1
|
Noel JK, Haglund E. Topological Reaction Coordinate Captures the Folding Transition State Ensemble in a Pierced Lasso Protein. J Phys Chem B 2024; 128:117-124. [PMID: 38118146 DOI: 10.1021/acs.jpcb.3c06678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Proteins with a pierced lasso topology (PLT) have a covalent loop created by a disulfide bond, and the backbone circles back to thread the loop. This threaded topology has unique features compared to knotted topologies; notably, the topology is controlled by the chemical environment and the covalent loop remains intact even when denatured. In this work, we use the hormone leptin as our model PLT system and study its folding using molecular dynamics simulations that employ a structure-based (Go̅-like) model. We find that the reduced protein has a two-state folding mechanism with a transition state ensemble (TSE) that can be characterized by the reaction coordinate Q, the fraction of native contacts formed. In contrast, the oxidized protein, which must thread part of the polypeptide chain through a covalent loop, has a folding process that is poorly characterized by Q. Instead, we find that a topological coordinate that monitors the residue crossing the loop can identify the TSE of oxidized leptin. By precisely identifying the predicted TSE, one may now reliably calculate theoretical phi-values for the PLT protein, thereby enabling a comparison with experimental measurements. We find the loop-threading constraint leads to noncanonical phi-values that are uniformly small because this PLT protein has a flat energy landscape through the TSE.
Collapse
Affiliation(s)
- Jeffrey K Noel
- Structural Biology, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Ellinor Haglund
- Department of Chemistry, University of Hawaii, Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
2
|
Fan X, Qin R, Yuan W, Fan JS, Huang W, Lin Z. The solution structure of human leptin reveals a conformational plasticity important for receptor recognition. Structure 2024; 32:18-23.e2. [PMID: 37924810 DOI: 10.1016/j.str.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/10/2023] [Accepted: 10/10/2023] [Indexed: 11/06/2023]
Abstract
Leptin is a multi-potency cytokine that regulates various physiological functions, including weight control and energy homeostasis. Signaling of leptin is also important in many aging-related diseases. Leptin is required for the noncovalent crosslinking of different extracellular domains of leptin receptors, which is critical for receptor activation and downstream signaling. Nevertheless, the structure of intact apo-form leptin and the structural transition leptin undergoes upon receptor binding are not fully understood yet. Here, we determined the monomeric structure of wild-type human leptin by solution-state nuclear magnetic resonance spectroscopy. Leptin contains an intrinsically disordered region (IDR) in the internal A-B loop and the flexible helix E in the C-D loop, both of which undergo substantial local structural changes when leptin binds to its receptor. Our findings provide further insights into the molecular mechanisms of leptin signaling.
Collapse
Affiliation(s)
- Xiao Fan
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Ruiqi Qin
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Wensu Yuan
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Jing-Song Fan
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN 38105, USA
| | - Weidong Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| | - Zhi Lin
- School of Life Sciences, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
3
|
Fan X, Yuan W, Huang W, Lin Z. Recent progress in leptin signaling from a structural perspective and its implications for diseases. Biochimie 2023; 212:60-75. [PMID: 37080418 DOI: 10.1016/j.biochi.2023.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/14/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
As a multi-potency cytokine, leptin not only plays a crucial role in controlling weight and energy homeostasis but also participates in the metabolic balance in the human body. Leptin is a small helical protein with a molecular weight of 16 kDa. It can interact with multiple subtypes of its receptors to initiate intracellular signal transduction and exerts physiological effects. Disturbances in leptin signaling may lead to obesity and a variety of metabolic diseases. Leptin was also found to be a critical factor in many diseases of the elderly. In this review, we focus on recent advances in the structural and molecular mechanisms of leptin signaling through its receptors with the aim of a deeper understanding of leptin-related diseases.
Collapse
Affiliation(s)
- Xiao Fan
- School of Life Sciences, Tianjin University, Tianjin, 300072, PR China
| | - Wensu Yuan
- School of Life Sciences, Tianjin University, Tianjin, 300072, PR China
| | - Weidong Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, 750004, PR China.
| | - Zhi Lin
- School of Life Sciences, Tianjin University, Tianjin, 300072, PR China.
| |
Collapse
|
4
|
Simien JM, Orellana GE, Phan HTN, Hu Y, Kurth EA, Ruf C, Kricek F, Wang Q, Smrcka AV, Haglund E. A Small Contribution to a Large System: The Leptin Receptor Complex. J Phys Chem B 2023; 127:2457-2465. [PMID: 36912891 DOI: 10.1021/acs.jpcb.3c01090] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Obesity is a classified epidemic, increasing the risk of secondary diseases such as diabetes, inflammation, cardiovascular disease, and cancer. The pleiotropic hormone leptin is the proposed link for the gut-brain axis controlling nutritional status and energy expenditure. Research into leptin signaling provides great promise toward discovering therapeutics for obesity and its related diseases targeting leptin and its cognate leptin receptor (LEP-R). The molecular basis underlying the human leptin receptor complex assembly remains obscure, due to the lack of structural information regarding the biologically active complex. In this work, we investigate the proposed receptor binding sites in human leptin utilizing designed antagonist proteins combined with AlphaFold predictions. Our results show that binding site I has a more intricate role in the active signaling complex than previously described. We hypothesize that the hydrophobic patch in this region engages a third receptor forming a higher-order complex, or a new LEP-R binding site inducing allosteric rearrangement.
Collapse
Affiliation(s)
- Jennifer M Simien
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Grace E Orellana
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Hoa T N Phan
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Yao Hu
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Emily A Kurth
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Christine Ruf
- NBS-C BioScience & Consulting GmbH, Vienna, 1230, Austria
| | - Franz Kricek
- NBS-C BioScience & Consulting GmbH, Vienna, 1230, Austria
| | - Qian Wang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Alan V Smrcka
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Ellinor Haglund
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
5
|
Jiang Y, Neti SS, Sitarik I, Pradhan P, To P, Xia Y, Fried SD, Booker SJ, O'Brien EP. How synonymous mutations alter enzyme structure and function over long timescales. Nat Chem 2023; 15:308-318. [PMID: 36471044 PMCID: PMC11267483 DOI: 10.1038/s41557-022-01091-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/17/2022] [Indexed: 12/12/2022]
Abstract
The specific activity of enzymes can be altered over long timescales in cells by synonymous mutations that alter a messenger RNA molecule's sequence but not the encoded protein's primary structure. How this happens at the molecular level is unknown. Here, we use multiscale modelling of three Escherichia coli enzymes (type III chloramphenicol acetyltransferase, D-alanine-D-alanine ligase B and dihydrofolate reductase) to understand experimentally measured changes in specific activity due to synonymous mutations. The modelling involves coarse-grained simulations of protein synthesis and post-translational behaviour, all-atom simulations to test robustness and quantum mechanics/molecular mechanics calculations to characterize enzymatic function. We show that changes in codon translation rates induced by synonymous mutations cause shifts in co-translational and post-translational folding pathways that kinetically partition molecules into subpopulations that very slowly interconvert to the native, functional state. Structurally, these states resemble the native state, with localized misfolding near the active sites of the enzymes. These long-lived states exhibit reduced catalytic activity, as shown by their increased activation energies for the reactions they catalyse.
Collapse
Affiliation(s)
- Yang Jiang
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA
| | - Syam Sundar Neti
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA
| | - Ian Sitarik
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA
| | - Priya Pradhan
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA
| | - Philip To
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Yingzi Xia
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Stephen D Fried
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Squire J Booker
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
- Howard Hughes Medical Institute, Pennsylvania State University, University Park, PA, USA
| | - Edward P O'Brien
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA.
- Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA.
- Institute for Computational and Data Sciences, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
6
|
Da Silva C, Peces M, Faundez M, Hansen H, Campos JL, Dosta J, Astals S. Gamma distribution function to understand anaerobic digestion kinetics: Kinetic constants are not constant. CHEMOSPHERE 2022; 306:135579. [PMID: 35792215 DOI: 10.1016/j.chemosphere.2022.135579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 04/25/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
The Gamma model is a novel approach to characterise the complex degradation dynamics taking place during anaerobic digestion. This three parameters model results from combining the first-order kinetic model and the Gamma distribution function. In contrast to conventional models, where the kinetic constant is considered invariant, the Gamma model allows analysing the variability of the kinetic constant using a probability density function. The kinetic constant of mono-digestion and co-digestion batch tests of different wastes were modelled using the Gamma model and two common first-order models: one-step one-fraction model and one-step two-fraction model. The Gamma distribution function approximates three distinct probability density functions, i.e. exponential, log-normal, and delta Dirac. Specifically, (i) cattle paunch and pig manure approximated a log-normal distribution; (ii) cattle manure and microalgae approximated an exponential distribution, and (iii) primary sludge and cellulose approximated a delta Dirac distribution. The Gamma model was able to characterise two distinct waste activated sludge, one approximated to a log-normal distribution and the other to an exponential distribution. The same cellulose was tested with two different inocula; in both tests, the Gamma distribution function approximated a delta Dirac function but with a different kinetic value. The potential and consistency of Gamma model were also evident when analysing pig manure and microalgae co-digestion batch tests since (i) the mean k of the co-digestion tests were within the values of the mono-digestion tests, and (ii) the profile of the density function transitioned from log-normal to exponential distribution as the percentage of microalgae in the mixture increased.
