1
|
Goerdt L, Raming K, Rodriguez Garcia JL, Pfau K, Holz FG, Herrmann P. ELLIPSOID ZONE RECOVERY IN MACULAR TELANGIECTASIA TYPE 2. Retina 2024; 44:1413-1421. [PMID: 38513243 DOI: 10.1097/iae.0000000000004108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
PURPOSE To describe imaging features of macular telangiectasia type 2 eyes experiencing ellipsoid zone (EZ) recovery. METHODS Macular telangiectasia type 2 patients with EZ recovery were identified from the Natural History and Observational Registry study and underwent retinal imaging including optical coherence tomography and fundus photography. Eyes were graded according to the classification system by Gass and Blodi, the EZ-loss area was measured, and optical coherence tomography parameters were assessed by two independent readers. Parameters were analyzed for their presence before EZ recovery. RESULTS Twenty-four eyes of 21 patients (12 female, 57.12%; mean age 68 ± 8.54 years) were included in this study and followed for 21.25 months ± 12.79 months. At baseline, mean EZ-loss area was 0.036 mm 2 ± 0.028 mm 2 and 0.01 mm 2 ± 0.013 mm 2 at follow-up ( P < 0.001). A persisting external limiting membrane overlaying the EZ-loss was detected in 16 cases (66%), and hyperreflective changes in the outer retina were present in 18 cases (75%). Best-corrected visual acuity was 0.23 (20/32) ± 0.33 logMAR at baseline and 0.34 (20/40) ± 0.34 logMAR at follow-up ( P = 0.3). CONCLUSION Distinct optical coherence tomography features precede ellipsoid zone recovery in macular telangiectasia type 2 and warrant further studies investigating implications for patient care and clinical trial interpretation.
Collapse
Affiliation(s)
- Lukas Goerdt
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany ; and
| | - Kristin Raming
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany ; and
| | | | - Kristina Pfau
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany ; and
- Department of Ophthalmology, University Hospital Basel, Basel, Switzerland
| | - Frank G Holz
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany ; and
| | - Philipp Herrmann
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany ; and
| |
Collapse
|
2
|
Seidemann S, Salomon F, Hoffmann KB, Kurth T, Sbalzarini IF, Haase R, Ader M. Automated quantification of photoreceptor outer segments in developing and degenerating retinas on microscopy images across scales. Front Mol Neurosci 2024; 17:1398447. [PMID: 38854587 PMCID: PMC11157083 DOI: 10.3389/fnmol.2024.1398447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/17/2024] [Indexed: 06/11/2024] Open
Abstract
The functionality of photoreceptors, rods, and cones is highly dependent on their outer segments (POS), a cellular compartment containing highly organized membranous structures that generate biochemical signals from incident light. While POS formation and degeneration are qualitatively assessed on microscopy images, reliable methodology for quantitative analyses is still limited. Here, we developed methods to quantify POS (QuaPOS) maturation and quality on retinal sections using automated image analyses. POS formation was examined during the development and in adulthood of wild-type mice via light microscopy (LM) and transmission electron microscopy (TEM). To quantify the number, size, shape, and fluorescence intensity of POS, retinal cryosections were immunostained for the cone POS marker S-opsin. Fluorescence images were used to train the robust classifier QuaPOS-LM based on supervised machine learning for automated image segmentation. Characteristic features of segmentation results were extracted to quantify the maturation of cone POS. Subsequently, this quantification method was applied to characterize POS degeneration in "cone photoreceptor function loss 1" mice. TEM images were used to establish the ultrastructural quantification method QuaPOS-TEM for the alignment of POS membranes. Images were analyzed using a custom-written MATLAB code to extract the orientation of membranes from the image gradient and their alignment (coherency). This analysis was used to quantify the POS morphology of wild-type and two inherited retinal degeneration ("retinal degeneration 19" and "rhodopsin knock-out") mouse lines. Both automated analysis technologies provided robust characterization and quantification of POS based on LM or TEM images. Automated image segmentation by the classifier QuaPOS-LM and analysis of the orientation of membrane stacks by QuaPOS-TEM using fluorescent or TEM images allowed quantitative evaluation of POS formation and quality. The assessments showed an increase in POS number, volume, and membrane coherency during wild-type postnatal development, while a decrease in all three observables was detected in different retinal degeneration mouse models. All the code used for the presented analysis is open source, including example datasets to reproduce the findings. Hence, the QuaPOS quantification methods are useful for in-depth characterization of POS on retinal sections in developmental studies, for disease modeling, or after therapeutic interventions affecting photoreceptors.
Collapse
Affiliation(s)
- Suse Seidemann
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Florian Salomon
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Karl B. Hoffmann
- Faculty of Computer Science, Technische Universität Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Thomas Kurth
- Core Facility Electron Microscopy and Histology, Technology Platform, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Ivo F. Sbalzarini
- Faculty of Computer Science, Technische Universität Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
- DFG Cluster of Excellence “Physics of Life”, Technische Universität Dresden, Dresden, Germany
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Leipzig University, Leipzig, Germany
| | - Robert Haase
- DFG Cluster of Excellence “Physics of Life”, Technische Universität Dresden, Dresden, Germany
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Leipzig University, Leipzig, Germany
| | - Marius Ader
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
3
|
Tranfield EM, Fabig G, Kurth T, Müller-Reichert T. How to apply the broad toolbox of correlative light and electron microscopy to address a specific biological question. Methods Cell Biol 2024; 187:1-41. [PMID: 38705621 DOI: 10.1016/bs.mcb.2024.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Correlative light and electron microscopy (CLEM) is an approach that combines the strength of multiple imaging techniques to obtain complementary information about a given specimen. The "toolbox" for CLEM is broad, making it sometimes difficult to choose an appropriate approach for a given biological question. In this chapter, we provide experimental details for three CLEM approaches that can help the interested reader in designing a personalized CLEM strategy for obtaining ultrastructural data by using transmission electron microscopy (TEM). First, we describe chemical fixation of cells grown on a solid support (broadest approach). Second, we apply high-pressure freezing/freeze substitution to describe cellular ultrastructure (cryo-immobilization approach). Third, we give a protocol for a ultrastructural labeling by immuno-electron microscopy (immuno-EM approach). In addition, we also describe how to overlay fluorescence and electron microscopy images, an approach that is applicable to each of the reported different CLEM strategies. Here we provide step-by step descriptions prior to discussing possible technical problems and variations of these three general schemes to suit different models or different biological questions. This chapter is written for electron microscopists that are new to CLEM and unsure how to begin. Therefore, our protocols are meant to provide basic information with further references that should help the reader get started with applying a tailored strategy for a specific CLEM experiment.
Collapse
Affiliation(s)
- Erin M Tranfield
- Electron Microscopy Facility, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Gunar Fabig
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Thomas Kurth
- Core Facility Electron Microscopy and Histology Facility, Technology Platform, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Thomas Müller-Reichert
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
4
|
Gasparini SJ, Tessmer K, Reh M, Wieneke S, Carido M, Völkner M, Borsch O, Swiersy A, Zuzic M, Goureau O, Kurth T, Busskamp V, Zeck G, Karl MO, Ader M. Transplanted human cones incorporate and function in a murine cone degeneration model. J Clin Invest 2022; 132:154619. [PMID: 35482419 PMCID: PMC9197520 DOI: 10.1172/jci154619] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
Once human photoreceptors die, they do not regenerate, thus, photoreceptor transplantation has emerged as a potential treatment approach for blinding diseases. Improvements in transplant organization, donor cell maturation, and synaptic connectivity to the host will be critical in advancing this technology for use in clinical practice. Unlike the unstructured grafts of prior cell-suspension transplantations into end-stage degeneration models, we describe the extensive incorporation of induced pluripotent stem cell (iPSC) retinal organoid–derived human photoreceptors into mice with cone dysfunction. This incorporative phenotype was validated in both cone-only as well as pan-photoreceptor transplantations. Rather than forming a glial barrier, Müller cells extended throughout the graft, even forming a series of adherens junctions between mouse and human cells, reminiscent of an outer limiting membrane. Donor-host interaction appeared to promote polarization as well as the development of morphological features critical for light detection, namely the formation of inner and well-stacked outer segments oriented toward the retinal pigment epithelium. Putative synapse formation and graft function were evident at both structural and electrophysiological levels. Overall, these results show that human photoreceptors interacted readily with a partially degenerated retina. Moreover, incorporation into the host retina appeared to be beneficial to graft maturation, polarization, and function.
Collapse
Affiliation(s)
| | - Karen Tessmer
- Ader Lab, Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Miriam Reh
- Department of Neurophysics, NMI Natural and Medical Sciences Institute at the University Tübingen, Reutlingen, Germany
| | - Stephanie Wieneke
- Karl Lab, Center for Regenerative Therapies TU Dresden and German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Madalena Carido
- Ader Lab, Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Manuela Völkner
- Karl Lab, Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Oliver Borsch
- Ader Lab, Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Anka Swiersy
- Busskamp Lab, Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Marta Zuzic
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Olivier Goureau
- Institut de la Vision, INSERM, CNRS, Sorbonne Université, Paris, France
| | - Thomas Kurth
- Center for Molecular and Cellular Biology, Technische Universität (TU) Dresden, Dresden, Germany
| | - Volker Busskamp
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Günther Zeck
- Department of Neurophysics, NMI Natural and Medical Sciences Institute at the University Tübingen, Reutlingen, Germany
| | - Mike O Karl
- Karl Lab, Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Marius Ader
- Ader Lab, Center for Regenerative Therapies TU Dresden, Dresden, Germany
| |
Collapse
|
5
|
Ortin‐Martinez A, Yan NE, Tsai ELS, Comanita L, Gurdita A, Tachibana N, Liu ZC, Lu S, Dolati P, Pokrajac NT, El‐Sehemy A, Nickerson PEB, Schuurmans C, Bremner R, Wallace VA. Photoreceptor nanotubes mediate the in vivo exchange of intracellular material. EMBO J 2021; 40:e107264. [PMID: 34494680 PMCID: PMC8591540 DOI: 10.15252/embj.2020107264] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022] Open
Abstract
Emerging evidence suggests that intracellular molecules and organelles transfer between cells during embryonic development, tissue homeostasis and disease. We and others recently showed that transplanted and host photoreceptors engage in bidirectional transfer of intracellular material in the recipient retina, a process termed material transfer (MT). We used cell transplantation, advanced tissue imaging approaches, genetic and pharmacologic interventions and primary cell culture to characterize and elucidate the mechanism of MT. We show that MT correlates with donor cell persistence and the accumulation of donor-derived proteins, mitochondria and transcripts in acceptor cells in vivo. MT requires cell contact in vitro and is associated with the formation of stable microtubule-containing protrusions, termed photoreceptor nanotubes (Ph NTs), that connect donor and host cells in vivo and in vitro. Ph NTs mediate GFP transfer between connected cells in vitro. Furthermore, interfering with Ph NT outgrowth by targeting Rho GTPase-dependent actin remodelling inhibits MT in vivo. Collectively, our observations provide evidence for horizontal exchange of intracellular material via nanotube-like connections between neurons in vivo.
