1
|
George Pryzdial EL, Perrier JR, Rashid MU, West HE, Sutherland MR. Viral coagulation: pushing the envelope. J Thromb Haemost 2024; 22:3366-3382. [PMID: 39260743 DOI: 10.1016/j.jtha.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/11/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024]
Abstract
Many virus types affect the blood clotting system with correlations to pathology that range widely from thrombosis to hemorrhage linking to inflammation. Here we overview the intricate crosstalk induced by infection between proteins on the virus encoded by either the host or virus genomes, coagulation proteins, platelets, leukocytes, and endothelial cells. For blood-borne viruses with an outer covering acquired from the host cell, the envelope, a key player may be the cell-derived trigger of coagulation on the virus surface, tissue factor (TF). TF is a multifunctional transmembrane cofactor that accelerates factor (F)VIIa-dependent activation of FX to FXa, leading to clot formation. However, the nascent TF/FVIIa/FXa complex also facilitates G protein-coupled modulation of cells via protease-activated receptor 2. As a viral envelope constituent, TF can bypass the physiological modes of regulation, thereby initiating the activation of neighboring platelets, leukocytes, and endothelial cells. A thromboinflammatory environment is predicted due to feedback amplification in response to cellular release of cytokines, procoagulant proteins, neutrophil extracellular traps, and stimulus-induced accessibility of adhesive receptors, resulting in cellular aggregates. The pathobiological effects of thromboinflammation ultimately contribute to innate and adaptive immunity for viral clearance. In contrast, the preceding stages of viral infection may be enhanced via the TF-protease axis.
Collapse
Affiliation(s)
- Edward Louis George Pryzdial
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Division of Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada.
| | - John Ruggles Perrier
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Division of Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
| | - Mahamud-Ur Rashid
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Division of Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
| | - Henry Euan West
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Division of Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
| | - Michael Ross Sutherland
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Division of Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Gebetsberger L, Malekshahi Z, Teutsch A, Tajti G, Fontaine F, Marella N, Mueller A, Prantl L, Stockinger H, Stoiber H, Ohradanova-Repic A. SARS-CoV-2 hijacks host CD55, CD59 and factor H to impair antibody-dependent complement-mediated lysis. Emerg Microbes Infect 2024; 13:2417868. [PMID: 39435487 PMCID: PMC11520101 DOI: 10.1080/22221751.2024.2417868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/18/2024] [Accepted: 10/13/2024] [Indexed: 10/23/2024]
Abstract
The complement system is a vital anti-microbial defence mechanism against circulating pathogens. Excessive complement activation can have deleterious outcomes for the host and is consequently tightly modulated by a set of membrane-associated and fluid-phase regulators of complement activation (RCAs). Here, we demonstrate that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hijacks host cellular RCA members CD55 and CD59 and serum-derived Factor H (FH) to resist antibody-dependent complement-mediated lysis triggered by immunized human sera. Blockage of the biological functions of virion-associated CD55 and CD59 and competition of FH recruitment with functionally inactive recombinant FH-derived short consensus repeats SCR18-20 restore SARS-CoV-2 complement sensitivity in a synergistic manner. Moreover, complement-mediated virolysis is dependent on classical pathway activation and does not occur in the absence of virus-specific antibodies. Altogether, our findings present an intriguing immune escape mechanism that provides novel insights into the immunopathology observed in severe coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Laura Gebetsberger
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Zahra Malekshahi
- Medical University of Innsbruck, Institute of Virology, Innsbruck, Austria
| | - Aron Teutsch
- Medical University of Innsbruck, Institute of Virology, Innsbruck, Austria
| | - Gabor Tajti
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Frédéric Fontaine
- CeMM – Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Nara Marella
- CeMM – Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - André Mueller
- CeMM – Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Lena Prantl
- Medical University of Innsbruck, Institute of Virology, Innsbruck, Austria
| | - Hannes Stockinger
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Heribert Stoiber
- Medical University of Innsbruck, Institute of Virology, Innsbruck, Austria
| | - Anna Ohradanova-Repic
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| |
Collapse
|
3
|
Malekshahi Z, Bernklau S, Schiela B, Koske I, Banki Z, Stiasny K, Harris CL, Würzner R, Stoiber H. Incorporation of CD55 into the Zika Viral Envelope Contributes to Its Stability against Human Complement. Viruses 2021; 13:v13030510. [PMID: 33808725 PMCID: PMC8003375 DOI: 10.3390/v13030510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/25/2022] Open
Abstract
The rapid spread of the virus in Latin America and the association of the infection with microcephaly in newborns or Guillain–Barré Syndrome in adults prompted the WHO to declare the Zika virus (ZIKV) epidemic to be an international public health emergency in 2016. As the virus was first discovered in monkeys and is spread not only by mosquitos but also from human to human, we investigated the stability to the human complement of ZIKV derived from mosquito (ZIKVInsect), monkey (ZIKVVero), or human cells (ZIKVA549 and ZIKVFibro), respectively. At a low serum concentration (10%), which refers to complement concentrations found on mucosal surfaces, the virus was relatively stable at 37 °C. At higher complement levels (up to 50% serum concentration), ZIKV titers differed significantly depending on the cell line used for the propagation of the virus. While the viral titer of ZIKVInsect decreased about two orders in magnitude, when incubated with human serum, the virus derived from human cells was more resistant to complement-mediated lysis (CML). By virus-capture assay and Western blots, the complement regulator protein CD55 was identified to be incorporated into the viral envelope. Blocking of CD55 by neutralizing Abs significantly increased the sensitivity to human complement. Taken together, these data indicate that the incorporation of CD55 from human cells contributes to the stability of ZIKV against complement-mediated virolysis.
