1
|
Rajasekaran S, Cheng S, Gajendran N, Shekoohi S, Chesnokova L, Yu X, Witt SN. Transcriptomic analysis of melanoma cells reveals an association of α-synuclein with regulation of the inflammatory response. Sci Rep 2024; 14:27140. [PMID: 39511366 PMCID: PMC11544018 DOI: 10.1038/s41598-024-78777-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024] Open
Abstract
The Parkinson's disease protein, alpha-synuclein (α-syn/SNCA), is highly expressed in neurons and melanomas. The goal of this study was to reveal the mechanism(s) of α-syn's involvement in melanoma pathogenesis. To decipher the genes and pathways affected by α-syn, we conducted an RNA sequencing analysis of human SK-MEL-28 cells and several SK-MEL-28 SNCA-KO clones. We identified 1098 significantly up-regulated genes and 660 significantly down-regulated genes. Several of the upregulated genes are related to the immune system, i.e., the inflammatory response and the matrisome. We validated five upregulated genes (IL-1β, SAA1, IGFBP5, CXCL8, and CXCL10) by RT-qPCR and detected IGFBP5 and IL-1β in spent media of control and SNCA-KO cells. The levels of each of these secreted proteins were significantly higher in the spent media of the SNCA-KO clones than control cells. These secreted proteins quite likely activate the immune response against SNCA-KO cells. We suggest that, conversely, high levels of α-syn expression in melanoma cells helps the cells evade the immune system by inhibiting the secretion of these immune activating factors.
Collapse
Affiliation(s)
- Santhanasabapathy Rajasekaran
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Siyuan Cheng
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Nithya Gajendran
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Sahar Shekoohi
- Department of Anesthesiology, Louisiana State University Health Sciences Center at Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Liudmila Chesnokova
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Xiuping Yu
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Shreveport, Shreveport, USA
| | - Stephan N Witt
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, USA.
- Feist-Weiller Cancer Center, Louisiana State University Health Shreveport, Shreveport, USA.
| |
Collapse
|
2
|
Moloudi K, Azariasl S, Abrahamse H, George BP, Yasuda H. Expected role of photodynamic therapy to relieve skin damage in nuclear or radiological emergency: Review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104517. [PMID: 39032581 DOI: 10.1016/j.etap.2024.104517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Nuclear and radiological accidents can occur due to poor management, in transportation, radiation therapy and nuclear wards in hospitals, leading to extreme radiation exposure and serious consequences for human health. Additionally, in many of previous radiological accidents, skin damage was observed in patients and survivors due to the high radiation exposure. However, as part of a medical countermeasures in a nuclear/radiological emergency, it is critical to plan for the treatment of radiation-induced skin damage. Hence, the new, non-invasive technology of photodynamic therapy (PDT) is projected to be more effectively used for treating skin damage caused by high-dose radiation. PDT plays an important role in treating, repairing skin damage and promoting wound healing as evidenced by research. This review, highlighted and recommended potential impacts of PDT to repair and decrease radiation-induced skin tissue damage. Moreover, we have suggested some photosensitizer (PS) agent as radio-mitigator drugs to decrease radiobiological effects.
Collapse
Affiliation(s)
- Kave Moloudi
- Laser Research Centre, Faculty of Health Science, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa
| | - Samayeh Azariasl
- Department of Radiation Biophysics, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku 734-8553, Japan
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Science, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa
| | - Blassan P George
- Laser Research Centre, Faculty of Health Science, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa.
| | - Hiroshi Yasuda
- Department of Radiation Biophysics, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku 734-8553, Japan
| |
Collapse
|
3
|
Leupold D, Buder S, Pfeifer L, Szyc L, Riederer P, Strobel S, Monoranu CM. New Aspects Regarding the Fluorescence Spectra of Melanin and Neuromelanin in Pigmented Human Tissue Concerning Hypoxia. Int J Mol Sci 2024; 25:8457. [PMID: 39126026 PMCID: PMC11313424 DOI: 10.3390/ijms25158457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Melanin is a crucial pigment in melanomagenesis. Its fluorescence in human tissue is exceedingly weak but can be detected through advanced laser spectroscopy techniques. The spectral profile of melanin fluorescence distinctively varies among melanocytes, nevomelanocytes, and melanoma cells, with melanoma cells exhibiting a notably "red" fluorescence spectrum. This characteristic enables the diagnosis of melanoma both in vivo and in histological samples. Neuromelanin, a brain pigment akin to melanin, shares similar fluorescence properties. Its fluorescence can also be quantified with high spectral resolution using the same laser spectroscopic methods. Documented fluorescence spectra of neuromelanin in histological samples from the substantia nigra substantiate these findings. Our research reveals that the spectral behavior of neuromelanin fluorescence mirrors that of melanin in melanomas. This indicates that the typical red fluorescence is likely influenced by the microenvironment around (neuro)melanin, rather than by direct pigment interactions. Our ongoing studies aim to further explore this distinctive "red" fluorescence. We have observed this red fluorescence spectrum in post-mortem measurements of melanin in benign nevus. The characteristic red spectrum is also evident here (unlike the benign nevus in vivo), suggesting that hypoxia may contribute to this phenomenon. Given the central role of hypoxia in both melanoma development and treatment, as well as in fundamental Parkinson's disease mechanisms, this study discusses strategies aimed at reinforcing the hypothesis that red fluorescence from (neuro)melanin serves as an indicator of hypoxia.
Collapse
Affiliation(s)
- Dieter Leupold
- LTB Lasertechnik Berlin GmbH, 12489 Berlin, Germany; (D.L.); (L.P.)
| | - Susanne Buder
- Clinic for Dermatology and Venerology, Vivantes Klinikum Neukölln, 12351 Berlin, Germany;
| | - Lutz Pfeifer
- LTB Lasertechnik Berlin GmbH, 12489 Berlin, Germany; (D.L.); (L.P.)
| | | | - Peter Riederer
- Department and Research Unit of Psychiatry, University of Southern Denmark, 5230 Odense, Denmark;
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Wuerzburg, 97080 Wuerzburg, Germany
| | - Sabrina Strobel
- Institute of Pathology, Department of Neuropathology, University of Wuerzburg, Comprehensive Cancer Center (CCC) Mainfranken Wuerzburg, 97080 Wuerzburg, Germany;
| | - Camelia-Maria Monoranu
- Institute of Pathology, Department of Neuropathology, University of Wuerzburg, Comprehensive Cancer Center (CCC) Mainfranken Wuerzburg, 97080 Wuerzburg, Germany;
| |
Collapse
|
4
|
Cronin P, Collins LM, Sullivan AM. Impacts of gait freeze on quality of life in Parkinson's disease, from the perspectives of patients and their carers. Ir J Med Sci 2024; 193:2041-2050. [PMID: 38639839 PMCID: PMC11294397 DOI: 10.1007/s11845-024-03673-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/15/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND The World Health Organisation (WHO) reports that morbidity and mortality due to Parkinson's disease (PD) are increasing faster than for other neurodegenerative conditions. People with Parkinson's (PwP) present with a variety of motor symptoms, such as tremor, bradykinesia, and rigidity. Freezing of gait (FoG) is a significant motor symptom that manifests as temporary episodes of inability to move one's feet, despite the intention to walk. AIMS This study examined the impact of FoG on quality of life (QoL) within an Irish cohort of PwP, from the perspectives of both PwP and their carers, using validated questionnaires that had been adapted for online use. METHODS PwP and their carers were recruited by outreach to the Irish Parkinson's Community. Anonymous online questionnaires were distributed, which combined a demographic survey with several clinically validated surveys, including Freezing of Gait Questionnaire (FoG-Q), Parkinson's Disease Questionnaire 8 (PDQ-8), and Parkinson's Disease Carer Questionnaire (PDQ-C). RESULTS There was a strong correlation (p < 0.001) between severity of FoG and lower QoL among PwP. Significant correlation was also found between FoG severity and several motor symptoms, such as postural instability and difficulty with balance, and non-motor symptoms, such as cognitive changes and pain/discomfort. FoG severity correlated with disease progression. Significant correlation was also found between FoG and symptoms, as assessed from the perspective of the patients' carers. CONCLUSIONS This study shows that FoG is a significant detriment to the QoL of PwP, from the perspectives of patients and carers. This method of assessing FoG and QoL using online questionnaires has potential to enhance the reach and flexibility of this type of research. These findings will inform future studies on larger cohorts and highlight unmet clinical needs in PwP.
Collapse
Affiliation(s)
- Padraig Cronin
- Department of Anatomy and Neuroscience, School of Medicine, University College Cork, Cork, Ireland
- Parkinson's Disease Research Cluster, University College Cork, Cork, Ireland
| | - Lucy M Collins
- Department of Anatomy and Neuroscience, School of Medicine, University College Cork, Cork, Ireland
- Parkinson's Disease Research Cluster, University College Cork, Cork, Ireland
| | - Aideen M Sullivan
- Department of Anatomy and Neuroscience, School of Medicine, University College Cork, Cork, Ireland.
- Parkinson's Disease Research Cluster, University College Cork, Cork, Ireland.
| |
Collapse
|
5
|
Currim F, Tanwar R, Brown-Leung JM, Paranjape N, Liu J, Sanders LH, Doorn JA, Cannon JR. Selective dopaminergic neurotoxicity modulated by inherent cell-type specific neurobiology. Neurotoxicology 2024; 103:266-287. [PMID: 38964509 PMCID: PMC11288778 DOI: 10.1016/j.neuro.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disease affecting millions of individuals worldwide. Hallmark features of PD pathology are the formation of Lewy bodies in neuromelanin-containing dopaminergic (DAergic) neurons of the substantia nigra pars compacta (SNpc), and the subsequent irreversible death of these neurons. Although genetic risk factors have been identified, around 90 % of PD cases are sporadic and likely caused by environmental exposures and gene-environment interaction. Mechanistic studies have identified a variety of chemical PD risk factors. PD neuropathology occurs throughout the brain and peripheral nervous system, but it is the loss of DAergic neurons in the SNpc that produce many of the cardinal motor symptoms. Toxicology studies have found specifically the DAergic neuron population of the SNpc exhibit heightened sensitivity to highly variable chemical insults (both in terms of chemical structure and mechanism of neurotoxic action). Thus, it has become clear that the inherent neurobiology of nigral DAergic neurons likely underlies much of this neurotoxic response to broad insults. This review focuses on inherent neurobiology of nigral DAergic neurons and how such neurobiology impacts the primary mechanism of neurotoxicity. While interactions with a variety of other cell types are important in disease pathogenesis, understanding how inherent DAergic biology contributes to selective sensitivity and primary mechanisms of neurotoxicity is critical to advancing the field. Specifically, key biological features of DAergic neurons that increase neurotoxicant susceptibility.
Collapse
Affiliation(s)
- Fatema Currim
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA
| | - Reeya Tanwar
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA
| | - Josephine M Brown-Leung
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA
| | - Neha Paranjape
- Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Jennifer Liu
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Center for Neurodegeneration and Neurotherapeutics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Laurie H Sanders
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Center for Neurodegeneration and Neurotherapeutics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jonathan A Doorn
- Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA.
| |
Collapse
|
6
|
Yan S, Lu J, Li Y, Zhu H, Tian T, Qin Y, Zhu W. Large-scale functional network connectivity mediates the association between nigral neuromelanin hypopigmentation and motor impairment in Parkinson's disease. Brain Struct Funct 2024; 229:843-852. [PMID: 38347222 DOI: 10.1007/s00429-024-02761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/09/2024] [Indexed: 04/10/2024]
Abstract
Neuromelanin hypopigmentation within substantia nigra pars compacta (SNc) reflects the loss of pigmented neurons, which in turn contributes to the dysfunction of the nigrostriatal and striato-cortical pathways in Parkinson's disease (PD). Our study aims to investigate the relationships between SN degeneration manifested by neuromelanin reduction, functional connectivity (FC) among large-scale brain networks, and motor impairment in PD. This study included 68 idiopathic PD patients and 32 age-, sex- and education level-matched healthy controls who underwent neuromelanin-sensitive magnetic resonance imaging (MRI), functional MRI, and motor assessments. SN integrity was measured using the subregional contrast-to-noise ratio calculated from neuromelanin-sensitive MRI. Resting-state FC maps were obtained based on the independent component analysis. Subsequently, we performed partial correlation and mediation analyses in SN degeneration, network disruption, and motor impairment for PD patients. We found significantly decreased neuromelanin within SN and widely altered inter-network FCs, mainly involved in the basal ganglia (BG), sensorimotor and frontoparietal networks in PD. In addition, decreased neuromelanin content was negatively correlated with the dorsal sensorimotor network (dSMN)-medial visual network connection (P = 0.012) and dSMN-BG connection (P = 0.004). Importantly, the effect of SN neuromelanin hypopigmentation on motor symptom severity in PD is partially mediated by the increased connectivity strength between BG and dSMN (indirect effect = - 1.358, 95% CI: - 2.997, - 0.147). Our results advanced our understanding of the interactions between neuromelanin hypopigmentation in SN and altered FCs of functional networks in PD and suggested the potential of multimodal metrics for early diagnosis and monitoring the response to therapies.
