1
|
Caillava AJ, Alfonso V, Tejerina Cibello M, Demaria MA, Coria LM, Cassataro J, Taboga OA, Alvarez DE. A vaccine candidate based on baculovirus displaying chikungunya virus E1-E2 envelope confers protection against challenge in mice. J Virol 2024:e0101724. [PMID: 39440961 DOI: 10.1128/jvi.01017-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
Chikungunya fever is a re-emerging mosquito-borne disease caused by the chikungunya virus (CHIKV) and produces acute arthritis that can progress to chronic disease with arthralgia. The first approved live-attenuated chikungunya vaccine has only recently become available for use in humans in the USA, but the access in endemic regions remains unmet. Here, we exploited the baculovirus display technology to develop a vectored vaccine candidate that exposes the CHIKV membrane proteins E1 and E2 on the baculovirus surface. Using recombinant baculovirus as vector vaccines has both productive and regulatory advantages: they are safe for handling and easy to produce in high titers and are non-pathogenic and non-replicative in mammals but have strong adjuvant properties by inducing humoral and cellular immune responses. CHIKV E1 and E2 envelope proteins with their own signal and transmembrane sequences were expressed on the surface of budded baculovirus virions. Immunization of C57BL/6 mice with non-adjuvanted recombinant baculovirus induced IgG antibodies against E2 with a predominant IgG2c subtype, neutralizing antibodies and a specific IFN-γ CD8+ T-cell response. Immunization with a second dose significantly boosted the antibody response, and mice immunized with two doses of the vaccine candidate were completely protected against challenge with CHIKV showing no detectable viremia or signs of disease. Altogether, baculovirus display of CHIKV envelope proteins served as an efficient vaccine platform against CHIKV.IMPORTANCEThe global spread of chikungunya virus (CHIKV) has disproportionately impacted the Americas that experienced a fourfold increase in 2023 in cases and deaths compared with the same period in 2022. The disease is characterized by acute fever and debilitating joint pain that can become chronic. Despite the socioeconomic burden related to the high morbidity rates of CHIKV infection, a vaccine for CHIKV is currently approved only in the USA. Vaccines are the most effective preventive measure against viral diseases, and advances in the development of different vaccine platforms such as nucleic acids and viral vectors have prompted the rapid deployment of vaccines to contain the COVID-19 pandemic. Here, we report the use of baculovirus display as a strategy for the design of a novel vaccine that provides sterilizing immunity in a mouse model of chikungunya disease. Our results encourage further research regarding the potential of baculovirus as platforms for human vaccine design.
Collapse
Affiliation(s)
- Ana J Caillava
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Victoria Alfonso
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Malena Tejerina Cibello
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Agostina Demaria
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lorena M Coria
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Argentina
| | - Juliana Cassataro
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Argentina
| | - Oscar A Taboga
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Diego E Alvarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Argentina
| |
Collapse
|
2
|
Plastine MDP, Amalfi S, López MG, Gravisaco MJ, Taboga O, Alfonso V. Development of a stable Sf9 insect cell line to produce VSV-G pseudotyped baculoviruses. Gene Ther 2024; 31:187-194. [PMID: 38278988 DOI: 10.1038/s41434-024-00442-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Baculoviruses have shown great potential as gene delivery vectors in mammals, although their effectiveness in transferring genes varies across different cell lines. A widely employed strategy to improve transduction efficiency is the pseudotyping of viral vectors. In this study, we aimed to develop a stable Sf9 insect cell line that inducibly expresses the G-protein of the vesicular stomatitis virus to pseudotype budded baculoviruses. It was obtained by inserting the VSV-G gene under the control of the very strong and infection-inducible pXXL promoter and was subsequently diluted to establish oligoclonal lines, which were selected by the fusogenic properties of VSV-G and its expression levels in infected cells and purified budded virions. Next, to enhance the performance of the cell line, the infection conditions under which functional pseudotyped baculoviruses are obtained were optimized. Finally, different baculoviruses were pseudotyped and the expression of the transgene was quantified in mammalian cells of diverse origins using flow cytometry. The transduction efficiency of pseudotyped baculovirus consistently increased across all tested mammalian cell lines compared with control viruses. These findings demonstrate the feasibility and advantages of improving gene delivery performance without the need to insert the pseudotyping gene into the baculoviral genomes.