Collapse
Affiliation(s)
- Arturo Ortin‐Martinez
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
| | - Nicole E Yan
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
| | - En Leh Samuel Tsai
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
| | - Lacrimioara Comanita
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
| | - Akshay Gurdita
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
| | - Nobuhiko Tachibana
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
| | - Zhongda C Liu
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
| | - Suying Lu
- Lunenfeld Tanenbaum Research InstituteMount Sinai HospitalSinai Health SystemsTorontoONCanada
| | - Parnian Dolati
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
| | - Neno T Pokrajac
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
| | - Ahmed El‐Sehemy
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
| | - Philip E B Nickerson
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
| | - Carol Schuurmans
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
- Department of BiochemistryUniversity of TorontoTorontoONCanada
- Sunnybrook Research InstituteTorontoONCanada
- Department of Ophthalmology and Vision SciencesUniversity of TorontoTorontoONCanada
| | - Rod Bremner
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
- Lunenfeld Tanenbaum Research InstituteMount Sinai HospitalSinai Health SystemsTorontoONCanada
- Department of Ophthalmology and Vision SciencesUniversity of TorontoTorontoONCanada
| | - Valerie A Wallace
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
- Department of Ophthalmology and Vision SciencesUniversity of TorontoTorontoONCanada
| |
Collapse
|
6
|
Cell therapy with hiPSC-derived RPE cells and RPCs prevents visual function loss in a rat model of retinal degeneration. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 20:688-702. [PMID: 33738324 PMCID: PMC7937540 DOI: 10.1016/j.omtm.2021.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 02/04/2021] [Indexed: 12/18/2022]
Abstract
Photoreceptor loss is the principal cause of blindness in retinal degenerative diseases (RDDs). Whereas some therapies exist for early stages of RDDs, no effective treatment is currently available for later stages, and once photoreceptors are lost, the only option to rescue vision is cell transplantation. With the use of the Royal College of Surgeons (RCS) rat model of retinal degeneration, we sought to determine whether combined transplantation of human-induced pluripotent stem cell (hiPSC)-derived retinal precursor cells (RPCs) and retinal pigment epithelial (RPE) cells was superior to RPE or RPC transplantation alone in preserving retinal from degeneration. hiPSC-derived RPCs and RPE cells expressing (GFP) were transplanted into the subretinal space of rats. In vivo monitoring showed that grafted cells survived 12 weeks in the subretinal space, and rats treated with RPE + RPC therapy exhibited better conservation of the outer nuclear layer (ONL) and visual response than RPE-treated or RPC-treated rats. Transplanted RPE cells integrated in the host RPE layer, whereas RPC mostly remained in the subretinal space, although a limited number of cells integrated in the ONL. In conclusion, the combined transplantation of hiPSC-derived RPE and RPCs is a potentially superior therapeutic approach to protect retina from degeneration in RDDs.
Collapse
|
7
|
Tezel T, Ruff A. Retinal cell transplantation in retinitis pigmentosa. Taiwan J Ophthalmol 2021; 11:336-347. [PMID: 35070661 PMCID: PMC8757529 DOI: 10.4103/tjo.tjo_48_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/10/2021] [Indexed: 11/25/2022] Open
Abstract
Retinitis pigmentosa is the most common hereditary retinal disease. Dietary supplements, neuroprotective agents, cytokines, and lately, prosthetic devices, gene therapy, and optogenetics have been employed to slow down the retinal degeneration or improve light perception. Completing retinal circuitry by transplanting photoreceptors has always been an appealing idea in retinitis pigmentosa. Recent developments in stem cell technology, retinal imaging techniques, tissue engineering, and transplantation techniques have brought us closer to accomplish this goal. The eye is an ideal organ for cell transplantation due to a low number of cells required to restore vision, availability of safe surgical and imaging techniques to transplant and track the cells in vivo, and partial immune privilege provided by the subretinal space. Human embryonic stem cells, induced pluripotential stem cells, and especially retinal organoids provide an adequate number of cells at a desired developmental stage which may maximize integration of the graft to host retina. However, stem cells must be manufactured under strict good manufacturing practice protocols due to known tumorigenicity as well as possible genetic and epigenetic stabilities that may pose a danger to the recipient. Immune compatibility of stem cells still stands as a problem for their widespread use for retinitis pigmentosa. Transplantation of stem cells from different sources revealed that some of the transplanted cells may not integrate the host retina but slow down the retinal degeneration through paracrine mechanisms. Discovery of a similar paracrine mechanism has recently opened a new therapeutic path for reversing the cone dormancy and restoring the sight in retinitis pigmentosa.
Collapse
|
8
|
Jemni-Damer N, Guedan-Duran A, Fuentes-Andion M, Serrano-Bengoechea N, Alfageme-Lopez N, Armada-Maresca F, Guinea GV, Perez-Rigueiro J, Rojo F, Gonzalez-Nieto D, Kaplan DL, Panetsos F. Biotechnology and Biomaterial-Based Therapeutic Strategies for Age-Related Macular Degeneration. Part II: Cell and Tissue Engineering Therapies. Front Bioeng Biotechnol 2020; 8:588014. [PMID: 33363125 PMCID: PMC7758210 DOI: 10.3389/fbioe.2020.588014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
Age-related Macular Degeneration (AMD) is an up-to-date untreatable chronic neurodegenerative eye disease of multifactorial origin, and the main causes of blindness in over 65 y.o. people. It is characterized by a slow progression and the presence of a multitude of factors, highlighting those related to diet, genetic heritage and environmental conditions, present throughout each of the stages of the illness. Current therapeutic approaches, mainly consisting on intraocular drug delivery, are only used for symptoms relief and/or to decelerate the progression of the disease. Furthermore, they are overly simplistic and ignore the complexity of the disease and the enormous differences in the symptomatology between patients. Due to the wide impact of the AMD and the up-to-date absence of clinical solutions, Due to the wide impact of the AMD and the up-to-date absence of clinical solutions, different treatment options have to be considered. Cell therapy is a very promising alternative to drug-based approaches for AMD treatment. Cells delivered to the affected tissue as a suspension have shown poor retention and low survival rate. A solution to these inconveniences has been the encapsulation of these cells on biomaterials, which contrive to their protection, gives them support, and favor their retention of the desired area. We offer a two-papers critical review of the available and under development AMD therapeutic approaches, from a biomaterials and biotechnological point of view. We highlight benefits and limitations and we forecast forthcoming alternatives based on novel biomaterials and biotechnology methods. In this second part we review the preclinical and clinical cell-replacement approaches aiming at the development of efficient AMD-therapies, the employed cell types, as well as the cell-encapsulation and cell-implant systems. We discuss their advantages and disadvantages and how they could improve the survival and integration of the implanted cells.
Collapse
Affiliation(s)
- Nahla Jemni-Damer
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital, Madrid, Spain
| | - Atocha Guedan-Duran
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital, Madrid, Spain
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - María Fuentes-Andion
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital, Madrid, Spain
| | - Nora Serrano-Bengoechea
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital, Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| | - Nuria Alfageme-Lopez
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital, Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| | | | - Gustavo V. Guinea
- Silk Biomed SL, Madrid, Spain
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Pozuelo de Alarcon, Spain
- Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain
| | - José Perez-Rigueiro
- Silk Biomed SL, Madrid, Spain
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Pozuelo de Alarcon, Spain
- Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain
| | - Francisco Rojo
- Silk Biomed SL, Madrid, Spain
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Pozuelo de Alarcon, Spain
- Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain
| | - Daniel Gonzalez-Nieto
- Silk Biomed SL, Madrid, Spain
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Pozuelo de Alarcon, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Fivos Panetsos
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital, Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| |
Collapse
|
9
|
Lin B, McLelland BT, Aramant RB, Thomas BB, Nistor G, Keirstead HS, Seiler MJ. Retina Organoid Transplants Develop Photoreceptors and Improve Visual Function in RCS Rats With RPE Dysfunction. Invest Ophthalmol Vis Sci 2020; 61:34. [PMID: 32945842 PMCID: PMC7509771 DOI: 10.1167/iovs.61.11.34] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/17/2020] [Indexed: 01/01/2023] Open
Abstract
Purpose To study if human embryonic stem cell-derived photoreceptors could survive and function without the support of retinal pigment epithelium (RPE) after transplantation into Royal College of Surgeons rats, a rat model of retinal degeneration caused by RPE dysfunction. Methods CSC14 human embryonic stem cells were differentiated into primordial eye structures called retinal organoids. Retinal organoids were analyzed by quantitative PCR and immunofluorescence and compared with human fetal retina. Retinal organoid sheets (30-70 day of differentiation) were transplanted into immunodeficient RCS rats, aged 44 to 56 days. The development of transplant organoids in vivo in relation to the host was examined by optical coherence tomography. Visual function was assessed by optokinetic testing, electroretinogram, and superior colliculus electrophysiologic recording. Cryostat sections were analyzed for various retinal, synaptic, and donor markers. Results Retinal organoids showed similar gene expression to human fetal retina transplanted rats demonstrated significant improvement in visual function compared with RCS nonsurgery and sham surgery controls by ERGs at 2 months after surgery (but not later), optokinetic testing (up to 6 months after surgery) and electrophysiologic superior colliculus recordings (6-8 months after surgery). The transplanted organoids survived more than 7 months; developed photoreceptors with inner and outer segments, and other retinal cells; and were well-integrated within the host. Conclusions This study, to our knowledge, is the first to show that transplanted photoreceptors survive and function even with host's dysfunctional RPE. Our findings suggest that transplantation of organoid sheets from stem cells may be a promising approach/therapeutic for blinding diseases.
Collapse
Affiliation(s)
- Bin Lin
- Physical Medicine & Rehabilitation, Sue & Bill Gross Stem Cell Research Center, University of California at Irvine, School of Medicine, Irvine, California, United States
| | - Bryce T. McLelland
- Physical Medicine & Rehabilitation, Sue & Bill Gross Stem Cell Research Center, University of California at Irvine, School of Medicine, Irvine, California, United States
| | - Robert B. Aramant
- Physical Medicine & Rehabilitation, Sue & Bill Gross Stem Cell Research Center, University of California at Irvine, School of Medicine, Irvine, California, United States
| | - Biju B. Thomas
- USC Roski Eye Institute, Department of Ophthalmology, University of Southern California, Los Angeles, California, United States
| | - Gabriel Nistor
- AIVITA Biomedical Inc., Irvine, California, United States
| | | | - Magdalene J. Seiler
- Physical Medicine & Rehabilitation, Sue & Bill Gross Stem Cell Research Center, University of California at Irvine, School of Medicine, Irvine, California, United States
- Ophthalmology, University of California at Irvine, School of Medicine, Irvine, California, United States
- Anatomy & Neurobiology, University of California at Irvine School of Medicine, Irvine, California, United States
| |
Collapse
|
10
|
West EL, Ribeiro J, Ali RR. Development of Stem Cell Therapies for Retinal Degeneration. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035683. [PMID: 31818854 DOI: 10.1101/cshperspect.a035683] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Degenerative retinal disease is the major cause of sight loss in the developed world and currently there is a lack of effective treatments. As the loss of vision is directly the result of the loss of retinal cells, effective cell replacement through stem-cell-based therapies may have the potential to treat a great number of retinal diseases whatever their underlying etiology. The eye is an ideal organ to develop cell therapies as it is immune privileged, and modern surgical techniques enable precise delivery of cells to the retina. Furthermore, a range of noninvasive diagnostic tests and high-resolution imaging techniques facilitate the evaluation of any therapeutic intervention. In this review, we evaluate the progress to date of current cell therapy strategies for retinal repair, focusing on transplantation of pluripotent stem-cell-derived retinal pigment epithelium (RPE) and photoreceptor cells.
Collapse
Affiliation(s)
- Emma L West
- Division of Molecular Therapy, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Joana Ribeiro
- Division of Molecular Therapy, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Robin R Ali
- Division of Molecular Therapy, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom.,Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan 48105, USA
| |
Collapse
|
11
|
Neuronal Reprogramming for Tissue Repair and Neuroregeneration. Int J Mol Sci 2020; 21:ijms21124273. [PMID: 32560072 PMCID: PMC7352898 DOI: 10.3390/ijms21124273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
Stem cell and cell reprogramming technology represent a rapidly growing field in regenerative medicine. A number of novel neural reprogramming methods have been established, using pluripotent stem cells (PSCs) or direct reprogramming, to efficiently derive specific neuronal cell types for therapeutic applications. Both in vitro and in vivo cellular reprogramming provide diverse therapeutic pathways for modeling neurological diseases and injury repair. In particular, the retina has emerged as a promising target for clinical application of regenerative medicine. Herein, we review the potential of neuronal reprogramming to develop regenerative strategy, with a particular focus on treating retinal degenerative diseases and discuss future directions and challenges in the field.