Collapse
Affiliation(s)
- Su Yan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, JiefangAvenue, Wuhan, 430030, China
| | - Jun Lu
- Department of CT & MRI, The First Affiliated Hospital, College of Medicine, Shihezi University, 107 North Second Road, Shihezi, China
| | - Yuanhao Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, JiefangAvenue, Wuhan, 430030, China
| | - Hongquan Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, JiefangAvenue, Wuhan, 430030, China
| | - Tian Tian
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, JiefangAvenue, Wuhan, 430030, China
| | - Yuanyuan Qin
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, JiefangAvenue, Wuhan, 430030, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, JiefangAvenue, Wuhan, 430030, China.
| |
Collapse
|
7
|
Surguchov A, Surguchev AA. Association between Parkinson's Disease and Cancer: New Findings and Possible Mediators. Int J Mol Sci 2024; 25:3899. [PMID: 38612708 PMCID: PMC11011322 DOI: 10.3390/ijms25073899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Epidemiological evidence points to an inverse association between Parkinson's disease (PD) and almost all cancers except melanoma, for which this association is positive. The results of multiple studies have demonstrated that patients with PD are at reduced risk for the majority of neoplasms. Several potential biological explanations exist for the inverse relationship between cancer and PD. Recent results identified several PD-associated proteins and factors mediating cancer development and cancer-associated factors affecting PD. Accumulating data point to the role of genetic traits, members of the synuclein family, neurotrophic factors, the ubiquitin-proteasome system, circulating melatonin, and transcription factors as mediators. Here, we present recent data about shared pathogenetic factors and mediators that might be involved in the association between these two diseases. We discuss how these factors, individually or in combination, may be involved in pathology, serve as links between PD and cancer, and affect the prevalence of these disorders. Identification of these factors and investigation of their mechanisms of action would lead to the discovery of new targets for the treatment of both diseases.
Collapse
Affiliation(s)
- Andrei Surguchov
- Department of Neurology, Kansas University Medical Center, Kansas City, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Alexei A Surguchev
- Department of Surgery, Section of Otolaryngology, Yale School of Medicine, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
8
|
Chocarro J, Rico AJ, Ariznabarreta G, Roda E, Honrubia A, Collantes M, Peñuelas I, Vázquez A, Rodríguez-Pérez AI, Labandeira-García JL, Vila M, Lanciego JL. Neuromelanin accumulation drives endogenous synucleinopathy in non-human primates. Brain 2023; 146:5000-5014. [PMID: 37769648 PMCID: PMC10689915 DOI: 10.1093/brain/awad331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/04/2023] [Accepted: 09/07/2023] [Indexed: 10/03/2023] Open
Abstract
Although neuromelanin is a dark pigment characteristic of dopaminergic neurons in the human substantia nigra pars compacta, its potential role in the pathogenesis of Parkinson's disease (PD) has often been neglected since most commonly used laboratory animals lack neuromelanin. Here we took advantage of adeno-associated viral vectors encoding the human tyrosinase gene for triggering a time-dependent neuromelanin accumulation within substantia nigra pars compacta dopaminergic neurons in macaques up to similar levels of pigmentation as observed in elderly humans. Furthermore, neuromelanin accumulation induced an endogenous synucleinopathy mimicking intracellular inclusions typically observed in PD together with a progressive degeneration of neuromelanin-expressing dopaminergic neurons. Moreover, Lewy body-like intracellular inclusions were observed in cortical areas of the frontal lobe receiving dopaminergic innervation, supporting a circuit-specific anterograde spread of endogenous synucleinopathy by permissive trans-synaptic templating. In summary, the conducted strategy resulted in the development and characterization of a new macaque model of PD matching the known neuropathology of this disorder with unprecedented accuracy. Most importantly, evidence is provided showing that intracellular aggregation of endogenous α-synuclein is triggered by neuromelanin accumulation, therefore any therapeutic approach intended to decrease neuromelanin levels may provide appealing choices for the successful implementation of novel PD therapeutics.
Collapse
Affiliation(s)
- Julia Chocarro
- CNS Gene Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Aligning Science Across Parkinsons’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Alberto J Rico
- CNS Gene Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Aligning Science Across Parkinsons’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Goiaz Ariznabarreta
- CNS Gene Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Aligning Science Across Parkinsons’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Elvira Roda
- CNS Gene Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Aligning Science Across Parkinsons’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Adriana Honrubia
- CNS Gene Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Aligning Science Across Parkinsons’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - María Collantes
- Translational Molecular Imaging Unit, Department of Nuclear Medicine, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Iván Peñuelas
- Translational Molecular Imaging Unit, Department of Nuclear Medicine, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Alfonso Vázquez
- Department of Neurosurgery, Hospital Universitario de Navarra, Servicio Navarro de Salud, 31008 Pamplona, Spain
| | - Ana I Rodríguez-Pérez
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - José L Labandeira-García
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Miquel Vila
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Aligning Science Across Parkinsons’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Vall d’Hebron Research Institute, Neurodegenerative Diseses Research Group, 08035 Barcelona, Spain
- Autonomous University of Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - José L Lanciego
- CNS Gene Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Aligning Science Across Parkinsons’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
9
|
Koros C, Simitsi AM, Bougea A, Papagiannakis N, Antonelou R, Pachi I, Angelopoulou E, Prentakis A, Zachou A, Chrysovitsanou C, Beratis I, Fragkiadaki S, Kontaxopoulou D, Eftymiopoulou E, Stanitsa E, Potagas C, Papageorgiou SG, Karavasilis E, Velonakis G, Prassopoulos V, Geronicola-Trapali X, Stefanis L. Double Trouble: Association of Malignant Melanoma with Sporadic and Genetic Forms of Parkinson's Disease and Asymptomatic Carriers of Related Genes: A Brief Report. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1360. [PMID: 37629650 PMCID: PMC10456316 DOI: 10.3390/medicina59081360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023]
Abstract
Introduction: Previous epidemiological evidence has established the co-occurrence of malignant melanoma (MM) and Parkinson's disease (PD). Shared molecular mechanisms have been proposed to be implicated in this relationship. The aim of the present study was to assess the prevalence of MM in patients with sporadic and genetic types of PD, as well as in asymptomatic carriers of PD-related genes. Methods: Data regarding past medical history and concomitant disease of 1416 patients with PD (including 20 participants with prodromal disease who phenoconverted to PD), 275 healthy controls (HCs) and 670 asymptomatic carriers of PD-related genes were obtained from the database of the Parkinson's Progression Markers Initiative (PPMI). Focus was placed on information about a medical record of MM. We also retrieved data regarding the genetic status of selected PPMI participants with a positive MM history. Results: In total, 46 patients with PD reported a positive MM history. Concerning the genetic forms of PD, nine of these PD patients (2.47%) carried a Leucine Rich Repeat Kinase 2 (LRRK2) gene mutation (mainly the G2019S), while eight (4.49%) harbored a Glucocerebrosidase (GBA) gene mutation (mainly the N370S). No alpha-synuclein (SNCA) gene mutation was identified in patients with an MM history. The remaining 29 PD patients (3.5%) were genetically undetermined. In total, 18 asymptomatic carriers of PD-related genes had a positive medical history for MM: among them, 10 carried an LRRK2 gene mutation (2.69%) and 10 a GBA gene mutation (3.51%) (2 were dual carriers). MM history was identified for seven HCs (2.5%). Conclusions: We replicated the previously reported association between genetically undetermined PD (GU-PD) and MM. A correlation of LRRK2 mutations with the development of MM could not be verified in either symptomatic PD patients or asymptomatic carriers, implicating distinct pathogenetic mechanisms as compared to GU-PD. Importantly, despite the limited literature evidence on Gaucher disease, this study highlights for the first time the relatively high prevalence of MM among asymptomatic and symptomatic PD GBA mutation carriers, with potential clinical implications.
Collapse
Affiliation(s)
- Christos Koros
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Athina-Maria Simitsi
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Anastasia Bougea
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Nikolaos Papagiannakis
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Roubina Antonelou
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Ioanna Pachi
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Efthalia Angelopoulou
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Andreas Prentakis
- Nuclear Medicine Unit, Attikon Hospital, 12462 Athens, Greece; (A.P.); (X.G.-T.)
| | - Athena Zachou
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Chrysa Chrysovitsanou
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Ion Beratis
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Stella Fragkiadaki
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Dionysia Kontaxopoulou
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Efthymia Eftymiopoulou
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Evangelia Stanitsa
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Constantin Potagas
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Sokratis G. Papageorgiou
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Efstratios Karavasilis
- Research Unit of Radiology, 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, “Attikon” University General Hospital, 11528 Athens, Greece; (E.K.); (G.V.)
| | - Georgios Velonakis
- Research Unit of Radiology, 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, “Attikon” University General Hospital, 11528 Athens, Greece; (E.K.); (G.V.)
| | | | | | - Leonidas Stefanis
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| |
Collapse
|
10
|
Tóth V, Diakoumakou SC, Kuroli E, Tóth B, Kuzmanovszki D, Szakonyi J, Lőrincz KK, Somlai B, Kárpáti S, Holló P. Cutaneous malignancies in patients with Parkinson's disease at a dermato-oncological university centre in Hungary. Front Oncol 2023; 13:1142170. [PMID: 37274278 PMCID: PMC10235680 DOI: 10.3389/fonc.2023.1142170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/03/2023] [Indexed: 06/06/2023] Open
Abstract
Background The possible correlation between melanoma and Parkinson's disease (PD) has been intensively studied. In this work, we aimed to assess the coincidence of skin malignancies and PD at a dermato-oncological university centre in Central-Eastern Europe, Hungary. Methods From 2004 to 2017, a retrospective analysis of the centre's database was performed based on International Statistical Classification of Diseases-10 codes. Results Out of the patients who visited the clinic during the study period, 20,658 were treated for malignant skin tumours. Over the 14 years, 205 dermatological patients had PD simultaneously, 111 (54%) of whom had at least one type of skin malignancy: melanoma (n=22), basal cell carcinoma (BCC) (n=82), or squamous cell carcinoma (SCC) (n=36) (in some patients, multiple skin tumours were identified). Compared to the age- and sex-matched control group, patients with PD had a significantly lower risk for basal cell carcinoma (OR, 0.65; 95% CI, 0.47-0.89, p=0.0076) and for all skin tumours (OR, 0.74; 95% CI, 0.56-0.98, p=0.0392) but not for melanoma. Conclusions We found a decreased risk of all skin tumours and basal cell carcinoma and an unchanged risk of melanoma among patients with PD. However, it should be kept in mind that some large-scale meta-analyses suggest a higher incidence of melanoma after a diagnosis of PD, indicating the importance of skin examination in this vulnerable population.
Collapse
Affiliation(s)
- Veronika Tóth
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | | | - Enikő Kuroli
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Béla Tóth
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Daniella Kuzmanovszki
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - József Szakonyi
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Kende Kálmán Lőrincz
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Beáta Somlai
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Sarolta Kárpáti
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Péter Holló
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
11
|
Herman S, Djaldetti R, Mollenhauer B, Offen D. CSF-derived extracellular vesicles from patients with Parkinson's disease induce symptoms and pathology. Brain 2023; 146:209-224. [PMID: 35881523 DOI: 10.1093/brain/awac261] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 01/11/2023] Open
Abstract
Parkinson's disease is characterized by the gradual appearance of intraneuronal inclusions that are primarily composed of misfolded α-synuclein protein, leading to cytotoxicity and neural death. Recent in vitro and in vivo studies suggest that misfolded α-synuclein may spread transcellularly in a prion-like manner, inducing pathological aggregates in healthy neurons, and is disseminated via secretion of extracellular vesicles. Accordingly, extracellular vesicles derived from brain lysates and CSF of patients with Parkinson's disease were shown to facilitate α-synuclein aggregation in healthy cells. Prompted by the hypothesis of Braak and colleagues that the olfactory bulb is one of the primary propagation sites for the initiation of Parkinson's disease, we sought to investigate the role of extracellular vesicles in the spread of α-synuclein and progression of Parkinson's disease through the olfactory bulb. Extracellular vesicles derived from the CSF of patients diagnosed with Parkinson's disease or with a non-synucleinopathy neurodegenerative disorder were administered intranasally to healthy mice, once daily over 4 days. Three months later, mice were subjected to motor and non-motor tests. Functional impairments were elucidated by histochemical analysis of midbrain structures relevant to Parkinson's disease pathology, 8 months after EVs treatment. Mice treated with extracellular vesicles from the patients with Parkinson's disease displayed multiple symptoms consistent with prodromal and clinical-phase Parkinson's disease such as hyposmia, motor behaviour impairments and high anxiety levels. Furthermore, their midbrains showed widespread α-synuclein aggregations, dopaminergic neurodegeneration, neuroinflammation and altered autophagy activity. Several unconventional pathologies were also observed, such as α-synuclein aggregations in the red nucleus, growth of premature grey hair and astrogliosis. Collectively, these data indicate that intranasally administered extracellular vesicles derived from the CSF of patients with Parkinson's disease can propagate α-synuclein aggregation in vivo and trigger Parkinson's disease-like symptoms and pathology in healthy mice.