Collapse
Affiliation(s)
- Zahra Malekshahi
- Institute of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (Z.M.); (S.B.); (B.S.); (I.K.); (Z.B.)
| | - Sarah Bernklau
- Institute of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (Z.M.); (S.B.); (B.S.); (I.K.); (Z.B.)
| | - Britta Schiela
- Institute of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (Z.M.); (S.B.); (B.S.); (I.K.); (Z.B.)
| | - Iris Koske
- Institute of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (Z.M.); (S.B.); (B.S.); (I.K.); (Z.B.)
| | - Zoltan Banki
- Institute of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (Z.M.); (S.B.); (B.S.); (I.K.); (Z.B.)
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Claire L. Harris
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
| | - Reinhard Würzner
- Institute of Hygiene & Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Correspondence: (R.W.); (H.S.)
| | - Heribert Stoiber
- Institute of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (Z.M.); (S.B.); (B.S.); (I.K.); (Z.B.)
- Correspondence: (R.W.); (H.S.)
| |
Collapse
|
4
|
Malekshahi Z, Schiela B, Bernklau S, Banki Z, Würzner R, Stoiber H. Interference of the Zika Virus E-Protein With the Membrane Attack Complex of the Complement System. Front Immunol 2020; 11:569549. [PMID: 33193347 PMCID: PMC7655927 DOI: 10.3389/fimmu.2020.569549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/05/2020] [Indexed: 12/16/2022] Open
Abstract
The complement system has developed different strategies to clear infections by several effector mechanisms, such as opsonization, which supports phagocytosis, attracting immune cells by C3 and C5 cleavage products, or direct killing of pathogens by the formation of the membrane attack complex (MAC). As the Zika virus (ZIKV) activates the classical complement pathway and thus has to avoid clearance by the complement system, we analyzed putative viral escape mechanisms, which limit virolysis. We identified binding of the recombinant viral envelope E protein to components of the terminal pathway complement (C5b6, C7, C8, and C9) by ELISA. Western blot analyses revealed that ZIKV E protein interfered with the polymerization of C9, induced on cellular surfaces, either by purified terminal complement proteins or by normal human serum (NHS) as a source of the complement. Further, the hemolytic activity of NHS was significantly reduced in the presence of the recombinant E protein or entire viral particles. This data indicates that ZIKV reduces MAC formation and complement-mediated lysis by binding terminal complement proteins to the viral E protein.
Collapse
Affiliation(s)
- Zahra Malekshahi
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Britta Schiela
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sarah Bernklau
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zoltan Banki
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Reinhard Würzner
- Institute of Hygiene & Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Heribert Stoiber
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
5
|
Maloney BE, Perera KD, Saunders DRD, Shadipeni N, Fleming SD. Interactions of viruses and the humoral innate immune response. Clin Immunol 2020; 212:108351. [PMID: 32028020 DOI: 10.1016/j.clim.2020.108351] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/01/2020] [Accepted: 02/01/2020] [Indexed: 12/13/2022]
Abstract
The innate immune response is crucial for defense against virus infections where the complement system, coagulation cascade and natural antibodies play key roles. These immune components are interconnected in an intricate network and are tightly regulated to maintain homeostasis and avoid uncontrolled immune responses. Many viruses in turn have evolved to modulate these interactions through various strategies to evade innate immune activation. This review summarizes the current understanding on viral strategies to inhibit the activation of complement and coagulation cascades, evade natural antibody-mediated clearance and utilize complement regulatory mechanisms to their advantage.