Collapse
Affiliation(s)
- C Da Silva
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028, Barcelona, Spain
| | - M Peces
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028, Barcelona, Spain; Department of Chemistry and Bioscience, Centre for Microbial Communities, Aalborg University, 9220, Aalborg, Denmark
| | - M Faundez
- Chemical and Environmental Engineering Department, Technical University Federico Santa María, 2390123, Valparaíso, Chile
| | - H Hansen
- Chemical and Environmental Engineering Department, Technical University Federico Santa María, 2390123, Valparaíso, Chile
| | - J L Campos
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibañez, 2520000, Viña del Mar, Chile
| | - J Dosta
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028, Barcelona, Spain; Water Research Institute, University of Barcelona, Catalonia, 08001, Spain
| | - S Astals
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
7
|
Bakshi A, Rai U. In silico analyses of leptin and leptin receptor of spotted snakehead Channa punctata. PLoS One 2022; 17:e0270881. [PMID: 35797380 PMCID: PMC9262212 DOI: 10.1371/journal.pone.0270881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 06/21/2022] [Indexed: 11/24/2022] Open
Abstract
The present study, in addition to molecular characterization of leptin (lepa) and its receptor (lepr) of spotted snakehead Channa punctata, is focussed on physicochemical, structural, evolutionary and selection pressure analyses which are poorly elucidated in teleosts in spite of that existence of these genes is well reported in several fish species. The putative full-length Lep and Lepr of C. punctata showed conserved structural and functional domains, especially the residues responsible for structural integrity and signal transduction. Conversely, residues predicted essential for Lep-Lepr interaction displayed divergence between teleosts and tetrapods. Impact of substitutions/deletions predicted using protein variation effect analyser tool highlighted species specificity in ligand-receptor interaction. Physicochemical properties of ligand and receptor predicted for the first time in vertebrates revealed high aliphatic and instability indices for both Lepa and Lepr, indicating thermostability of proteins but their instability under ex vivo conditions. Positive grand average of hydropathy score of Lepa suggests its hydrophobic nature conjecturing existence of leptin binding proteins in C. punctata. In addition to disulphide bonding, a novel posttranslational modification (S-126 phosphorylation) was predicted in Lepa of C. punctata. In Lepr, disulphide bond formation and N-linked glycosylation near WSXWS motif in ECD, and phosphorylation at tyrosine residues in ICD were predicted. Leptin and its receptor sequence of C. punctata cladded with its homolog from C. striata and C. argus of order Anabantiformes. Leptin system of Anabantiformes was phylogenetically closer to that of Pleuronectiformes, Scombriformes and Perciformes. Selection pressure analysis showed higher incidence of negative selection in teleostean leptin genes indicating limited adaptation in their structure and function. However, evidence of pervasive and episodic diversifying selection laid a foundation of co-evolution of Lepa and Lepr in teleosts.
Collapse
Affiliation(s)
- Amrita Bakshi
- Department of Zoology, University of Delhi, Delhi, India
| | - Umesh Rai
- Department of Zoology, University of Delhi, Delhi, India
- * E-mail:
| |
Collapse
|
8
|
Freitas FC, Maldonado M, Oliveira Junior AB, Onuchic JN, Oliveira RJD. Biotin-painted proteins have thermodynamic stability switched by kinetic folding routes. J Chem Phys 2022; 156:195101. [PMID: 35597640 DOI: 10.1063/5.0083875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Biotin-labeled proteins are widely used as tools to study protein-protein interactions and proximity in living cells. Proteomic methods broadly employ proximity-labeling technologies based on protein biotinylation in order to investigate the transient encounters of biomolecules in subcellular compartments. Biotinylation is a post-translation modification in which the biotin molecule is attached to lysine or tyrosine residues. So far, biotin-based technologies proved to be effective instruments as affinity and proximity tags. However, the influence of biotinylation on aspects such as folding, binding, mobility, thermodynamic stability, and kinetics needs to be investigated. Here, we selected two proteins [biotin carboxyl carrier protein (BCCP) and FKBP3] to test the influence of biotinylation on thermodynamic and kinetic properties. Apo (without biotin) and holo (biotinylated) protein structures were used separately to generate all-atom structure-based model simulations in a wide range of temperatures. Holo BCCP contains one biotinylation site, and FKBP3 was modeled with up to 23 biotinylated lysines. The two proteins had their estimated thermodynamic stability changed by altering their energy landscape. In all cases, after comparison between the apo and holo simulations, differences were observed on the free-energy profiles and folding routes. Energetic barriers were altered with the density of states clearly showing changes in the transition state. This study suggests that analysis of large-scale datasets of biotinylation-based proximity experiments might consider possible alterations in thermostability and folding mechanisms imposed by the attached biotins.
Collapse
Affiliation(s)
- Frederico Campos Freitas
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG 38064-200, Brazil
| | - Michelli Maldonado
- Departamento de Matemática, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG 38064-200, Brazil
| | - Antonio Bento Oliveira Junior
- Center for Theoretical Biological Physics, Rice University, BioScience Research Collaborative, 6566 Main St., Houston, Texas 77030, USA
| | - José Nelson Onuchic
- Center for Theoretical Biological Physics, Rice University, BioScience Research Collaborative, 6566 Main St., Houston, Texas 77030, USA
| | - Ronaldo Junio de Oliveira
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG 38064-200, Brazil
| |
Collapse
|
9
|
Greń BA, Dabrowski-Tumanski P, Niemyska W, Sulkowska JI. Lasso Proteins-Unifying Cysteine Knots and Miniproteins. Polymers (Basel) 2021; 13:3988. [PMID: 34833285 PMCID: PMC8621785 DOI: 10.3390/polym13223988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
Complex lasso proteins are a recently identified class of biological compounds that are present in considerable fraction of proteins with disulfide bridges. In this work, we look at complex lasso proteins as a generalization of well-known cysteine knots and miniproteins (lasso peptides). In particular, we show that complex lasso proteins with the same crucial topological features-cysteine knots and lasso peptides-are antimicrobial proteins, which suggests that they act as a molecular plug. Based on an analysis of the stability of the lasso piercing residue, we also introduce a method to determine which lasso motif is potentially functional. Using this method, we show that the lasso motif in antimicrobial proteins, as well in that in cytokines, is functionally relevant. We also study the evolution of lasso motifs, their conservation, and the usefulness of the lasso fingerprint, which extracts all topologically non-triviality concerning covalent loops. The work is completed by the presentation of extensive statistics on complex lasso proteins to analyze, in particular, the strange propensity for "negative" piercings. We also identify 21 previously unknown complex lasso proteins with an ester and a thioester bridge.
Collapse
Affiliation(s)
- Bartosz Ambroży Greń
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland; (B.A.G.); (P.D.-T.)
- Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | | | - Wanda Niemyska
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, 02-097 Warsaw, Poland;
| | - Joanna Ida Sulkowska
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland; (B.A.G.); (P.D.-T.)
| |
Collapse
|
10
|
Slipknotted and unknotted monovalent cation-proton antiporters evolved from a common ancestor. PLoS Comput Biol 2021; 17:e1009502. [PMID: 34648493 PMCID: PMC8562792 DOI: 10.1371/journal.pcbi.1009502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/02/2021] [Accepted: 09/28/2021] [Indexed: 11/20/2022] Open
Abstract
While the slipknot topology in proteins has been known for over a decade, its evolutionary origin is still a mystery. We have identified a previously overlooked slipknot motif in a family of two-domain membrane transporters. Moreover, we found that these proteins are homologous to several families of unknotted membrane proteins. This allows us to directly investigate the evolution of the slipknot motif. Based on our comprehensive analysis of 17 distantly related protein families, we have found that slipknotted and unknotted proteins share a common structural motif. Furthermore, this motif is conserved on the sequential level as well. Our results suggest that, regardless of topology, the proteins we studied evolved from a common unknotted ancestor single domain protein. Our phylogenetic analysis suggests the presence of at least seven parallel evolutionary scenarios that led to the current diversity of proteins in question. The tools we have developed in the process can now be used to investigate the evolution of other repeated-domain proteins. In proteins with the slipknot topology, the polypeptide chain forms a slipknot—a structure that is not necessarily manifest to a naked eye, but it can be detected using mathematical methods. Slipknots are conserved motifs often found at catalytic sites and are directly involved in molecular transport. Although the first proteins with slipknots were found in 2007, many questions remain unanswered, e.g. how these proteins appeared, or whether the slipknotted proteins evolved from unknotted ones or vice versa. Here we provide the first analysis of homologous slipknotted and unknotted transmembrane proteins in order to elucidate their evolutionary relationship. We show that two-domain slipknotted and unknotted membrane transporters share the same one-domain unknotted protein as an ancestor. The ancestor gene duplicated and underwent various diversification and fusion events during the evolution, which have led to the appearance of a large superfamily of secondary active transporters. The slipknot motif seems to have been created by chance after a fusion of two single domain genes. Therefore, we show here that the slipknotted transporter evolved from an unknotted one-domain protein and that there are at least seven different evolutionary scenarios that gave rise to this large superfamily of transporters.
Collapse
|
11
|
Dabrowski-Tumanski P, Rubach P, Niemyska W, Gren BA, Sulkowska JI. Topoly: Python package to analyze topology of polymers. Brief Bioinform 2021; 22:bbaa196. [PMID: 32935829 PMCID: PMC8138882 DOI: 10.1093/bib/bbaa196] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/15/2020] [Accepted: 07/29/2020] [Indexed: 12/27/2022] Open
Abstract
The increasing role of topology in (bio)physical properties of matter creates a need for an efficient method of detecting the topology of a (bio)polymer. However, the existing tools allow one to classify only the simplest knots and cannot be used in automated sample analysis. To answer this need, we created the Topoly Python package. This package enables the distinguishing of knots, slipknots, links and spatial graphs through the calculation of different topological polynomial invariants. It also enables one to create the minimal spanning surface on a given loop, e.g. to detect a lasso motif or to generate random closed polymers. It is capable of reading various file formats, including PDB. The extensive documentation along with test cases and the simplicity of the Python programming language make it a very simple to use yet powerful tool, suitable even for inexperienced users. Topoly can be obtained from https://topoly.cent.uw.edu.pl.