Collapse
Affiliation(s)
- María Del Pilar Plastine
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto S/N, Hurlingham, B1686IGC, Buenos Aires, Argentina
| | - Sabrina Amalfi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto S/N, Hurlingham, B1686IGC, Buenos Aires, Argentina
- Universidad Nacional de Hurlingham, Instituto de Biotecnología, Av. Vergara 2222, Villa Tesei, Hurlingham, B1688GEZ, Buenos Aires, Argentina
| | - María Gabriela López
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto S/N, Hurlingham, B1686IGC, Buenos Aires, Argentina
| | - María José Gravisaco
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto S/N, Hurlingham, B1686IGC, Buenos Aires, Argentina
| | - Oscar Taboga
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto S/N, Hurlingham, B1686IGC, Buenos Aires, Argentina.
| | - Victoria Alfonso
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto S/N, Hurlingham, B1686IGC, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Jia X, Gao Y, Huang Y, Sun L, Li S, Li H, Zhang X, Li Y, He J, Wu W, Venkannagari H, Yang K, Baker ML, Zhang Q. Architecture of the baculovirus nucleocapsid revealed by cryo-EM. Nat Commun 2023; 14:7481. [PMID: 37980340 PMCID: PMC10657434 DOI: 10.1038/s41467-023-43284-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 11/03/2023] [Indexed: 11/20/2023] Open
Abstract
Baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) has been widely used as a bioinsecticide and a protein expression vector. Despite their importance, very little is known about the structure of most baculovirus proteins. Here, we show a 3.2 Å resolution structure of helical cylindrical body of the AcMNPV nucleocapsid, composed of VP39, as well as 4.3 Å resolution structures of both the head and the base of the nucleocapsid composed of over 100 protein subunits. AcMNPV VP39 demonstrates some features of the HK97-like fold and utilizes disulfide-bonds and a set of interactions at its C-termini to mediate nucleocapsid assembly and stability. At both ends of the nucleocapsid, the VP39 cylinder is constricted by an outer shell ring composed of proteins AC104, AC142 and AC109. AC101(BV/ODV-C42) and AC144(ODV-EC27) form a C14 symmetric inner layer at both capsid head and base. In the base, these proteins interact with a 7-fold symmetric capsid plug, while a portal-like structure is seen in the central portion of head. Additionally, we propose an application of AlphaFold2 for model building in intermediate resolution density.
Collapse
Affiliation(s)
- Xudong Jia
- State key laboratory of biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Yuanzhu Gao
- State key laboratory of biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
- Cryo-EM Facility Center, Southern University of Science and Technology, Shenzhen, China
| | - Yuxuan Huang
- State key laboratory of biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Linjun Sun
- State key laboratory of biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Siduo Li
- State key laboratory of biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Hongmei Li
- State key laboratory of biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Xueqing Zhang
- State key laboratory of biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Yinyin Li
- State key laboratory of biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Jian He
- State key laboratory of biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Wenbi Wu
- State key laboratory of biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Harikanth Venkannagari
- Department of Biochemistry and Molecular Biology, McGovern Medical School at the University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Kai Yang
- State key laboratory of biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Matthew L Baker
- Department of Biochemistry and Molecular Biology, McGovern Medical School at the University of Texas Health Science Center, Houston, TX, 77030, USA.
| | - Qinfen Zhang
- State key laboratory of biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China.
| |
Collapse
|
4
|
Chen Y, Wu H, Li J, Hu Z, Wang M, Zhang H. Cysteines 128 and 250 are essential for the functions of the baculovirus core gene ac109. Virology 2023; 587:109857. [PMID: 37562288 DOI: 10.1016/j.virol.2023.109857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
The open reading frame 109 (ac109) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is one of the 38 core baculovirus genes. Ac109 was shown to be essential for the production of infectious budded virions (BV), envelopment of the nucleocapsid, and embedding of occlusion-derived virions (ODVs) into occlusion bodies (OBs). Herein, the roles of five cysteines with high conservation (C3, C116, C128, C250, and C325) in Ac109 function were investigated. AcMNPV bacmids lacking ac109 or containing single-mutated ac109 were generated. Transfection/infection assays showed that C128 and C250 in Ac109 were important for infectious BV production. Electron microscopy analysis further confirmed that these two cysteines played critical roles in nucleocapsid assembly, ODV envelopment, and embedding of ODVs into OBs. Altogether, these results demonstrate that the conserved residues Ac109 C128 and C250 are critical for baculovirus infection.