Collapse
Affiliation(s)
- Shay Herman
- Department of Human Genetics and Biochemistry, Sackler School of Medicine, and Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ruth Djaldetti
- Department of Neurology, Rabin Medical Center-Beilinson Hospital, Petach Tikva 4941492, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,Paracelsus-Elena-Klinik, Kassel, Germany
| | - Daniel Offen
- Department of Human Genetics and Biochemistry, Sackler School of Medicine, and Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv 6997801, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
12
|
Rachinger N, Mittag N, Böhme-Schäfer I, Xiang W, Kuphal S, Bosserhoff AK. Alpha-Synuclein and Its Role in Melanocytes. Cells 2022; 11:cells11132087. [PMID: 35805172 PMCID: PMC9265281 DOI: 10.3390/cells11132087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/10/2022] [Accepted: 06/29/2022] [Indexed: 12/04/2022] Open
Abstract
Pigmentation is an important process in skin physiology and skin diseases and presumably also plays a role in Parkinson’s disease (PD). In PD, alpha-Synuclein (aSyn) has been shown to be involved in the pigmentation of neurons. The presynaptic protein is intensively investigated for its pathological role in PD, but its physiological function remains unknown. We hypothesized that aSyn is both involved in melanocytic differentiation and melanosome trafficking processes. We detected a strong expression of aSyn in human epidermal melanocytes (NHEMs) and observed its regulation in melanocytic differentiation via the microphthalmia-associated transcription factor (MITF), a central regulator of differentiation. Moreover, we investigated its role in pigmentation by performing siRNA experiments but found no effect on the total melanin content. We discovered a localization of aSyn to melanosomes, and further analysis of aSyn knockdown revealed an important role in melanocytic morphology and a reduction in melanosome release. Additionally, we found a reduction of transferred melanosomes in co-culture experiments of melanocytes and keratinocytes but no complete inhibition of melanosome transmission. In summary, this study highlights a novel physiological role of aSyn in melanocytic morphology and its so far unknown function in the pigment secretion in melanocytes.
Collapse
Affiliation(s)
- Nicole Rachinger
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (N.R.); (I.B.-S.); (S.K.)
| | - Nora Mittag
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80539 Munich, Germany;
| | - Ines Böhme-Schäfer
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (N.R.); (I.B.-S.); (S.K.)
| | - Wei Xiang
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Silke Kuphal
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (N.R.); (I.B.-S.); (S.K.)
| | - Anja K. Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (N.R.); (I.B.-S.); (S.K.)
- Correspondence:
| |
Collapse
|
13
|
Zhao M, Deng L, Lu X, Fan L, Zhu Y, Zhao L. The involvement of oxidative stress, neuronal lesions, neurotransmission impairment, and neuroinflammation in acrylamide-induced neurotoxicity in C57/BL6 mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:41151-41167. [PMID: 35088269 DOI: 10.1007/s11356-021-18146-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Acrylamide (ACR) is a typical environmental contaminant, presenting potential health hazards that have been attracting increasing attention. Its neurotoxicity is known to cause significant damage to health. However, the mechanisms of ACR-induced neurotoxicity require further clarification. This study uses a mouse model to explore how ACR-induced oxidative stress, neuronal lesions, neurotransmission impairment, and neuroinflammation mutually contribute to neurotoxicity. A distinct increase in the cellular reactive oxygen species (ROS) levels, malondialdehyde (MDA), and 8-hydroxy-2-deoxyguanosine (8-OHdG) content and a significant decrease in the glutathione (GSH) content after ACR exposure were indicative of oxidative stress. Moreover, ACR caused neurological defects associated with gait abnormality and neuronal loss while suppressing the acetylcholine (ACh) and dopamine (DA) levels and increasing the protein expression of α-synuclein (α-syn), further inhibiting cholinergic and dopaminergic neuronal function. Additionally, ACR treatment caused an inflammatory response via nuclear factor-kappa B (NF-κB) activation and increased the protein expression of NOD-like receptor protein-3 (NLRP3), consequently activating the NLRP3 inflammasome constituents, including cysteinyl aspartate specific proteinase 1 (Caspase-1), apoptosis-associated speck-like protein containing CARD (ASC), N domain gasdermin D (N-GSDMD), interleukin-1β (IL-1β), and IL-18. The results revealed the underlying molecular mechanism of ACR-induced neurotoxicity via oxidative stress, neurotransmission impairment, and neuroinflammation-related signal cascade. This information will further improve the development of an alternative pathway strategy for investigating the risk posed by ACR. The hypothetical mechanism of ACR-induced neurotoxicity in vivo.
Collapse
Affiliation(s)
- Mengyao Zhao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 200237, Shanghai, China
| | - Linlin Deng
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 200237, Shanghai, China
| | - Xiaoxuan Lu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 200237, Shanghai, China
| | - Liqiang Fan
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 200237, Shanghai, China
| | - Yang Zhu
- Bioprocess Engineering Group, Wageningen University and Research, P.O. Box 16, 6700AA, Wageningen, Netherlands
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 200237, Shanghai, China.
| |
Collapse
|
14
|
Zhang X, Wu Z, Ma K. SNCA correlates with immune infiltration and serves as a prognostic biomarker in lung adenocarcinoma. BMC Cancer 2022; 22:406. [PMID: 35421944 PMCID: PMC9009002 DOI: 10.1186/s12885-022-09289-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 02/11/2022] [Indexed: 01/04/2023] Open
Abstract
Background The SNCA gene is a critical gene in Parkinson’s disease (PD) pathology. Accumulating evidence indicates that SNCA is involved in tumorigenesis; however, the role of SNCA in lung adenocarcinoma (LUAD) remains unclear. This study aimed to explore the potential value of SNCA as a prognostic and diagnostic molecular marker in LUAD. Methods In this study, we explored the expression pattern, prognostic value, and promoter methylation status of SNCA in LUAD based on Oncomine, UALCAN, and Kaplan–Meier Plotter. Then, using TIMER, we investigated the correlation between SNCA expression and immune infiltration. And cBioPortal were used to analysis the correlation between SNCA expression and immune checkpoint. The transcriptome data of A549 cells overexpressing SNCA were used to further study the potential immune role of SNCA in LUAD. The effect of SNCA on proliferation of A549 cells were evaluated by CCK-8, EdU and colony formation. Finally, LUAD cell lines treated with 5-aza-dC were used to explore the correlation between increased promoter methylation and downregulated mRNA expression of SNCA. Results In general, the expression level of SNCA in LUAD tissue was lower than that in normal tissue, and high expression of SNCA was related to better prognosis. There were significant positive correlations between SNCA expression and immune infiltrations, including CD8+ T cells, macrophages, neutrophils, dendritic cells, B cells, and CD4+ T cells, and immune checkpoints, suggesting that immune infiltration was one of the reasons for the influence of SNCA on prognosis in LUAD. The transcriptome data of A549 cells overexpressing SNCA were further used to screen the relevant immune-related genes regulated by SNCA. Enrichment analysis confirmed that SNCA participates in the PI3K-AKT signaling pathway and other key tumor signaling pathways and regulates the expression of MAPK3, SRC, PLCG1, and SHC1. Cellular proliferation assay showed that SNCA could inhabit the growth of A549 cells via inhibiting activity of PI3K/AKT/ mTOR pathway. Finally, analysis of the methylation level of SNCA promoter showed that the promoter methylation negatively correlated with mRNA level. The expression of SNCA in LUAD cell lines was significantly upregulated by treatment with 5-aza-dC. Conclusion High methylation of SNCA promoter in LUAD is one of the reasons for the downregulation of SNCA mRNA level. Given that SNCA could inhibit the proliferation of A549 cells and correlates with immune infiltrates, it may serve as a prognostic biomarker in LUAD. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09289-7.
Collapse
|
15
|
Nagatsu T, Nakashima A, Watanabe H, Ito S, Wakamatsu K. Neuromelanin in Parkinson's Disease: Tyrosine Hydroxylase and Tyrosinase. Int J Mol Sci 2022; 23:4176. [PMID: 35456994 PMCID: PMC9029562 DOI: 10.3390/ijms23084176] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/02/2022] [Accepted: 04/08/2022] [Indexed: 01/27/2023] Open
Abstract
Parkinson's disease (PD) is an aging-related disease and the second most common neurodegenerative disease after Alzheimer's disease. The main symptoms of PD are movement disorders accompanied with deficiency of neurotransmitter dopamine (DA) in the striatum due to cell death of the nigrostriatal DA neurons. Two main histopathological hallmarks exist in PD: cytosolic inclusion bodies termed Lewy bodies that mainly consist of α-synuclein protein, the oligomers of which produced by misfolding are regarded to be neurotoxic, causing DA cell death; and black pigments termed neuromelanin (NM) that are contained in DA neurons and markedly decrease in PD. The synthesis of human NM is regarded to be similar to that of melanin in melanocytes; melanin synthesis in skin is via DOPAquinone (DQ) by tyrosinase, whereas NM synthesis in DA neurons is via DAquinone (DAQ) by tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC). DA in cytoplasm is highly reactive and is assumed to be oxidized spontaneously or by an unidentified tyrosinase to DAQ and then, synthesized to NM. Intracellular NM accumulation above a specific threshold has been reported to be associated with DA neuron death and PD phenotypes. This review reports recent progress in the biosynthesis and pathophysiology of NM in PD.
Collapse
Affiliation(s)
- Toshiharu Nagatsu
- Center for Research Promotion and Support, School of Medicine, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Akira Nakashima
- Department of Physiological Chemistry, School of Medicine, Fujita Health University, Toyoake 470-1192, Aichi, Japan;
| | - Hirohisa Watanabe
- Department of Neurology, School of Medicine, Fujita Health University, Toyoake 470-1192, Aichi, Japan;
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (S.I.); (K.W.)
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (S.I.); (K.W.)
| |
Collapse
|
16
|
Cai W, Srivastava P, Feng D, Lin Y, Vanderburg CR, Xu Y, Mclean P, Frosch MP, Fisher DE, Schwarzschild MA, Chen X. Melanocortin 1 receptor activation protects against alpha-synuclein pathologies in models of Parkinson's disease. Mol Neurodegener 2022; 17:16. [PMID: 35197079 PMCID: PMC8867846 DOI: 10.1186/s13024-022-00520-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/11/2022] [Indexed: 12/02/2022] Open
Abstract
Background Epidemiological studies suggest a link between the melanoma-related pigmentation gene melanocortin 1 receptor (MC1R) and risk of Parkinson’s disease (PD). We previously showed that MC1R signaling can facilitate nigrostriatal dopaminergic neuron survival. The present study investigates the neuroprotective potential of MC1R against neurotoxicity induced by alpha-synuclein (αSyn), a key player in PD genetics and pathogenesis. Methods Nigral dopaminergic neuron toxicity induced by local overexpression of aSyn was assessed in mice that have an inactivating mutation of MC1R, overexpress its wild-type transgene, or were treated with MC1R agonists. The role of nuclear factor erythroid 2-related factor 2 (Nrf2) in MC1R-mediated protection against αSyn was characterized in vitro. Furthermore, MC1R expression was determined in human postmortem midbrain from patients with PD and unaffected subjects. Results Targeted expression of αSyn in the nigrostriatal pathway induced exacerbated synuclein pathologies in MC1R mutant mice, which were accompanied by neuroinflammation and altered Nrf2 responses, and reversed by the human MC1R transgene. Two MC1R agonists were neuroprotective against αSyn-induced dopaminergic neurotoxicity. In vitro experiments showed that Nrf2 was a necessary mediator of MC1R effects. Lastly, MC1R was present in dopaminergic neurons in the human substantia nigra and appeared to be reduced at the tissue level in PD patients. Conclusion Our study supports an interaction between MC1R and αSyn that can be mediated by neuronal MC1R possibly through Nrf2. It provides evidence for MC1R as a therapeutic target and a rationale for development of MC1R-activating strategies for PD. Supplementary Information The online version contains supplementary material available at 10.1186/s13024-022-00520-4.