Collapse
|
12
|
Garita-Hernandez M, Lampič M, Chaffiol A, Guibbal L, Routet F, Santos-Ferreira T, Gasparini S, Borsch O, Gagliardi G, Reichman S, Picaud S, Sahel JA, Goureau O, Ader M, Dalkara D, Duebel J. Restoration of visual function by transplantation of optogenetically engineered photoreceptors. Nat Commun 2019; 10:4524. [PMID: 31586094 PMCID: PMC6778196 DOI: 10.1038/s41467-019-12330-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 08/28/2019] [Indexed: 12/22/2022] Open
Abstract
A major challenge in the treatment of retinal degenerative diseases, with the transplantation of replacement photoreceptors, is the difficulty in inducing the grafted cells to grow and maintain light sensitive outer segments in the host retina, which depends on proper interaction with the underlying retinal pigment epithelium (RPE). Here, for an RPE-independent treatment approach, we introduce a hyperpolarizing microbial opsin into photoreceptor precursors from newborn mice, and transplant them into blind mice lacking the photoreceptor layer. These optogenetically-transformed photoreceptors are light responsive and their transplantation leads to the recovery of visual function, as shown by ganglion cell recordings and behavioral tests. Subsequently, we generate cone photoreceptors from human induced pluripotent stem cells, expressing the chloride pump Jaws. After transplantation into blind mice, we observe light-driven responses at the photoreceptor and ganglion cell levels. These results demonstrate that structural and functional retinal repair is possible by combining stem cell therapy and optogenetics.
Collapse
Affiliation(s)
| | - Maruša Lampič
- Sorbonne Université, Institut de la Vision, INSERM, CNRS, 75012, Paris, France
| | - Antoine Chaffiol
- Sorbonne Université, Institut de la Vision, INSERM, CNRS, 75012, Paris, France
| | - Laure Guibbal
- Sorbonne Université, Institut de la Vision, INSERM, CNRS, 75012, Paris, France
| | - Fiona Routet
- Sorbonne Université, Institut de la Vision, INSERM, CNRS, 75012, Paris, France
| | | | - Sylvia Gasparini
- CRTD/Center for Regenerative Therapies Dresden, CMCB, TU Dresden, Dresden, Germany
| | - Oliver Borsch
- CRTD/Center for Regenerative Therapies Dresden, CMCB, TU Dresden, Dresden, Germany
| | - Giuliana Gagliardi
- Sorbonne Université, Institut de la Vision, INSERM, CNRS, 75012, Paris, France
| | - Sacha Reichman
- Sorbonne Université, Institut de la Vision, INSERM, CNRS, 75012, Paris, France
| | - Serge Picaud
- Sorbonne Université, Institut de la Vision, INSERM, CNRS, 75012, Paris, France
| | - José-Alain Sahel
- Sorbonne Université, Institut de la Vision, INSERM, CNRS, 75012, Paris, France
- CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423, Paris, France
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Olivier Goureau
- Sorbonne Université, Institut de la Vision, INSERM, CNRS, 75012, Paris, France
| | - Marius Ader
- CRTD/Center for Regenerative Therapies Dresden, CMCB, TU Dresden, Dresden, Germany
| | - Deniz Dalkara
- Sorbonne Université, Institut de la Vision, INSERM, CNRS, 75012, Paris, France.
| | - Jens Duebel
- Sorbonne Université, Institut de la Vision, INSERM, CNRS, 75012, Paris, France.
- Department of Ophthalmology, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
13
|
Photoreceptor cell replacement in macular degeneration and retinitis pigmentosa: A pluripotent stem cell-based approach. Prog Retin Eye Res 2019; 71:1-25. [DOI: 10.1016/j.preteyeres.2019.03.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/01/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
|
14
|
McLelland BT, Lin B, Mathur A, Aramant RB, Thomas BB, Nistor G, Keirstead HS, Seiler MJ. Transplanted hESC-Derived Retina Organoid Sheets Differentiate, Integrate, and Improve Visual Function in Retinal Degenerate Rats. Invest Ophthalmol Vis Sci 2019; 59:2586-2603. [PMID: 29847666 PMCID: PMC5968836 DOI: 10.1167/iovs.17-23646] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Purpose To investigate whether sheets of retina organoids derived from human embryonic stem cells (hESCs) can differentiate, integrate, and improve visual function in an immunodeficient rat model of severe retinal degeneration (RD). Methods 3D hESC-derived retina organoids were analyzed by quantitative PCR and immunofluorescence. Sheets dissected from retina organoids (30–65 days of differentiation) were transplanted into the subretinal space of immunodeficient rho S334ter-3 rats. Visual function was tested by optokinetic testing and electrophysiologic recording in the superior colliculus. Transplants were analyzed at 54 to 300 days postsurgery by immunohistochemistry for donor and retinal markers. Results Retina organoids contained multiple retinal cell types, including progenitor populations capable of developing new cones and rods. After transplantation into an immunodeficient rat model of severe RD, the transplanted sheets differentiated, integrated, and produced functional photoreceptors and other retinal cells, according to the longer human developmental timetable. Maturation of the transplanted retinal cells created visual improvements that were measured by optokinetic testing and electrophysiologic recording in the superior colliculus. Immunohistochemistry analysis indicated that the donor cells were synaptically active. Extensive transplant projections could be seen within the host RD retina. Optical coherence tomography imaging monitored long-term transplant growth and survival up to 10 months postsurgery. Conclusions These data demonstrate that the transplantation of sheets dissected from hESC-derived retina organoids is a potential therapeutic method for restoring vision in advanced stages of RD.
Collapse
Affiliation(s)
- Bryce T McLelland
- Physical Medicine & Rehabilitation, Sue & Bill Gross Stem Cell Research Center, University of California Irvine, School of Medicine, Irvine, California, United States
| | - Bin Lin
- Physical Medicine & Rehabilitation, Sue & Bill Gross Stem Cell Research Center, University of California Irvine, School of Medicine, Irvine, California, United States
| | - Anuradha Mathur
- Physical Medicine & Rehabilitation, Sue & Bill Gross Stem Cell Research Center, University of California Irvine, School of Medicine, Irvine, California, United States
| | - Robert B Aramant
- Physical Medicine & Rehabilitation, Sue & Bill Gross Stem Cell Research Center, University of California Irvine, School of Medicine, Irvine, California, United States
| | - Biju B Thomas
- University of Southern California Roski Eye Institute, Department of Ophthalmology, University of Southern California, Los Angeles, California, United States
| | - Gabriel Nistor
- AIVITA Biomedical, Inc., Irvine, California, United States
| | | | - Magdalene J Seiler
- Physical Medicine & Rehabilitation, Sue & Bill Gross Stem Cell Research Center, University of California Irvine, School of Medicine, Irvine, California, United States
| |
Collapse
|
15
|
Surgical Approaches for Cell Therapeutics Delivery to the Retinal Pigment Epithelium and Retina. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1186:141-170. [PMID: 31654389 DOI: 10.1007/978-3-030-28471-8_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Developing successful surgical strategies to deliver cell therapeutics to the back of the eye is an essential pillar to success for stem cell-based applications in blinding retinal diseases. Within this chapter, we have attempted to gather all key considerations during preclinical animal trials.Guidance is provided for choices on animal models, options for immunosuppression, as well as anesthesia. Subsequently we cover surgical strategies for RPE graft delivery, both as suspension as well as in monolayers in small rodents, rabbits, pigs, and nonhuman primate. A detailed account is given in particular on animal variations in vitrectomy and subretinal surgery, which requires a considerable learning curve, when transiting from human to animal. In turn, however, many essential subretinal implantation techniques in large-eyed animals are directly transferrable to human clinical trial protocols.A dedicated subchapter on photoreceptor replacement provides insights on preparation of suspension as well as sheet grafts, to subsequently outline the basics of subretinal delivery via both the transscleral and transvitreal route. In closing, a future outlook on vision restoration through retinal cell-based therapeutics is presented.
Collapse
|
16
|
Gasparini SJ, Llonch S, Borsch O, Ader M. Transplantation of photoreceptors into the degenerative retina: Current state and future perspectives. Prog Retin Eye Res 2018; 69:1-37. [PMID: 30445193 DOI: 10.1016/j.preteyeres.2018.11.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/29/2018] [Accepted: 11/06/2018] [Indexed: 12/12/2022]
Abstract
The mammalian retina displays no intrinsic regenerative capacities, therefore retinal degenerative diseases such as age-related macular degeneration (AMD) or retinitis pigmentosa (RP) result in a permanent loss of the light-sensing photoreceptor cells. The degeneration of photoreceptors leads to vision impairment and, in later stages, complete blindness. Several therapeutic strategies have been developed to slow down or prevent further retinal degeneration, however a definitive cure i.e. replacement of the lost photoreceptors, has not yet been established. Cell-based treatment approaches, by means of photoreceptor transplantation, have been studied in pre-clinical animal models over the last three decades. The introduction of pluripotent stem cell-derived retinal organoids represents, in principle, an unlimited source for the generation of transplantable human photoreceptors. However, safety, immunological and reproducibility-related issues regarding the use of such cells still need to be solved. Moreover, the recent finding of cytoplasmic material transfer between donor and host photoreceptors demands reinterpretation of several former transplantation studies. At the same time, material transfer between healthy donor and dysfunctional patient photoreceptors also offers a potential alternative strategy for therapeutic intervention. In this review we discuss the history and current state of photoreceptor transplantation, the techniques used to assess rescue of visual function, the prerequisites for effective transplantation as well as the main roadblocks, including safety and immune response to the graft, that need to be overcome for successful clinical translation of photoreceptor transplantation approaches.
Collapse
Affiliation(s)
- Sylvia J Gasparini
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Sílvia Llonch
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Oliver Borsch
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Marius Ader
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany.
| |
Collapse
|
17
|
Herbig M, Mietke A, Müller P, Otto O. Statistics for real-time deformability cytometry: Clustering, dimensionality reduction, and significance testing. BIOMICROFLUIDICS 2018; 12:042214. [PMID: 29937952 PMCID: PMC5999349 DOI: 10.1063/1.5027197] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/21/2018] [Indexed: 06/08/2023]
Abstract
Real-time deformability (RT-DC) is a method for high-throughput mechanical and morphological phenotyping of cells in suspension. While analysis rates exceeding 1000 cells per second allow for a label-free characterization of complex biological samples, e.g., whole blood, data evaluation has so far been limited to a few geometrical and material parameters such as cell size, deformation, and elastic Young's modulus. But as a microscopy-based technology, RT-DC actually generates and yields multidimensional datasets that require automated and unbiased tools to obtain morphological and rheological cell information. Here, we present a statistical framework to shed light on this complex parameter space and to extract quantitative results under various experimental conditions. As model systems, we apply cell lines as well as primary cells and highlight more than 11 parameters that can be obtained from RT-DC data. These parameters are used to identify sub-populations in heterogeneous samples using Gaussian mixture models, to perform a dimensionality reduction using principal component analysis, and to quantify the statistical significance applying linear mixed models to datasets of multiple replicates.
Collapse
Affiliation(s)
- M. Herbig
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | | | - P. Müller
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - O. Otto
- Author to whom the correspondence should be addressed:
| |
Collapse
|
18
|
Cellular regeneration strategies for macular degeneration: past, present and future. Eye (Lond) 2018; 32:946-971. [PMID: 29503449 PMCID: PMC5944658 DOI: 10.1038/s41433-018-0061-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/05/2018] [Accepted: 01/15/2018] [Indexed: 01/12/2023] Open
Abstract
Despite considerable effort and significant therapeutic advances, age-related macular degeneration (AMD) remains the commonest cause of blindness in the developed world. Progressive late-stage AMD with outer retinal degeneration currently has no proven treatment. There has been significant interest in the possibility that cellular treatments may slow or reverse visual loss in AMD. A number of modes of action have been suggested, including cell replacement and rescue, as well as immune modulation to delay the neurodegenerative process. Their appeal in this enigmatic disease relate to their generic, non-pathway-specific effects. The outer retina in particular has been at the forefront of developments in cellular regenerative therapies being surgically accessible, easily observable, as well as having a relatively simple architecture. Both the retinal pigment epithelium (RPE) and photoreceptors have been considered for replacement therapies as both sheets and cell suspensions. Studies using autologous RPE, and to a lesser extent, foetal retina, have shown proof of principle. A wide variety of cell sources have been proposed with pluripotent stem cell-derived cells currently holding the centre stage. Recent early-phase trials using these cells for RPE replacement have met safety endpoints and hinted at possible efficacy. Animal studies have confirmed the promise that photoreceptor replacement, even in a completely degenerated outer retina may restore some vision. Many challenges, however, remain, not least of which include avoiding immune rejection, ensuring long-term cellular survival and maximising effect. This review provides an overview of progress made, ongoing studies and challenges ahead.