Collapse
Affiliation(s)
- Bailey E Maloney
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Krishani Dinali Perera
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Danielle R D Saunders
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Naemi Shadipeni
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Sherry D Fleming
- Division of Biology, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
6
|
Yu J, Murthy V, Liu SL. Relating GPI-Anchored Ly6 Proteins uPAR and CD59 to Viral Infection. Viruses 2019; 11:E1060. [PMID: 31739586 PMCID: PMC6893729 DOI: 10.3390/v11111060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 12/30/2022] Open
Abstract
The Ly6 (lymphocyte antigen-6)/uPAR (urokinase-type plasminogen activator receptor) superfamily protein is a group of molecules that share limited sequence homology but conserved three-fingered structures. Despite diverse cellular functions, such as in regulating host immunity, cell adhesion, and migration, the physiological roles of these factors in vivo remain poorly characterized. Notably, increasing research has focused on the interplays between Ly6/uPAR proteins and viral pathogens, the results of which have provided new insight into viral entry and virus-host interactions. While LY6E (lymphocyte antigen 6 family member E), one key member of the Ly6E/uPAR-family proteins, has been extensively studied, other members have not been well characterized. Here, we summarize current knowledge of Ly6/uPAR proteins related to viral infection, with a focus on uPAR and CD59. Our goal is to provide an up-to-date view of the Ly6/uPAR-family proteins and associated virus-host interaction and viral pathogenesis.
Collapse
Affiliation(s)
- Jingyou Yu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; (J.Y.); (V.M.)
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Vaibhav Murthy
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; (J.Y.); (V.M.)
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; (J.Y.); (V.M.)
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Pipperger L, Koske I, Wild N, Müllauer B, Krenn D, Stoiber H, Wollmann G, Kimpel J, von Laer D, Bánki Z. Xenoantigen-Dependent Complement-Mediated Neutralization of Lymphocytic Choriomeningitis Virus Glycoprotein-Pseudotyped Vesicular Stomatitis Virus in Human Serum. J Virol 2019; 93:e00567-19. [PMID: 31243134 PMCID: PMC6714799 DOI: 10.1128/jvi.00567-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/18/2019] [Indexed: 01/09/2023] Open
Abstract
Neutralization by antibodies and complement limits the effective dose and thus the therapeutic efficacy of oncolytic viruses after systemic application. We and others previously showed that pseudotyping of oncolytic rhabdoviruses such as maraba virus and vesicular stomatitis virus (VSV) with the lymphocytic choriomeningitis virus glycoprotein (LCMV-GP) results in only a weak induction of neutralizing antibodies. Moreover, LCMV-GP-pseudotyped VSV (VSV-GP) was significantly more stable in normal human serum (NHS) than VSV. Here, we demonstrate that depending on the cell line used for virus production, VSV-GP showed different complement sensitivities in nonimmune NHS. The NHS-mediated titer reduction of VSV-GP was dependent on activation of the classical complement pathway, mainly by natural IgM antibodies against xenoantigens such as galactose-α-(1,3)-galactose (α-Gal) or N-glycolylneuraminic acid (Neu5Gc) expressed on nonhuman production cell lines. VSV-GP produced on human cell lines was stable in NHS. However, VSV-GP generated in transduced human cells expressing α-Gal became sensitive to NHS. Furthermore, GP-specific antibodies induced complement-mediated neutralization of VSV-GP independently of the producer cell line, suggesting that complement regulatory proteins potentially acquired by the virus during the budding process are not sufficient to rescue the virus from antibody-dependent complement-mediated lysis. Thus, our study points to the importance of a careful selection of cell lines for viral vector production for clinical use.IMPORTANCE Systemic application aims to deliver oncolytic viruses to tumors as well as to metastatic lesions. However, we found that xenoantigens incorporated onto the viral surface from nonhuman production cell lines are recognized by natural antibodies in human serum and that the virus is thereby inactivated by complement lysis. Hence, to maximize the effective dose, careful selection of cell lines for virus production is crucial.