Collapse
Affiliation(s)
- Waijiao Cai
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA.,Department of Integrative Medicine, HuaShan Hospital, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Pranay Srivastava
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Towson, MD, USA
| | - Danielle Feng
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Yue Lin
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Charles R Vanderburg
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA.,Harvard NeuroDiscovery Advanced Tissue Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Yuehang Xu
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | | | - Matthew P Frosch
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA.,Harvard NeuroDiscovery Advanced Tissue Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, USA.,Neuropathology Service, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - David E Fisher
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Michael A Schwarzschild
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Towson, MD, USA
| | - Xiqun Chen
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA. .,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Towson, MD, USA.
| |
Collapse
|
17
|
Barba L, Paolini Paoletti F, Bellomo G, Gaetani L, Halbgebauer S, Oeckl P, Otto M, Parnetti L. Alpha and Beta Synucleins: From Pathophysiology to Clinical Application as Biomarkers. Mov Disord 2022; 37:669-683. [PMID: 35122299 PMCID: PMC9303453 DOI: 10.1002/mds.28941] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
The synuclein family includes three neuronal proteins, named α‐synuclein, β‐synuclein, and γ‐synuclein, that have peculiar structural features. α‐synuclein is largely known for being a key protein in the pathophysiology of Parkinson's disease (PD) and other synucleinopathies, namely, dementia with Lewy bodies and multisystem atrophy. The role of β‐synuclein and γ‐synuclein is less well understood in terms of physiological functions and potential contribution to human diseases. α‐synuclein has been investigated extensively in both cerebrospinal fluid (CSF) and blood as a potential biomarker for synucleinopathies. Recently, great attention has been also paid to β‐synuclein, whose CSF and blood levels seem to reflect synaptic damage and neurodegeneration independent of the presence of synucleinopathy. In this review, we aim to provide an overview on the pathophysiological roles of the synucleins. Because γ‐synuclein has been poorly investigated in the field of synucleinopathy and its pathophysiological roles are far from being clear, we focus on the interactions between α‐synuclein and β‐synuclein in PD. We also discuss the role of α‐synuclein and β‐synuclein as potential biomarkers to improve the diagnostic characterization of synucleinopathies, thus highlighting their potential application in clinical trials for disease‐modifying therapies. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Lorenzo Barba
- Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery University of Perugia Perugia Italy
- Department of Neurology University of Ulm Ulm Germany
- Department of Neurology Martin‐Luther‐University Halle‐Wittenberg Halle/Saale Germany
| | - Federico Paolini Paoletti
- Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery University of Perugia Perugia Italy
| | - Giovanni Bellomo
- Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery University of Perugia Perugia Italy
| | - Lorenzo Gaetani
- Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery University of Perugia Perugia Italy
| | | | - Patrick Oeckl
- Department of Neurology University of Ulm Ulm Germany
- German Center for Neurodegenerative Disorders Ulm (DZNE e. V.) Ulm Germany
| | - Markus Otto
- Department of Neurology University of Ulm Ulm Germany
- Department of Neurology Martin‐Luther‐University Halle‐Wittenberg Halle/Saale Germany
| | - Lucilla Parnetti
- Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery University of Perugia Perugia Italy
| |
Collapse
|
18
|
Riederer P, Monoranu C, Strobel S, Iordache T, Sian-Hülsmann J. Iron as the concert master in the pathogenic orchestra playing in sporadic Parkinson's disease. J Neural Transm (Vienna) 2021; 128:1577-1598. [PMID: 34636961 PMCID: PMC8507512 DOI: 10.1007/s00702-021-02414-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/29/2021] [Indexed: 02/07/2023]
Abstract
About 60 years ago, the discovery of a deficiency of dopamine in the nigro-striatal system led to a variety of symptomatic therapeutic strategies to supplement dopamine and to substantially improve the quality of life of patients with Parkinson's disease (PD). Since these seminal developments, neuropathological, neurochemical, molecular biological and genetic discoveries contributed to elucidate the pathology of PD. Oxidative stress, the consequences of reactive oxidative species, reduced antioxidative capacity including loss of glutathione, excitotoxicity, mitochondrial dysfunction, proteasomal dysfunction, apoptosis, lysosomal dysfunction, autophagy, suggested to be causal for ɑ-synuclein fibril formation and aggregation and contributing to neuroinflammation and neural cell death underlying this devastating disorder. However, there are no final conclusions about the triggered pathological mechanism(s) and the follow-up of pathological dysfunctions. Nevertheless, it is a fact, that iron, a major component of oxidative reactions, as well as neuromelanin, the major intraneuronal chelator of iron, undergo an age-dependent increase. And ageing is a major risk factor for PD. Iron is significantly increased in the substantia nigra pars compacta (SNpc) of PD. Reasons for this finding include disturbances in iron-related import and export mechanisms across the blood-brain barrier (BBB), localized opening of the BBB at the nigro-striatal tract including brain vessel pathology. Whether this pathology is of primary or secondary importance is not known. We assume that there is a better fit to the top-down hypotheses and pathogens entering the brain via the olfactory system, then to the bottom-up (gut-brain) hypothesis of PD pathology. Triggers for the bottom-up, the dual-hit and the top-down pathologies include chemicals, viruses and bacteria. If so, hepcidin, a regulator of iron absorption and its distribution into tissues, is suggested to play a major role in the pathogenesis of iron dyshomeostasis and risk for initiating and progressing ɑ-synuclein pathology. The role of glial components to the pathology of PD is still unknown. However, the dramatic loss of glutathione (GSH), which is mainly synthesized in glia, suggests dysfunction of this process, or GSH uptake into neurons. Loss of GSH and increase in SNpc iron concentration have been suggested to be early, may be even pre-symptomatic processes in the pathology of PD, despite the fact that they are progression factors. The role of glial ferritin isoforms has not been studied so far in detail in human post-mortem brain tissue and a close insight into their role in PD is called upon. In conclusion, "iron" is a major player in the pathology of PD. Selective chelation of excess iron at the site of the substantia nigra, where a dysfunction of the BBB is suggested, with peripherally acting iron chelators is suggested to contribute to the portfolio and therapeutic armamentarium of anti-Parkinson medications.
Collapse
Affiliation(s)
- P Riederer
- Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital Wuerzburg, University of Wuerzburg, Wuerzburg, Germany. .,Department of Psychiatry, University of Southern Denmark, Odense, Denmark.
| | - C Monoranu
- Institute of Pathology, Department of Neuropathology, University of Wuerzburg, Wuerzburg, Germany
| | - S Strobel
- Institute of Pathology, Department of Neuropathology, University of Wuerzburg, Wuerzburg, Germany
| | - T Iordache
- George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Târgu Mureș, Romania
| | - J Sian-Hülsmann
- Department of Medical Physiology, University of Nairobi, P.O. Box 30197, Nairobi, 00100, Kenya
| |
Collapse
|
19
|
Dean DN, Lee JC. Linking Parkinson's Disease and Melanoma: Interplay Between α-Synuclein and Pmel17 Amyloid Formation. Mov Disord 2021; 36:1489-1498. [PMID: 34021920 DOI: 10.1002/mds.28655] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/22/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder associated with the death of dopaminergic neurons within the substantia nigra of the brain. Melanoma is a cancer of melanocytes, pigmented cells that give rise to skin tone, hair, and eye color. Although these two diseases fundamentally differ, with PD leading to cell degeneration and melanoma leading to cell proliferation, epidemiological evidence has revealed a reciprocal relationship where patients with PD are more susceptible to melanoma and patients with melanoma are more susceptible to PD. The hallmark pathology observed in PD brains is intracellular inclusions, of which the primary component is proteinaceous α-synuclein (α-syn) amyloid fibrils. α-Syn also has been detected in cultured melanoma cells and tissues derived from patients with melanoma, where an inverse correlation exists between α-syn expression and pigmentation. Although this has led to the prevailing hypothesis that α-syn inhibits enzymes involved in melanin biosynthesis, we recently reported an alternative hypothesis in which α-syn interacts with and modulates the aggregation of Pmel17, a functional amyloid that serves as a scaffold for melanin biosynthesis. In this perspective, we review the literature describing the epidemiological and molecular connections between PD and melanoma, presenting both the prevailing hypothesis and our amyloid-centric hypothesis. We offer our views of the essential questions that remain unanswered to motivate future investigations. Understanding the behavior of α-syn in melanoma could not only provide novel approaches for treating melanoma but also could reveal insights into the role of α-syn in PD. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Dexter N Dean
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jennifer C Lee
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
20
|
Keo A, Dzyubachyk O, van der Grond J, Hafkemeijer A, van de Berg WDJ, van Hilten JJ, Reinders MJT, Mahfouz A. Cingulate networks associated with gray matter loss in Parkinson's disease show high expression of cholinergic genes in the healthy brain. Eur J Neurosci 2021; 53:3727-3739. [PMID: 33792979 PMCID: PMC8251922 DOI: 10.1111/ejn.15216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/16/2021] [Accepted: 03/21/2021] [Indexed: 12/25/2022]
Abstract
Structural covariance networks are able to identify functionally organized brain regions by gray matter volume covariance across a population. We examined the transcriptomic signature of such anatomical networks in the healthy brain using postmortem microarray data from the Allen Human Brain Atlas. A previous study revealed that a posterior cingulate network and anterior cingulate network showed decreased gray matter in brains of Parkinson's disease patients. Therefore, we examined these two anatomical networks to understand the underlying molecular processes that may be involved in Parkinson's disease. Whole brain transcriptomics from the healthy brain revealed upregulation of genes associated with serotonin, GPCR, GABA, glutamate, and RAS-signaling pathways. Our results also suggest involvement of the cholinergic circuit, in which genes NPPA, SOSTDC1, and TYRP1 may play a functional role. Finally, both networks were enriched for genes associated with neuropsychiatric disorders that overlap with Parkinson's disease symptoms. The identified genes and pathways contribute to healthy functions of the posterior and anterior cingulate networks and disruptions to these functions may in turn contribute to the pathological and clinical events observed in Parkinson's disease.
Collapse
Affiliation(s)
- Arlin Keo
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, The Netherlands.,Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Oleh Dzyubachyk
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen van der Grond
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anne Hafkemeijer
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Methodology and Statistics, Institute of Psychology, Leiden University, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Jacobus J van Hilten
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marcel J T Reinders
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, The Netherlands.,Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Ahmed Mahfouz
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, The Netherlands.,Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
21
|
Shekoohi S, Rajasekaran S, Patel D, Yang S, Liu W, Huang S, Yu X, Witt SN. Knocking out alpha-synuclein in melanoma cells dysregulates cellular iron metabolism and suppresses tumor growth. Sci Rep 2021; 11:5267. [PMID: 33664298 PMCID: PMC7933179 DOI: 10.1038/s41598-021-84443-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
The protein alpha-synuclein (α-syn) is unusual because, depending on its conformation and the type of cell in which it is expressed, it is pro-death or pro-survival, triggering neurodegeneration in Parkinson's disease and enhancing cell survival of some melanomas. To probe the function of α-syn in melanoma, we used CRISPR/Cas9 to knockout SNCA, the gene that codes for α-syn, in SK-Mel-28 melanoma cells. The SNCA-knockout clones in culture exhibited a decrease in the transferrin receptor 1 (TfR1), an increase in ferritin, an increase of reactive oxygen species and proliferated slower than control cells. These SNCA-knockout clones grafted into SCID mice grew significantly slower than the SK-Mel-28 control cells that expressed α-syn. In the excised SNCA-knockout xenografts, TfR1 decreased 3.3-fold, ferritin increased 6.2-fold, the divalent metal ion transporter 1 (DMT1) increased threefold, and the iron exporter ferroportin (FPN1) decreased twofold relative to control xenografts. The excised SNCA-KO tumors exhibited significantly more ferric iron and TUNEL staining relative to the control melanoma xenografts. Collectively, depletion of α-syn in SK-Mel-28 cells dysregulates cellular iron metabolism, especially in xenografts, yielding melanoma cells that are deficient in TfR1 and FPN1, that accumulate ferric iron and ferritin, and that undergo apoptosis relative to control cells expressing α-syn.
Collapse
Affiliation(s)
- Sahar Shekoohi
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Santhanasabapathy Rajasekaran
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Dhaval Patel
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Shu Yang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Wang Liu
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Xiuping Yu
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Stephan N Witt
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA.
| |
Collapse
|
22
|
Transcriptome reveals genes involving in black skin color formation of ducks. Genes Genomics 2021; 43:173-182. [PMID: 33528733 DOI: 10.1007/s13258-020-01026-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 12/10/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Skin color is colorful for birds, which has been reported to be associated with multi-biological functions, such as crypsis, camouflage, social signaling and mate choice, but little is known about its underlying molecular mechanism. OBJECTIVE Studies on the major genes affecting the black skin color of ducks. METHODS For this purpose, Silver ammonia staining and RNA-seq analysis were carried out to identify the differences in tissue morphology and gene expressions between black and yellow skin ducks. RESULTS The silver ammonia dyes slice results showed that in the development of black duck, the content of melanin in black skin gradually increased and then decreased, and the content of melanin in yellow and black skin was significantly different. Through transcriptome, a total of 102 and 84 differentially expressed genes (DEGs) were identified in beak skin and web skin, respectively. These DEGs were enriched in melanin biosynthesis and play a critical role in melanogenesis pathway. Co-expression analysis showed that EDNRB2 was the only gene associated with black skin color in DEGs, which was also consistent with qRT-PCR. CONCLUSIONS The melanin synthesis pathway dominated by EDNRB2 up-regulated the amount of melanin synthesis, leading to the formation of black skin in ducks.