Collapse
|
19
|
Lakowski J, Welby E, Budinger D, Di Marco F, Di Foggia V, Bainbridge JWB, Wallace K, Gamm DM, Ali RR, Sowden JC. Isolation of Human Photoreceptor Precursors via a Cell Surface Marker Panel from Stem Cell-Derived Retinal Organoids and Fetal Retinae. Stem Cells 2018; 36:709-722. [PMID: 29327488 PMCID: PMC5947711 DOI: 10.1002/stem.2775] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 12/01/2017] [Accepted: 12/14/2017] [Indexed: 12/16/2022]
Abstract
Loss of photoreceptor cells due to retinal degeneration is one of the main causes of blindness in the developed world. Although there is currently no effective treatment, cell replacement therapy using stem‐cell‐derived photoreceptor cells may be a feasible future treatment option. In order to ensure safety and efficacy of this approach, robust cell isolation and purification protocols must be developed. To this end, we previously developed a biomarker panel for the isolation of mouse photoreceptor precursors from the developing mouse retina and mouse embryonic stem cell cultures. In the current study we applied this approach to the human pluripotent stem cell (hPSC) system, and identified novel biomarker combinations that can be leveraged for the isolation of human photoreceptors. Human retinal samples and hPSC‐derived retinal organoid cultures were screened against 242 human monoclonal antibodies using a high through‐put flow cytometry approach. We identified 46 biomarkers with significant expression levels in the human retina and hPSC differentiation cultures. Human retinal cell samples, either from fetal tissue or derived from embryonic and induced pluripotent stem cell cultures, were fluorescence‐activated cell sorted (FACS) using selected candidate biomarkers that showed expression in discrete cell populations. Enrichment for photoreceptors and exclusion of mitotically active cells was demonstrated by immunocytochemical analysis with photoreceptor‐specific antibodies and Ki‐67. We established a biomarker combination, which enables the robust purification of viable human photoreceptors from both human retinae and hPSC‐derived organoid cultures. Stem Cells2018;36:709–722
Collapse
Affiliation(s)
- Jörn Lakowski
- Stem Cells and Regenerative Medicine Section, University College London, London, United Kingdom
| | - Emily Welby
- Stem Cells and Regenerative Medicine Section, University College London, London, United Kingdom.,NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Dimitri Budinger
- Stem Cells and Regenerative Medicine Section, University College London, London, United Kingdom
| | - Fabiana Di Marco
- Stem Cells and Regenerative Medicine Section, University College London, London, United Kingdom
| | - Valentina Di Foggia
- Stem Cells and Regenerative Medicine Section, University College London, London, United Kingdom.,NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | | | - Kyle Wallace
- Waisman Center, University of Wisconsin-Madison School of Medicine and Public Health, Waisman Center Rm T609, Madison, Wisconsin, USA
| | - David M Gamm
- Waisman Center, University of Wisconsin-Madison School of Medicine and Public Health, Waisman Center Rm T609, Madison, Wisconsin, USA.,Department of Ophthalmology and Visual Sciences and McPherson Eye Research Institute, University of Wisconsin-Madison School of Medicine and Public Health, Waisman Center Rm T609, Madison, Wisconsin, USA
| | - Robin R Ali
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
| | - Jane C Sowden
- Stem Cells and Regenerative Medicine Section, University College London, London, United Kingdom.,NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
20
|
Oswald J, Baranov P. Regenerative medicine in the retina: from stem cells to cell replacement therapy. Ther Adv Ophthalmol 2018; 10:2515841418774433. [PMID: 29998222 PMCID: PMC6016968 DOI: 10.1177/2515841418774433] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/15/2018] [Indexed: 12/20/2022] Open
Abstract
Following the fast pace of the growing field of stem cell research, retinal cell replacement is finally emerging as a feasible mean to be explored for clinical application. Although neuroprotective treatments are able to slow the progression of retinal degeneration caused by diseases such as age-related macular degeneration and glaucoma, they are insufficient to fully halt disease progression and unable to recover previously lost vision. Comprehensive, technological and intellectual advances over the past years, including the in vitro differentiation of retinal cells at manufacturing scale from embryonic stem (ES) cell and induced pluripotent stem (iPS) cell cultures, progress within the area of retinal disease modeling, and the first clinical trials have started to shape the way towards addressing this treatment gap and translating retinal cell replacement to the clinic. Here, summarize the most recent advances within retinal cell replacement from both a scientific and clinical perspective, and discuss the remaining challenges towards the delivery of the first retinal cell products.
Collapse
Affiliation(s)
- Julia Oswald
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute, Massachusetts Eye and Ear, 20 Staniford Street, Boston, MA 02114, USA
| | - Petr Baranov
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA, USA
| |
Collapse
|
21
|
Scholl HPN, Strauss RW, Singh MS, Dalkara D, Roska B, Picaud S, Sahel JA. Emerging therapies for inherited retinal degeneration. Sci Transl Med 2017; 8:368rv6. [PMID: 27928030 DOI: 10.1126/scitranslmed.aaf2838] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 11/17/2016] [Indexed: 12/13/2022]
Abstract
Inherited retinal degenerative diseases, a genetically and phenotypically heterogeneous group of disorders, affect the function of photoreceptor cells and are among the leading causes of blindness. Recent advances in molecular genetics and cell biology are elucidating the pathophysiological mechanisms underlying these disorders and are helping to identify new therapeutic approaches, such as gene therapy, stem cell therapy, and optogenetics. Several of these approaches have entered the clinical phase of development. Artificial replacement of dying photoreceptor cells using retinal prostheses has received regulatory approval. Precise retinal imaging and testing of visual function are facilitating more efficient clinical trial design. In individual patients, disease stage will determine whether the therapeutic strategy should comprise photoreceptor cell rescue to delay or arrest vision loss or retinal replacement for vision restoration.
Collapse
Affiliation(s)
- Hendrik P N Scholl
- Department of Ophthalmology, University of Basel, 4056 Basel, Switzerland. .,Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Rupert W Strauss
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD 21287, USA.,Moorfields Eye Hospital, London EC1V 2PD, U.K.,UCL Institute of Ophthalmology, University College London, London EC1V 9EL, U.K.,Department of Ophthalmology, Medical University Graz, Graz, Austria.,Department of Ophthalmology, Johannes Kepler University Linz, 4021 Linz, Austria
| | - Mandeep S Singh
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Deniz Dalkara
- INSERM, UMR S 968, 75012 Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Institut de la Vision, Paris, France.,CNRS, UMR 7210, 75012 Paris, France
| | - Botond Roska
- Department of Ophthalmology, University of Basel, 4056 Basel, Switzerland.,Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Serge Picaud
- INSERM, UMR S 968, 75012 Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Institut de la Vision, Paris, France.,CNRS, UMR 7210, 75012 Paris, France
| | - José-Alain Sahel
- INSERM, UMR S 968, 75012 Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Institut de la Vision, Paris, France.,CNRS, UMR 7210, 75012 Paris, France.,Fondation Ophtalmologique Adolphe de Rothschild, 75019 Paris, France.,Centre d'Investigation Clinique 1423, INSERM-Center Hospitalier National d'Ophtalmologie des Quinze-Vingts, 75012 Paris, France.,Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
22
|
Seiler MJ. hESC-derived photoreceptors survive and integrate better in immunodeficient retina. Stem Cell Investig 2017; 4:70. [PMID: 28920063 DOI: 10.21037/sci.2017.08.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 08/11/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Magdalene J Seiler
- Department of Physical Medicine & Rehabilitation, Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, USA
| |
Collapse
|
23
|
Abstract
The recent advances in cell-based therapies for the repair of the pigmented epithelium is providing additional impetus for the translation of photoreceptor transplantation to eventual clinical trials. The prospects for transplantation of photoreceptors as a potential therapy for the treatment of photoreceptor degeneration will depend on successfully addressing many critical issues in preclinical studies. Although most of the studies that have carried out transplants of photoreceptors have primarily used normal mice, there have been recent reports that have also shown some success following transplantation to mouse models of retinitis pigmentosa. However, while these results are promising, there are several key issues that require further investigation in order to better understand the optimum timing for transplantation, given the extensive remodeling of the retina that occurs in late stage disease.
Collapse
|
24
|
Aghaizu ND, Kruczek K, Gonzalez-Cordero A, Ali RR, Pearson RA. Pluripotent stem cells and their utility in treating photoreceptor degenerations. PROGRESS IN BRAIN RESEARCH 2017; 231:191-223. [PMID: 28554397 DOI: 10.1016/bs.pbr.2017.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Age-related macular degeneration and inherited retinal degenerations represent the leading causes of blindness in industrialized countries. Despite different initiating causes, they share a common final pathophysiology, the loss of the light sensitive photoreceptors. Replacement by transplantation may offer a potential treatment strategy for both patient populations. The last decade has seen remarkable progress in our ability to generate retinal cell types, including photoreceptors, from a variety of murine and human pluripotent stem cell sources. Driven in large part by the requirement for renewable cell sources, stem cells have emerged not only as a promising source of replacement photoreceptors but also to provide in vitro systems with which to study retinal development and disease processes and to test therapeutic agents.
Collapse
Affiliation(s)
| | - Kamil Kruczek
- UCL Institute of Ophthalmology, London, United Kingdom
| | | | - Robin R Ali
- UCL Institute of Ophthalmology, London, United Kingdom
| | | |
Collapse
|
25
|
Manthey AL, Liu W, Jiang ZX, Lee MHK, Ji J, So KF, Lai JSM, Lee VWH, Chiu K. Using Electrical Stimulation to Enhance the Efficacy of Cell Transplantation Therapies for Neurodegenerative Retinal Diseases: Concepts, Challenges, and Future Perspectives. Cell Transplant 2017; 26:949-965. [PMID: 28155808 DOI: 10.3727/096368917x694877] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Disease or trauma-induced loss or dysfunction of neurons in any central nervous system (CNS) tissue will have a significant impact on the health of the affected patient. The retina is a multilayered tissue that originates from the neuroectoderm, much like the brain and spinal cord. While sight is not required for life, neurodegeneration-related loss of vision not only affects the quality of life for the patient but also has societal implications in terms of health care expenditure. Thus, it is essential to develop effective strategies to repair the retina and prevent disease symptoms. To address this need, multiple techniques have been investigated for their efficacy in treating retinal degeneration. Recent advances in cell transplantation (CT) techniques in preclinical, animal, and in vitro culture studies, including further evaluation of endogenous retinal stem cells and the differentiation of exogenous adult stem cells into various retinal cell types, suggest that this may be the most appropriate option to replace lost retinal neurons. Unfortunately, the various limitations of CT, such as immune rejection or aberrant cell behavior, have largely prevented this technique from becoming a widely used clinical treatment option. In parallel with the advances in CT methodology, the use of electrical stimulation (ES) to treat retinal degeneration has also been recently evaluated with promising results. In this review, we propose that ES could be used to enhance CT therapy, whereby electrical impulses can be applied to the retina to control both native and transplanted stem cell behavior/survival in order to circumvent the limitations associated with retinal CT. To highlight the benefits of this dual treatment, we have briefly outlined the recent developments and limitations of CT with regard to its use in the ocular environment, followed by a brief description of retinal ES, as well as described their combined use in other CNS tissues.