Collapse
Affiliation(s)
- Yao Chen
- School of Bioengineering and Food, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, National '111' Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, PR China
| | - Hang Wu
- School of Bioengineering and Food, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, National '111' Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, PR China
| | - Jiang Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Huanyu Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, PR China.
| |
Collapse
|
5
|
Su W, Qu J, Ren Y, Wang W, Li F, Li B. A novel system for the generation of baculoviruses mutant for an essential gene. Mol Biol Rep 2022; 49:6443-6452. [DOI: 10.1007/s11033-022-07458-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/06/2022] [Indexed: 11/30/2022]
|
6
|
Amalfi S, Molina GN, Bevacqua RJ, López MG, Taboga O, Alfonso V. Baculovirus Transduction in Mammalian Cells Is Affected by the Production of Type I and III Interferons, Which Is Mediated Mainly by the cGAS-STING Pathway. J Virol 2020; 94:e01555-20. [PMID: 32796076 PMCID: PMC7565641 DOI: 10.1128/jvi.01555-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
The baculovirus Autographa californica multiple nucleopolyhedrovirus is an insect virus with a circular double-stranded DNA genome, which, among other multiple biotechnological applications, is used as an expression vector for gene delivery in mammalian cells. Nevertheless, the nonspecific immune response triggered by viral vectors often suppresses transgene expression. To understand the mechanisms involved in that response, in the present study, we studied the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway by using two approaches: the genetic edition through CRISPR/Cas9 technology of genes encoding STING or cGAS in NIH/3T3 murine fibroblasts and the infection of HEK293 and HEK293 T human epithelial cells, deficient in cGAS and in cGAS and STING expression, respectively. Overall, our results suggest the existence of two different pathways involved in the establishment of the antiviral response, both dependent on STING expression. Particularly, the cGAS-STING pathway resulted in the more relevant production of beta interferon (IFN-β) and IFN-λ1 in response to baculovirus infection. In human epithelial cells, IFN-λ1 production was also induced in a cGAS-independent and DNA-protein kinase (DNA-PK)-dependent manner. Finally, we demonstrated that these cellular responses toward baculovirus infection affect the efficiency of transduction of baculovirus vectors.IMPORTANCE Baculoviruses are nonpathogenic viruses that infect mammals, which, among other applications, are used as vehicles for gene delivery. Here, we demonstrated that the cytosolic DNA sensor cGAS recognizes baculoviral DNA and that the cGAS-STING axis is primarily responsible for the attenuation of transduction in human and mouse cell lines through type I and type III IFNs. Furthermore, we identified DNA-dependent protein kinase (DNA-PK) as a cGAS-independent and alternative DNA cytosolic sensor that contributes less to the antiviral state in baculovirus infection in human epithelial cells than cGAS. Knowledge of the pathways involved in the response of mammalian cells to baculovirus infection will improve the use of this vector as a tool for gene therapy.
Collapse
Affiliation(s)
- Sabrina Amalfi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Argentina
| | - Guido Nicolás Molina
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Argentina
| | - Romina Jimena Bevacqua
- Laboratorio de Biotecnología Animal, Facultad de Agronomía, Universidad de Buenos Aires/INPA-CONICET, Buenos Aires, Argentina
- Seung Kim Lab, Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
| | - María Gabriela López
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Argentina
| | - Oscar Taboga
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Argentina
| | - Victoria Alfonso
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Argentina
| |
Collapse
|
7
|
Masson T, Fabre ML, Ferrelli ML, Pidre ML, Romanowski V. Protein composition of the occlusion bodies of Epinotia aporema granulovirus. PLoS One 2019; 14:e0207735. [PMID: 30753194 PMCID: PMC6372164 DOI: 10.1371/journal.pone.0207735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/21/2019] [Indexed: 12/28/2022] Open
Abstract
Within family Baculoviridae, members of the Betabaculovirus genus are employed as biocontrol agents against lepidopteran pests, either alone or in combination with selected members of the Alphabaculovirus genus. Epinotia aporema granulovirus (EpapGV) is a fast killing betabaculovirus that infects the bean shoot borer (E. aporema) and is a promising biopesticide. Because occlusion bodies (OBs) play a key role in baculovirus horizontal transmission, we investigated the composition of EpapGV OBs. Using mass spectrometry-based proteomics we could identify 56 proteins that are included in the OBs during the final stages of larval infection. Our data provides experimental validation of several annotated hypothetical coding sequences. Proteogenomic mapping against genomic sequence detected a previously unannotated ac110-like core gene and a putative translation fusion product of ORFs epap48 and epap49. Comparative studies of the proteomes available for the family Baculoviridae highlight the conservation of core gene products as parts of the occluded virion. Two proteins specific for betabaculoviruses (Epap48 and Epap95) are incorporated into OBs. Moreover, quantification based on emPAI values showed that Epap95 is one of the most abundant components of EpapGV OBs.