Collapse
|
23
|
Watson MD, Flynn JD, Lee JC. Raman spectral imaging of 13C 2H 15N-labeled α-synuclein amyloid fibrils in cells. Biophys Chem 2021; 269:106528. [PMID: 33418468 PMCID: PMC7856057 DOI: 10.1016/j.bpc.2020.106528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022]
Abstract
Parkinson's disease is characterized by the intracellular accumulation of α-synuclein (α-syn) amyloid fibrils, which are insoluble, β-sheet-rich protein aggregates. Raman spectroscopy is a powerful technique that reports on intrinsic molecular vibrations such as the coupled vibrational modes of the polypeptide backbone, yielding secondary structural information. However, in order to apply this method in cells, spectroscopically unique frequencies are necessary to resolve proteins of interest from the cellular proteome. Here, we report the use of 13C2H15N-labeled α-syn to study the localization of preformed fibrils fed to cells. Isotopic labeling shifts the amide-I (13CO) band away from endogenous 12CO vibrations, permitting secondary structural analysis of internalized α-syn fibrils. Similarly, 13C2H stretches move to lower energies in the "cellular quiet" region, where there is negligible biological spectral interference. This combination of well-resolved, distinct vibrations allows Raman spectral imaging of α-syn fibrils across a cell, which provides conformational information with spatial context.
Collapse
Affiliation(s)
- Matthew D Watson
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Jessica D Flynn
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Jennifer C Lee
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States of America.
| |
Collapse
|
24
|
Simões RM, Castro Caldas A, Grilo J, Correia D, Guerreiro C, Pita Lobo P, Valadas A, Fabbri M, Correia Guedes L, Coelho M, Rosa MM, Ferreira JJ, Reimão S. A distinct neuromelanin magnetic resonance imaging pattern in parkinsonian multiple system atrophy. BMC Neurol 2020; 20:432. [PMID: 33243166 PMCID: PMC7694430 DOI: 10.1186/s12883-020-02007-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 11/19/2020] [Indexed: 12/21/2022] Open
Abstract
Background Parkinsonian variant of multiple system atrophy is a neurodegenerative disorder frequently misdiagnosed as Parkinson’s disease. No early imaging biomarkers currently differentiate these disorders. Methods Simple visual imaging analysis of the substantia nigra and locus coeruleus in neuromelanin-sensitive magnetic resonance imaging and nigrosome 1 in susceptibility-weighted sequences was performed in thirty patients with parkinsonian variant of multiple system atrophy fulfilling possible/probable second consensus diagnostic criteria. The neuromelanin visual pattern was compared to patients with Parkinson’s disease with the same disease duration (n = 10) and healthy controls (n = 10). Substantia nigra semi-automated neuromelanin area/signal intensity was compared to the visual data. Results Groups were similar in age, sex, disease duration, and levodopa equivalent dose. Hoehn & Yahr stage was higher in parkinsonian multiple system atrophy patients, 69% of whom had normal neuromelanin size/signal, significantly different from Parkinson’s disease patients, and similar to controls. Nigrosome 1 signal was lost in 74% of parkinsonian multiple system atrophy patients. Semi-automated neuromelanin substantia nigra signal, but not area, measurements were able to differentiate groups. Conclusions In patients with parkinsonism, simple visual magnetic resonance imaging analysis showing normal neuromelanin substantia nigra and locus coeruleus, combined with nigrosome 1 loss, allowed the distinction of the parkinsonian variant of multiple system atrophy from Parkinson’s disease and healthy controls. This easy and widely available method was superior to semi-automated measurements in identifying specific imaging changes in substantia nigra and locus coeruleus. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-020-02007-5.
Collapse
Affiliation(s)
- Rita Moiron Simões
- Neurology Department, Hospital Beatriz Ângelo, Loures, Portugal.,CNS-Campus Neurológico Sénior, Torres Vedras, Portugal
| | - Ana Castro Caldas
- CNS-Campus Neurológico Sénior, Torres Vedras, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | - Joana Grilo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal.,Laboratório de Farmacologia Clínica e Terapêutica, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Institute for Systems and Robotics (LARSyS), Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Daisy Correia
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal.,Laboratório de Farmacologia Clínica e Terapêutica, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Carla Guerreiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal.,Department of Neurological Imaging, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal.,Imaging University Clinic, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Patrícia Pita Lobo
- CNS-Campus Neurológico Sénior, Torres Vedras, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal.,Department of Neurosciences and Mental Health, Serviço de Neurologia, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Anabela Valadas
- CNS-Campus Neurológico Sénior, Torres Vedras, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal.,Department of Neurosciences and Mental Health, Serviço de Neurologia, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Marguerita Fabbri
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal.,Department of Neurosciences, clinical investigation center CIC 1436, Parkinson Toulouse expert center, NS-Park/FCRIN network and NeuroToul COEN center, Toulouse University Hospital, INSERM, University of Toulouse 3, Toulouse, France
| | - Leonor Correia Guedes
- CNS-Campus Neurológico Sénior, Torres Vedras, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal.,Department of Neurosciences and Mental Health, Serviço de Neurologia, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Miguel Coelho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal.,Department of Neurosciences and Mental Health, Serviço de Neurologia, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Mario Miguel Rosa
- Laboratório de Farmacologia Clínica e Terapêutica, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Department of Neurosciences and Mental Health, Serviço de Neurologia, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Joaquim J Ferreira
- CNS-Campus Neurológico Sénior, Torres Vedras, Portugal. .,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal. .,Laboratório de Farmacologia Clínica e Terapêutica, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| | - Sofia Reimão
- Laboratório de Farmacologia Clínica e Terapêutica, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Department of Neurological Imaging, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal.,Imaging University Clinic, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
25
|
Shahid W, Satyjeet F, Kumari R, Raj K, Kumar V, Afroz MN, Memon MK. Dermatological Manifestations of Parkinson's Disease: Clues for Diagnosis. Cureus 2020; 12:e10836. [PMID: 33173642 PMCID: PMC7647835 DOI: 10.7759/cureus.10836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background and objective Parkinson’s disease (PD) is a common neurodegenerative disorder. There are various manifestations of PD. Among them, motor dysfunction has been studied in many research studies; however, few studies are available related to the dermatological manifestations of PD. This study was conducted with the aim to shed light on various skin conditions that occur in PD. Methods This cross-sectional study was conducted at a tertiary care hospital in Pakistan for a period of nine months; 107 patients with PD were included after obtaining informed consent. A self-administrated questionnaire was used to record demographic data and dermatological findings. Results Among the various dermatological manifestations, patients with PD most commonly presented with seborrheic dermatitis (46.7%) and rosacea (10.2%). Other manifestations included bullous pemphigoid (7.4%) and melanoma (4.6%). Conclusion The study revealed several dermatological manifestations of PD, which usually get overlooked by neurologists. Through this study, we want to emphasize that PD, apart from all the motor signs and symptoms, can also present as skin problems, and hence, a multi-disciplinary approach should be taken while managing PD.
Collapse
Affiliation(s)
- Wajeeha Shahid
- Internal Medicine, Jinnah Sindh Medical University, Karachi, PAK
| | - Fnu Satyjeet
- Internal Medicine, Chandka Medical College, Larkana, PAK
| | - Raj Kumari
- Internal Medicine, People's University of Medical and Health Sciences for Women, Karachi, PAK
| | - Kuldeep Raj
- Internal Medicine, Jinnah Sindh Medical University, Karachi, PAK
| | - Vikash Kumar
- Internal Medicine, Jinnah Sindh Medical University, Karachi, PAK
| | - Maham Noor Afroz
- Internal Medicine, Jinnah Sindh Medical University, Karachi, PAK
| | - Muhammad Khizar Memon
- Internal Medicine, Liaquat University of Medical and Health Sciences, Hyderabad, PAK
| |
Collapse
|
26
|
Abstract
An epidemiological connection exists between Parkinson's disease (PD) and melanoma. α-Synuclein (α-syn), the hallmark pathological amyloid observed in PD, is also elevated in melanoma, where its expression is inversely correlated with melanin content. We present a hypothesis that there is an amyloid link between α-syn and Pmel17 (premelanosomal protein), a functional amyloid that promotes melanogenesis. Using SK-MEL 28 human melanoma cells, we show that endogenous α-syn is present in melanosomes, the organelle where melanin polymerization occurs. Using in vitro cross-seeding experiments, we show that α-syn fibrils stimulate the aggregation of a Pmel17 fragment constituting the repeat domain (RPT), an amyloidogenic domain essential for fibril formation in melanosomes. The cross-seeded fibrils exhibited α-syn-like ultrastructural features that could be faithfully propagated over multiple generations. This cross-seeding was unidirectional, as RPT fibrils did not influence α-syn aggregation. These results support our hypothesis that α-syn, a pathogenic amyloid, modulates Pmel17 aggregation in the melanosome, defining a molecular link between PD and melanoma.
Collapse
|
27
|
Abstract
α-Synuclein is a neuronal protein with an ill-defined biological function that is central to Parkinson’s disease etiology. While considered to be involved in exocytosis, how α-synuclein facilitates synaptic vesicle fusion and release remains an open question. To address this, we investigated α-synuclein–lipid interactions at the plasma membrane through the technique of cellular unroofing, which uncovers an intact basal membrane. We conclusively show that α-synuclein is recruited to exocytic sites, preferring liquid-ordered lipid domains. Importantly, heterogeneous populations of α-synuclein conformers are revealed by measurements of fluorescence lifetime distributions, which are not adequately described by current models of α-synuclein structures. Membrane-bound α-synuclein is conformationally dynamic, exquisitely sensitive to lipid/protein composition, enabling the protein to carry out its function. Parkinson’s disease is associated with α-synuclein (α-syn), a cytosolic protein enriched in presynaptic terminals. The biological function of α-syn remains elusive; however, increasing evidence suggests that the protein is involved in the regulation of synaptic vesicle fusion, signifying the importance of α-syn–lipid interactions. We show that α-syn preferentially binds to GM1-rich, liquid-ordered lipid domains on cytoplasmic membranes by using unroofed cells, which encapsulates lipid complexity and cellular topology. Moreover, proteins (Rab3a, syntaxin-1A, and VAMP2) involved in exocytosis also localize with α-syn, supporting its proposed functional role in exocytosis. To investigate how these lipid/protein interactions influence α-syn at the residue level, α-syn was derivatized with an environmentally sensitive fluorophore (7-nitrobenz-2-oxa-1,3-diazol-4-yl [NBD]) at different N- and C-terminal sites. Measurements of NBD fluorescence lifetime distributions reveal that α-syn adopts a multitude of membrane-bound conformations, which were not recapitulated in simple micelle or vesicle models, indicating an exquisite sensitivity of the protein to the complex lipid environment. Interestingly, these data also suggest the participation of the C terminus in membrane localization, which is generally overlooked and thus emphasize the need to use cellularly derived and biologically relevant membranes for biophysical characterization. Collectively, our results demonstrate that α-syn is more conformationally dynamic at the membrane interface than previously appreciated, which may be important for both its physiological and pathological functions.
Collapse
|
28
|
Rodríguez-Losada N, de la Rosa J, Larriva M, Wendelbo R, Aguirre JA, Castresana JS, Ballaz SJ. Overexpression of alpha-synuclein promotes both cell proliferation and cell toxicity in human SH-SY5Y neuroblastoma cells. J Adv Res 2020; 23:37-45. [PMID: 32071790 PMCID: PMC7016025 DOI: 10.1016/j.jare.2020.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 01/05/2023] Open
Abstract
Alpha-Synuclein (aSyn) is a chameleon-like protein. Its overexpression and intracellular deposition defines neurodegenerative α-synucleinopathies including Parkinson's disease. Whether aSyn up-regulation is the cause or the protective reaction to α-synucleinopathies remains unresolved. Remarkably, the accumulation of aSyn is involved in cancer. Here, the neuroblastoma SH-SY5Y cell line was genetically engineered to overexpress aSyn at low and at high levels. aSyn cytotoxicity was assessed by the MTT and vital-dye exclusion methods, observed at the beginning of the sub-culture of low-aSyn overexpressing neurons when cells can barely proliferate exponentially. Conversely, high-aSyn overexpressing cultures grew at high rates while showing enhanced colony formation compared to low-aSyn neurons. Cytotoxicity of aSyn overexpression was indirectly revealed by the addition of pro-oxidant rotenone. Pretreatment with partially reduced graphene oxide, an apoptotic agent, increased toxicity of rotenone in low-aSyn neurons, but, it did not in high-aSyn neurons. Consistent with their enhanced proliferation, high-aSyn neurons showed elevated levels of SMP30, a senescence-marker protein, and the mitosis Ki-67 marker. High-aSyn overexpression conferred to the carcinogenic neurons heightened tumorigenicity and resistance to senescence compared to low-aSyn cells, thus pointing to an inadequate level of aSyn stimulation, rather than the aSyn overload itself, as one of the factors contributing to α-synucleinopathy.