Collapse
Affiliation(s)
| | | | | | | | - Joanna Ida Sulkowska
- Corresponding author: Joanna Ida Sulkowska, Centre of New Technologies, University of Warsaw, Warsaw, 02-097, Poland; Faculty of Chemistry, University of Warsaw, 02-093, Warsaw, Poland. Tel.: +48-22-55-43678 E-mail:
| |
Collapse
|
12
|
Zegarra FC, Homouz D, Wittung-Stafshede P, Cheung MS. The Zero-Order Loop in Apoazurin Modulates Folding Mechanism In Silico. J Phys Chem B 2021; 125:3501-3509. [PMID: 33818090 DOI: 10.1021/acs.jpcb.1c00219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Pseudomonas aeruginosa apoazurin (apo, without the copper cofactor) has a single disulfide bond between residues 3 and 26 and unfolds in a two-state reaction in vitro. The disulfide bond covalently connects the N-termini of β-strands 1 and 3; thereby, it creates a zero-order loop or a "cinch" that restricts conformational space. Covalent loops and threaded topologies are emerging as important structural elements in folded proteins and may be important for function. In order to understand the role of a zero-order loop in the folding process of a protein, here we used coarse-grained molecular dynamics (CGMD) simulations in silico to compare two variants of apoazurin: one named "loop" which contained the disulfide, and another named "open" in which the disulfide bond between residues 3 and 26 was removed. CGMD simulations were performed to probe the stability and unfolding pathway of the two apoazurin variants at different urea concentrations and temperatures. Our results show that the covalent loop plays a prominent role in the unfolding mechanism of apoazurin; its removal alters both the folding-transition state and the unfolded-state ensemble of conformations. We propose that modulation of azurin's folding landscape by the disulfide bridge may be related to both copper capturing and redox sensing.
Collapse
Affiliation(s)
- Fabio C Zegarra
- Laboratorio de Sistemas Inteligentes, EPIME, Universidad Nacional Tecnológica de Lima Sur (UNTELS), Lima 15834, Peru.,Department of Physics, University of Houston, Houston, Texas 77204, United States.,Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| | - Dirar Homouz
- Department of Physics, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, 127788 United Arab Emirates.,Department of Physics, University of Houston, Houston, Texas 77204, United States.,Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| | - Pernilla Wittung-Stafshede
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Margaret S Cheung
- Pacific Northwest National Laboratory, Research Science Center, Seattle, Washington 98109, United States.,Department of Physics, University of Washington, Seattle, Washington 98195, United States.,Department of Physics, University of Houston, Houston, Texas 77204, United States.,Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
13
|
Freitas FC, Ferreira PHB, Favaro DC, Oliveira RJD. Shedding Light on the Inhibitory Mechanisms of SARS-CoV-1/CoV-2 Spike Proteins by ACE2-Designed Peptides. J Chem Inf Model 2021; 61:1226-1243. [PMID: 33619962 PMCID: PMC7931628 DOI: 10.1021/acs.jcim.0c01320] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 01/07/2023]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is the host cellular receptor that locks onto the surface spike protein of the 2002 SARS coronavirus (SARS-CoV-1) and of the novel, highly transmissible and deadly 2019 SARS-CoV-2, responsible for the COVID-19 pandemic. One strategy to avoid the virus infection is to design peptides by extracting the human ACE2 peptidase domain α1-helix, which would bind to the coronavirus surface protein, preventing the virus entry into the host cells. The natural α1-helix peptide has a stronger affinity to SARS-CoV-2 than to SARS-CoV-1. Another peptide was designed by joining α1 with the second portion of ACE2 that is far in the peptidase sequence yet grafted in the spike protein interface with ACE2. Previous studies have shown that, among several α1-based peptides, the hybrid peptidic scaffold is the one with the highest/strongest affinity for SARS-CoV-1, which is comparable to the full-length ACE2 affinity. In this work, binding and folding dynamics of the natural and designed ACE2-based peptides were simulated by the well-known coarse-grained structure-based model, with the computed thermodynamic quantities correlating with the experimental binding affinity data. Furthermore, theoretical kinetic analysis of native contact formation revealed the distinction between these processes in the presence of the different binding partners SARS-CoV-1 and SARS-CoV-2 spike domains. Additionally, our results indicate the existence of a two-state folding mechanism for the designed peptide en route to bind to the spike proteins, in contrast to a downhill mechanism for the natural α1-helix peptides. The presented low-cost simulation protocol demonstrated its efficiency in evaluating binding affinities and identifying the mechanisms involved in the neutralization of spike-ACE2 interaction by designed peptides. Finally, the protocol can be used as a computer-based screening of more potent designed peptides by experimentalists searching for new therapeutics against COVID-19.
Collapse
Affiliation(s)
- Frederico Campos Freitas
- Laboratório de Biofísica Teórica,
Departamento de Física, Instituto de Ciências Exatas, Naturais
e Educação, Universidade Federal do Triângulo
Mineiro, Uberaba, MG 38064-200, Brazil
| | - Paulo Henrique Borges Ferreira
- Laboratório de Biofísica Teórica,
Departamento de Física, Instituto de Ciências Exatas, Naturais
e Educação, Universidade Federal do Triângulo
Mineiro, Uberaba, MG 38064-200, Brazil
| | - Denize Cristina Favaro
- Departamento de Química Orgânica,
Instituto de Química, Universidade Estadual de
Campinas, São Paulo, SP 13083-970, Brazil
| | - Ronaldo Junio de Oliveira
- Laboratório de Biofísica Teórica,
Departamento de Física, Instituto de Ciências Exatas, Naturais
e Educação, Universidade Federal do Triângulo
Mineiro, Uberaba, MG 38064-200, Brazil
| |
Collapse
|
14
|
Simien JM, Haglund E. Topological Twists in Nature. Trends Biochem Sci 2021; 46:461-471. [PMID: 33419636 DOI: 10.1016/j.tibs.2020.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 11/25/2022]
Abstract
The first entangled protein was observed about 30 years ago, resulting in an increased interest for uncovering the biological functions and biophysical properties of these complex topologies. Recently, the Pierced Lasso Topology (PLT) was discovered in which a covalent bond forms an intramolecular loop, leaving one or both termini free to pierce the loop. This topology is related to knots and other entanglements. PLTs exist in many well-researched systems where the PLTs have previously been unnoticed. PLTs represents 18% of all disulfide containing proteins across all kingdoms of life. In this review, we investigate the biological implications of this specific topology in which the PLT-forming disulfide may act as a molecular switch for protein function and consequently human health.
Collapse
Affiliation(s)
| | - Ellinor Haglund
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI, USA.
| |
Collapse
|
15
|
Niemyska W, Millett KC, Sulkowska JI. GLN: a method to reveal unique properties of lasso type topology in proteins. Sci Rep 2020; 10:15186. [PMID: 32938999 PMCID: PMC7494857 DOI: 10.1038/s41598-020-71874-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/17/2020] [Indexed: 02/02/2023] Open
Abstract
Geometry and topology are the main factors that determine the functional properties of proteins. In this work, we show how to use the Gauss linking integral (GLN) in the form of a matrix diagram-for a pair of a loop and a tail-to study both the geometry and topology of proteins with closed loops e.g. lassos. We show that the GLN method is a significantly faster technique to detect entanglement in lasso proteins in comparison with other methods. Based on the GLN technique, we conduct comprehensive analysis of all proteins deposited in the PDB and compare it to the statistical properties of the polymers. We show how high and low GLN values correlate with the internal exibility of proteins, and how the GLN in the form of a matrix diagram can be used to study folding and unfolding routes. Finally, we discuss how the GLN method can be applied to study entanglement between two structures none of which are closed loops. Since this approach is much faster than other linking invariants, the next step will be evaluation of lassos in much longer molecules such as RNA or loops in a single chromosome.
Collapse
Affiliation(s)
- Wanda Niemyska
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Kenneth C Millett
- Department of Mathematics, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Joanna I Sulkowska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland.
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland.
| |
Collapse
|
16
|
Danielsson J, Noel JK, Simien JM, Duggan BM, Oliveberg M, Onuchic JN, Jennings PA, Haglund E. The Pierced Lasso Topology Leptin has a Bolt on Dynamic Domain Composed by the Disordered Loops I and III. J Mol Biol 2020; 432:3050-3063. [PMID: 32081588 DOI: 10.1016/j.jmb.2020.01.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/18/2020] [Accepted: 01/24/2020] [Indexed: 02/08/2023]
Abstract
Leptin is an important signaling hormone, mostly known for its role in energy expenditure and satiety. Furthermore, leptin plays a major role in other proteinopathies, such as cancer, marked hyperphagia, impaired immune function, and inflammation. In spite of its biological relevance in human health, there are no NMR resonance assignments of the human protein available, obscuring high-resolution characterization of the soluble protein and/or its conformational dynamics, suggested as being important for receptor interaction and biological activity. Here, we report the nearly complete backbone resonance assignments of human leptin. Chemical shift-based secondary structure prediction confirms that in solution leptin forms a four-helix bundle including a pierced lasso topology. The conformational dynamics, determined on several timescales, show that leptin is monomeric, has a rigid four-helix scaffold, and a dynamic domain, including a transiently formed helix. The dynamic domain is anchored to the helical scaffold by a secondary hydrophobic core, pinning down the long loops of leptin to the protein body, inducing motional restriction without a well-defined secondary or tertiary hydrogen bond stabilized structure. This dynamic region is well suited for and may be involved in functional allosteric dynamics upon receptor binding.