Collapse
|
26
|
Müller A, Neukam M, Ivanova A, Sönmez A, Münster C, Kretschmar S, Kalaidzidis Y, Kurth T, Verbavatz JM, Solimena M. A Global Approach for Quantitative Super Resolution and Electron Microscopy on Cryo and Epoxy Sections Using Self-labeling Protein Tags. Sci Rep 2017; 7:23. [PMID: 28154417 PMCID: PMC5428382 DOI: 10.1038/s41598-017-00033-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 12/20/2016] [Indexed: 01/19/2023] Open
Abstract
Correlative light and electron microscopy (CLEM) is a powerful approach to investigate the molecular ultrastructure of labeled cell compartments. However, quantitative CLEM studies are rare, mainly due to small sample sizes and the sensitivity of fluorescent proteins to strong fixatives and contrasting reagents for EM. Here, we show that fusion of a self-labeling protein to insulin allows for the quantification of age-distinct insulin granule pools in pancreatic beta cells by a combination of super resolution and transmission electron microscopy on Tokuyasu cryosections. In contrast to fluorescent proteins like GFP organic dyes covalently bound to self-labeling proteins retain their fluorescence also in epoxy resin following high pressure freezing and freeze substitution, or remarkably even after strong chemical fixation. This enables for the assessment of age-defined granule morphology and degradation. Finally, we demonstrate that this CLEM protocol is highly versatile, being suitable for single and dual fluorescent labeling and detection of different proteins with optimal ultrastructure preservation and contrast.
Collapse
Affiliation(s)
- Andreas Müller
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany.,Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Martin Neukam
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany.,Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Anna Ivanova
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany.,Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Anke Sönmez
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany.,Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Carla Münster
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany.,Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Susanne Kretschmar
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany.,Biotechnology Center of the TU Dresden (BIOTEC), Dresden, Germany
| | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany.,Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia
| | - Thomas Kurth
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany.,Biotechnology Center of the TU Dresden (BIOTEC), Dresden, Germany
| | - Jean-Marc Verbavatz
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany.,Institut Jacques Monod, Université Paris Diderot, Paris, France
| | - Michele Solimena
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany. .,Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany. .,Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany.
| |
Collapse
|
27
|
Santos-Ferreira TF, Borsch O, Ader M. Rebuilding the Missing Part-A Review on Photoreceptor Transplantation. Front Syst Neurosci 2017; 10:105. [PMID: 28105007 PMCID: PMC5214672 DOI: 10.3389/fnsys.2016.00105] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/12/2016] [Indexed: 01/13/2023] Open
Abstract
Vision represents one of the main senses for humans to interact with their environment. Our sight relies on the presence of fully functional light sensitive cells – rod and cone photoreceptors — allowing us to see under dim (rods) and bright (cones) light conditions. Photoreceptor degeneration is one of the major causes for vision impairment in industrialized countries and it is highly predominant in the population above the age of 50. Thus, with the continuous increase in life expectancy it will make retinal degeneration reach an epidemic proportion. To date, there is no cure established for photoreceptor loss, but several therapeutic approaches, spanning from neuroprotection, pharmacological drugs, gene therapy, retinal prosthesis, and cell (RPE or photoreceptor) transplantation, have been developed over the last decade with some already introduced in clinical trials. In this review, we focus on current developments in photoreceptor transplantation strategies, its major breakthroughs, current limitations and the next challenges to translate such cell-based approaches toward clinical application.
Collapse
Affiliation(s)
- Tiago F Santos-Ferreira
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universität Dresden Dresden, Germany
| | - Oliver Borsch
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universität Dresden Dresden, Germany
| | - Marius Ader
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universität Dresden Dresden, Germany
| |
Collapse
|
28
|
Seiler MJ, Lin RE, McLelland BT, Mathur A, Lin B, Sigman J, De Guzman AT, Kitzes LM, Aramant RB, Thomas BB. Vision Recovery and Connectivity by Fetal Retinal Sheet Transplantation in an Immunodeficient Retinal Degenerate Rat Model. Invest Ophthalmol Vis Sci 2017; 58:614-630. [PMID: 28129425 PMCID: PMC6020716 DOI: 10.1167/iovs.15-19028] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 11/29/2016] [Indexed: 01/28/2023] Open
Abstract
Purpose To characterize a recently developed model, the retinal degenerate immunodeficient S334ter line-3 rat (SD-Foxn1 Tg(S334ter)3Lav) (RD nude rat), and to test whether transplanted rat fetal retinal sheets can elicit lost responses to light. Methods National Institutes of Health nude rats (SD-Foxn1 Tg) with normal retina were compared to RD nude rats with and without transplant for morphology and visual function. Retinal sheets from transgenic rats expressing human placental alkaline phosphatase (hPAP) were transplanted into the subretinal space of RD nude rats between postnatal day (P) 26 and P38. Transplant morphology was examined in vivo using optical coherence tomography (OCT). Visual function was assessed by optokinetic (OKN) testing, electroretinogram (ERG), and superior colliculus (SC) electrophysiology. Cryostat sections were analyzed for various retinal/synaptic markers and for the expression of donor hPAP. Results Optical coherence tomography scans showed the placement and laminar development of retinal sheet transplants in the subretinal space. Optokinetic testing demonstrated a deficit in visual acuity in RD nude rats that was improved after retinal sheet transplantation. No ERG responses were detected in the RD nude rats with or without transplantation. Superior colliculus responses were absent in age-matched control and sham surgery RD nude rats; however, robust light-evoked responses were observed in a specific location in the SC of transplanted RD nude rats. Responsive regions corresponded to the area of transplant placement in the eye. The quality of visual responses correlated with transplant organization and placement. Conclusions The data suggest that retinal sheet transplants integrate into the host retina of RD nude rats and recover significant visual function.
Collapse
Affiliation(s)
- Magdalene J. Seiler
- Stem Cell Research Center, University of California-Irvine, Irvine, California, United States
- Department of Physical Medicine & Rehabilitation, University of California-Irvine, Irvine, California, United States
| | - Robert E. Lin
- Stem Cell Research Center, University of California-Irvine, Irvine, California, United States
| | - Bryce T. McLelland
- Stem Cell Research Center, University of California-Irvine, Irvine, California, United States
| | - Anuradha Mathur
- Stem Cell Research Center, University of California-Irvine, Irvine, California, United States
| | - Bin Lin
- Stem Cell Research Center, University of California-Irvine, Irvine, California, United States
| | - Jaclyn Sigman
- Stem Cell Research Center, University of California-Irvine, Irvine, California, United States
| | - Alexander T. De Guzman
- Stem Cell Research Center, University of California-Irvine, Irvine, California, United States
- Department of Physical Medicine & Rehabilitation, University of California-Irvine, Irvine, California, United States
| | - Leonard M. Kitzes
- Stem Cell Research Center, University of California-Irvine, Irvine, California, United States
- Department of Anatomy & Neurobiology, University of California-Irvine, Irvine, California, United States
| | - Robert B. Aramant
- Stem Cell Research Center, University of California-Irvine, Irvine, California, United States
| | - Biju B. Thomas
- USC Roski Eye Institute, Department of Ophthalmology, University of Southern California, Los Angeles, California, United States
| |
Collapse
|
29
|
Santos-Ferreira T, Llonch S, Borsch O, Postel K, Haas J, Ader M. Retinal transplantation of photoreceptors results in donor-host cytoplasmic exchange. Nat Commun 2016; 7:13028. [PMID: 27701381 PMCID: PMC5059459 DOI: 10.1038/ncomms13028] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/23/2016] [Indexed: 12/12/2022] Open
Abstract
Pre-clinical studies provided evidence for successful photoreceptor cell replacement therapy. Migration and integration of donor photoreceptors into the retina has been proposed as the underlying mechanism for restored visual function. Here we reveal that donor photoreceptors do not structurally integrate into the retinal tissue but instead reside between the photoreceptor layer and the retinal pigment epithelium, the so-called sub-retinal space, and exchange intracellular material with host photoreceptors. By combining single-cell analysis, Cre/lox technology and independent labelling of the cytoplasm and nucleus, we reliably track allogeneic transplants demonstrating cellular content transfer between graft and host photoreceptors without nuclear translocation. Our results contradict the common view that transplanted photoreceptors migrate and integrate into the photoreceptor layer of recipients and therefore imply a re-interpretation of previous photoreceptor transplantation studies. Furthermore, the observed interaction of donor with host photoreceptors may represent an unexpected mechanism for the treatment of blinding diseases in future cell therapy approaches.
Collapse
Affiliation(s)
- Tiago Santos-Ferreira
- CRTD/Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Sílvia Llonch
- CRTD/Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Oliver Borsch
- CRTD/Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Kai Postel
- CRTD/Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Jochen Haas
- CRTD/Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Marius Ader
- CRTD/Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| |
Collapse
|
30
|
Donor and host photoreceptors engage in material transfer following transplantation of post-mitotic photoreceptor precursors. Nat Commun 2016; 7:13029. [PMID: 27701378 PMCID: PMC5059468 DOI: 10.1038/ncomms13029] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/23/2016] [Indexed: 12/12/2022] Open
Abstract
Photoreceptor replacement by transplantation is proposed as a treatment for blindness. Transplantation of healthy photoreceptor precursor cells into diseased murine eyes leads to the presence of functional photoreceptors within host retinae that express an array of donor-specific proteins. The resulting improvement in visual function was understood to be due to donor cells integrating within host retinae. Here, however, we show that while integration occurs the majority of donor-reporter-labelled cells in the host arises as a result of material transfer between donor and host photoreceptors. Material transfer does not involve permanent donor–host nuclear or cell–cell fusion, or the uptake of free protein or nucleic acid from the extracellular environment. Instead, RNA and/or protein are exchanged between donor and host cells in vivo. These data require a re-evaluation of the mechanisms underlying rescue by photoreceptor transplantation and raise the possibility of material transfer as a strategy for the treatment of retinal disorders. Transplantation of healthy photoreceptor cells has been shown to rescue blindness. Here, the authors show that rather than donor cells integrating into the host retina, the predominant mechanism underlying this rescue involves exchange of cytoplasmic material between donor and host cells in vivo.
Collapse
|
31
|
Smiley S, Nickerson PE, Comanita L, Daftarian N, El-Sehemy A, Tsai ELS, Matan-Lithwick S, Yan K, Thurig S, Touahri Y, Dixit R, Aavani T, De Repentingy Y, Baker A, Tsilfidis C, Biernaskie J, Sauvé Y, Schuurmans C, Kothary R, Mears AJ, Wallace VA. Establishment of a cone photoreceptor transplantation platform based on a novel cone-GFP reporter mouse line. Sci Rep 2016; 6:22867. [PMID: 26965927 PMCID: PMC4786810 DOI: 10.1038/srep22867] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 02/23/2016] [Indexed: 12/18/2022] Open
Abstract
We report successful retinal cone enrichment and transplantation using a novel cone-GFP reporter mouse line. Using the putative cone photoreceptor-enriched transcript Coiled-Coil Domain Containing 136 (Ccdc136) GFP-trapped allele, we monitored developmental reporter expression, facilitated the enrichment of cones, and evaluated transplanted GFP-labeled cones in wildtype and retinal degeneration mutant retinas. GFP reporter and endogenous Ccdc136 transcripts exhibit overlapping temporal and spatial expression patterns, both initiated in cone precursors of the embryonic retina and persisting to the adult stage in S and S/M opsin(+) cones as well as rod bipolar cells. The trapped allele does not affect cone function or survival in the adult mutant retina. When comparing the integration of GFP(+) embryonic cones and postnatal Nrl(-/-) 'cods' into retinas of adult wildtype and blind mice, both cell types integrated and exhibited a degree of morphological maturation that was dependent on donor age. These results demonstrate the amenability of the adult retina to cone transplantation using a novel transgenic resource that can advance therapeutic cone transplantation in models of age-related macular degeneration.