Collapse
Affiliation(s)
- Noela Rodríguez-Losada
- Dept. of Human Physiology & Physical Sports Education, Medical School, University of Málaga, Málaga, Spain
| | - Javier de la Rosa
- Dept. of Biochemistry & Genetics, University of Navarra School of Sciences, Pamplona, Spain
| | - María Larriva
- Dept. of Pharmacology & Toxicology, University of Navarra School of Pharmacy and Nutrition, Pamplona, Spain
| | | | - José A. Aguirre
- Dept. of Human Physiology & Physical Sports Education, Medical School, University of Málaga, Málaga, Spain
| | - Javier S. Castresana
- Dept. of Biochemistry & Genetics, University of Navarra School of Sciences, Pamplona, Spain
| | - Santiago J. Ballaz
- School of Biological Sciences & Engineering, Yachay Tech University, Urcuquí, Ecuador
| |
Collapse
|
29
|
Ye Q, Wen Y, Al-Kuwari N, Chen X. Association Between Parkinson's Disease and Melanoma: Putting the Pieces Together. Front Aging Neurosci 2020; 12:60. [PMID: 32210791 PMCID: PMC7076116 DOI: 10.3389/fnagi.2020.00060] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/20/2020] [Indexed: 12/15/2022] Open
Abstract
Patients with Parkinson’s disease (PD) generally have reduced risk of developing many types of cancers, except melanoma—a malignant tumor of melanin-producing cells in the skin. For decades, a large number of epidemiological studies have reported that the occurrence of melanoma is higher than expected among subjects with PD, and the occurrence of PD is reciprocally higher than expected among patients with melanoma. More recent epidemiological studies further indicated a bidirectional association, not only in the patients themselves but also in their relatives. This association between PD and melanoma offers a unique opportunity to understand PD. Here, we summarize epidemiological, clinical, and biological evidence in regard to shared risk factors and possible underlying mechanisms for these two seemingly distinct conditions.
Collapse
Affiliation(s)
- Qing Ye
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Ya Wen
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Ietheory Institute, Burlington, MA, United States
| | - Nasser Al-Kuwari
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Xiqun Chen
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
30
|
Kumar JP, Mandal BB. The inhibitory effect of silk sericin against ultraviolet-induced melanogenesis and its potential use in cosmeceutics as an anti-hyperpigmentation compound. Photochem Photobiol Sci 2019; 18:2497-2508. [PMID: 31432056 DOI: 10.1039/c9pp00059c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ultraviolet radiation (UVR)-induced redox imbalance in melanocytes triggers the activation of tyrosinase that results in melanogenesis and its related skin disorders. Supplementation of biological reductants or anti-tyrosinase compounds inhibits such melanogenesis. Silk sericin (SS), a globular protein, is known to possess antioxidant and anti-tyrosinase activities along with other biological attributes. However, its inhibitory activity against UVR-induced melanogenesis has yet to be explored. In the current study, we have scientifically explored the inhibitory activity of SS against UVR-induced melanogenesis. Anti-tyrosinase activity of SS was assessed using mushroom tyrosinase, showing that Antheraea assamensis sericin (AAS) and Philosamia ricini sericin (PRS) inhibited 50% of its activity. Inhibitory activity of SS against UVR-induced melanogenesis was assessed by measuring the cellular melanin content, intracellular tyrosinase activity, and reactive oxygen species (ROS) levels in mouse melanoma. SS pretreatment significantly reduced cellular melanin and ROS production in UV irradiated melanocytes compared with SS untreated cells. AAS treatment before UVA or UVB irradiation significantly inhibited tyrosinase activity. Rheological studies showed that the skin care formulation prepared by the addition of AAS to the basic formulation minimally affected its flow properties. Altogether, our results validate that AAS efficiently inhibited UVR-induced melanogenesis and it could be used as a potential antioxidant molecule in skin care cosmeceutics.
Collapse
Affiliation(s)
- Jadi Praveen Kumar
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | | |
Collapse
|
31
|
Zavala G, Sandoval C, Meza D, Contreras R, Gubelin W, Khoury M. Differentiation of adipose-derived stem cells to functional CD105 neg CD73 low melanocyte precursors guided by defined culture condition. Stem Cell Res Ther 2019; 10:249. [PMID: 31399041 PMCID: PMC6688240 DOI: 10.1186/s13287-019-1364-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/18/2022] Open
Abstract
Background The generation of functional human epidermal melanocytes (HEM) from stem cells provides an unprecedented source for cell-based therapy in vitiligo. Despite the important efforts exerted to obtain melanin-producing cells from stem cells, pre-clinical results still lack the safety and scalability characteristics essential for their translational application. Methods Here, we report a rapid and efficient protocol based on defined culture conditions capable of differentiating adult adipose-derived stem cells (ADSC) to scalable amounts of proliferative melanocyte precursors (PreMel) within 30 days. PreMel were characterized in vitro through qPCR, Western blot, flow cytometry, biochemical assays, and in vivo assays in immunocompromised mice (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ, or NSG). Results After 30 days of differentiation, the stem cell-derived PreMel were defined as CD105neg CD73low according to immunophenotypic changes in comparison with parental stem cell markers. In addition, expression of microphthalmia-associated transcription factor (MITF), active tyrosinase (TYR), and the terminal differentiation-involved premelanosome protein (PMEL) were detected. Furthermore, PreMel had the potential to synthesize melanin and package it into melanosomes both in vitro and in vivo in NSG mice skin. Conclusions This study proposes a rapid and scalable protocol for the generation of proliferative melanocyte precursors (PreMel) from ADSC. These PreMel display the essential functional characteristics of bona fide HEM, opening a new path for an autologous cellular therapy for vitiligo patients. Electronic supplementary material The online version of this article (10.1186/s13287-019-1364-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gabriela Zavala
- Consorcio Regenero, La Plaza 2501, Las Condes, Santiago, Chile.,Biomedical Research Center (CIB), Faculty of Medicine, Universidad de los Andes, Monseñor Álvaro del Portillo 12455, Las Condes, Santiago, Chile
| | - Carolina Sandoval
- Biomedical Research Center (CIB), Faculty of Medicine, Universidad de los Andes, Monseñor Álvaro del Portillo 12455, Las Condes, Santiago, Chile
| | - Daniel Meza
- Consorcio Regenero, La Plaza 2501, Las Condes, Santiago, Chile.,Biomedical Research Center (CIB), Faculty of Medicine, Universidad de los Andes, Monseñor Álvaro del Portillo 12455, Las Condes, Santiago, Chile
| | - Rafael Contreras
- Cells for Cells, La Plaza 2501, Las Condes, Santiago, Chile.,Biomedical Research Center (CIB), Faculty of Medicine, Universidad de los Andes, Monseñor Álvaro del Portillo 12455, Las Condes, Santiago, Chile
| | - Walter Gubelin
- Faculty of Medicine, Universidad de los Andes, Monseñor Álvaro del Portillo 12455, Las Condes, Santiago, Chile
| | - Maroun Khoury
- Consorcio Regenero, La Plaza 2501, Las Condes, Santiago, Chile. .,Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Monseñor Álvaro del Portillo 12455, Las Condes, Santiago, Chile. .,Cells for Cells, La Plaza 2501, Las Condes, Santiago, Chile. .,Biomedical Research Center (CIB), Faculty of Medicine, Universidad de los Andes, Monseñor Álvaro del Portillo 12455, Las Condes, Santiago, Chile.
| |
Collapse
|
32
|
Riederer P, Berg D, Casadei N, Cheng F, Classen J, Dresel C, Jost W, Krüger R, Müller T, Reichmann H, Rieß O, Storch A, Strobel S, van Eimeren T, Völker HU, Winkler J, Winklhofer KF, Wüllner U, Zunke F, Monoranu CM. α-Synuclein in Parkinson's disease: causal or bystander? J Neural Transm (Vienna) 2019; 126:815-840. [PMID: 31240402 DOI: 10.1007/s00702-019-02025-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) comprises a spectrum of disorders with differing subtypes, the vast majority of which share Lewy bodies (LB) as a characteristic pathological hallmark. The process(es) underlying LB generation and its causal trigger molecules are not yet fully understood. α-Synuclein (α-syn) is a major component of LB and SNCA gene missense mutations or duplications/triplications are causal for rare hereditary forms of PD. As typical sporadic PD is associated with LB pathology, a factor of major importance is the study of the α-syn protein and its pathology. α-Syn pathology is, however, also evident in multiple system atrophy (MSA) and Lewy body disease (LBD), making it non-specific for PD. In addition, there is an overlap of these α-synucleinopathies with other protein-misfolding diseases. It has been proven that α-syn, phosphorylated tau protein (pτ), amyloid beta (Aβ) and other proteins show synergistic effects in the underlying pathogenic mechanisms. Multiple cell death mechanisms can induce pathological protein-cascades, but this can also be a reverse process. This holds true for the early phases of the disease process and especially for the progression of PD. In conclusion, while rare SNCA gene mutations are causal for a minority of familial PD patients, in sporadic PD (where common SNCA polymorphisms are the most consistent genetic risk factor across populations worldwide, accounting for 95% of PD patients) α-syn pathology is an important feature. Conversely, with regard to the etiopathogenesis of α-synucleinopathies PD, MSA and LBD, α-syn is rather a bystander contributing to multiple neurodegenerative processes, which overlap in their composition and individual strength. Therapeutic developments aiming to impact on α-syn pathology should take this fact into consideration.
Collapse
Affiliation(s)
- Peter Riederer
- Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany. .,Department of Psychiatry, University of South Denmark, Odense, Denmark.
| | - Daniela Berg
- Department of Neurology, UKHS, Christian-Albrechts-Universität, Campus Kiel, Kiel, Germany
| | - Nicolas Casadei
- NGS Competence Center Tübingen, Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Fubo Cheng
- NGS Competence Center Tübingen, Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Joseph Classen
- Department of Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Christian Dresel
- Department of Neurology, Center for Movement Disorders, Neuroimaging Center Mainz, Clinical Neurophysiology, Forschungszentrum Translationale Neurowissenschaften (FTN), Rhein-Main-Neuronetz, Mainz, Germany
| | | | - Rejko Krüger
- Clinical and Experimental Neuroscience, LCSB (Luxembourg Centre for Systems, Biomedicine), University of Luxembourg, Esch-sur-Alzette and Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg.,National Center for Excellence in Research, Parkinson's disease (NCER-PD), Parkinson Research Clinic, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Thomas Müller
- Department of Neurology, Alexianer St. Joseph Berlin-Weißensee, Berlin, Germany
| | - Heinz Reichmann
- Department of Neurology, University of Dresden, Dresden, Germany
| | - Olaf Rieß
- Institute of Medical Genetics and Applied Genomics, Tübingen, Germany
| | - Alexander Storch
- Department of Neurology, University of Rostock, Rostock, Germany.,German Centre for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany
| | - Sabrina Strobel
- Department of Neuropathology, Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Thilo van Eimeren
- Department of Neurology, University Hospital of Cologne, Cologne, Germany
| | | | - Jürgen Winkler
- Department Kopfkliniken, Molekulare Neurologie, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Konstanze F Winklhofer
- Institute of Biochemistry and Pathobiochemistry, Ruhr-Universität Bochum, Bochum, Germany
| | - Ullrich Wüllner
- Department of Neurology, University of Bonn, German Center for Neurodegenerative Diseases (DZNE Bonn), Bonn, Germany
| | - Friederike Zunke
- Department of Biochemistry, Medical Faculty, University of Kiel, Kiel, Germany
| | - Camelia-Maria Monoranu
- Department of Neuropathology, Institute of Pathology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
33
|
Preclinical signs of Parkinson's disease: A possible association of Parkinson's disease with skin and hair features. Med Hypotheses 2019; 127:100-104. [DOI: 10.1016/j.mehy.2019.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/09/2019] [Accepted: 04/15/2019] [Indexed: 11/24/2022]
|
34
|
Modulation of Diacylglycerol-Induced Melanogenesis in Human Melanoma and Primary Melanocytes: Role of Stress Chaperone Mortalin. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:9848969. [PMID: 31097976 PMCID: PMC6487102 DOI: 10.1155/2019/9848969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/21/2018] [Accepted: 02/17/2019] [Indexed: 12/03/2022]
Abstract
Skin color/pigmentation is regulated through melanogenesis process in specialized melanin-producing cells, melanocytes, involving multiple signaling pathways. It is highly influenced by intrinsic and extrinsic factors such as oxidative, ultraviolet radiations and other environmental stress conditions. Besides determining the color, it governs response and tolerance of skin to a variety of environmental stresses and pathological conditions including photodamage, hyperpigmentation, and skin cancer. Depigmenting reagents have been deemed useful not only for cosmetics but also for pigmentation-related pathologies. In the present study, we attempted modulation of 1-oleoyl-2-acetyl-glycerol- (OAG-) induced melanogenesis in human melanoma and primary melanocytes. In both cell types, OAG-induced melanogenesis was associated with increase in enhanced expression of melanin, tyrosinase, as well as stress chaperones (mortalin and HSP60) and Reactive Oxygen Species (ROS). Treatment with TXC (trans-4-(Aminomethyl) cyclohexanecarboxylic acid hexadecyl ester hydrochloride) and 5/40 natural compounds resulted in their reduction. The data proposed an important role of mortalin and oxidative stress in skin pigmentation and the use of TXC and natural extracts for modulation of pigmentation pathways in normal and pathological conditions.