Collapse
Affiliation(s)
- Jens Danielsson
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| | | | | | - Brendan Michael Duggan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, USA
| | - Mikael Oliveberg
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - José Nelson Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, USA; Department of Physics and Astronomy, Department of Chemistry, And Department of Biosciences, Rice University, Houston, USA
| | - Patricia Ann Jennings
- Department of Chemistry and Biochemistry, The University of California at San Diego, La Jolla, USA
| | - Ellinor Haglund
- The Department of Chemistry, University of Hawaii, Manoa, Honolulu, USA.
| |
Collapse
|
17
|
Mangini V, Maggi V, Trianni A, Melle F, De Luca E, Pennetta A, Del Sole R, Ventura G, Cataldi TRI, Fiammengo R. Directional Immobilization of Proteins on Gold Nanoparticles Is Essential for Their Biological Activity: Leptin as a Case Study. Bioconjug Chem 2019; 31:74-81. [PMID: 31851492 DOI: 10.1021/acs.bioconjchem.9b00748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Gold nanomaterials hold great potential for biomedical applications. While this field is evolving rapidly, little attention has been paid to precise nanoparticle design and functionalization. Here, we show that when using proteins as targeting moieties, it is fundamental to immobilize them directionally to preserve their biological activity. Using full-length leptin as a case study, we have developed two alternative conjugation strategies for protein immobilization based on either a site-selective or a nonselective derivatization approach. We show that only nanoparticles with leptin immobilized site-selectively fully retain the ability to interact with the cognate leptin receptor. These results demonstrate the importance of a specified molecular design when preparing nanoparticles labeled with proteins.
Collapse
Affiliation(s)
- Vincenzo Mangini
- Center for Biomolecular Nanotechnologies@UniLe , Istituto Italiano di Tecnologia (IIT) , Via Barsanti , 73010 Arnesano, Lecce , Italy
| | - Vito Maggi
- Center for Biomolecular Nanotechnologies@UniLe , Istituto Italiano di Tecnologia (IIT) , Via Barsanti , 73010 Arnesano, Lecce , Italy.,Dipartimento di Ingegneria dell'Innovazione , Università del Salento , Via per Monteroni Km 1 , 73100 Lecce , Italy
| | - Alberta Trianni
- Center for Biomolecular Nanotechnologies@UniLe , Istituto Italiano di Tecnologia (IIT) , Via Barsanti , 73010 Arnesano, Lecce , Italy
| | - Francesca Melle
- Center for Biomolecular Nanotechnologies@UniLe , Istituto Italiano di Tecnologia (IIT) , Via Barsanti , 73010 Arnesano, Lecce , Italy
| | - Elisa De Luca
- Center for Biomolecular Nanotechnologies@UniLe , Istituto Italiano di Tecnologia (IIT) , Via Barsanti , 73010 Arnesano, Lecce , Italy
| | - Antonio Pennetta
- Dipartimento di Ingegneria dell'Innovazione , Università del Salento , Via per Monteroni Km 1 , 73100 Lecce , Italy.,Dipartimento di Beni Culturali , Università del Salento , Via Dalmazio Birago 64 , 73100 Lecce , Italy
| | - Roberta Del Sole
- Dipartimento di Ingegneria dell'Innovazione , Università del Salento , Via per Monteroni Km 1 , 73100 Lecce , Italy
| | - Giovanni Ventura
- Dipartimento di Chimica , Università degli Studi di Bari Aldo Moro , via Orabona 4 , 70126 Bari , Italy
| | - Tommaso R I Cataldi
- Dipartimento di Chimica , Università degli Studi di Bari Aldo Moro , via Orabona 4 , 70126 Bari , Italy.,Centro Interdipartimentale SMART , Università degli Studi di Bari Aldo Moro , via Orabona 4 , 70126 Bari , Italy
| | - Roberto Fiammengo
- Center for Biomolecular Nanotechnologies@UniLe , Istituto Italiano di Tecnologia (IIT) , Via Barsanti , 73010 Arnesano, Lecce , Italy
| |
Collapse
|
18
|
Al-Shuhaib MBS. D76V, L161R, and C117S are the most pathogenic amino acid substitutions with several dangerous consequences on leptin structure, function, and stability. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2019. [DOI: 10.1186/s43042-019-0033-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Leptin is a versatile hormone with a variety of functions, including regulation of food intake by inhibiting hunger. Any deleterious mutation in this protein can lead to serious consequences for the body. This study was conducted to identify the most deleterious non-synonymous single-nucleotide polymorphisms (nsSNPs) of human LEP gene and their impact on its encoded protein.
Methods
To predict the possible impact of nsSNPs on leptin, a total of 90 nsSNPs were retrieved from dbSNP and investigated using many in silico tools which specially designed to analyze nsSNPs’ consequences on the protein structure, function, and stability.
Results
Three nsSNPs, namely D76V, L161R, and C117S, were found to be completely deleterious by all utilized nsSNPs prediction tools, thus affecting leptin protein structure, biological activity, and stability. Evolutionary information indicated L161R and C117S mutations to be located in extremely high conserved positions. Furthermore, several deleterious mechanisms controlled by both L161R and C117S mutations which alter several motifs in the secondary structure of leptin were detected. However, all D76V, L161R, and C117S mutations exhibited alteration in polar interactions in their representative positions. Further in-depth analyses proved several harmful structural effects of the three nsSNPs on leptin, which may lead to multiple intrinsic disorders in the altered protein forms.
Conclusions
This study provides the first comprehensive computation of the effect of the most damaging nsSNPs on leptin. The exploration of these missense mutations may present novel perspectives for various deleterious consequences originated from such amino acids substitutions. The dynamics of leptin performance, therefore, in many biological pathways, may be changed to create a variety of disorders, such as obesity and diabetes. These findings will help in detecting the most harmful variations needed to be screened for clinically diagnosed patients with leptin disorders.
Trial registration
ISRCTN73824458
Collapse
|
19
|
Perego C, Potestio R. Computational methods in the study of self-entangled proteins: a critical appraisal. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:443001. [PMID: 31269476 DOI: 10.1088/1361-648x/ab2f19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The existence of self-entangled proteins, the native structure of which features a complex topology, unveils puzzling, and thus fascinating, aspects of protein biology and evolution. The discovery that a polypeptide chain can encode the capability to self-entangle in an efficient and reproducible way during folding, has raised many questions, regarding the possible function of these knots, their conservation along evolution, and their role in the folding paradigm. Understanding the function and origin of these entanglements would lead to deep implications in protein science, and this has stimulated the scientific community to investigate self-entangled proteins for decades by now. In this endeavour, advanced experimental techniques are more and more supported by computational approaches, that can provide theoretical guidelines for the interpretation of experimental results, and for the effective design of new experiments. In this review we provide an introduction to the computational study of self-entangled proteins, focusing in particular on the methodological developments related to this research field. A comprehensive collection of techniques is gathered, ranging from knot theory algorithms, that allow detection and classification of protein topology, to Monte Carlo or molecular dynamics strategies, that constitute crucial instruments for investigating thermodynamics and kinetics of this class of proteins.
Collapse
Affiliation(s)
- Claudio Perego
- Max Panck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | | |
Collapse
|
20
|
Friedman-Einat M, Seroussi E. Avian Leptin: Bird's-Eye View of the Evolution of Vertebrate Energy-Balance Control. Trends Endocrinol Metab 2019; 30:819-832. [PMID: 31699239 DOI: 10.1016/j.tem.2019.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/13/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022]
Abstract
Discovery of the satiety hormone leptin in 1994 and its characterization in mammals provided a key tool to deciphering the complex mechanism governing adipose tissue regulation of appetite and energy expenditure. Surprisingly, despite the perfectly logical notion of an energy-storing tissue announcing the amount of fat stores using leptin signaling, alternate mechanisms were chosen in bird evolution. This conclusion emerged based on the recent discovery and characterization of genuine avian leptin - after it had been assumed missing by some, and erroneously identified by others. Critical evaluation of the past and present indications of the role of leptin in Aves provides a new perspective on the evolution of energy-balance control in vertebrates; proposing a regulation strategy alternative to the adipostat mechanism.
Collapse
Affiliation(s)
- Miriam Friedman-Einat
- Department of Animal Science, Agricultural Research Organization, Volcani Center, Rishon LeTsiyon, Israel.
| | - Eyal Seroussi
- Department of Animal Science, Agricultural Research Organization, Volcani Center, Rishon LeTsiyon, Israel
| |
Collapse
|
21
|
Niewieczerzał S, Sulkowska JI. Supercoiling in a Protein Increases its Stability. PHYSICAL REVIEW LETTERS 2019; 123:138102. [PMID: 31697559 DOI: 10.1103/physrevlett.123.138102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Indexed: 06/10/2023]
Abstract
The supercoiling motif is the most complex type of nontrivial topology found in proteins with at least one disulfide bond and, to the best of our knowledge, it has not been studied before. We show that a protein from extremophilic species with such a motif can fold; however, the supercoiling changes a smooth landscape observed in reduced conditions into a two-state folding process in the oxidative conditions, with a deep intermediate state. The protein takes advantage of the hairpinlike motif to overcome the topological barrier and thus to supercoil. We find that the depth of the supercoiling motif, i.e., the length of the threaded terminus, has a crucial impact on the folding rates of the studied protein. We show that fluctuations of the minimal surface area can be used to measure local stability, and we find that supercoiling introduces stability into the protein. We suggest that the supercoiling motif enables the studied protein to live in physically extreme conditions, which are detrimental to most life on Earth.
