genes of the downstream signaling pathways. Transcriptional expression of the genes was analyzed using real-time PCR after 8, 24, and 48 h treatment of salmon kidney adherent cells with 15 μg/mL of Alpinone. First, we showed that Alpinone induced IFNa expression in the kidney adherent cells, indicating that this type of salmon cells is in part responsible for the effects previously reported in vivo. Upregulation of the IFN-induced myxovirus resistance (Mx) gene was also observed in the head kidney cells in response to the treatment. Overexpression reached a maximum level at 24 h post-treatment. Interestingly, Alpinone also induced upregulation of the cytosolic receptors of ssRNA, named Retinoic acid-inducible gene I (RIG-I) and Melanoma Differentiation-Associated protein 5 (MDA5), but there were no effects on the transcriptional expression of the TLR3 and TLR9 endosomal receptors. In addition, Alpinone upregulated the expression of genes encoding the main components of the RIG-I/MDA5 signaling pathways, such as the mitochondrial antiviral-signaling protein (MAVS), TNF Receptor Associated Factor 3 (TRAF3), TANK-binding kinase 1 (TBK1), I-kappaB kinase ε (IKKε), the transcription factors IRF-3, and IRF7. The increased expression of all these genes is consistent with the upregulation of IFNa and Mx mRNAs. Because BX795 completely prevents Alpinone-dependent upregulation of IFNa and IRF3, the flavonoid targets seem to be upstream of the kinases TBK1 and IKKε. Altogether, this study contributes to elucidating the mechanisms involved in Alpinone antiviral activity in fish. Alpinone can be used to counteract virus mechanisms of evasion where the onset of interferon-mediated response is prevented or delayed.
Collapse
Affiliation(s)
- Almendra Benavides
- Natural Product Chemistry Laboratory, Aquatic Biotechnology Center, Chemistry and Biology Faculty, Environmental Sciences Department, University of Santiago of Chile, Av. Bernardo O'Higgins, 3363, Santiago, Chile.
| | - Daniela Gutiérrez
- Natural Product Chemistry Laboratory, Aquatic Biotechnology Center, Chemistry and Biology Faculty, Environmental Sciences Department, University of Santiago of Chile, Av. Bernardo O'Higgins, 3363, Santiago, Chile.
| | - Nadia Epuyao
- Natural Product Chemistry Laboratory, Aquatic Biotechnology Center, Chemistry and Biology Faculty, Environmental Sciences Department, University of Santiago of Chile, Av. Bernardo O'Higgins, 3363, Santiago, Chile.
| | - Brenda Modak
- Natural Product Chemistry Laboratory, Aquatic Biotechnology Center, Chemistry and Biology Faculty, Environmental Sciences Department, University of Santiago of Chile, Av. Bernardo O'Higgins, 3363, Santiago, Chile.
| | - Mónica Imarai
- Immunology Laboratory, Aquatic Biotechnology Center, Biology Department, Chemistry and Biology Faculty, University of Santiago of Chile, Av. Bernardo O'Higgins, 3363, Santiago, Chile.
| | - Beatriz Valenzuela
- Natural Product Chemistry Laboratory, Aquatic Biotechnology Center, Chemistry and Biology Faculty, Environmental Sciences Department, University of Santiago of Chile, Av. Bernardo O'Higgins, 3363, Santiago, Chile.