Collapse
Affiliation(s)
- Tomás Masson
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - María Laura Fabre
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - María Leticia Ferrelli
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Matías Luis Pidre
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Víctor Romanowski
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
8
|
Costa Navarro GS, Amalfi S, López MG, Llauger G, Arneodo JD, Taboga O, Alfonso V. The autographa californica multiple nucleopolyhedrovirus Ac12: A non-essential F box-like protein that interacts with cellular SKP1 component of the E3 ubiquitin ligase complex. Virus Res 2018; 260:67-77. [PMID: 30472094 DOI: 10.1016/j.virusres.2018.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 12/24/2022]
Abstract
The Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ac12 gene, which is conserved in ten other baculovirus, codes a predicted 217 amino acid protein of unknown function. In this study, we investigated the role of ac12 during baculovirus infection, by generating an ac12 knockout virus. The transfection of the recombinant genome in insect cells resulted in unaltered viral dispersion and occlusion body production when compared to the control bacmid. This finding demonstrates that ac12 is a non-essential gene. Transmission and scanning electron microscopy (SEM) analyses showed that ac12 knockout virus produced occlusion bodies morphologically similar to those obtained with the control and capable to occlude virions. However, a slight but significant size difference was detected by SEM observation of purified occlusion bodies. This difference suggests that ac12 may be involved in regulatory pathways of polyhedrin production or occlusion body assembly without affecting either viral occlusion or oral infectivity in Rachiplusia nu larvae. This was evidenced by bioassays that showed no significant differences in the conditions tested. A qPCR analysis of viral gene expression during infection evidenced regulatory effects of ac12 over some representative genes of different stages of the viral cycle. In this study, we also showed that ac12 is transcribed at early times after infection and remains detectable up to 72 hours post-infection. The mRNA is translated during the infection and results in a protein that encodes an F-box domain that interacts in vivo and in vitro with S phase kinase associated protein 1 (SKP1) adaptor protein, which is potentially involved in protein ubiquitination pathways.
Collapse
Affiliation(s)
- Guadalupe S Costa Navarro
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (INTA), De los Reseros y N. Repetto s/n, 1686, Hurlingham, Argentina
| | - Sabrina Amalfi
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (INTA), De los Reseros y N. Repetto s/n, 1686, Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - María Gabriela López
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (INTA), De los Reseros y N. Repetto s/n, 1686, Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Gabriela Llauger
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (INTA), De los Reseros y N. Repetto s/n, 1686, Hurlingham, Argentina
| | - Joel D Arneodo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto de Microbiología y Zoología Agrícola, INTA, De los Reseros y N. Repetto s/n, 1686, Hurlingham, Argentina
| | - Oscar Taboga
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (INTA), De los Reseros y N. Repetto s/n, 1686, Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Victoria Alfonso
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (INTA), De los Reseros y N. Repetto s/n, 1686, Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
9
|
Shen Y, Feng M, Wu X. Bombyx mori nucleopolyhedrovirus ORF40 is essential for budded virus production and occlusion-derived virus envelopment. J Gen Virol 2018; 99:837-850. [PMID: 29676725 DOI: 10.1099/jgv.0.001066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
ORF40 (bm40) of the Bombyx mori nucleopolyhedrovirus (BmNPV) encodes a homologue of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) AC51 and is a highly conserved gene in sequenced alphabaculoviruses. To investigate the role of bm40 in the baculovirus infection cycle, a bm40 knockout BmNPV bacmid was constructed via homologous recombination in Escherichia coli. Western blotting analysis revealed that bm40 is a late gene during virus infection. Compared with wild-type and repair viruses, the knockout virus exhibited a single-cell infection phenotype. Titration assays confirmed that no infectious budded viruses (BVs) were produced due to the bm40 deletion, while there was no effect on viral DNA replication. Electron microscopy revealed that Bm40 is required for nucleocapsid egress from the nucleus to the cytoplasm, nucleocapsid envelopment to form occlusion-derived viruses (ODVs) and subsequent embedding of ODVs into polyhedra. Confocal microscopy showed that Bm40 was predominantly localized in the nuclei from 48 h post-infection and subsequently condensed on the nuclear membrane and polyhedra at the late phase of infection. Taken together, these results demonstrate that Bm40 plays an essential role in BV production and ODV envelopment in the BmNPV infection cycle.