Collapse
Affiliation(s)
- Szymon Niewieczerzał
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Joanna I Sulkowska
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
22
|
Perego C, Potestio R. Searching the Optimal Folding Routes of a Complex Lasso Protein. Biophys J 2019; 117:214-228. [PMID: 31235180 PMCID: PMC6700606 DOI: 10.1016/j.bpj.2019.05.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/29/2019] [Accepted: 05/30/2019] [Indexed: 10/27/2022] Open
Abstract
Understanding how polypeptides can efficiently and reproducibly attain a self-entangled conformation is a compelling biophysical challenge that might shed new light on our general knowledge of protein folding. Complex lassos, namely self-entangled protein structures characterized by a covalent loop sealed by a cysteine bridge, represent an ideal test system in the framework of entangled folding. Indeed, because cysteine bridges form in oxidizing conditions, they can be used as on/off switches of the structure topology to investigate the role played by the backbone entanglement in the process. In this work, we have used molecular dynamics to simulate the folding of a complex lasso glycoprotein, granulocyte-macrophage colony-stimulating factor, modeling both reducing and oxidizing conditions. Together with a well-established Gō-like description, we have employed the elastic folder model, a coarse-grained, minimalistic representation of the polypeptide chain driven by a structure-based angular potential. The purpose of this study is to assess the kinetically optimal pathways in relation to the formation of the native topology. To this end, we have implemented an evolutionary strategy that tunes the elastic folder model potentials to maximize the folding probability within the early stages of the dynamics. The resulting protein model is capable of folding with high success rate, avoiding the kinetic traps that hamper the efficient folding in the other tested models. Employing specifically designed topological descriptors, we could observe that the selected folding routes avoid the topological bottleneck by locking the cysteine bridge after the topology is formed. These results provide valuable insights on the selection of mechanisms in self-entangled protein folding while, at the same time, the proposed methodology can complement the usage of established minimalistic models and draw useful guidelines for more detailed simulations.
Collapse
Affiliation(s)
- Claudio Perego
- Polymer Theory Department, Max Planck Institute for Polymer Research, Mainz, Germany.
| | - Raffaello Potestio
- Department of Physics, University of Trento, Trento, Italy; INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| |
Collapse
|
23
|
Haglund E, Nguyen L, Schafer NP, Lammert H, Jennings PA, Onuchic JN. Uncovering the molecular mechanisms behind disease-associated leptin variants. J Biol Chem 2018; 293:12919-12933. [PMID: 29950524 PMCID: PMC6102133 DOI: 10.1074/jbc.ra118.003957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/14/2018] [Indexed: 01/21/2023] Open
Abstract
The pleiotropic hormone leptin has a pivotal role in regulating energy balance by inhibiting hunger and increasing energy expenditure. Homozygous mutations found in the leptin gene are associated with extreme obesity, marked hyperphagia, and impaired immune function. Although these mutations have been characterized in vivo, a detailed understanding of how they affect leptin structure and function remains elusive. In the current work, we used NMR, differential scanning calorimetry, molecular dynamics simulations, and bioinformatics calculations to characterize the effects of these mutations on leptin structure and function and binding to its cognate receptor. We found that mutations identified in patients with congenital leptin deficiency not only cause leptin misfolding or aggregation, but also cause changes in the dynamics of leptin residues on the receptor-binding interface. Therefore, we infer that mutation-induced leptin deficiency may arise from several distinct mechanisms including (i) blockade of leptin receptor interface II, (ii) decreased affinity in the second step of leptin's interaction with its receptor, (iii) leptin destabilization, and (iv) unsuccessful threading through the covalent loop, leading to leptin misfolding/aggregation. We propose that this expanded framework for understanding the mechanisms underlying leptin deficiency arising from genetic mutations may be useful in designing therapeutics for leptin-associated disorders.
Collapse
Affiliation(s)
- Ellinor Haglund
- Center for Theoretical Biological Physics, and Biosciences, Rice University, Houston, Texas 77005.
| | - Lannie Nguyen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093
| | - Nicholas Peter Schafer
- Center for Theoretical Biological Physics, and Biosciences, Rice University, Houston, Texas 77005
| | - Heiko Lammert
- Center for Theoretical Biological Physics, and Biosciences, Rice University, Houston, Texas 77005
| | - Patricia Ann Jennings
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093.
| | - José Nelson Onuchic
- Center for Theoretical Biological Physics, and Biosciences, Rice University, Houston, Texas 77005; Departments of Physics and Astronomy, Chemistry, and Biosciences, Rice University, Houston, Texas 77005.
| |
Collapse
|
24
|
Sulkowska JI, Sułkowski P. Entangled Proteins: Knots, Slipknots, Links, and Lassos. SPRINGER SERIES IN SOLID-STATE SCIENCES 2018. [DOI: 10.1007/978-3-319-76596-9_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
25
|
Nunziata A, Borck G, Funcke JB, Kohlsdorf K, Brandt S, Hinney A, Moepps B, Gierschik P, Debatin KM, Fischer-Posovszky P, Wabitsch M. Estimated prevalence of potentially damaging variants in the leptin gene. Mol Cell Pediatr 2017; 4:10. [PMID: 29101506 PMCID: PMC5670095 DOI: 10.1186/s40348-017-0074-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/08/2017] [Indexed: 12/31/2022] Open
Abstract
Background Mutations in the leptin gene (LEP) can alter the secretion or interaction of leptin with its receptor, leading to extreme early-onset obesity. The purpose of this work was to estimate the prevalence of heterozygous and homozygous mutations in the leptin gene with the help of the Exome Aggregation Consortium (ExAC) database (http://exac.broadinstitute.org/about). Results The ExAC database encompasses exome sequencing data from 60,706 individuals. We searched for listed leptin variants and identified 36 missense, 1 in-frame deletion, and 3 loss-of-function variants. The functional relevance of these variants was assessed by the in silico prediction tools PolyPhen-2, Sorting Intolerant from Tolerant (SIFT), and Loss-Of-Function Transcript Effect Estimator (LOFTEE). PolyPhen-2 predicted 7 of the missense variants to be probably damaging and 10 to be possibly damaging. SIFT predicted 7 of the missense variants to be deleterious. Three loss-of-function variants were predicted by LOFTEE. Excluding double counts, we can summarize 21 variants as potentially damaging. Considering the allele count, we identified 31 heterozygous but no homozygous subjects with at least probably damaging variants. In the ExAC population, the estimated prevalence of heterozygous carriers of these potentially damaging variants was 1:2000. The probability of homozygosity was 1:15,000,000. We furthermore tried to assess the functionality of ExAC-listed leptin variants by applying a knowledge-driven approach. By this approach, additional 6 of the ExAC-listed variants were considered potentially damaging, increasing the number of heterozygous subjects to 58, the prevalence of heterozygosity to 1:1050, and the probability of homozygosity to 1:4,400,000. Conclusion Using exome sequencing data from ExAC, in silico prediction tools and by applying a knowledge-driven approach, we identified 27 probably damaging variants in the leptin gene of 58 heterozygous subjects. With this information, we estimate the prevalence for heterozygosity at 1:1050 corresponding to an prevalence of homozygosity of 1:4,400,000 in this large pluriethnic cohort. Electronic supplementary material The online version of this article (10.1186/s40348-017-0074-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adriana Nunziata
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Eythstr. 24, D-89075, Ulm, Germany
| | - Guntram Borck
- Institute of Human Genetics, University of Ulm, Albert-Einstein-Allee 11, D-89081, Ulm, Germany
| | - Jan-Bernd Funcke
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Eythstr. 24, D-89075, Ulm, Germany
| | - Katja Kohlsdorf
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Eythstr. 24, D-89075, Ulm, Germany
| | - Stephanie Brandt
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Eythstr. 24, D-89075, Ulm, Germany
| | - Anke Hinney
- Department of Child and Adolescent Psychiatry, Universität Duisburg-Essen, University Hospital Essen, Virchowstr. 174, D-45147, Essen, Germany
| | - Barbara Moepps
- Institute of Pharmacology and Toxicology, Universität Ulm, Albert-Einstein-Allee 11, D-89081, Ulm, Germany
| | - Peter Gierschik
- Institute of Pharmacology and Toxicology, Universität Ulm, Albert-Einstein-Allee 11, D-89081, Ulm, Germany
| | - Klaus-Michael Debatin
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Eythstr. 24, D-89075, Ulm, Germany
| | - Pamela Fischer-Posovszky
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Eythstr. 24, D-89075, Ulm, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Eythstr. 24, D-89075, Ulm, Germany.
| |
Collapse
|
26
|
Haglund E, Pilko A, Wollman R, Jennings PA, Onuchic JN. Pierced Lasso Topology Controls Function in Leptin. J Phys Chem B 2017; 121:706-718. [PMID: 28035835 DOI: 10.1021/acs.jpcb.6b11506] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein engineering is a powerful tool in drug design and therapeutics, where disulphide bridges are commonly introduced to stabilize proteins. However, these bonds also introduce covalent loops, which are often neglected. These loops may entrap the protein backbone on opposite sides, leading to a "knotted" topology, forming a so-called Pierced Lasso (PL). In this elegant system, the "knot" is held together with a single disulphide bridge where part of the polypeptide chain is threaded through. The size and position of these covalent loops can be manipulated through protein design in vitro, whereas nature uses polymorphism to switch the PL topology. The PL protein leptin shows genetic modification of an N-terminal residue, adding a third cysteine to the same sequence. In an effort to understand the mechanism of threading of these diverse topologies, we designed three loop variants to mimic the polymorphic sequence. This adds elegance to the system under study, as it allows the generation of three possible covalent loops; they are the original wild-type C-terminal loop protein, the fully circularized unthreaded protein, and the N-terminal loop protein, responsible for different lasso topologies. The size of the loop changes the threading mechanism from a slipknotting to a plugging mechanism, with increasing loop size. Interestingly, the ground state of the native protein structure is largely unaffected, but biological assays show that the activity is maximized by properly controlled dynamics in the threaded state. A threaded topology with proper conformational dynamics is important for receptor interaction and activation of the signaling pathways in vivo.