Collapse
|
35
|
Lajis AFB, Ariff AB. Discovery of new depigmenting compounds and their efficacy to treat hyperpigmentation: Evidence from in vitro study. J Cosmet Dermatol 2019; 18:703-727. [PMID: 30866156 DOI: 10.1111/jocd.12900] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 01/22/2019] [Indexed: 12/19/2022]
Abstract
Human skin pigmentation is a result of constitutive and facultative pigmentation. Facultative pigmentation is frequently stimulated by UV radiation, pharmacologic drugs, and hormones whereby leads to the development of abnormal skin hyperpigmentation. To date, many state-of-art depigmenting compounds have been studied using in vitro model to treat hyperpigmentation problems for cosmetic dermatological applications; little attention has been made to compare the effectiveness of these depigmenting compounds and their mode of actions. In this present article, new and recent depigmenting compounds, their melanogenic pathway targets, and modes of action are reviewed. This article compares the effectiveness of these new depigmenting compounds to modulate several melanogenesis-regulatory enzymes and proteins such as tyrosinase (TYR), TYR-related protein-1 (TRP1), TYR-related protein-2 (TRP2), microphthalmia-associated transcription factor (MITF), extracellular signal-regulated kinase (ERK) and N-terminal kinases (JNK) and mitogen-activated protein kinase p38 (p38 MAPK). Other evidences from in vitro assays such as inhibition on melanosomal transfer, proteasomes, nitric oxide, and inflammation-induced melanogenesis are also highlighted. This article also reviews analytical techniques in different assays performed using in vitro model as well as their advantages and limitations. This article also provides an insight on recent finding and re-examination of some protocols as well as their effectiveness and reliability in the evaluation of depigmenting compounds. Evidence and support from related patents are also incorporated in this present article to give an overview on current patented technology, latest trends, and intellectual values of some depigmenting compounds and protocols, which are rarely highlighted in the literatures.
Collapse
Affiliation(s)
- Ahmad Firdaus B Lajis
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Bioprocessing and Biomanufacturing Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Arbakariya B Ariff
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Bioprocessing and Biomanufacturing Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
36
|
Brain tyrosinase overexpression implicates age-dependent neuromelanin production in Parkinson's disease pathogenesis. Nat Commun 2019; 10:973. [PMID: 30846695 PMCID: PMC6405777 DOI: 10.1038/s41467-019-08858-y] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/28/2019] [Indexed: 12/29/2022] Open
Abstract
In Parkinson's disease (PD) there is a selective degeneration of neuromelanin-containing neurons, especially substantia nigra dopaminergic neurons. In humans, neuromelanin accumulates with age, the latter being the main risk factor for PD. The contribution of neuromelanin to PD pathogenesis remains unknown because, unlike humans, common laboratory animals lack neuromelanin. Synthesis of peripheral melanins is mediated by tyrosinase, an enzyme also present at low levels in the brain. Here we report that overexpression of human tyrosinase in rat substantia nigra results in age-dependent production of human-like neuromelanin within nigral dopaminergic neurons, up to levels reached in elderly humans. In these animals, intracellular neuromelanin accumulation above a specific threshold is associated to an age-dependent PD phenotype, including hypokinesia, Lewy body-like formation and nigrostriatal neurodegeneration. Enhancing lysosomal proteostasis reduces intracellular neuromelanin and prevents neurodegeneration in tyrosinase-overexpressing animals. Our results suggest that intracellular neuromelanin levels may set the threshold for the initiation of PD.
Collapse
|
37
|
Carballo-Carbajal I, Laguna A, Romero-Giménez J, Cuadros T, Bové J, Martinez-Vicente M, Parent A, Gonzalez-Sepulveda M, Peñuelas N, Torra A, Rodríguez-Galván B, Ballabio A, Hasegawa T, Bortolozzi A, Gelpi E, Vila M. Brain tyrosinase overexpression implicates age-dependent neuromelanin production in Parkinson's disease pathogenesis. Nat Commun 2019. [PMID: 30846695 DOI: 10.1038/s41467-019-08858-y.pmid:30846695;pmcid:pmc6405777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
In Parkinson's disease (PD) there is a selective degeneration of neuromelanin-containing neurons, especially substantia nigra dopaminergic neurons. In humans, neuromelanin accumulates with age, the latter being the main risk factor for PD. The contribution of neuromelanin to PD pathogenesis remains unknown because, unlike humans, common laboratory animals lack neuromelanin. Synthesis of peripheral melanins is mediated by tyrosinase, an enzyme also present at low levels in the brain. Here we report that overexpression of human tyrosinase in rat substantia nigra results in age-dependent production of human-like neuromelanin within nigral dopaminergic neurons, up to levels reached in elderly humans. In these animals, intracellular neuromelanin accumulation above a specific threshold is associated to an age-dependent PD phenotype, including hypokinesia, Lewy body-like formation and nigrostriatal neurodegeneration. Enhancing lysosomal proteostasis reduces intracellular neuromelanin and prevents neurodegeneration in tyrosinase-overexpressing animals. Our results suggest that intracellular neuromelanin levels may set the threshold for the initiation of PD.
Collapse
Affiliation(s)
- Iria Carballo-Carbajal
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Ariadna Laguna
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Jordi Romero-Giménez
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Thais Cuadros
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Jordi Bové
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Marta Martinez-Vicente
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Annabelle Parent
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Marta Gonzalez-Sepulveda
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Núria Peñuelas
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Albert Torra
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Beatriz Rodríguez-Galván
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Naples, Italy
| | - Takafumi Hasegawa
- Department of Neurology, Tohoku University School of Medicine, Miyagi, 980-8574, Japan
| | - Analía Bortolozzi
- Department of Neurochemistry and Neuropharmacology, IIBB-CSIC, August Pi i Sunyer Biomedical Research Institute (IDIBAPS)-Center for Networked Biomedical Research on Mental Health (CIBERSAM), 08036, Barcelona, Spain
| | - Ellen Gelpi
- Neurological Tissue Bank, Biobanc Hospital Clínic-IDIBAPS, 08036, Barcelona, Spain
- Institute of Neurology, Medical University of Vienna, 1090, Vienna, Austria
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain.
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, 08193, Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain.
| |
Collapse
|
38
|
Zhang S, Wang R, Wang G. Impact of Dopamine Oxidation on Dopaminergic Neurodegeneration. ACS Chem Neurosci 2019; 10:945-953. [PMID: 30592597 DOI: 10.1021/acschemneuro.8b00454] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. The characteristic feature of PD is the progressive degeneration of the dopaminergic (DAergic) neurons in the substantia nigra (SN). DAergic neurons in the SN accumulate black and insoluble membrane structures known as neuromelanin during aging. The oxidation of dopamine (DA) to form neuromelanin generates many o-quinones, including DA o-quinones, aminochrome, and 5,6-indolequinone. The focus of this review is to discuss the role of DA oxidation in association with PD. The oxidation of DA produces oxidative products, inducing mitochondrial dysfunction, impaired protein degradation, α-synuclein aggregation into neurotoxic oligomers, and oxidative stress, in vitro. Recent studies have demonstrated that the DA content is critical for both DJ-1 knockout and A53T α-synuclein transgenic mice to develop PD pathological features, providing evidence for DA action in PD pathogenesis in vivo. The effects of L-DOPA, as the most effective anti-PD drug, are also briefly discussed.
Collapse
Affiliation(s)
- Shun Zhang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Rui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
39
|
Schmitz F, Chao MV, Wyse ATS. Methylphenidate alters Akt-mTOR signaling in rat pheochromocytoma cells. Int J Dev Neurosci 2018; 73:10-18. [PMID: 30578823 DOI: 10.1016/j.ijdevneu.2018.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/13/2018] [Accepted: 12/17/2018] [Indexed: 12/12/2022] Open
Abstract
The exponential increase in methylphenidate (MPH) prescriptions in recent years has worried researchers about its misuse among individuals who do not meet the full diagnostic criteria for attention-deficit/hyperactivity disorder (ADHD) such as young children and students in search of cognitive improvement or for recreational reasons. The action of MPH is based mainly on inhibition of dopamine transporter, but the complete cellular effects are still unknown. Based upon prior studies, we attempted to determine whether the treatment with MPH (1μM) influences protein kinase B-mammalian target of rapamycin complex 1 signaling pathways (Akt-mTOR), including translation repressor protein (4E-BP1) and mitogen activated protein kinase (S6K), in rat pheochromocytoma cells (PC12), a well characterized cellular model, in a long or short term. MPH effects on the Akt substrates [cAMP response element-binding protein (CREB), forkhead box protein O1 (FoxO1), and glycogen synthase kinase 3 beta (GSK-3β)] were also evaluated. Whereas short term MPH treatment decreased the pAkt/Akt, pmTOR/mTOR and pS6K/S6K ratios, as well as pFoxO1 immunocontent in PC12 cells, long term treatment increased pAkt/Akt, pmTOR/mTOR and pGSK-3β/GSK-3β ratio. Phosphorylation levels of 4E-BP1 were decreased at 15 and 30 min and increased at 1 and 6 h by MPH. pCREB/CREB ratio was decreased. This study shows that the Akt-mTOR pathway, as well as other important Akt substrates which have been described as important regulators of protein synthesis, as well as being implicated in cellular survival, synaptic plasticity and memory consolidation, was affected by MPH in PC12 cells, representing an important step in exploring the MPH effects.
Collapse
Affiliation(s)
- Felipe Schmitz
- Departments of Cell Biology, Physiology & Neuroscience, and Psychiatry, Skirball Institute of Biomolecular Medicine, New York University, New York, NY, USA; Laboratory of Neuroprotection and Metabolic Diseases, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Moses V Chao
- Departments of Cell Biology, Physiology & Neuroscience, and Psychiatry, Skirball Institute of Biomolecular Medicine, New York University, New York, NY, USA
| | - Angela T S Wyse
- Laboratory of Neuroprotection and Metabolic Diseases, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós‑Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
40
|
Skin Disease and Neurological Conditions of the Elderly. CURRENT GERIATRICS REPORTS 2018. [DOI: 10.1007/s13670-018-0263-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
41
|
Nigral depigmentation reflects monoamine exhaustion as initial step to Parkinson’s disease. Med Hypotheses 2018; 110:46-49. [DOI: 10.1016/j.mehy.2017.10.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 10/29/2017] [Indexed: 11/22/2022]
|
42
|
Santiago JA, Bottero V, Potashkin JA. Biological and Clinical Implications of Comorbidities in Parkinson's Disease. Front Aging Neurosci 2017; 9:394. [PMID: 29255414 PMCID: PMC5722846 DOI: 10.3389/fnagi.2017.00394] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/14/2017] [Indexed: 01/08/2023] Open
Abstract
A wide spectrum of comorbidities has been associated with Parkinson's disease (PD), a progressive neurodegenerative disease that affects more than seven million people worldwide. Emerging evidence indicates that chronic diseases including diabetes, depression, anemia and cancer may be implicated in the pathogenesis and progression of PD. Recent epidemiological studies suggest that some of these comorbidities may increase the risk of PD and precede the onset of motor symptoms. Further, drugs to treat diabetes and cancer have elicited neuroprotective effects in PD models. Nonetheless, the mechanisms underlying the occurrence of these comorbidities remain elusive. Herein, we discuss the biological and clinical implications of comorbidities in the pathogenesis, progression, and clinical management, with an emphasis on personalized medicine applications for PD.
Collapse
Affiliation(s)
- Jose A Santiago
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Virginie Bottero
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Judith A Potashkin
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
43
|
Knörle R. Neuromelanin in Parkinson's Disease: from Fenton Reaction to Calcium Signaling. Neurotox Res 2017; 33:515-522. [PMID: 28879408 DOI: 10.1007/s12640-017-9804-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/14/2017] [Accepted: 08/23/2017] [Indexed: 12/13/2022]
Abstract
Neuromelanin is supposed to play a key role in the pathogenesis of Parkinson's disease. A common theory is the formation of reactive oxygen species through the Fenton reaction catalyzed by neuromelanin-bound iron ions and subsequent death of the dopaminergic cells in the substantia nigra. From a physicochemical point of view, this pathway is rather implausible: a highly reactive radical built within a powerful radical scavenger would more promptly be inactivated before it might diffuse within the cell to reach a target to exert its deleterious potential. This review of the literature provides evidence for an interaction of neuromelanin with the calcium signaling pathway in Parkinson's disease and expands the view of the pathophysiological contribution of neuromelanin towards a cytoprotective involvement of this macromolecule in the calcium signaling system. More probably than being directly involved in the production of reactive oxygen species, neuromelanin may act as a calcium reservoir and thus protect dopaminergic cells from cell death. A loss of neuromelanin, as observed in the substantia nigra of Parkinson patients, would lead to enhanced calcium messaging through the loss of an important calcium reservoir and thus finally via the formation of reactive oxygen species to cell death within the substantia nigra.