Collapse
Affiliation(s)
- Yunwang Shen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Min Feng
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xiaofeng Wu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
10
|
Autographa californica Multiple Nucleopolyhedrovirus ac75 Is Required for the Nuclear Egress of Nucleocapsids and Intranuclear Microvesicle Formation. J Virol 2018; 92:JVI.01509-17. [PMID: 29212928 DOI: 10.1128/jvi.01509-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/27/2017] [Indexed: 01/15/2023] Open
Abstract
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) orf75 (ac75) is a highly conserved gene of unknown function. In this study, we constructed an ac75 knockout AcMNPV bacmid and investigated the role of ac75 in the baculovirus life cycle. The expression and distribution of the Ac75 protein were characterized, and its interaction with another viral protein was analyzed to further understand its function. Our data indicated that ac75 was required for the nuclear egress of nucleocapsids, intranuclear microvesicle formation, and subsequent budded virion (BV) formation, as well as occlusion-derived virion (ODV) envelopment and embedding of ODVs into polyhedra. Western blot analyses showed that two forms, of 18 and 15 kDa, of FLAG-tagged Ac75 protein were detected. Ac75 was associated with both nucleocapsid and envelope fractions of BVs but with only the nucleocapsid fraction of ODVs; the 18-kDa form was associated with only BVs, whereas the 15-kDa form was associated with both types of virion. Ac75 was localized predominantly in the intranuclear ring zone during infection and exhibited a nuclear rim distribution during the early phase of infection. A phase separation assay suggested that Ac75 was not an integral membrane protein. A coimmunoprecipitation assay revealed an interaction between Ac75 and the integral membrane protein Ac76, and bimolecular fluorescence complementation assays identified the sites of the interaction within the cytoplasm and at the nuclear membrane and ring zone in AcMNPV-infected cells. Our results have identified ac75 as a second gene that is required for both the nuclear egress of nucleocapsids and the formation of intranuclear microvesicles.IMPORTANCE During the baculovirus life cycle, the morphogenesis of both budded virions (BVs) and occlusion-derived virions (ODVs) is proposed to involve a budding process at the nuclear membrane, which occurs while nucleocapsids egress from the nucleus or when intranuclear microvesicles are produced. However, the exact mechanism of virion morphogenesis remains unknown. In this study, we identified ac75 as a second gene, in addition to ac93, that is essential for the nuclear egress of nucleocapsids, intranuclear microvesicle formation, and subsequent BV formation, as well as ODV envelopment and embedding of ODVs into polyhedra. Ac75 is not an integral membrane protein. However, it interacts with an integral membrane protein (Ac76) and is associated with the nuclear membrane. These data enhance our understanding of the commonalities between nuclear egress of nucleocapsids and intranuclear microvesicle formation and may help to reveal insights into the mechanism of baculovirus virion morphogenesis.
Collapse
|
11
|
Protein composition analysis of polyhedra matrix of Bombyx mori nucleopolyhedrovirus (BmNPV) showed powerful capacity of polyhedra to encapsulate foreign proteins. Sci Rep 2017; 7:8768. [PMID: 28821766 PMCID: PMC5562830 DOI: 10.1038/s41598-017-08987-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/14/2017] [Indexed: 11/23/2022] Open
Abstract
Polyhedra can encapsulate other proteins and have potential applications as protein stabilizers. The extremely stable polyhedra matrix may provide a platform for future engineered micro-crystal devices. However, the protein composition of the polyhedra matrix remains largely unknown. In this study, the occlusion-derived virus (ODV)-removed BmNPV polyhedra matrix fraction was subjected to SDS-PAGE and then an LC-ESI-MS/MS analysis using a Thermo Scientific Q Exactive mass spectrometer. In total, 28 host and 91 viral proteins were identified. The host components were grouped into one of six categories, i.e., chaperones, ubiquitin and related proteins, host helicases, cytoskeleton-related proteins, RNA-binding proteins and others, according to their predicted Pfam domain(s). Most viral proteins may not be essential for polyhedra assembly, as evidenced by studies in the literature showing that polyhedra formation occurs in the nucleus upon the disruption of individual genes. The structural role of these proteins in baculovirus replication will be of significant interest in future studies. The immobilization of enhanced green fluorescent protein (eGFP) into the polyhedra by fusing with the C-terminus of BM134 that is encoded by open reading frame (ORF) 134 suggested that the polyhedra had a powerful capacity to trap foreign proteins, and BM134 was a potential carrier for incorporating proteins of interest into the polyhedra.