Collapse
Affiliation(s)
- Ellinor Haglund
- Center for Theoretical Biological Physics (CTBP) and Departments of Physics and Astronomy, Chemistry and Biosciences, Rice University , Houston, Texas, United States
| | - Anna Pilko
- Department of Chemistry and Biochemistry, The University of California, San Diego (UCSD) , La Jolla, California, United States
| | - Roy Wollman
- Department of Chemistry and Biochemistry, The University of California, San Diego (UCSD) , La Jolla, California, United States
| | - Patricia Ann Jennings
- Department of Chemistry and Biochemistry, The University of California, San Diego (UCSD) , La Jolla, California, United States
| | - José Nelson Onuchic
- Center for Theoretical Biological Physics (CTBP) and Departments of Physics and Astronomy, Chemistry and Biosciences, Rice University , Houston, Texas, United States
| |
Collapse
|
27
|
Wauman J, Zabeau L, Tavernier J. The Leptin Receptor Complex: Heavier Than Expected? Front Endocrinol (Lausanne) 2017; 8:30. [PMID: 28270795 PMCID: PMC5318964 DOI: 10.3389/fendo.2017.00030] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/01/2017] [Indexed: 12/31/2022] Open
Abstract
Under normal physiological conditions, leptin and the leptin receptor (ObR) regulate the body weight by balancing food intake and energy expenditure. However, this adipocyte-derived hormone also directs peripheral processes, including immunity, reproduction, and bone metabolism. Leptin, therefore, can act as a metabolic switch connecting the body's nutritional status to high energy consuming processes. We provide an extensive overview of current structural insights on the leptin-ObR interface and ObR activation, coupling to signaling pathways and their negative regulation, and leptin functioning under normal and pathophysiological conditions (obesity, autoimmunity, cancer, … ). We also discuss possible cross-talk with other receptor systems on the receptor (extracellular) and signaling cascade (intracellular) levels.
Collapse
Affiliation(s)
- Joris Wauman
- Cytokine Receptor Laboratory, Faculty of Medicine and Health Sciences, Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB Medical Biotechnology Center, VIB, Ghent, Belgium
| | - Lennart Zabeau
- Cytokine Receptor Laboratory, Faculty of Medicine and Health Sciences, Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB Medical Biotechnology Center, VIB, Ghent, Belgium
| | - Jan Tavernier
- Cytokine Receptor Laboratory, Faculty of Medicine and Health Sciences, Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB Medical Biotechnology Center, VIB, Ghent, Belgium
- *Correspondence: Jan Tavernier,
| |
Collapse
|
28
|
Abstract
We identify new entangled motifs in proteins that we call complex lassos. Lassos arise in proteins with disulfide bridges (or in proteins with amide linkages), when termini of a protein backbone pierce through an auxiliary surface of minimal area, spanned on a covalent loop. We find that as much as 18% of all proteins with disulfide bridges in a non-redundant subset of PDB form complex lassos, and classify them into six distinct geometric classes, one of which resembles supercoiling known from DNA. Based on biological classification of proteins we find that lassos are much more common in viruses, plants and fungi than in other kingdoms of life. We also discuss how changes in the oxidation/reduction potential may affect the function of proteins with lassos. Lassos and associated surfaces of minimal area provide new, interesting and possessing many potential applications geometric characteristics not only of proteins, but also of other biomolecules.
Collapse
|
29
|
Dabrowski-Tumanski P, Niemyska W, Pasznik P, Sulkowska JI. LassoProt: server to analyze biopolymers with lassos. Nucleic Acids Res 2016; 44:W383-9. [PMID: 27131383 PMCID: PMC4987892 DOI: 10.1093/nar/gkw308] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/09/2016] [Accepted: 04/12/2016] [Indexed: 11/14/2022] Open
Abstract
The LassoProt server, http://lassoprot.cent.uw.edu.pl/, enables analysis of biopolymers with entangled configurations called lassos. The server offers various ways of visualizing lasso configurations, as well as their time trajectories, with all the results and plots downloadable. Broad spectrum of applications makes LassoProt a useful tool for biologists, biophysicists, chemists, polymer physicists and mathematicians. The server and our methods have been validated on the whole PDB, and the results constitute the database of proteins with complex lassos, supported with basic biological data. This database can serve as a source of information about protein geometry and entanglement-function correlations, as a reference set in protein modeling, and for many other purposes.
Collapse
Affiliation(s)
- Pawel Dabrowski-Tumanski
- University of Warsaw, Faculty of Chemistry, Pasteura 1, Warsaw, Poland Centre of New Technologies, University of Warsaw, Banacha 2c, Warsaw, Poland
| | - Wanda Niemyska
- Centre of New Technologies, University of Warsaw, Banacha 2c, Warsaw, Poland University of Silesia, Institute of Mathematics, Bankowa 14, Katowice, Poland
| | - Pawel Pasznik
- Centre of New Technologies, University of Warsaw, Banacha 2c, Warsaw, Poland
| | - Joanna I Sulkowska
- University of Warsaw, Faculty of Chemistry, Pasteura 1, Warsaw, Poland Centre of New Technologies, University of Warsaw, Banacha 2c, Warsaw, Poland
| |
Collapse
|
30
|
Seroussi E, Cinnamon Y, Yosefi S, Genin O, Smith JG, Rafati N, Bornelöv S, Andersson L, Friedman-Einat M. Identification of the Long-Sought Leptin in Chicken and Duck: Expression Pattern of the Highly GC-Rich Avian leptin Fits an Autocrine/Paracrine Rather Than Endocrine Function. Endocrinology 2016; 157:737-51. [PMID: 26587783 DOI: 10.1210/en.2015-1634] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
More than 20 years after characterization of the key regulator of mammalian energy balance, leptin, we identified the leptin (LEP) genes of chicken (Gallus gallus) and duck (Anas platyrhynchos). The extreme guanine-cytosine content (∼70%), the location in a genomic region with low-complexity repetitive and palindromic sequence elements, the relatively low sequence conservation, and low level of expression have hampered the identification of these genes until now. In vitro-expressed chicken and duck leptins specifically activated signaling through the chicken leptin receptor in cell culture. In situ hybridization demonstrated expression of LEP mRNA in granular and Purkinje cells of the cerebellum, anterior pituitary, and in embryonic limb buds, somites, and branchial arches, suggesting roles in adult brain control of energy balance and during embryonic development. The expression patterns of LEP and the leptin receptor (LEPR) were explored in chicken, duck, and quail (Coturnix japonica) using RNA-sequencing experiments available in the Short Read Archive and by quantitative RT-PCR. In adipose tissue, LEP and LEPR were scarcely transcribed, and the expression level was not correlated to adiposity. Our identification of the leptin genes in chicken and duck genomes resolves a long lasting controversy regarding the existence of leptin genes in these species. This identification was confirmed by sequence and structural similarity, conserved exon-intron boundaries, detection in numerous genomic, and transcriptomic datasets and characterization by PCR, quantitative RT-PCR, in situ hybridization, and bioassays. Our results point to an autocrine/paracrine mode of action for bird leptin instead of being a circulating hormone as in mammals.