| |
Collapse
|
6
|
Fekete T, Bencze D, Szabo A, Csoma E, Biro T, Bacsi A, Pazmandi K. Regulatory NLRs Control the RLR-Mediated Type I Interferon and Inflammatory Responses in Human Dendritic Cells. Front Immunol 2018; 9:2314. [PMID: 30344524 PMCID: PMC6182093 DOI: 10.3389/fimmu.2018.02314] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/17/2018] [Indexed: 12/14/2022] Open
Abstract
Unique members of the nucleotide-binding domain leucine-rich repeat (NLR) family have been found to regulate intracellular signaling pathways initiated by other families of pattern recognition receptors (PRR) such as Toll-like receptors (TLRs) and retinoic-acid inducible gene I (RIG-I)-like receptors (RLRs). Plasmacytoid dendritic cells (pDCs), the most powerful type I interferon (IFN) producing cells, preferentially employ endosomal TLRs to elicit antiviral IFN responses. By contrast, conventional DCs (cDCs) predominantly use cytosolic RLRs, which are constitutively expressed in them, to sense foreign nucleic acids. Previously we have reported that, though RIG-I is absent from resting pDCs, it is inducible upon TLR stimulation. In the recent study we investigated the regulatory ability of NLRs, namely NLRC5 and NLRX1 directly associated with the RLR-mediated signaling pathway in DC subtypes showing different RLR expression, particularly in pDCs, and monocyte-derived DCs (moDCs). Here we demonstrate that similarly to RLRs, NLRC5 is also inducible upon TLR9 stimulation, whereas NLRX1 is constitutively expressed in pDCs. Inhibition of NLRC5 and NLRX1 expression in pDCs augmented the RLR-stimulated expression of type I IFNs but did not affect the production of the pro-inflammatory cytokines TNF, IL-6, and the chemokine IL-8. Further we show that immature moDCs constantly express RLRs, NLRX1 and NLRC5 that are gradually upregulated during their differentiation. Similarly to pDCs, NLRX1 suppression increased the RLR-induced production of type I IFNs in moDCs. Interestingly, RLR stimulation of NLRX1-silenced moDCs leads to a significant increase in pro-inflammatory cytokine production and IκBα degradation, suggesting increased NF-κB activity. On the contrary, NLRC5 does not seem to have any effect on the RLR-mediated cytokine responses in moDCs. In summary, our results indicate that NLRX1 negatively regulates the RLR-mediated type I IFN production both in pDCs and moDCs. Further we show that NLRX1 inhibits pro-inflammatory cytokine secretion in moDCs but not in pDCs following RLR stimulation. Interestingly, NLRC5 suppresses the RLR-induced type I IFN secretion in pDCs but does not appear to have any regulatory function on the RLR pathway in moDCs. Collectively, our work demonstrates that RLR-mediated innate immune responses are primarily regulated by NLRX1 and partly controlled by NLRC5 in human DCs.
Collapse
Affiliation(s)
- Tünde Fekete
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dora Bencze
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Szabo
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Eszter Csoma
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamas Biro
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Bacsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Kitti Pazmandi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
7
|
Kimura S, Matsumiya T, Shiba Y, Nakanishi M, Hayakari R, Kawaguchi S, Yoshida H, Imaizumi T. The Essential Role of Double-Stranded RNA-Dependent Antiviral Signaling in the Degradation of Nonself Single-Stranded RNA in Nonimmune Cells. THE JOURNAL OF IMMUNOLOGY 2018; 201:1044-1052. [PMID: 29925678 DOI: 10.4049/jimmunol.1800456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/01/2018] [Indexed: 12/25/2022]
Abstract
The recognition of nonself dsRNA by retinoic acid-inducible gene-I (RIG-I) leads to the engagement of RIG-I-like receptor signaling. In addition, nonself dsRNA triggers a robust latent RNase (RNase L) activation and leads to the degradation of ribosomal structures and cell death. In contrast, nonself ssRNA is known to be recognized by TLR 7/8 in immune cells such as plasmacytoid dendritic cells and B cells, but little is known regarding the involvement of nonself ssRNA in antiviral signaling in nonimmune cells, including epithelial cells. Moreover, the fate of intracellular nonself ssRNA remains unknown. To address this issue, we developed a quantitative RT-PCR-based approach that monitors the kinetics of nonself ssRNA cleavage following the transfection of HeLa human cervical carcinoma cells, using model nonself ssRNA. We discovered that the degradation of ssRNA is independent of RIG-I and type I IFN signaling because ssRNA did not trigger RIG-I-mediated antiviral signaling. We also found that the kinetics of self (5'-capped) and nonself ssRNA decay were unaltered, suggesting that nonself ssRNA is not recognized by nonimmune cells. We further demonstrated that the cleavage of nonself ssRNA is accelerated when nonself dsRNA is also introduced into cells. In addition, the cleavage of nonself ssRNA is completely abolished by knockdown of RNase L. Overall, our data demonstrate the important role of dsRNA-RNase L in nonself ssRNA degradation and may partly explain the positive regulation of the antiviral responses in nonimmune cells.