Collapse
|
12
|
Alfonso V, Amalfi S, López MG, Taboga O. Effects of deletion of the ac109 gene of Autographa californica nucleopolyhedrovirus on interactions with mammalian cells. Arch Virol 2016; 162:835-840. [PMID: 27868165 DOI: 10.1007/s00705-016-3142-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/31/2016] [Indexed: 12/01/2022]
Abstract
Baculoviruses are able to enter into mammalian cells, where they can express a transgene that is placed under an appropriate promoter, without producing infectious progeny. ORF109 encodes an essential baculovirus protein that participates in the interaction of the baculovirus with mammalian cells. To date, the mechanisms underlying this interaction are not yet known. We demonstrated that although a Ac109 knock out virus maintained its ability to enter into BHK-21 cells, there was a marked reduction in the expression efficiency of the nuclear transgene. Moreover, the amount of free cytoplasmic viral DNA, which was detected by transcription of a reporter gene, was severely diminished. These results suggest Ac109 could be involved in maintaining the integrity of the viral nucleic acid.
Collapse
Affiliation(s)
- Victoria Alfonso
- INTA, CONICET, Instituto de Biotecnología, CICVyA, Nicolás Repetto y de los Reseros S/N, Hurlingham, CP 1686, Buenos Aires, Argentina
| | - Sabrina Amalfi
- INTA, Instituto de Biotecnología, CICVyA, Nicolás Repetto y de los Reseros S/N, Hurlingham, CP 1686, Buenos Aires, Argentina
| | - María Gabriela López
- INTA, CONICET, Instituto de Biotecnología, CICVyA, Nicolás Repetto y de los Reseros S/N, Hurlingham, CP 1686, Buenos Aires, Argentina
| | - Oscar Taboga
- INTA, CONICET, Instituto de Biotecnología, CICVyA, Nicolás Repetto y de los Reseros S/N, Hurlingham, CP 1686, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Fang Z, Li C, Wu W, Yuan M, Yang K. The Autographa californica multiple nucleopolyhedrovirus Ac132 plays a role in nuclear entry. J Gen Virol 2016; 97:3030-3038. [DOI: 10.1099/jgv.0.000602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Zhixin Fang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Chunyan Li
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Wenbi Wu
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Meijin Yuan
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Kai Yang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, PR China
| |
Collapse
|
14
|
Autographa californica multiple nucleopolyhedrovirus gene ac81 is required for nucleocapsid envelopment. Virus Res 2016; 221:47-57. [DOI: 10.1016/j.virusres.2016.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/01/2016] [Accepted: 05/06/2016] [Indexed: 11/16/2022]
|
15
|
Zhang X, Liang Z, Yin X, Shao X. Proteomic analysis of the occlusion-derived virus of Clostera anachoreta granulovirus. J Gen Virol 2015; 96:2394-2404. [PMID: 25872743 DOI: 10.1099/vir.0.000146] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
To date, proteomic studies have been performed on occlusion-derived viruses (ODVs) from five members of the family Baculoviridae, genus Alphabaculovirus, but only a single member of the genus Betabaculovirus (Pieris rapae granulovirus). In this study, LC-MS/MS was used to analyse the ODV proteins of Clostera anachoreta granulovirus (ClanGV), another member of the genus Betabaculovirus. The results indicated that 73 proteins, including the products of 27 baculovirus core genes, were present in ClanGV ODVs. This is the largest number of ODV proteins identified in baculoviruses to date. To the best of our knowledge, 24 of these proteins were newly identified as ODV-associated proteins. Twelve of the proteins were shared by all seven of the other baculoviruses that have been analysed by proteomic techniques, including P49, PIF-2, ODV-EC43, P74, P6.9, P33, VP39, ODV-EC27, VP91, GP41, VLF-1 and VP1054. ClanGV shared between 20 and 36 ODV proteins with each of the other six baculoviruses that have been analysed by proteomics. Ten proteins were identified only as ODV components of ClanGV and PrGV: Clan22, Clan27, Clan69, Clan83, Clan84, Clan90, Clan116, Clan94, FGF-3 and ME53, the first seven of which were encoded by betabaculovirus-specific genes. These findings may provide novel insights into baculovirus structure as well as reveal similarities and differences between alphabaculoviruses and betabaculoviruses.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- College of Life Sciences, Henan Agricultural University, 63 Nongye Road, Zhengzhou 450002, PR China
| | - Zhenpu Liang
- College of Life Sciences, Henan Agricultural University, 63 Nongye Road, Zhengzhou 450002, PR China
| | - Xinming Yin
- College of Plant Protection, Henan Agricultural University, 63 Nongye Road, Zhengzhou 450002, PR China