Collapse
Affiliation(s)
- Eyal Seroussi
- Agricultural Research Organization (E.S., Y.C., S.Y., O.G., J.G.-S., M.F.-E.), Volcani Center, 50250 Bet-Dagan, Israel; Department of Medical Biochemistry and Microbiology (N.R., S.B., L.A.), Uppsala University, SE-75123 Uppsala, Sweden; Department of Animal Breeding and Genetics (L.A.), Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden; and Department of Veterinary Integrative Biosciences (L.A.), College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4458
| | - Yuval Cinnamon
- Agricultural Research Organization (E.S., Y.C., S.Y., O.G., J.G.-S., M.F.-E.), Volcani Center, 50250 Bet-Dagan, Israel; Department of Medical Biochemistry and Microbiology (N.R., S.B., L.A.), Uppsala University, SE-75123 Uppsala, Sweden; Department of Animal Breeding and Genetics (L.A.), Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden; and Department of Veterinary Integrative Biosciences (L.A.), College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4458
| | - Sara Yosefi
- Agricultural Research Organization (E.S., Y.C., S.Y., O.G., J.G.-S., M.F.-E.), Volcani Center, 50250 Bet-Dagan, Israel; Department of Medical Biochemistry and Microbiology (N.R., S.B., L.A.), Uppsala University, SE-75123 Uppsala, Sweden; Department of Animal Breeding and Genetics (L.A.), Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden; and Department of Veterinary Integrative Biosciences (L.A.), College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4458
| | - Olga Genin
- Agricultural Research Organization (E.S., Y.C., S.Y., O.G., J.G.-S., M.F.-E.), Volcani Center, 50250 Bet-Dagan, Israel; Department of Medical Biochemistry and Microbiology (N.R., S.B., L.A.), Uppsala University, SE-75123 Uppsala, Sweden; Department of Animal Breeding and Genetics (L.A.), Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden; and Department of Veterinary Integrative Biosciences (L.A.), College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4458
| | - Julia Gage Smith
- Agricultural Research Organization (E.S., Y.C., S.Y., O.G., J.G.-S., M.F.-E.), Volcani Center, 50250 Bet-Dagan, Israel; Department of Medical Biochemistry and Microbiology (N.R., S.B., L.A.), Uppsala University, SE-75123 Uppsala, Sweden; Department of Animal Breeding and Genetics (L.A.), Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden; and Department of Veterinary Integrative Biosciences (L.A.), College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4458
| | - Nima Rafati
- Agricultural Research Organization (E.S., Y.C., S.Y., O.G., J.G.-S., M.F.-E.), Volcani Center, 50250 Bet-Dagan, Israel; Department of Medical Biochemistry and Microbiology (N.R., S.B., L.A.), Uppsala University, SE-75123 Uppsala, Sweden; Department of Animal Breeding and Genetics (L.A.), Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden; and Department of Veterinary Integrative Biosciences (L.A.), College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4458
| | - Susanne Bornelöv
- Agricultural Research Organization (E.S., Y.C., S.Y., O.G., J.G.-S., M.F.-E.), Volcani Center, 50250 Bet-Dagan, Israel; Department of Medical Biochemistry and Microbiology (N.R., S.B., L.A.), Uppsala University, SE-75123 Uppsala, Sweden; Department of Animal Breeding and Genetics (L.A.), Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden; and Department of Veterinary Integrative Biosciences (L.A.), College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4458
| | - Leif Andersson
- Agricultural Research Organization (E.S., Y.C., S.Y., O.G., J.G.-S., M.F.-E.), Volcani Center, 50250 Bet-Dagan, Israel; Department of Medical Biochemistry and Microbiology (N.R., S.B., L.A.), Uppsala University, SE-75123 Uppsala, Sweden; Department of Animal Breeding and Genetics (L.A.), Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden; and Department of Veterinary Integrative Biosciences (L.A.), College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4458
| | - Miriam Friedman-Einat
- Agricultural Research Organization (E.S., Y.C., S.Y., O.G., J.G.-S., M.F.-E.), Volcani Center, 50250 Bet-Dagan, Israel; Department of Medical Biochemistry and Microbiology (N.R., S.B., L.A.), Uppsala University, SE-75123 Uppsala, Sweden; Department of Animal Breeding and Genetics (L.A.), Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden; and Department of Veterinary Integrative Biosciences (L.A.), College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4458
| |
Collapse
|
31
|
Wang D, Xu C, Wang T, Li H, Li Y, Ren J, Tian Y, Li Z, Jiao Y, Kang X, Liu X. Discovery and functional characterization of leptin and its receptors in Japanese quail (Coturnix japonica). Gen Comp Endocrinol 2016; 225:1-12. [PMID: 26342967 DOI: 10.1016/j.ygcen.2015.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/07/2015] [Accepted: 09/01/2015] [Indexed: 12/31/2022]
Abstract
Leptin is an important endocrine regulation factor of food intake and energy homeostasis in mammals; however, the existence of a poultry leptin gene (LEP) is still debated. Here, for the first time, we report the cloning of a partial exon 3 sequence of LEP (qLEP) and four different leptin receptor splicing variants, including a long receptor (qLEPRl) and three soluble receptors (qLEPR-a, qLEPR-b and qLEPR-c) in Japanese quail (Coturnix japonica). The qLEP gene had high GC content (64%), which is similar to other reported avian leptin genes. The encoded qLEP protein possessed the conserved pair of cysteine residues that are required to form a lasso knot for full biological activity, but shared relatively low identities with LEPs of other vertebrates. The translated qLEPRl protein contained 1143 amino acids and shared high amino acid sequence identity with a chicken homolog (89% identity). qLEPRl also contained all the motifs, domains, and basic tyrosine residues that are conserved in the LEPRl proteins of other vertebrates. qRT-PCR analysis showed that LEP and the four LEPR variants were expressed extensively in all tissues examined; the expression levels of LEP were relatively high in hypothalamus, skeletal muscle, and pancreas, while the expression levels of the LEPRs were highest in the pituitary. Compared with the expression levels of juvenile qLEP and total qLEPR (including all LEPR variants), the expression levels of mature qLEP and total qLEPR were up-regulated in the hypothalamus and pituitary, and down-regulated in the ovary. The expressions of LEP/LEPR increased when fasting and decreased when refeeding in the brain and peripheral tissues of juvenile quail, which suggested that the LEP/LEPR system modulated food intake and energy expenditure, although, unlike in mammals, LEP may actually act to inhibit food intake during fasting, at least in juvenile quail. The results indicate that qLEP and qLEPR have unique expression patterns and that the encoded proteins play important roles in the regulation of reproduction and energy status in Japanese quail.
Collapse
Affiliation(s)
- Dandan Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Chunlin Xu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Taian Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Hong Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Yanmin Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Junxiao Ren
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Yadong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450002, China; International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450002, China; International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450002, China
| | - Yuping Jiao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; Institute of Animal Husbandry and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450002, China; International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450002, China.
| | - Xiaojun Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450002, China; International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
32
|
Haglund E. Engineering covalent loops in proteins can serve as an on/off switch to regulate threaded topologies. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:354107. [PMID: 26291088 DOI: 10.1088/0953-8984/27/35/354107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Knots in proteins are under active investigation motivating refinements of current techniques and the development of tools to better understand the knotted topology. A strong focus is to identify new knots and expand upon the current understanding of their complex topology. Previous work has shown that the knotted topology, even in the simplest case of knots, encompasses a variety of unique challenges in folding and tying a chain. To bypass many of the in vitro experimental complications involved in working with knots, it is useful to apply methodologies to a more simplified system. The pierced lasso bundles (PLB), we discovered where a single disulphide bridge holds the threaded topology together, presents a simpler system to study knots in vitro. Having a disulphide bridge as an on/off switch between the threaded/unthreaded topology is advantageous because a covalent loop allows manipulation of the knot without directly altering affecting secondary and tertiary structure. Because disulphide bridges are commonly used in protein engineering, a pierced lasso (PL) topology can be easily introduced into a protein of interest to form a knotted topology within a given secondary structure. It is also important to take into account that if formed, disulphides can inadvertently introduce an unwanted PL. This was found upon determination of the crystal structure (PDB code 2YHG) of the recently de novo designed nucleoside hydrolase. Our detailed investigations of the PL presented here will allow researchers to look at the introduction of disulphide bridges in a larger context with respect to potential geometrical consequences on the structure and functional properties of proteins.
Collapse
Affiliation(s)
- Ellinor Haglund
- Center for Theoretical Biological Physics (CTBP) and Department of Physics, University of California, San Diego (UCSD), La Jolla, CA 92093, USA. Center for Theoretical Biological Physics (CTBP) and Departments of Physics and Astronomy, Chemistry and Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| |
Collapse
|
33
|
Chimal-Vega B, Paniagua-Castro N, Carrillo Vazquez J, Rosas-Trigueros JL, Zamorano-Carrillo A, Benítez-Cardoza CG. Exploring the structure and conformational landscape of human leptin. A molecular dynamics approach. J Theor Biol 2015; 385:90-101. [PMID: 26342543 DOI: 10.1016/j.jtbi.2015.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 07/21/2015] [Accepted: 08/17/2015] [Indexed: 11/29/2022]
Abstract
Leptin is a hormone that regulates energy homeostasis, inflammation, hematopoiesis and immune response, among other functions (Houseknecht et al., 1998; Zhang et al., 1995; Paz-Filho et al., 2010). To obtain its crystallographic structure, it was necessary to substitute a tryptophan for a glutamic acid at position 100, thus creating a mutant leptin that has been reported to have biological activity comparable to the activity of the wild type but that crystallizes more readily. Here, we report a comparative study of the conformational space of WT and W100E leptin using molecular dynamics simulations performed at 300, 400, and 500 K. We detected differences between the interactions of the two proteins with local and distal effects, resulting in changes in the conformation, accessible surface area, compactness, electrostatic potential and dynamic behavior. Additionally, the series of unfolding events that occur when leptin is subjected to high temperature differs for the two constructs. We observed that both proteins are mostly unstructured after 20 ns of MD simulation at 500 K. However, WT leptin maintains a significant amount of secondary structure in helix α2, while the most stable region of W100E leptin is helix α3. Furthermore, we found that the region between residues 25 and 42 might adopt interconverting secondary structures ranging from α-helices and random coils to β-strand structures. Thus, this region can be considered an intrinsically disordered region. This atomistic description supports our understanding of leptin signaling and consequently might facilitate the use of leptin in treatments for the pathophysiologies in which it is implicated.
Collapse
Affiliation(s)
- Brenda Chimal-Vega
- Laboratorio de Investigación Bioquímica y Biofísica Computacional, Doctorado en Ciencias en Biotecnología, ENMH, Instituto Politécnico Nacional, Guillermo Massieu Helguera, México, D.F. 07320, México
| | - Norma Paniagua-Castro
- Departamento de Fisiología, Doctorado en Ciencias en Biotecnología, ENCB, Instituto Politécnico Nacional. Avenida Wilfrido Massieu s/n, Esq. Manuel L. Stampa, Col. Unidad Profesional Adolfo López Mateos, Delegación Gustavo A. Madero, 07738 México, D.F., México
| | - Jonathan Carrillo Vazquez
- Laboratorio de Investigación Bioquímica y Biofísica Computacional, Doctorado en Ciencias en Biotecnología, ENMH, Instituto Politécnico Nacional, Guillermo Massieu Helguera, México, D.F. 07320, México
| | - Jorge L Rosas-Trigueros
- Laboratorio Transdisciplinario de Investigación en Sistemas Evolutivos, SEPI de la ESCOM del Instituto Politécnico Nacional, Juan de Dios Bátiz y Miguel Othón de Mendizábal s/n, México, D.F. 07738, México
| | - Absalom Zamorano-Carrillo
- Laboratorio de Investigación Bioquímica y Biofísica Computacional, Doctorado en Ciencias en Biotecnología, ENMH, Instituto Politécnico Nacional, Guillermo Massieu Helguera, México, D.F. 07320, México
| | - Claudia G Benítez-Cardoza
- Laboratorio de Investigación Bioquímica y Biofísica Computacional, Doctorado en Ciencias en Biotecnología, ENMH, Instituto Politécnico Nacional, Guillermo Massieu Helguera, México, D.F. 07320, México.
| |
Collapse
|
34
|
Leptin: From structural insights to the design of antagonists. Life Sci 2015; 140:49-56. [PMID: 25998027 DOI: 10.1016/j.lfs.2015.04.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 12/20/2022]
Abstract
After its discovery in 1994, it soon became clear that leptin acts as an adipocyte-derived hormone with a central role in the control of body weight and energy homeostasis. However, a growing body of evidence has revealed that leptin is a pleiotropic cytokine with activities on many peripheral cell types. Inappropriate leptin signaling can promote autoimmunity, certain cardiovascular diseases, elevated blood pressure and cancer, which makes leptin and the leptin receptor interesting targets for antagonism. Profound insights in the leptin receptor (LR) activation mechanisms are a prerequisite for the rational design of these antagonists. In this review, we focus on the molecular mechanisms underlying leptin receptor activation and signaling. We also discuss the current strategies to interfere with leptin signaling and their therapeutic potential.