Collapse
Affiliation(s)
- Sheila Smiley
- Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Division of Vision Science, Department of Ophthalmology and Vision Science, Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Philip E. Nickerson
- Division of Vision Science, Department of Ophthalmology and Vision Science, Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Lacrimioara Comanita
- Division of Vision Science, Department of Ophthalmology and Vision Science, Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Narsis Daftarian
- Department of Biochemistry and Molecular Biology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, T2N 4N1, Canada
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Ahmed El-Sehemy
- Division of Vision Science, Department of Ophthalmology and Vision Science, Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 2J4, Canada
| | - En Leh Samuel Tsai
- Division of Vision Science, Department of Ophthalmology and Vision Science, Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 2J4, Canada
| | - Stuart Matan-Lithwick
- Division of Vision Science, Department of Ophthalmology and Vision Science, Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 2J4, Canada
| | - Keqin Yan
- Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, K1H 8L6, Canada
| | - Sherry Thurig
- Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, K1H 8L6, Canada
| | - Yacine Touahri
- Department of Biochemistry and Molecular Biology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, T2N 4N1, Canada
| | - Rajiv Dixit
- Department of Biochemistry and Molecular Biology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, T2N 4N1, Canada
| | - Tooka Aavani
- Department of Biochemistry and Molecular Biology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, T2N 4N1, Canada
| | - Yves De Repentingy
- Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, K1H 8L6, Canada
| | - Adam Baker
- Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, K1H 8L6, Canada
| | - Catherine Tsilfidis
- Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, K1H 8L6, Canada
- Department of Ophthalmology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, T2N 4N1, Canada
| | - Yves Sauvé
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Carol Schuurmans
- Department of Biochemistry and Molecular Biology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, T2N 4N1, Canada
| | - Rashmi Kothary
- Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Alan J. Mears
- Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, K1H 8L6, Canada
- Departments of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Valerie A. Wallace
- Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, K1H 8L6, Canada
- Department of Ophthalmology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Departments of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Division of Vision Science, Department of Ophthalmology and Vision Science, Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 2J4, Canada
| |
Collapse
|
32
|
Kim SY, Assawachananont J. A New Method to Visualize the Intact Subretina From Retinal Pigment Epithelium to Retinal Tissue in Whole Mount of Pigmented Mouse Eyes. Transl Vis Sci Technol 2016; 5:6. [PMID: 26929886 PMCID: PMC4757471 DOI: 10.1167/tvst.5.1.6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/06/2016] [Indexed: 01/24/2023] Open
Abstract
Purpose The subretinal layer between apical retinal pigment epithelium (RPE) and the apices of the photoreceptor outer segments is important to aging and degenerative pathogenesis, but current protocols do not provide intact horizontal images of this retinal space. Thus, an RPE/retina whole mount staining protocol was developed to observe integral subretinal regions. Methods RPE/retina whole mounts were stained instead of separated retina or RPE whole mounts. Hydrogen peroxide (H2O2) treatment was applied in different conditions of concentration, time, and temperature for the bleaching of RPE and choroidal melanocyte pigmentation in the pigmented RPE/retina whole mounts before antibody staining. Results An RPE/retina whole mount staining protocol provided better morphology of the photoreceptor outer segment than current retina whole mount. For the pigmented eyes, 10% H2O2 pretreatment effectively bleached melanin at 55°C less than 2 hours, or at 4°C within 7 days, without significant effect on immunolabeling efficacy of most antibodies tested. Actually, 55°C bleaching improved immunolabeling intensities compared to the nonbleaching control. This melanin bleaching RPE/retina protocol was applied further to observe macrophage/microglia extending from the sclera to outer plexiform layer in the CX3CR1+/GFP retina. Conclusions The pigment bleaching RPE/retina whole mount allowed integral horizontal imaging between choroid to photoreceptor layers, which could not be accomplished with existing methods of separated retina or RPE whole mount. Under these procedures, antigenicity of most antibodies also was well preserved. Translational Relevance This efficient protocol provides a tool to observe an integral view of subretinal structures including macrophage/microglia and transplanted cells, and further allows study of the interrelationship between the choroid and photoreceptor in models of aging, disease, and retinal degeneration.
Collapse
Affiliation(s)
- Soo-Young Kim
- Neurobiology-Neurodegeneration & Repair Laboratory National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Juthaporn Assawachananont
- Neurobiology-Neurodegeneration & Repair Laboratory National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
33
|
Quintero H, Gómez-Montalvo AI, Lamas M. MicroRNA changes through Müller glia dedifferentiation and early/late rod photoreceptor differentiation. Neuroscience 2015; 316:109-21. [PMID: 26708746 DOI: 10.1016/j.neuroscience.2015.12.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/24/2015] [Accepted: 12/14/2015] [Indexed: 12/18/2022]
Abstract
Cell-type determination is a complex process driven by the combinatorial effect of extrinsic signals and the expression of transcription factors and regulatory genes. MicroRNAs (miRNAs) are non-coding RNAs that, generally, inhibit the expression of target genes and have been involved, among other processes, in cell identity acquisition. To search for candidate miRNAs putatively involved in mice rod photoreceptor and Müller glia (MG) identity, we compared miRNA expression profiles between late-stage retinal progenitor cells (RPCs), CD73-immunopositive (CD73+) rods and postnatal MG. We found a close similarity between RPCs and CD73+ miRNA expression profiles but a divergence between CD73+ and MG miRNA signatures. We validated preferentially expressed miRNAs in the CD73+ subpopulation (miR-182, 183, 124a, 9(∗), 181c and 301b(∗)) or MG (miR-143, 145, 214, 199a-5p, 199b(∗), and 29a). Taking advantage of the unique capacity of MG to dedifferentiate into progenitor-like cells that can be differentiated to a rod phenotype in response to external cues, we evaluated changes of selected miRNAs in MG-derived progenitors (MGDP) during neuronal differentiation. We found decreased levels of miR-143 and 145, but increased levels of miR-29a in MGDP. In MGDPs committed to early neuronal lineages we found increased levels of miR-124a and upregulation of miR-124a, 9(∗) and 181c during MGDP acquisition of rod phenotypes. Furthermore, we demonstrated that ectopic miR-124 expression is sufficient to enhance early neuronal commitment of MGDP. Our data reveal a dynamic regulation of miRNAs in MGDP through early and late neuronal commitment and miRNAs that could be potential targets to exploit the silent neuronal differentiation capacity of MG in mammals.
Collapse
Affiliation(s)
- H Quintero
- Departamento de Farmacobiología, CINVESTAV-Sede Sur, México D.F., Mexico
| | - A I Gómez-Montalvo
- Departamento de Farmacobiología, CINVESTAV-Sede Sur, México D.F., Mexico
| | - M Lamas
- Departamento de Farmacobiología, CINVESTAV-Sede Sur, México D.F., Mexico.
| |
Collapse
|
34
|
Delplace V, Payne S, Shoichet M. Delivery strategies for treatment of age-related ocular diseases: From a biological understanding to biomaterial solutions. J Control Release 2015; 219:652-668. [PMID: 26435454 DOI: 10.1016/j.jconrel.2015.09.065] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 12/24/2022]
Abstract
Age-related ocular diseases, such as age-related macular degeneration (AMD), diabetic retinopathy, and glaucoma, result in life-long functional deficits and enormous global health care costs. As the worldwide population ages, vision loss has become a major concern for both economic and human health reasons. Due to recent research into biomaterials and nanotechnology major advances have been gained in the field of ocular delivery. This review provides a summary and discussion of the most recent strategies employed for the delivery of both drugs and cells to the eye to treat a variety of age-related diseases. It emphasizes the current challenges and limitations to ocular delivery and how the use of innovative materials can overcome these issues and ultimately provide treatment for age-related degeneration and regeneration of lost tissues. This review also provides critical considerations and an outlook for future studies in the field of ophthalmic delivery.
Collapse
Affiliation(s)
- Vianney Delplace
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada; Institute of Biomaterials and Biomedical Engineering, 164 College Street, Toronto, ON M5S 3G9, Canada
| | - Samantha Payne
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada; Institute of Biomaterials and Biomedical Engineering, 164 College Street, Toronto, ON M5S 3G9, Canada
| | - Molly Shoichet
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada; Institute of Biomaterials and Biomedical Engineering, 164 College Street, Toronto, ON M5S 3G9, Canada.
| |
Collapse
|
35
|
Mellough CB, Collin J, Khazim M, White K, Sernagor E, Steel DHW, Lako M. IGF-1 Signaling Plays an Important Role in the Formation of Three-Dimensional Laminated Neural Retina and Other Ocular Structures From Human Embryonic Stem Cells. Stem Cells 2015; 33:2416-30. [PMID: 25827910 PMCID: PMC4691326 DOI: 10.1002/stem.2023] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/11/2015] [Indexed: 12/17/2022]
Abstract
We and others have previously demonstrated that retinal cells can be derived from human embryonic stem cells (hESCs) and induced pluripotent stem cells under defined culture conditions. While both cell types can give rise to retinal derivatives in the absence of inductive cues, this requires extended culture periods and gives lower overall yield. Further understanding of this innate differentiation ability, the identification of key factors that drive the differentiation process, and the development of clinically compatible culture conditions to reproducibly generate functional neural retina is an important goal for clinical cell based therapies. We now report that insulin-like growth factor 1 (IGF-1) can orchestrate the formation of three-dimensional ocular-like structures from hESCs which, in addition to retinal pigmented epithelium and neural retina, also contain primitive lens and corneal-like structures. Inhibition of IGF-1 receptor signaling significantly reduces the formation of optic vesicle and optic cups, while exogenous IGF-1 treatment enhances the formation of correctly laminated retinal tissue composed of multiple retinal phenotypes that is reminiscent of the developing vertebrate retina. Most importantly, hESC-derived photoreceptors exhibit advanced maturation features such as the presence of primitive rod- and cone-like photoreceptor inner and outer segments and phototransduction-related functional responses as early as 6.5 weeks of differentiation, making these derivatives promising candidates for cell replacement studies and in vitro disease modeling.
Collapse
Affiliation(s)
- Carla B. Mellough
- Institute of Genetic MedicineNewcastle UniversityNewcastleUnited Kingdom
| | - Joseph Collin
- Institute of Genetic MedicineNewcastle UniversityNewcastleUnited Kingdom
| | - Mahmoud Khazim
- Institute of Genetic MedicineNewcastle UniversityNewcastleUnited Kingdom
- Institute of NeuroscienceNewcastle UniversityNewcastleUnited Kingdom
| | - Kathryn White
- EM Research Services, Newcastle UniversityNewcastleUnited Kingdom
| | - Evelyne Sernagor
- Institute of NeuroscienceNewcastle UniversityNewcastleUnited Kingdom
| | - David H. W. Steel
- Institute of Genetic MedicineNewcastle UniversityNewcastleUnited Kingdom
- Sunderland Eye InfirmarySunderlandUnited Kingdom
| | - Majlinda Lako
- Institute of Genetic MedicineNewcastle UniversityNewcastleUnited Kingdom
| |
Collapse
|
36
|
Tsai Y, Lu B, Bakondi B, Girman S, Sahabian A, Sareen D, Svendsen CN, Wang S. Human iPSC-Derived Neural Progenitors Preserve Vision in an AMD-Like Model. Stem Cells 2015; 33:2537-49. [PMID: 25869002 DOI: 10.1002/stem.2032] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/28/2015] [Indexed: 12/14/2022]
Abstract
Pluripotent stem cell-derived retinal pigment epithelial (RPE) cells are currently being tested for cell replacement in late-stage age-related macular degeneration (AMD). However, preserving vision at early-stages may also be possible. Here, we demonstrate that transplantation of neural progenitor cells (NPCs) derived from induced pluripotent stem cells (iNPCs) limits disease progression in the Royal College of Surgeons rat, a preclinical model of AMD. Grafted-iNPCs survived, remained undifferentiated, and distributed extensively in a laminar fashion in the subretinal space. Retinal pathology resulting from the accumulation of undigested photoreceptor outer segments (POS) was significantly reduced in iNPC-injected rats compared with controls. Phagosomes within grafted-iNPCs contained POS, suggesting that iNPCs had compensated for defective POS phagocytosis by host-RPE. The iNPC-treated eyes contained six to eight rows of photoreceptor nuclei that spanned up to 5 mm in length in transverse retinal sections, compared with only one row of photoreceptors in controls. iNPC treatment fully preserved visual acuity measured by optokinetic response. Electrophysiological recordings revealed that retina with the best iNPC-protected areas were 140-fold more sensitive to light stimulation than equivalent areas of contralateral eyes. The results described here support the therapeutic utility of iNPCs as autologous grafts for early-stage of AMD.