Collapse
Affiliation(s)
- Lisa Pipperger
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Iris Koske
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nicole Wild
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Brigitte Müllauer
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniela Krenn
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Heribert Stoiber
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Guido Wollmann
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University of Innsbruck, Innsbruck, Austria
| | - Janine Kimpel
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dorothee von Laer
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zoltán Bánki
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
8
|
El-Shamy A, Branch AD, Schiano TD, Gorevic PD. The Complement System and C1q in Chronic Hepatitis C Virus Infection and Mixed Cryoglobulinemia. Front Immunol 2018; 9:1001. [PMID: 29910796 PMCID: PMC5992393 DOI: 10.3389/fimmu.2018.01001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/23/2018] [Indexed: 12/17/2022] Open
Abstract
The complement system bridges innate and adaptive immunity against microbial infections, with viral infection being a major trigger. Activation of the classical, alternative, and lectin pathways have been reported in chronic hepatitis C virus (HCV) infection and/or cryoglobulinemia. HCV infection leads to dysregulation of complement-mediated immune responses. Clinical and experimental evidence support involvement of complement in intra- and extrahepatic manifestations of HCV infection, such as liver fibrosis and type II cryoglobulinemia. In this review, we summarize studies that have investigated the interplay between HCV and the complement system to establish chronic infection and autoimmunity, as well as the association between HCV pathogenesis and abnormal complement profiles. Several unanswered questions are highlighted which suggest additional informative lines of investigation.
Collapse
Affiliation(s)
- Ahmed El-Shamy
- Division of Liver Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Pharmaceutical and Biological Sciences, California Northstate University, Elk Grove, CA, United States
| | - Andrea D Branch
- Division of Liver Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Thomas D Schiano
- Division of Liver Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Peter D Gorevic
- Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
9
|
Ludwig A, Nguyen TH, Leong D, Ravi LI, Tan BH, Sandin S, Sugrue RJ. Caveolae provide a specialized membrane environment for respiratory syncytial virus assembly. J Cell Sci 2017; 130:1037-1050. [PMID: 28154158 PMCID: PMC5358342 DOI: 10.1242/jcs.198853] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/26/2017] [Indexed: 12/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is an enveloped virus that assembles into filamentous virus particles on the surface of infected cells. Morphogenesis of RSV is dependent upon cholesterol-rich (lipid raft) membrane microdomains, but the specific role of individual raft molecules in RSV assembly is not well defined. Here, we show that RSV morphogenesis occurs within caveolar membranes and that both caveolin-1 and cavin-1 (also known as PTRF), the two major structural and functional components of caveolae, are actively recruited to and incorporated into the RSV envelope. The recruitment of caveolae occurred just prior to the initiation of RSV filament assembly, and was dependent upon an intact actin network as well as a direct physical interaction between caveolin-1 and the viral G protein. Moreover, cavin-1 protein levels were significantly increased in RSV-infected cells, leading to a virus-induced change in the stoichiometry and biophysical properties of the caveolar coat complex. Our data indicate that RSV exploits caveolae for its assembly, and we propose that the incorporation of caveolae into the virus contributes to defining the biological properties of the RSV envelope.
Collapse
Affiliation(s)
- Alexander Ludwig
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Tra Huong Nguyen
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Daniel Leong
- Detection and Diagnostics Laboratory, DSO National Laboratories, 27 Medical Drive, Singapore 117510
| | - Laxmi Iyer Ravi
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Boon Huan Tan
- Detection and Diagnostics Laboratory, DSO National Laboratories, 27 Medical Drive, Singapore 117510
| | - Sara Sandin
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Richard J Sugrue
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| |
Collapse
|
10
|
Ibáñez-Escribano A, Nogal-Ruiz JJ, Pérez-Serrano J, Gómez-Barrio A, Escario JA, Alderete J. Sequestration of host-CD59 as potential immune evasion strategy of Trichomonas vaginalis. Acta Trop 2015; 149:1-7. [PMID: 25976413 DOI: 10.1016/j.actatropica.2015.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/20/2015] [Accepted: 05/04/2015] [Indexed: 12/26/2022]
Abstract
Trichomonas vaginalis is known to evade complement-mediated lysis. Because the genome of T. vaginalis does not possess DNA sequence with homology to human protectin (CD59), a complement lysis restricting factor, we tested the hypothesis that host CD59 acquisition by T. vaginalis organisms mediates resistance to complement killing. This hypothesis was based on the fact that trichomonads are known to associate with host proteins. No CD59 was detected on the surface of T. vaginalis grown in serum-based medium using as probe anti-CD59 monoclonal antibody (MAb). We, therefore, infected mice intraperitoneally with live T. vaginalis, and trichomonads harvested from ascites were tested for binding of CD59. Immunofluorescence showed that parasites had surface CD59. Furthermore, as mouse erythrocytes (RBCs) possess membrane-associated CD59, and trichomonads use RBCs as a nutrient source, organisms were co-cultured with murine RBCs for one week. Parasites were shown to have detectable surface CD59. Importantly, live T. vaginalis with bound CD59 were compared with batch-grown parasites without surface-associated CD59 for sensitivity to complement in human serum. Trichomonads without surface-bound CD59 had a higher level of killing by complement than did parasites with surface CD59. These data show that host CD59 acquired onto the surface by live T. vaginalis may be an alternative mechanism for complement evasion. We describe a novel strategy by T. vaginalis consistent with host protein procurement by this parasite to evade the lytic action of complement.