Collapse
Affiliation(s)
- Sayaka Kimura
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; and
| | - Tomoh Matsumiya
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; and
| | - Yuko Shiba
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; and
| | - Michi Nakanishi
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; and
| | - Ryo Hayakari
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; and
| | - Shogo Kawaguchi
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Hidemi Yoshida
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; and
| | - Tadaatsu Imaizumi
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; and
| |
Collapse
|
8
|
Xing F, Matsumiya T, Shiba Y, Hayakari R, Yoshida H, Imaizumi T. Non-Canonical Role of IKKα in the Regulation of STAT1 Phosphorylation in Antiviral Signaling. PLoS One 2016; 11:e0168696. [PMID: 27992555 PMCID: PMC5167405 DOI: 10.1371/journal.pone.0168696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 12/04/2016] [Indexed: 11/18/2022] Open
Abstract
Non-self RNA is recognized by retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), inducing type I interferons (IFNs). Type I IFN promotes the expression of IFN-stimulated genes (ISGs), which requires the activation of signal transducer and activator of transcription-1 (STAT1). We previously reported that dsRNA induced STAT1 phosphorylation via a type I IFN-independent pathway in addition to the well-known type I IFN-dependent pathway. IκB kinase α (IKKα) is involved in antiviral signaling induced by dsRNA; however, its role is incompletely understood. Here, we explored the function of IKKα in RLR-mediated STAT1 phosphorylation. Silencing of IKKα markedly decreased the level of IFN-β and STAT1 phosphorylation inHeH response to dsRNA. However, the inhibition of IKKα did not alter the RLR signaling-mediated dimerization of interferon responsive factor 3 (IRF3) or the nuclear translocation of nuclear factor-κB (NFκB). These results suggest a non-canonical role of IKKα in RLR signaling. Furthermore, phosphorylation of STAT1 was suppressed by IKKα knockdown in cells treated with a specific neutralizing antibody for the type I IFN receptor (IFNAR) and in IFNAR-deficient cells. Collectively, the dual regulation of STAT1 by IKKα in antiviral signaling suggests a role for IKKα in the fine-tuning of antiviral signaling in response to non-self RNA.
Collapse
Affiliation(s)
- Fei Xing
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tomoh Matsumiya
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yuko Shiba
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ryo Hayakari
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hidemi Yoshida
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tadaatsu Imaizumi
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
9
|
Xing F, Matsumiya T, Hayakari R, Yoshida H, Kawaguchi S, Takahashi I, Nakaji S, Imaizumi T. Alteration of Antiviral Signalling by Single Nucleotide Polymorphisms (SNPs) of Mitochondrial Antiviral Signalling Protein (MAVS). PLoS One 2016; 11:e0151173. [PMID: 26954674 PMCID: PMC4783065 DOI: 10.1371/journal.pone.0151173] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 02/24/2016] [Indexed: 12/22/2022] Open
Abstract
Genetic variation is associated with diseases. As a type of genetic variation occurring with certain regularity and frequency, the single nucleotide polymorphism (SNP) is attracting more and more attention because of its great value for research and real-life application. Mitochondrial antiviral signalling protein (MAVS) acts as a common adaptor molecule for retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), which can recognize foreign RNA, including viral RNA, leading to the induction of type I interferons (IFNs). Therefore, MAVS is thought to be a crucial molecule in antiviral innate immunity. We speculated that genetic variation of MAVS may result in susceptibility to infectious diseases. To assess the risk of viral infection based on MAVS variation, we tested the effects of twelve non-synonymous MAVS coding-region SNPs from the National Center for Biotechnology Information (NCBI) database that result in amino acid substitutions. We found that five of these SNPs exhibited functional alterations. Additionally, four resulted in an inhibitory immune response, and one had the opposite effect. In total, 1,032 human genomic samples obtained from a mass examination were genotyped at these five SNPs. However, no homozygous or heterozygous variation was detected. We hypothesized that these five SNPs are not present in the Japanese population and that such MAVS variations may result in serious immune diseases.