| | - Xinfeng Shao
- College of Life Sciences, Henan Agricultural University, 63 Nongye Road, Zhengzhou 450002, PR China
| |
Collapse
|
16
|
Autographa californica multiple nucleopolyhedrovirus ORF11 is essential for budded-virus production and occlusion-derived-virus envelopment. J Virol 2014; 89:373-83. [PMID: 25320313 DOI: 10.1128/jvi.01742-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED ORF11 (ac11) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is a highly conserved gene with unknown function. To determine the role of ac11 in the baculovirus life cycle, an ac11 knockout mutant of AcMNPV, Ac11KO, was constructed. Northern blot and 5' rapid amplification of cDNA ends (RACE) analyses revealed that ac11 is an early gene in the life cycle. Microscopy, titration assays, and Western blot analysis revealed that budded viruses (BVs) were not produced in Ac11KO-transfected Sf9 cells. However, quantitative PCR (qPCR) analysis demonstrated that the deletion of ac11 did not affect viral DNA replication. Furthermore, electron microscopy revealed that there was no nucleocapsid in the cytoplasm or plasma membrane of Ac11KO-transfected cells, which demonstrates that the defect in BV production in Ac11KO-transfected cells is due to the inefficient egress of nucleocapsids from the nucleus to the cytoplasm. In addition, electron microscopy observations showed that the nucleocapsids in the nucleus were not enveloped to form occlusion-derived viruses (ODVs) and that their subsequent embedding into occlusion bodies (OBs) was also blocked in Ac11KO-transfected cells, demonstrating that ac11 is required for ODV envelopment. These results therefore demonstrate that ac11 is an early gene that is essential for BV production and ODV envelopment. IMPORTANCE Baculoviruses have been extensively used not only as specific, environmentally benign insecticides but also as helper-independent protein expression vectors. Although the function of baculovirus genes in viral replication has been studied by using gene knockout technology, the functions of more than one-third of viral genes, which include some highly conserved genes, are still unknown. In this study, ac11 was proven to play a crucial role in BV production and ODV envelopment. These results will lead to a better understanding of baculovirus infection cycles.
Collapse
|
17
|
Autographa californica multiple nucleopolyhedrovirus orf132 encodes a nucleocapsid-associated protein required for budded-virus and multiply enveloped occlusion-derived virus production. J Virol 2014; 88:12586-98. [PMID: 25142609 DOI: 10.1128/jvi.01313-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED Autographa californica multiple nucleopolyhedrovirus orf132 (named ac132) has homologs in all genome-sequenced group I nucleopolyhedroviruses. Its role in the viral replication cycle is unknown. In this study, ac132 was shown to express a protein of around 28 kDa, which was determined to be associated with the nucleocapsids of both occlusion-derived virus and budded virus. Confocal microscopy showed that AC132 protein appeared in central region of the nucleus as early as 12 h postinfection with the virus. It formed a ring zone at the periphery of the nucleus by 24 h postinfection. To investigate its role in virus replication, ac132 was deleted from the viral genome by using a bacmid system. In the Sf9 cell culture transfected by the ac132 knockout bacmid, infection was restricted to single cells, and the titer of infectious budded virus was reduced to an undetectable level. However, viral DNA replication and the expression of late genes vp39 and odv-e25 and a reporter gene under the control of the very late gene p10 promoter were unaffected. Electron microscopy showed that nucleocapsids, virions, and occlusion bodies were synthesized in the cells transfected by an ac132 knockout bacmid, but the formation of the virogenic stroma and occlusion bodies was delayed, the numbers of enveloped nucleocapsids were reduced, and the occlusion bodies contained mainly singly enveloped nucleocapsids. AC132 was found to interact with envelope protein ODV-E18 and the viral DNA-binding protein P6.9. The data from this study suggest that ac132 possibly plays an important role in the assembly and envelopment of nucleocapsids. IMPORTANCE To our knowledge, this is the first report on a functional analysis of ac132. The data presented here demonstrate that ac132 is required for production of the budded virus and multiply enveloped occlusion-derived virus of Autographa californica multiple nucleopolyhedrovirus. This article reveals unique phenotypic changes induced by ac132 deletion on the virus and multiple new findings on ac132.