Collapse
|
11
|
Kwon YC, Ray RB, Ray R. Hepatitis C virus infection: establishment of chronicity and liver disease progression. EXCLI JOURNAL 2014; 13:977-96. [PMID: 26417315 PMCID: PMC4464452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/14/2014] [Indexed: 11/16/2022]
Abstract
Hepatitis C virus (HCV) often causes persistent infection, and is an important factor in the etiology of fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). There are no preventive or therapeutic vaccines available against HCV. Treatment strategies of HCV infection are likely to improve with recently discovered direct antiviral agents (DAAs). However, a proportion of patients still progress to liver failure and/or HCC despite having been cured of the infection. Thus, there is a need for early diagnosis and therapeutic modalities for HCV related end stage liver disease prevention. HCV genome does not integrate into its host genome, and has a predominantly cytoplasmic life cycle. Therefore, HCV mediated liver disease progression appears to involve indirect mechanisms from persistent infection of hepatocytes. Studying the underlying mechanisms of HCV mediated evasion of immune responses and liver disease progression is challenging due to the lack of a naturally susceptible small animal model. We and other investigators have used a number of experimental systems to investigate the mechanisms for establishment of chronic HCV infection and liver disease progression. HCV infection modulates immune systems. Further, HCV infection of primary human hepatocytes promotes growth, induces phenotypic changes, modulates epithelial mesenchymal transition (EMT) related genes, and generates tumor initiating stem-like cells (TISCs). HCV infection also modulates microRNAs (miRNAs), and influences growth by overriding normal death progression of primary human hepatocytes for disease pathogenesis. Understanding these ob-servations at the molecular level should aid in developing strategies for additional effective therapies against HCV mediated liver disease progression.
Collapse
Affiliation(s)
- Young-Chan Kwon
- Department of Internal Medicine, Saint Louis University, Missouri
| | - Ratna B. Ray
- Department of Pathology, Saint Louis University, Missouri
| | - Ranjit Ray
- Department of Internal Medicine, Saint Louis University, Missouri,Department of Molecular Microbiology & Immunology, Saint Louis University, Missouri,*To whom correspondence should be addressed: Ranjit Ray, Division of Infectious Diseases, Allergy & Immunology, Edward A. Doisy Research Center, 1100 S. Grand Blvd, 8th Floor, St. Louis, MO 63104, USA, E-mail:
| |
Collapse
|
12
|
Ball JK, Tarr AW, McKeating JA. The past, present and future of neutralizing antibodies for hepatitis C virus. Antiviral Res 2014; 105:100-11. [PMID: 24583033 PMCID: PMC4034163 DOI: 10.1016/j.antiviral.2014.02.013] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/08/2014] [Accepted: 02/13/2014] [Indexed: 12/11/2022]
Abstract
Hepatitis C virus (HCV) is a major cause of liver disease and hepatocellular carcinoma worldwide. HCV establishes a chronic infection in the majority of cases. However, some individuals clear the virus, demonstrating a protective role for the host immune response. Although new all-oral drug combinations may soon replace traditional ribavirin-interferon therapy, the emerging drug cocktails will be expensive and associated with side-effects and resistance, making a global vaccine an urgent priority. T cells are widely accepted to play an essential role in clearing acute HCV infection, whereas the role antibodies play in resolution and disease pathogenesis is less well understood. Recent studies have provided an insight into viral neutralizing determinants and the protective role of antibodies during infection. This review provides a historical perspective of the role neutralizing antibodies play in HCV infection and discusses the therapeutic benefits of antibody-based therapies. This article forms part of a symposium in Antiviral Research on "Hepatitis C: next steps toward global eradication."