Collapse
Affiliation(s)
- Fei Xing
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tomoh Matsumiya
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
- * E-mail:
| | - Ryo Hayakari
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hidemi Yoshida
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shogo Kawaguchi
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ippei Takahashi
- Department of Social Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shigeyuki Nakaji
- Department of Social Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tadaatsu Imaizumi
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
10
|
Singh M, Brahma B, Maharana J, Patra MC, Kumar S, Mishra P, Saini M, De BC, Mahanty S, Datta TK, De S. Insight into buffalo (Bubalus bubalis) RIG1 and MDA5 receptors: a comparative study on dsRNA recognition and in-vitro antiviral response. PLoS One 2014; 9:e89788. [PMID: 24587036 PMCID: PMC3935933 DOI: 10.1371/journal.pone.0089788] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 01/24/2014] [Indexed: 12/24/2022] Open
Abstract
RIG1 and MDA5 have emerged as important intracellular innate pattern recognition receptors that recognize viral RNA and mediate cellular signals controlling Type I interferon (IFN-I) response. Buffalo RIG1 and MDA5 genes were investigated to understand the mechanism of receptor induced antiviral response. Sequence analysis revealed that RIG1 and MDA5 maintain a domain arrangement that is common in mammals. Critical binding site residues of the receptors are evolutionary conserved among mammals. Molecular dynamics simulations suggested that RIG1 and MDA5 follow a similar, if not identical, dsRNA binding pattern that has been previously reported in human. Moreover, binding free energy calculation revealed that MDA5 had a greater affinity towards dsRNA compared to RIG1. Constitutive expressions of RLR genes were ubiquitous in different tissues without being specific to immune organs. Poly I:C stimulation induced elevated expressions of IFN-β and IFN-stimulated genes (ISGs) through interferon regulatory factors (IRFs) mediated pathway in buffalo foetal fibroblast cells. The present study provides crucial insights into the structure and function of RIG1 and MDA5 receptors in buffalo.
Collapse
Affiliation(s)
- Manvender Singh
- Animal Genomics Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, Haryana, India
| | - Biswajit Brahma
- Animal Genomics Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, Haryana, India
| | - Jitendra Maharana
- Animal Genomics Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, Haryana, India
| | - Mahesh Chandra Patra
- Animal Genomics Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, Haryana, India
| | - Sushil Kumar
- Animal Genomics Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, Haryana, India
| | - Purusottam Mishra
- Animal Genomics Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, Haryana, India
| | - Megha Saini
- Animal Genomics Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, Haryana, India
| | - Bidhan Chandra De
- Animal Genomics Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, Haryana, India
| | - Sourav Mahanty
- Animal Genomics Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, Haryana, India
| | - Tirtha Kumar Datta
- Animal Genomics Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, Haryana, India
| | - Sachinandan De
- Animal Genomics Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, Haryana, India
- * E-mail:
| |
Collapse
|
11
|
Ye CG, Sun SL, Bai R, Zhu WX, Chen CP, Xie P, Zhao H, Tu WJ, Gao DY, Liu LM. Differentially expressed microRNAs in plasma of pretreated patients with/without anti-tuberculosis drugs-induced hepatotoxicity. Shijie Huaren Xiaohua Zazhi 2014; 22:415-422. [DOI: 10.11569/wcjd.v22.i3.415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate differential expression profile of microRNAs (miRNAs) in plasma of pretreated patients with/without anti-tuberculosis drug-induced hepatotoxicity (ATDH).
METHODS: Plasma samples were collected from patients with/without ATDH before anti-tuberculosis treatment and subjected to miRNA microarray analysis. Twenty-five miRNAs were tested using high-flux real-time quantitative PCR. The target genes of miRNAs were predicted using the Internet software, and the GO functional classification of target proteins was analyzed using the PANTHER tool.
RESULTS: Compared with patients without ATDH, there were 7 miRNAs differentially expressed in patients with ATDH before anti-tuberculosis drug therapy, 4 of which were up-regulated, including miR-4284, miR-3620, miR-652-5p and miR-4800-5p, and 3 down-regulated, including miR-338-3p, miR-424-5p and miR-194-5p.
CONCLUSION: There are differentially expressed miRNAs in the circulation of patients with ATDH before anti-tuberculosis drug therapy, and the up-regulated miRNAs (esp. miR-4284) may be new biological markers for screening ATDH susceptible population.
Collapse
|