Collapse
|
18
|
Clem SA, Wu W, Passarelli AL. The Trichoplusia ni single nucleopolyhedrovirus tn79 gene encodes a functional sulfhydryl oxidase enzyme that is able to support the replication of Autographa californica multiple nucleopolyhedrovirus lacking the sulfhydryl oxidase ac92 gene. Virology 2014; 460-461:207-16. [PMID: 25010286 PMCID: PMC4101058 DOI: 10.1016/j.virol.2014.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 03/31/2014] [Accepted: 05/06/2014] [Indexed: 11/27/2022]
Abstract
The Autographa californica multiple nucleopolyhedrovirus ac92 is a conserved baculovirus gene with homology to flavin adenine dinucleotide-linked sulfhydryl oxidases. Its product, Ac92, is a functional sulfhydryl oxidase. Deletion of ac92 results in almost negligible levels of budded virus (BV) production, defects in occlusion-derived virus (ODV) co-envelopment and their inefficient incorporation into occlusion bodies. To determine the role of sulfhydryl oxidation in the production of BV, envelopment of nucleocapsids, and nucleocapsid incorporation into occlusion bodies, the Trichoplusia ni single nucleopolyhedrovirus ortholog, tn79, was substituted for ac92. Tn79 was found to be an active sulfhydryl oxidase that substituted for Ac92, resulting in the production of infectious BV, albeit about 10-fold less than an ac92-containing virus. Tn79 rescued defects in ODV morphogenesis caused by a lack of ac92. Active Tn79 sulfhydryl oxidase activity is required for efficient BV production, ODV envelopment, and their subsequent incorporation into occlusion bodies in the absence of ac92.
Collapse
Affiliation(s)
- Stian A Clem
- Molecular, Cellular, and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506-4901, USA
| | - Wenbi Wu
- Molecular, Cellular, and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506-4901, USA
| | - A Lorena Passarelli
- Molecular, Cellular, and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506-4901, USA.
| |
Collapse
|
19
|
VP1 protein of Foot-and-mouth disease virus (FMDV) impairs baculovirus surface display. Virus Res 2013; 175:87-90. [DOI: 10.1016/j.virusres.2013.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 01/01/2023]
|
20
|
The Autographa californica multiple nucleopolyhedrovirus ORF78 is essential for budded virus production and general occlusion body formation. J Virol 2013; 87:8441-50. [PMID: 23698311 DOI: 10.1128/jvi.01290-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ORF78 (ac78) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is a baculovirus core gene of unknown function. To determine the role of ac78 in the baculovirus life cycle, an AcMNPV mutant with ac78 deleted, Ac78KO, was constructed. Quantitative PCR analysis revealed that ac78 is a late gene in the viral life cycle. After transfection into Spodoptera frugiperda cells, Ac78KO produced a single-cell infection phenotype, indicating that no infectious budded viruses (BVs) were produced. The defect in BV production was also confirmed by both viral titration and Western blotting. However, viral DNA replication was unaffected, and occlusion bodies were formed. An analysis of BVs and occlusion-derived viruses (ODVs) revealed that AC78 is associated with both forms of the virions and is an envelope structural protein. Electron microscopy revealed that AC78 also plays an important role in the embedding of ODV into the occlusion body. The results of this study demonstrate that AC78 is a late virion-associated protein and is essential for the viral life cycle.
Collapse
|
21
|
Zhang Y, Hung T, Song J, He J. Electron microscopy: essentials for viral structure, morphogenesis and rapid diagnosis. SCIENCE CHINA-LIFE SCIENCES 2013; 56:421-30. [PMID: 23633074 PMCID: PMC7089233 DOI: 10.1007/s11427-013-4476-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 02/28/2013] [Indexed: 11/24/2022]
Abstract
Electron microscopy (EM) should be used in the front line for detection of agents in emergencies and bioterrorism, on accounts of its speed and accuracy. However, the number of EM diagnostic laboratories has decreased considerably and an increasing number of people encounter difficulties with EM results. Therefore, the research on viral structure and morphologyant in EM diagnostic practice. EM has several technological advantages, and should be a fundamental tool in clinical diagnosis of viruses, particularly when agents are unknown or unsuspected. In this article, we review the historical contribution of EM to virology, and its use in virus differentiation, localization of specific virus antigens, virus-cell interaction, and viral morphogenesis. It is essential that EM investigations are based on clinical and comprehensive pathogenesis data from light or confocal microscopy. Furthermore, avoidance of artifacts or false results is necessary to exploit fully the advantages while minimizing its limitations.
Collapse
Affiliation(s)
- Ying Zhang
- College of Life Sciences and Bioengineering, Electron Microscopy Laboratory, School of Science, Beijing Jiaotong University, Beijing 100044, China
| | | | | | | |
Collapse
|