Collapse
|
35
|
Peelman F, Zabeau L, Moharana K, Savvides SN, Tavernier J. 20 years of leptin: insights into signaling assemblies of the leptin receptor. J Endocrinol 2014; 223:T9-23. [PMID: 25063754 DOI: 10.1530/joe-14-0264] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Leptin plays a central role in the control of body weight and energy homeostasis, but is a pleiotropic cytokine with activities on many peripheral cell types. In this review, we discuss the interaction of leptin with its receptor, and focus on the structural and mechanistic aspects of the extracellular aspects of leptin receptor (LR) activation. We provide an extensive overview of all structural information that has been obtained for leptin and its receptor via X-ray crystallography, electron microscopy, small-angle X-ray scattering, homology modeling, and mutagenesis studies. The available knowledge is integrated into putative models toward a recapitulation of the LR activation mechanism.
Collapse
Affiliation(s)
- Frank Peelman
- Department of Medical Protein ResearchFaculty of Medicine and Health Sciences, Flanders Institute for Biotechnology (VIB), Ghent University, A. Baertsoenkaai 3, 9000 Ghent, BelgiumUnit for Structural BiologyLaboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE), Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Lennart Zabeau
- Department of Medical Protein ResearchFaculty of Medicine and Health Sciences, Flanders Institute for Biotechnology (VIB), Ghent University, A. Baertsoenkaai 3, 9000 Ghent, BelgiumUnit for Structural BiologyLaboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE), Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Kedar Moharana
- Department of Medical Protein ResearchFaculty of Medicine and Health Sciences, Flanders Institute for Biotechnology (VIB), Ghent University, A. Baertsoenkaai 3, 9000 Ghent, BelgiumUnit for Structural BiologyLaboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE), Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Savvas N Savvides
- Department of Medical Protein ResearchFaculty of Medicine and Health Sciences, Flanders Institute for Biotechnology (VIB), Ghent University, A. Baertsoenkaai 3, 9000 Ghent, BelgiumUnit for Structural BiologyLaboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE), Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Jan Tavernier
- Department of Medical Protein ResearchFaculty of Medicine and Health Sciences, Flanders Institute for Biotechnology (VIB), Ghent University, A. Baertsoenkaai 3, 9000 Ghent, BelgiumUnit for Structural BiologyLaboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE), Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| |
Collapse
|
36
|
Friedman-Einat M, Cogburn LA, Yosefi S, Hen G, Shinder D, Shirak A, Seroussi E. Discovery and characterization of the first genuine avian leptin gene in the rock dove (Columba livia). Endocrinology 2014; 155:3376-84. [PMID: 24758303 DOI: 10.1210/en.2014-1273] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Leptin, the key regulator of mammalian energy balance, has been at the center of a great controversy in avian biology for the last 15 years since initial reports of a putative leptin gene (LEP) in chickens. Here, we characterize a novel LEP in rock dove (Columba livia) with low similarity of the predicted protein sequence (30% identity, 47% similarity) to the human ortholog. Searching the Sequence-Read-Archive database revealed leptin transcripts, in the dove's liver, with 2 noncoding exons preceding 2 coding exons. This unusual 4-exon structure was validated by sequencing of a GC-rich product (76% GC, 721 bp) amplified from liver RNA by RT-PCR. Sequence alignment of the dove leptin with orthologous leptins indicated that it consists of a leader peptide (21 amino acids; aa) followed by the mature protein (160 aa), which has a putative structure typical of 4-helical-bundle cytokines except that it is 12 aa longer than human leptin. Extra residues (10 aa) were located within the loop between 2 5'-helices, interrupting the amino acid motif that is conserved in tetrapods and considered essential for activation of leptin receptor (LEPR) but not for receptor binding per se. Quantitative RT-PCR of 11 tissues showed highest (P < .05) expression of LEP in the dove's liver, whereas the dove LEPR peaked (P < .01) in the pituitary. Both genes were prominently expressed in the gonads and at lower levels in tissues involved in mammalian leptin signaling (adipose; hypothalamus). A bioassay based on activation of the chicken LEPR in vitro showed leptin activity in the dove's circulation, suggesting that dove LEP encodes an active protein, despite the interrupted loop motif. Providing tools to study energy-balance control at an evolutionary perspective, our original demonstration of leptin signaling in dove predicts a more ancient role of leptin in growth and reproduction in birds, rather than appetite control.
Collapse
Affiliation(s)
- Miriam Friedman-Einat
- Agricultural Research Organization (M.F.-E., S.Y., G.H., D.S., A.S., E.S.), Volcani Center, Bet-Dagan, 50-250 Israel; and Department of Animal and Food Sciences (L.A.C.), University of Delaware, Newark, Delaware 19716
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
BACKGROUND A LEP transcript up-regulated in lungs of ducks (Anas platyrhynchos) infected by avian influenza A virus was recently described in the Nature Genetics manuscript that reported the duck genome. In vertebrates, LEP gene symbol is reserved for leptin, the key regulator of energy balance in mammals. RESULTS Launching an extensive search for this gene in the genome data that was submitted to the public databases along with duck genome manuscript and extending this search to all avian genomes in the whole-genome shotgun-sequencing database, we were able to report the first identification of coding sequences capable of encoding the full leptin protein precursor in wild birds. Gene structure, synteny and sequence-similarity (up to 54% identity and 68% similarity) to reptilian leptin evident in falcons (Falco peregrinus and cherrug), tits (Pseudopodoces humilis), finches (Taeniopygia guttata) and doves (Columba livia) confirmed that the bird leptin was a true ortholog of its mammalian form. Nevertheless, in duck, like other domestic fowls the LEP gene was not identifiable. CONCLUSION Lack of the LEP gene in poultry suggests that birds that have lost it are particularly suited to domestication. Identification of an intact avian gene for leptin in wild birds might explain in part the evolutionary conservation of its receptor in leptin-less fowls.
Collapse
Affiliation(s)
| | - Eyal Seroussi
- Institute of Animal Science, The Volcani Center, Rishon Le-Zion, Israel.
| |
Collapse
|
38
|
Haglund E, Sulkowska JI, Noel JK, Lammert H, Onuchic JN, Jennings PA. Pierced Lasso Bundles are a new class of knot-like motifs. PLoS Comput Biol 2014; 10:e1003613. [PMID: 24945798 PMCID: PMC4063663 DOI: 10.1371/journal.pcbi.1003613] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/26/2014] [Indexed: 01/11/2023] Open
Abstract
A four-helix bundle is a well-characterized motif often used as a target for designed pharmaceutical therapeutics and nutritional supplements. Recently, we discovered a new structural complexity within this motif created by a disulphide bridge in the long-chain helical bundle cytokine leptin. When oxidized, leptin contains a disulphide bridge creating a covalent-loop through which part of the polypeptide chain is threaded (as seen in knotted proteins). We explored whether other proteins contain a similar intriguing knot-like structure as in leptin and discovered 11 structurally homologous proteins in the PDB. We call this new helical family class the Pierced Lasso Bundle (PLB) and the knot-like threaded structural motif a Pierced Lasso (PL). In the current study, we use structure-based simulation to investigate the threading/folding mechanisms for all the PLBs along with three unthreaded homologs as the covalent loop (or lasso) in leptin is important in folding dynamics and activity. We find that the presence of a small covalent loop leads to a mechanism where structural elements slipknot to thread through the covalent loop. Larger loops use a piercing mechanism where the free terminal plugs through the covalent loop. Remarkably, the position of the loop as well as its size influences the native state dynamics, which can impact receptor binding and biological activity. This previously unrecognized complexity of knot-like proteins within the helical bundle family comprises a completely new class within the knot family, and the hidden complexity we unraveled in the PLBs is expected to be found in other protein structures outside the four-helix bundles. The insights gained here provide critical new elements for future investigation of this emerging class of proteins, where function and the energetic landscape can be controlled by hidden topology, and should be take into account in ab initio predictions of newly identified protein targets.
Collapse
Affiliation(s)
- Ellinor Haglund
- Center for Theoretical Biological Physics (CTBP) and Department of Physics, University of California at San Diego (UCSD), La Jolla, California, United States of America
- Center for Theoretical Biological Physics (CTBP) and Departments of Physics and Astronomy, Chemistry and Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | | | - Jeffrey K. Noel
- Center for Theoretical Biological Physics (CTBP) and Departments of Physics and Astronomy, Chemistry and Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - Heiko Lammert
- Center for Theoretical Biological Physics (CTBP) and Departments of Physics and Astronomy, Chemistry and Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - José N. Onuchic
- Center for Theoretical Biological Physics (CTBP) and Departments of Physics and Astronomy, Chemistry and Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - Patricia A. Jennings
- Departments of Chemistry and Biochemistry, University of California at San Diego (UCSD), La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
39
|
Molecular dynamics, dynamic site mapping, and highthroughput virtual screening on leptin and the Ob receptor as anti-obesity target. J Mol Model 2014; 20:2247. [DOI: 10.1007/s00894-014-2247-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/09/2014] [Indexed: 10/25/2022]
|