Collapse
Affiliation(s)
- Yuchun Tsai
- Department of Biomedical Sciences, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Bin Lu
- Department of Biomedical Sciences, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Benjamin Bakondi
- Department of Biomedical Sciences, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Sergey Girman
- Department of Biomedical Sciences, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Anais Sahabian
- Department of Biomedical Sciences, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dhruv Sareen
- Department of Biomedical Sciences, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Clive N Svendsen
- Department of Biomedical Sciences, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Shaomei Wang
- Department of Biomedical Sciences, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
37
|
Lakowski J, Gonzalez-Cordero A, West EL, Han YT, Welby E, Naeem A, Blackford SJI, Bainbridge JWB, Pearson RA, Ali RR, Sowden JC. Transplantation of Photoreceptor Precursors Isolated via a Cell Surface Biomarker Panel From Embryonic Stem Cell-Derived Self-Forming Retina. Stem Cells 2015; 33:2469-82. [PMID: 25982268 PMCID: PMC4862023 DOI: 10.1002/stem.2051] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 03/21/2015] [Indexed: 10/25/2022]
Abstract
Loss of photoreceptors due to retinal degeneration is a major cause of untreatable blindness. Cell replacement therapy, using pluripotent stem cell-derived photoreceptor cells, may be a feasible future treatment. Achieving safe and effective cell replacement is critically dependent on the stringent selection and purification of optimal cells for transplantation. Previously, we demonstrated effective transplantation of post-mitotic photoreceptor precursor cells labelled by fluorescent reporter genes. As genetically labelled cells are not desirable for therapy, here we developed a surface biomarker cell selection strategy for application to complex pluripotent stem cell differentiation cultures. We show that a five cell surface biomarker panel CD73(+)CD24(+)CD133(+)CD47(+)CD15(-) facilitates the isolation of photoreceptor precursors from three-dimensional self-forming retina differentiated from mouse embryonic stem cells. Importantly, stem cell-derived cells isolated using the biomarker panel successfully integrate and mature into new rod photoreceptors in the adult mouse retinae after subretinal transplantation. Conversely, unsorted or negatively selected cells do not give rise to newly integrated rods after transplantation. The biomarker panel also removes detrimental proliferating cells prior to transplantation. Notably, we demonstrate how expression of the biomarker panel is conserved in the human retina and propose that a similar selection strategy will facilitate isolation of human transplantation-competent cells for therapeutic application.
Collapse
Affiliation(s)
- Jorn Lakowski
- Stem Cells and Regenerative Medicine Section, UCL Institute of Child Health, University College London, London, United Kingdom
| | | | - Emma L West
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
| | - Ya-Ting Han
- Stem Cells and Regenerative Medicine Section, UCL Institute of Child Health, University College London, London, United Kingdom
| | - Emily Welby
- Stem Cells and Regenerative Medicine Section, UCL Institute of Child Health, University College London, London, United Kingdom
| | - Arifa Naeem
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
| | | | | | - Rachael A Pearson
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
| | - Robin R Ali
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
| | - Jane C Sowden
- Stem Cells and Regenerative Medicine Section, UCL Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
38
|
Jayakody SA, Gonzalez-Cordero A, Ali RR, Pearson RA. Cellular strategies for retinal repair by photoreceptor replacement. Prog Retin Eye Res 2015; 46:31-66. [PMID: 25660226 DOI: 10.1016/j.preteyeres.2015.01.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 01/13/2015] [Accepted: 01/19/2015] [Indexed: 02/08/2023]
Abstract
Loss of photoreceptors due to retinal degeneration is a major cause of blindness in the developed world. While no effective treatment is currently available, cell replacement therapy, using pluripotent stem cell-derived photoreceptor precursor cells, may be a feasible future treatment. Recent reports have demonstrated rescue of visual function following the transplantation of immature photoreceptors and we have seen major advances in our ability to generate transplantation-competent donor cells from stem cell sources. Moreover, we are beginning to realise the possibilities of using endogenous populations of cells from within the retina itself to mediate retinal repair. Here, we present a review of our current understanding of endogenous repair mechanisms together with recent progress in the use of both ocular and pluripotent stem cells for the treatment of photoreceptor loss. We consider how our understanding of retinal development has underpinned many of the recent major advances in translation and moved us closer to the goal of restoring vision by cellular means.
Collapse
Affiliation(s)
- Sujatha A Jayakody
- Gene and Cell Therapy Group, Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK
| | - Anai Gonzalez-Cordero
- Gene and Cell Therapy Group, Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK
| | - Robin R Ali
- Gene and Cell Therapy Group, Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK; NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, City Road, London EC1V 2PD, UK
| | - Rachael A Pearson
- Gene and Cell Therapy Group, Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK.
| |
Collapse
|
39
|
Chapter 4 - Restoring Vision to the Blind: Stem Cells and Transplantation. Transl Vis Sci Technol 2015; 3:6. [PMID: 25653890 DOI: 10.1167/tvst.3.7.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 11/24/2022] Open
|
40
|
Feodorova Y, Koch M, Bultman S, Michalakis S, Solovei I. Quick and reliable method for retina dissociation and separation of rod photoreceptor perikarya from adult mice. MethodsX 2015; 2:39-46. [PMID: 26150970 PMCID: PMC4487332 DOI: 10.1016/j.mex.2015.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/14/2015] [Indexed: 12/20/2022] Open
Abstract
A pure and abundant population of adult rod perikarya can be exploited in different studies concerning nuclear functions such as gene expression analyses which aim at elucidating the relationship between cell type and disease [1]. Sorting is based either on specific cell-surface markers or fluorescently labeled reporter proteins. Here, we describe a simple and reliable method for separation of rod photoreceptor perikarya without the use of staining procedures or transgenic mice. This method is limited, however, to sorting rod photoreceptors from adult mouse retina. Mature rods possess an inverted nuclear architecture which is determined by the optical functions of these nuclei [2]. The high backscatter of heterochromatin in the core of the nucleus can be used as a selection criterion for FAC-sorting by forward and sideward scatter. The procedure for retina dissociation using the Papain Dissociation System (Wothington Biochemical Corporation) was optimized. An easy to follow step-by-step protocol for retina dissociation was devised. Rod perikarya were FAC-sorted by forward and sideward scatter based solely on the high backscatter of heterochromatin in their nuclei.
Collapse
Affiliation(s)
- Yana Feodorova
- Department of Biology II, Center for Integrated Protein Science Munich (CIPSM), Ludwig Maximilians University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany ; Department of Medical Biology, Medical University-Plovdiv, Blvd. Vasil Aprilov 15A, 4000 Plovdiv, Bulgaria
| | - Mirja Koch
- Center for Integrated Protein Science Munich CIPSM at the Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - Sebastian Bultman
- Department of Biology II, Center for Integrated Protein Science Munich (CIPSM), Ludwig Maximilians University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| | - Stylianos Michalakis
- Center for Integrated Protein Science Munich CIPSM at the Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - Irina Solovei
- Department of Biology II, Center for Integrated Protein Science Munich (CIPSM), Ludwig Maximilians University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
41
|
Santos-Ferreira T, Postel K, Stutzki H, Kurth T, Zeck G, Ader M. Daylight Vision Repair by Cell Transplantation. Stem Cells 2014; 33:79-90. [DOI: 10.1002/stem.1824] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 08/06/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Tiago Santos-Ferreira
- CRTD/DFG-Center for Regenerative Therapies Dresden; Technische Universität Dresden; Dresden Germany
| | - Kai Postel
- CRTD/DFG-Center for Regenerative Therapies Dresden; Technische Universität Dresden; Dresden Germany
| | - Henrike Stutzki
- Natural and Medical Sciences Institute at the University of Tübingen; Reutlingen Germany
- Graduate Training Centre of Neuroscience; Tübingen Germany
| | - Thomas Kurth
- CRTD/DFG-Center for Regenerative Therapies Dresden; Technische Universität Dresden; Dresden Germany
| | - Günther Zeck
- Natural and Medical Sciences Institute at the University of Tübingen; Reutlingen Germany
| | - Marius Ader
- CRTD/DFG-Center for Regenerative Therapies Dresden; Technische Universität Dresden; Dresden Germany
| |
Collapse
|
42
|
Photoreceptor replacement therapy: Challenges presented by the diseased recipient retinal environment. Vis Neurosci 2014; 31:333-44. [DOI: 10.1017/s0952523814000200] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractVision loss caused by the death of photoreceptors is the leading cause of irreversible blindness in the developed world. Rapid advances in stem cell biology and techniques in cell transplantation have made photoreceptor replacement by transplantation a very plausible therapeutic strategy. These advances include the demonstration of restoration of vision following photoreceptor transplantation and the generation of transplantable populations of donor cells from stem cells. In this review, we present a brief overview of the recent progress in photoreceptor transplantation. We then consider in more detail some of the challenges presented by the degenerating retinal environment that must play host to these transplanted cells, how these may influence transplanted photoreceptor cell integration and survival, and some of the progress in developing strategies to circumnavigate these issues.
Collapse
|
43
|
Homma K, Okamoto S, Mandai M, Gotoh N, Rajasimha HK, Chang YS, Chen S, Li W, Cogliati T, Swaroop A, Takahashi M. Developing rods transplanted into the degenerating retina of Crx-knockout mice exhibit neural activity similar to native photoreceptors. Stem Cells 2014; 31:1149-59. [PMID: 23495178 DOI: 10.1002/stem.1372] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 01/15/2013] [Accepted: 01/29/2013] [Indexed: 12/21/2022]
Abstract
Replacement of dysfunctional or dying photoreceptors offers a promising approach for retinal neurodegenerative diseases, including age-related macular degeneration and retinitis pigmentosa. Several studies have demonstrated the integration and differentiation of developing rod photoreceptors when transplanted in wild-type or degenerating retina; however, the physiology and function of the donor cells are not adequately defined. Here, we describe the physiological properties of developing rod photoreceptors that are tagged with green fluorescent protein (GFP) driven by the promoter of rod differentiation factor, Nrl. GFP-tagged developing rods show Ca(2 +) responses and rectifier outward currents that are smaller than those observed in fully developed photoreceptors, suggesting their immature developmental state. These immature rods also exhibit hyperpolarization-activated current (Ih ) induced by the activation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. When transplanted into the subretinal space of wild-type or retinal degeneration mice, GFP-tagged developing rods can integrate into the photoreceptor outer nuclear layer in wild-type mouse retina and exhibit Ca(2 +) responses and membrane current comparable to native rod photoreceptors. A proportion of grafted rods develop rhodopsin-positive outer segment-like structures within 2 weeks after transplantation into the retina of Crx-knockout mice and produce rectifier outward current and Ih upon membrane depolarization and hyperpolarization. GFP-positive rods derived from induced pluripotent stem (iPS) cells also display similar membrane current Ih as native developing rod photoreceptors, express rod-specific phototransduction genes, and HCN-1 channels. We conclude that Nrl-promoter-driven GFP-tagged donor photoreceptors exhibit physiological characteristics of rods and that iPS cell-derived rods in vitro may provide a renewable source for cell-replacement therapy.