Collapse
Affiliation(s)
- Jonathan K Ball
- School of Life Sciences and The Nottingham Digestive Diseases Centre Biomedical Research Unit, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Alexander W Tarr
- School of Life Sciences and The Nottingham Digestive Diseases Centre Biomedical Research Unit, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Jane A McKeating
- Viral Hepatitis Research Group and Centre for Human Virology, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| |
Collapse
|
13
|
Vasel M, Rutz R, Bersch C, Feick P, Singer MV, Kirschfink M, Nakchbandi IA. Complement activation correlates with liver necrosis and fibrosis in chronic hepatitis C. Clin Immunol 2013; 150:149-56. [PMID: 24412908 DOI: 10.1016/j.clim.2013.11.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/19/2013] [Accepted: 11/25/2013] [Indexed: 12/14/2022]
Abstract
Chronic hepatitis C viral infection modulates complement. The aim of this study was to determine whether complement analysis predicts liver inflammation and fibrosis in patients with chronic hepatitis C. 50 chronic hepatitis C patients who underwent a liver biopsy were compared to 50 healthy controls and 35 patients with various liver diseases. Total plasma complement activity (CH50) in plasma was diminished in hepatitis C patients suggesting complement activation. This decrease correlated with increased necrosis (r = -0.24, p < 0.05), and patients with levels below the normal range had a higher METAVIR activity score reflecting enhanced inflammation. SC5b-9, a marker of complement activation, correlated with inflammation (r = 0.40, p < 0.05), activity (r = 0.42, p < 0.05), and fibrosis scores (r = 0.49, p < 0.05). Finally, the prevalence of C1q auto-antibodies was higher in hepatitis C patients, and their presence was associated with increased inflammation and seemed to affect fibrosis. We conclude that complement-induced liver inflammation contributes to fibrosis in patients with chronic hepatitis C.
Collapse
Affiliation(s)
- Matthäus Vasel
- Max-Planck Institute of Biochemistry, Martinsried, Germany; Institute of Immunology, University of Heidelberg, Germany
| | - Renate Rutz
- Institute of Immunology, University of Heidelberg, Germany
| | - Claus Bersch
- Institute for Pathology, University of Heidelberg at Mannheim, Germany
| | - Peter Feick
- Department of Medicine II, University of Heidelberg at Mannheim, Germany
| | - Manfred V Singer
- Department of Medicine II, University of Heidelberg at Mannheim, Germany
| | | | - Inaam A Nakchbandi
- Max-Planck Institute of Biochemistry, Martinsried, Germany; Institute of Immunology, University of Heidelberg, Germany.
| |
Collapse
|
14
|
Hepatitis C virus infection upregulates CD55 expression on the hepatocyte surface and promotes association with virus particles. J Virol 2013; 87:7902-10. [PMID: 23658447 DOI: 10.1128/jvi.00917-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
CD55 limits excessive complement activation on the host cell surface by accelerating the decay of C3 convertases. In this study, we observed that hepatitis C virus (HCV) infection of hepatocytes or HCV core protein expression in transfected hepatocytes upregulated CD55 expression at the mRNA and protein levels. Further analysis suggested that the HCV core protein or full-length (FL) genome enhanced CD55 promoter activity in a luciferase-based assay, which was further augmented in the presence of interleukin-6. Mutation of the CREB or SP-1 binding site on the CD55 promoter impaired HCV core protein-mediated upregulation of CD55. HCV-infected or core protein-transfected Huh7.5 cells displayed greater viability in the presence of CD81 and CD55 antibodies and complement. Biochemical analysis revealed that CD55 was associated with cell culture-grown HCV after purification by sucrose density gradient ultracentrifugation. Consistent with this, a polyclonal antibody to CD55 captured cell culture-grown HCV. Blocking antibodies against CD55 or virus envelope glycoproteins in the presence of normal human serum as a source of complement inhibited HCV infection. The inhibition was enhanced in the presence of both the antibodies and serum complement. Collectively, these results suggest that HCV induces and associates with a negative regulator of the complement pathway, a likely mechanism for immune evasion.
Collapse
|