Collapse
Affiliation(s)
- Rainer Knörle
- IBAM GbR Dr. Rainer Knörle Dr. Peter Schnierle, Ferdinand-Porsche-Str. 5, 79211, Denzlingen, Germany.
| |
Collapse
|
44
|
Autophagy enhancement is rendered ineffective in presence of α-synuclein in melanoma cells. J Cell Commun Signal 2017; 11:381-394. [PMID: 28748508 DOI: 10.1007/s12079-017-0402-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022] Open
Abstract
Increased cellular concentration of α-synuclein (α-syn) predisposes it to misfolding and aggregation that in turn impair the degradation pathways. This poses a limitation to the use of overexpression models for studies on α-syn clearance by autophagy, which is widely investigated for its therapeutic potential. This limitation can be overcome with the use of endogenous models. In this study, SK-MEL-28, a melanoma cell model with endogenous α-syn expression, was employed to study α-syn clearance through autophagy. We demonstrated the dual localization of α-syn to nucleus and cytoplasm that varied in response to changes in cellular environment. Autophagy inhibition and exposure to dopamine favored cytoplasmic localization of α-syn, while autophagy induction favored increased localization to the nucleus. The inhibitory effect of dopamine on autophagy was heightened in presence of α-syn. Additionally, because α-syn had a regulatory effect on autophagy, cells showed an increased resistance to autophagy induction in presence of α-syn. This resistance prevented effective induction of autophagy even under conditions of prolonged autophagy inhibition. These results highlight alternate physiological roles of α-syn, particularly in non-neuronal cells. Because autophagy enhancement could reverse neither the increase in α-syn levels nor the autophagy inhibition, there arises a need to evaluate the efficacy of autophagy-based therapeutic strategies.
Collapse
|
45
|
α-Synuclein aggregation modulation: an emerging approach for the treatment of Parkinson's disease. Future Med Chem 2017. [PMID: 28632413 DOI: 10.4155/fmc-2017-0016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is a multifactorial progressive neurological disorder. Pathological hallmarks of PD are characterized by the presence of α-synuclein (αSyn) aggregates known as Lewy bodies. αSyn aggregation is one of the leading causes for the neuronal dysfunction and death in PD. It is also associated with neurotransmitter and calcium release. Current therapies of PD are limited to only symptomatic relief without addressing the underlying pathogenic factors of the disease process such as aggregation of αSyn. Consequently, the progression of the disease continues with the current therapies. Therefore, the modulation of αSyn aggregation is an emerging approach as a novel therapeutic target to treat PD. There are two major aspects that might be targeted therapeutically: first, protein is prone to aggregation, therefore, anti-aggregative or compounds that can break the pre-existing aggregates should be helpful. Second, there are number of molecular events that may be targeted to combat the disease.
Collapse
|
46
|
Rodriguez-Leyva I, Chi-Ahumada E, Mejía M, Castanedo-Cazares JP, Eng W, Saikaly SK, Carrizales J, Levine TD, Norman RA, Jimenez-Capdeville ME. The Presence of Alpha-Synuclein in Skin from Melanoma and Patients with Parkinson's Disease. Mov Disord Clin Pract 2017; 4:724-732. [PMID: 30363411 DOI: 10.1002/mdc3.12494] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/14/2017] [Accepted: 03/19/2017] [Indexed: 12/31/2022] Open
Abstract
Background The misfolding and prion-like propagation of the protein α-synuclein (α-syn) is the leading molecular signature in Parkinson's disease (PD). There is a significant coincidence of PD and melanoma that may suggest a shared pathophysiology. This study compared the presence of α-syn in neural crest-derived tissues, such as nevi, melanoma, skin tags, and skin biopsies from patients with PD and healthy controls. Methods Biopsies from participants with PD were obtained from patients from a tertiary referral center for dermatology and neurology in Mexico and a private dermatopathology center in Florida between January 2015 and March 2016. Biopsies from 7 patients with melanoma, 15 with nevi, 9 with skin tags, 8 with PD, and 9 skin biopsies from healthy volunteers were analyzed for immunohistochemical determination of α-syn and tyrosinase. All analyses were performed by pathologists who were blinded with respect to the clinical diagnosis. Results In healthy controls, positive α-syn status was restricted to scattered cells in the basal layer of the epidermis and accounted for 1 ± 0.8% of the analyzed area. In patients with PD, there was increased staining for α-syn PD (3.3 ± 2.3%), with a higher percentage of positive cells in nevi (7.7 ± 5.5%) and melanoma (13.6 ± 3.5%). There was no increased staining in skin tags compared with healthy controls. Conclusion Patients with PD and melanoma have increased staining for α-syn in their skin. The authors propose that neurons and melanocytes, both derived from neuroectodermal cells, may share protein synthesis and regulation pathways that become dysfunctional in PD and melanoma.
Collapse
Affiliation(s)
| | - Erika Chi-Ahumada
- Departamento de Bioquímica Facultad de Medicina Universidad Autónoma de San Luis Potosí San Luis Potosí México
| | - Manuel Mejía
- Departamento de Bioquímica Facultad de Medicina Universidad Autónoma de San Luis Potosí San Luis Potosí México
| | | | - William Eng
- University of Central Florida College of Medicine Orlando Florida USA
| | - Sami K Saikaly
- University of Central Florida College of Medicine Orlando Florida USA
| | - Juan Carrizales
- Departamento de Bioquímica Facultad de Medicina Universidad Autónoma de San Luis Potosí San Luis Potosí México
| | | | - Robert A Norman
- University of Central Florida College of Medicine Orlando Florida USA
| | - Maria E Jimenez-Capdeville
- Departamento de Bioquímica Facultad de Medicina Universidad Autónoma de San Luis Potosí San Luis Potosí México
| |
Collapse
|
47
|
Pavan B, Capuzzo A, Dalpiaz A. Potential therapeutic effects of odorants through their ectopic receptors in pigmented cells. Drug Discov Today 2017; 22:1123-1130. [PMID: 28533189 DOI: 10.1016/j.drudis.2017.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/28/2017] [Accepted: 05/12/2017] [Indexed: 10/19/2022]
Abstract
Several olfactory receptors (ORs) have been characterized outside the olfactory neuroepithelium in neuronal and non-neuronal tissues, where they were implicated in the recognition of diverse chemical signals. ORs have been found to regulate melanogenesis in skin melanocytes, and OR expression has been found in the human brain nigrostriatal dopaminergic neurons, where production of melanin occurs as neuromelanin and can change with age; OR expression is downregulated in Parkinson's disease. Therefore, we propose several odorants as new functional ligands to ORs expressed in non-olfactory pigmented cells as dopaminergic neurons and melanocytes, where, by acting on cAMP-induced melanin production, they could help to counteract melanogenic and neurodegenerative dysfunctions, including melanoma and Parkinson's disease.
Collapse
Affiliation(s)
- Barbara Pavan
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Antonio Capuzzo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alessandro Dalpiaz
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
48
|
Ravn AH, Thyssen JP, Egeberg A. Skin disorders in Parkinson's disease: potential biomarkers and risk factors. Clin Cosmet Investig Dermatol 2017; 10:87-92. [PMID: 28331352 PMCID: PMC5352163 DOI: 10.2147/ccid.s130319] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Parkinson’s disease (PD) is one of the most common neurodegenerative disorders, characterized by a symptom triad comprising resting tremor, rigidity, and akinesia. In addition, non-motor symptoms of PD are well recognized and often precede the overt motor manifestations. Cutaneous manifestations as markers of PD have long been discussed, and cumulative evidence shows an increased prevalence of certain dermatological disorders in PD. Seborrheic dermatitis is considered to occur as a premotor feature of PD referable to dysregulation of the autonomic nervous system. Also, an increased risk of melanoma has been observed in PD. Light hair color is a known risk factor for melanoma, and interestingly the risk of PD is found to be significantly higher in individuals with light hair color and particularly with red hair. Furthermore, several studies have reported a high prevalence of PD in patients with bullous pemphigoid. Moreover, a 2-fold increase in risk of new-onset PD has been observed in patients with rosacea. Besides the association between PD and various dermatological disorders, the skin may be useful in the diagnosis of PD. Early PD pathology is found not only in the brain but also in extra-neuronal tissues. Thus, the protein α-synuclein, which is genetically associated with PD, is present not only in the CNS but also in the skin. Hence, higher values of α-synuclein have been observed in the skin of patients with PD. Furthermore, an increased risk of PD has been found in the Cys/Cys genotype, which is associated with red hair color. In this review, we summarize the current evidence of the association between PD and dermatological disorders, the cutaneous adverse effects of neurological medications, and describe the potential of skin protein expression and biomarkers in identification of risk and diagnosis of PD.
Collapse
Affiliation(s)
- Astrid-Helene Ravn
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Jacob P Thyssen
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Alexander Egeberg
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| |
Collapse
|
49
|
Chen X, Chen H, Cai W, Maguire M, Ya B, Zuo F, Logan R, Li H, Robinson K, Vanderburg CR, Yu Y, Wang Y, Fisher DE, Schwarzschild MA. The melanoma-linked "redhead" MC1R influences dopaminergic neuron survival. Ann Neurol 2017; 81:395-406. [PMID: 28019657 DOI: 10.1002/ana.24852] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 12/16/2016] [Accepted: 12/16/2016] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Individuals with Parkinson disease are more likely to develop melanoma, and melanoma patients are reciprocally at higher risk of developing Parkinson disease. Melanoma is strongly tied to red hair/fair skin, a phenotype of loss-of-function polymorphisms in the MC1R (melanocortin 1 receptor) gene. Loss-of-function variants of MC1R have also been linked to increased risk of Parkinson disease. The present study is to investigate the role of MC1R in dopaminergic neurons in vivo. METHODS Genetic and pharmacological approaches were employed to manipulate MC1R, and nigrostriatal dopaminergic integrity was determined by comprehensive behavioral, neurochemical, and neuropathological measures. RESULTS MC1Re/e mice, which carry an inactivating mutation of MC1R and mimic the human redhead phenotype, have compromised nigrostriatal dopaminergic neuronal integrity, and they are more susceptible to dopaminergic neuron toxins 6-hydroxydopamine and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Furthermore, a selective MC1R agonist protects against MPTP-induced dopaminergic neurotoxicity. INTERPRETATION Our findings reveal a protective role of MC1R in the nigrostriatal dopaminergic system, and they provide a rationale for MC1R as a potential therapeutic target for Parkinson disease. Together with its established role in melanoma, MC1R may represent a common pathogenic pathway for melanoma and Parkinson disease. Ann Neurol 2017;81:395-406.
Collapse
Affiliation(s)
- Xiqun Chen
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA.,Shanghai 10th Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongxiang Chen
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Boston, MA
| | - Waijiao Cai
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA
| | - Michael Maguire
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA
| | - Bailiu Ya
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA
| | - Fuxing Zuo
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA
| | - Robert Logan
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA
| | - Hui Li
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA
| | - Katey Robinson
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Boston, MA
| | - Charles R Vanderburg
- Harvard Neurodiscovery Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Yang Yu
- Department of Chemistry, University of California, Riverside, CA
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, CA
| | - David E Fisher
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Boston, MA
| | - Michael A Schwarzschild
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA
| |
Collapse
|
50
|
Pavan B, Dalpiaz A. Odorants could elicit repair processes in melanized neuronal and skin cells. Neural Regen Res 2017; 12:1401-1404. [PMID: 29089976 PMCID: PMC5649451 DOI: 10.4103/1673-5374.215246] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The expression of ectopic olfactory receptors (ORs) in melanized cells, such as the human brain nigrostriatal dopaminergic neurons and skin melanocytes, is here pointed out. ORs are recognized to regulate skin melanogenesis, whereas OR expression in the dopaminergic neurons, characterized by accumulation of pigment neuromelanin, is downregulated in Parkinson's disease. Furthermore, the correlation between the pigmentation process and the dopamine pathway through α-synuclein expression is also highlighted. Purposely, these ORs are suggested as therapeutic target for neurodegenerative diseases related to the pigmentation disorders. Based on this evidence, a possible way of turning odorants into drugs, acting on three specific olfactory receptors, OR51E2, OR2AT4 and VN1R1, is thus introduced. Various odorous molecules are shown to interact with these ORs and their therapeutic potential against melanogenic and neurodegenerative dysfunctions, including melanoma and Parkinson's disease, is suggested. Finally, a direct functional link between olfactory and endocrine systems in human brain through VN1R1 is proposed, helping to counteract female susceptibility to Parkinson's disease in quiescent life.
Collapse
Affiliation(s)
- Barbara Pavan
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alessandro Dalpiaz
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|