Collapse
Affiliation(s)
- Kohei Homma
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Cell therapy using retinal progenitor cells shows therapeutic effect in a chemically-induced rotenone mouse model of Leber hereditary optic neuropathy. Eur J Hum Genet 2014; 22:1314-20. [PMID: 24569607 DOI: 10.1038/ejhg.2014.26] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/19/2013] [Accepted: 12/26/2013] [Indexed: 01/08/2023] Open
Abstract
Primary mitochondrial disorders occur at a prevalence of one in 10 000; ∼50% of these demonstrate ocular pathology. Leber hereditary optic neuropathy (LHON) is the most common primary mitochondrial disorder. LHON results from retinal ganglion cell pathology, which leads to optic nerve degeneration and blindness. Over 95% of cases result from one of the three common mutations in mitochondrial genes MTND1, MTND4 and MTND6, which encode elements of the complex I respiratory chain. Various therapies for LHON are in development, for example, intravitreal injection of adeno-associated virus carrying either the yeast NDI1 gene or a specific subunit of mammalian Complex I have shown visual improvement in animal models. Given the course of LHON, it is likely that in many cases prompt administration may be necessary before widespread cell death. An alternative approach for therapy may be the use of stem cells to protect visual function; this has been evaluated by us in a rotenone-induced model of LHON. Freshly dissected embryonic retinal cells do not integrate into the ganglion cell layer (GCL), unlike similarly obtained photoreceptor precursors. However, cultured retinal progenitor cells can integrate in close proximity to the GCL, and act to preserve retinal function as assessed by manganese-enhanced magnetic resonance imaging, optokinetic responses and ganglion cell counts. Cell therapies for LHON therefore represent a promising therapeutic approach, and may be of particular utility in treating more advanced disease.
Collapse
|
45
|
Eberle D, Santos-Ferreira T, Grahl S, Ader M. Subretinal transplantation of MACS purified photoreceptor precursor cells into the adult mouse retina. J Vis Exp 2014:e50932. [PMID: 24638161 DOI: 10.3791/50932] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Vision impairment and blindness due to the loss of the light-sensing cells of the retina, i.e. photoreceptors, represents the main reason for disability in industrialized countries. Replacement of degenerated photoreceptors by cell transplantation represents a possible treatment option in future clinical applications. Indeed, recent preclinical studies demonstrated that immature photoreceptors, isolated from the neonatal mouse retina at postnatal day 4, have the potential to integrate into the adult mouse retina following subretinal transplantation. Donor cells generated a mature photoreceptor morphology including inner and outer segments, a round cell body located at the outer nuclear layer, and synaptic terminals in close proximity to endogenous bipolar cells. Indeed, recent reports demonstrated that donor photoreceptors functionally integrate into the neural circuitry of host mice. For a future clinical application of such cell replacement approach, purified suspensions of the cells of choice have to be generated and placed at the correct position for proper integration into the eye. For the enrichment of photoreceptor precursors, sorting should be based on specific cell surface antigens to avoid genetic reporter modification of donor cells. Here we show magnetic-associated cell sorting (MACS) - enrichment of transplantable rod photoreceptor precursors isolated from the neonatal retina of photoreceptor-specific reporter mice based on the cell surface marker CD73. Incubation with anti-CD73 antibodies followed by micro-bead conjugated secondary antibodies allowed the enrichment of rod photoreceptor precursors by MACS to approximately 90%. In comparison to flow cytometry, MACS has the advantage that it can be easier applied to GMP standards and that high amounts of cells can be sorted in relative short time periods. Injection of enriched cell suspensions into the subretinal space of adult wild-type mice resulted in a 3-fold higher integration rate compared to unsorted cell suspensions.
Collapse
Affiliation(s)
- Dominic Eberle
- CRTD / DFG-Research Center for Regenerative Therapies Dresden, Technische Universität Dresden
| | - Tiago Santos-Ferreira
- CRTD / DFG-Research Center for Regenerative Therapies Dresden, Technische Universität Dresden
| | - Sandra Grahl
- CRTD / DFG-Research Center for Regenerative Therapies Dresden, Technische Universität Dresden
| | - Marius Ader
- CRTD / DFG-Research Center for Regenerative Therapies Dresden, Technische Universität Dresden;
| |
Collapse
|
46
|
Warre-Cornish K, Barber AC, Sowden JC, Ali RR, Pearson RA. Migration, integration and maturation of photoreceptor precursors following transplantation in the mouse retina. Stem Cells Dev 2014; 23:941-54. [PMID: 24328605 DOI: 10.1089/scd.2013.0471] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Retinal degeneration leading to loss of photoreceptors is a major cause of untreatable blindness. Recent research has yielded definitive evidence for restoration of vision following the transplantation of rod photoreceptors in murine models of blindness, while advances in stem cell biology have enabled the generation of transplantable photoreceptors from embryonic stem cells. Importantly, the amount of visual function restored is dependent upon the number of photoreceptors that migrate correctly into the recipient retina. The developmental stage of the donor cells is important for their ability to migrate; they must be immature photoreceptor precursors. Little is known about how and when donor cell migration, integration, and maturation occurs. Here, we have performed a comprehensive histological analysis of the 6-week period following rod transplantation in mice. Donor cells migrate predominately as single entities during the first week undergoing a stereotyped sequence of morphological changes in their translocation from the site of transplantation, through the interphotoreceptor matrix and into the recipient retina. This includes initial polarization toward the outer nuclear layer (ONL), followed by formation of an apical attachment and rudimentary segment during migration into the ONL. Strikingly, acquisition of a nuclear architecture typical of mature rods was accelerated compared with normal development and a feature of migrating cells. Once within the ONL, precursors formed synaptic-like structures and outer segments in accordance with normal maturation. The restoration of visual function mediated by transplanted photoreceptors correlated with the later expression of rod α-transducin, achieving maximal function by 5 weeks.
Collapse
Affiliation(s)
- Katherine Warre-Cornish
- 1 Department of Genetics, University College London Institute of Ophthalmology , London, United Kingdom
| | | | | | | | | |
Collapse
|
47
|
Pearson RA. Advances in repairing the degenerate retina by rod photoreceptor transplantation. Biotechnol Adv 2014; 32:485-91. [PMID: 24412415 PMCID: PMC4070022 DOI: 10.1016/j.biotechadv.2014.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 09/26/2013] [Accepted: 01/01/2014] [Indexed: 02/01/2023]
Abstract
Despite very different aetiologies, age-related macular degeneration (AMD) and most inherited retinal disorders culminate in the same final common pathway, loss of the light-sensitive photoreceptors. There are few clinical treatments and none can reverse the loss of vision. Photoreceptor replacement by transplantation is proposed as a broad treatment strategy applicable to all degenerations. The past decade has seen a number of landmark achievements in this field, which together provide strong justification for continuing investigation into photoreceptor replacement strategies. These include proof of principle for restoring vision by rod-photoreceptor transplantation in mice with congenital stationary night blindness and advances in stem cell biology, which have led to the generation of complete optic structures in vitro from embryonic stem cells. The latter represents enormous potential for generating suitable and renewable donor cells with which to achieve the former. However, there are still challenges presented by the degenerating recipient retinal environment that must be addressed as we move to translating these technologies towards clinical application.
Collapse
Affiliation(s)
- Rachael A Pearson
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK.
| |
Collapse
|
48
|
Analysis of cell surface markers specific for transplantable rod photoreceptors. Mol Vis 2013; 19:2058-67. [PMID: 24146539 PMCID: PMC3786453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/26/2013] [Indexed: 12/05/2022] Open
Abstract
PURPOSE Transplantation of cells into retinas affected by degenerative diseases to replace dying photoreceptors represents a promising therapeutic approach. Young photoreceptors of 4-day-old mice show the highest capacity to integrate into the retinas of adult mice following grafting. Additional enrichment of these donor cells before transplantation with cell surface marker-dependent sorting methods further increases success rates. Currently, defined cell surface markers specific for transplantable photoreceptors that can be used for enrichment are limited. Therefore, identifying alternative targets would be advantageous. METHODS Microarray data of young rod photoreceptors were analyzed using the Database for Annotation, Visualization and Integrated Discovery combined with a literature search to identify genes encoding for proteins containing extracellular domains. Candidate genes were further analyzed with reverse transcriptase polymerase chain reaction (RT-PCR) for their retinal specificity. In situ hybridization and immunohistochemistry were used to identify their localization within the retina. RESULTS Enrichment of candidates by Database for Annotation, Visualization and Integrated Discovery revealed 65 proteins containing extracellular domains. Reverse transcriptase polymerase chain reaction identified Atp8a2, Cacna2d4, Cadm2, Cnga1, Kcnv2, and Pcdh21 as expressed in the retina and only a few additional tissues. In situ hybridization and immunohistochemistry showed specificity of Cacna2d4, Kcnv2, and Pcdh21 for photoreceptors in the retinas of young mice. CONCLUSIONS Cacna2d4, Kcnv2, and Cnga1 were identified as specific for target cells in the retinas of young mice and could serve as candidates for rod photoreceptor enrichment to replace cells in retinal degenerative diseases.
Collapse
|
49
|
Karl MO. The potential of stem cell research for the treatment of neuronal damage in glaucoma. Cell Tissue Res 2013; 353:311-25. [PMID: 23708526 DOI: 10.1007/s00441-013-1646-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 04/23/2013] [Indexed: 01/29/2023]
Abstract
Stem cell research offers a wide variety of approaches for the advancement of our understanding of basic mechanisms of neurodegeneration and tissue regeneration and for the discovery and development of new therapeutic strategies to prevent and restore neuronal cell loss. Similar to most other regions of our central nervous system, degenerative diseases of the retina lead to the loss of neurons, which are not replaced. Recent work in animals has provided proof-of-concept evidence for the restoration of photoreceptor cells by cell transplantation and neuronal cell replacement by regeneration from endogenous cell sources. However, efficient therapeutic prevention of neuronal cell loss has not been achieved. Moreover, successful cell replacement of retinal neurons in humans, including that of ganglion cells, remains a major challenge. Future successes in the discovery and translation of neuroprotective drug and gene therapies and of cell-based regenerative therapies will depend on a better understanding of the underlying disease pathomechanisms. Existing stem cell and cell-reprogramming technologies offer the potential to generate human retina cells, to develop specific human-cell-based retina disease models, and to open up novel therapeutic strategies. Further, we might glean substantial knowledge from species that can or cannot regenerate their neuronal retina, in the search for new therapeutic approaches. Thus, stem cell research will pave the way toward clinical translation. In this review, I address some of the major possibilities presently on offer and speculate about the power of stem cell research to gain further insights into the pathomechanisms of retinal neurodegeneration (with special emphasis on glaucoma) and to advance our therapeutic options.
Collapse
Affiliation(s)
- Mike O Karl
- German Center for Neurodegenerative Diseases e.V. (DZNE), Arnoldstrasse 18/18b, 01307, Dresden, Germany.
| |
Collapse
|
50
|
Cramer AO, MacLaren RE. Translating induced pluripotent stem cells from bench to bedside: application to retinal diseases. Curr Gene Ther 2013; 13:139-51. [PMID: 23320477 PMCID: PMC3826973 DOI: 10.2174/1566523211313020008] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/09/2013] [Accepted: 01/11/2013] [Indexed: 12/17/2022]
Abstract
Induced pluripotent stem cells (iPSc) are a scientific and medical frontier. Application of reprogrammed somatic cells for clinical trials is in its dawn period; advances in research with animal and human iPSc are paving the way for retinal therapies with the ongoing development of safe animal cell transplantation studies and characterization of patient- specific and disease-specific human iPSc. The retina is an optimal model for investigation of neural regeneration; amongst other advantageous attributes, it is the most accessible part of the CNS for surgery and outcome monitoring. A recent clinical trial showing a degree of visual restoration via a subretinal electronic prosthesis implies that even a severely degenerate retina may have the capacity for repair after cell replacement through potential plasticity of the visual system. Successful differentiation of neural retina from iPSc and the recent generation of an optic cup from human ESc invitro increase the feasibility of generating an expandable and clinically suitable source of cells for human clinical trials. In this review we shall present recent studies that have propelled the field forward and discuss challenges in utilizing iPS cell derived retinal cells as reliable models for clinical therapies and as a source for clinical cell transplantation treatment for patients suffering from genetic retinal disease.
Collapse
Affiliation(s)
- Alona O. Cramer
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, NIHR Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK
- Merton College, University of Oxford, Oxford OX1 4JD, UK
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, NIHR Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK
- Merton College, University of Oxford, Oxford OX1 4JD, UK
- Moorfields Eye Hospital, London EC1V 2PD, UK
| |
Collapse
|