1
|
Mekonnen N, Yang H, Rajasekaran N, Song K, Choi YL, Shin YK. Indirect targeting of MYC and direct targeting in combination with chemotherapies are more effective than direct mono-targeting in triple negative breast cancer. Transl Oncol 2025; 51:102204. [PMID: 39631207 DOI: 10.1016/j.tranon.2024.102204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/20/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
MYC amplification is disproportionally elevated in triple-negative breast cancer (TNBC) compared to other subtypes of breast cancer. Indeed, MYC has long been considered an undruggable oncogene using conventional drug design strategies or small molecules. We hypothesized that targeting MYC using asymmetric siRNA (asiRNA) alone or in combination with chemotherapeutic agents or indirectly via BRD4 and RRM2, may curb its oncogenic behavior. We developed paclitaxel-, doxorubicin-, and cisplatin-resistant MDA-MB-231 cells to study MYC's role in upregulating DNA repair genes during drug resistance development. Our results showed that the knockdown of either MYC or RRM2 downregulated both RAD51 and PARP1 but increased γH2AX. The cytotoxic effect of RRM2 knockdown was significantly (p < 0.05) higher than that of direct MYC knockdown. The knockdown of BRD4 was more effective than the direct knockdown of MYC in downregulating MYC protein. The combined use of asiRNA-VP (Vinylphosphonate) with dacomitinib or talazoparib was synthetic lethal in TNBC cell lines. Compared to chemotherapy-sensitive cells, resistant cells showed overexpression of MYC, RRM2, RAD51, and PARP1 proteins upon chemotherapy treatment, but downregulated in cells treated with asiRNA-VP combination. We confirmed that MYC knockdown upregulated cFLIP, BCL2, STAT1, pSTAT1, STAT2, and cleaved saspase-3 in both TNBC and non-small cell lung cancer (NSCLC) cell lines. Finally, we recommend a combination treatment approach that synergizes with MYC inhibition rather than monotherapy or indirect targeting via upstream regulators such as the BRD4 and RRM2 genes or selective modulation at the protein level to suppress anti-apoptotic genes (cFLIP and BCL2) at the same time.
Collapse
Affiliation(s)
- Negesse Mekonnen
- Research Institute of Pharmaceutical Science, Department of Pharmacy, Seoul National University, College of Pharmacy, Seoul, South Korea; Department of Veterinary Science, School of Animal Science and Veterinary Medicine, Bahir Dar University, Bahir Dar, Ethiopia.
| | - Hobin Yang
- College of Pharmacy, Kyungsung University, Busan, South Korea.
| | | | - Kyoung Song
- College of Pharmacy, Duksung Women's University, Seoul, South Korea.
| | - Yoon-La Choi
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea; Laboratory of Molecular Pathology and Theranostics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Young Kee Shin
- Research Institute of Pharmaceutical Science, Department of Pharmacy, Seoul National University, College of Pharmacy, Seoul, South Korea; R&D Center, ABION Inc., Seoul 08394, South Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Graduate School of Convergence Science and Technology, Seoul, South Korea; Bio-MAX/N-Bio, Seoul National University, Seoul, South Korea.
| |
Collapse
|
2
|
Randolph ME, Afifi M, Gorthi A, Weil R, Wilky BA, Weinreb J, Ciero P, Hoeve NT, van Diest PJ, Raman V, Bishop AJ, Loeb DM. RNA helicase DDX3 regulates RAD51 localization and DNA damage repair in Ewing sarcoma. iScience 2024; 27:108925. [PMID: 38323009 PMCID: PMC10844834 DOI: 10.1016/j.isci.2024.108925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/09/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024] Open
Abstract
We previously demonstrated that RNA helicase DDX3X (DDX3) can be a therapeutic target in Ewing sarcoma (EWS), but its role in EWS biology remains unclear. The present work demonstrates that DDX3 plays a unique role in DNA damage repair (DDR). We show that DDX3 interacts with several proteins involved in homologous recombination, including RAD51, RECQL1, RPA32, and XRCC2. In particular, DDX3 colocalizes with RAD51 and RNA:DNA hybrid structures in the cytoplasm of EWS cells. Inhibition of DDX3 RNA helicase activity increases cytoplasmic RNA:DNA hybrids, sequestering RAD51 in the cytoplasm, which impairs nuclear translocation of RAD51 to sites of double-stranded DNA breaks, thus increasing sensitivity of EWS to radiation treatment, both in vitro and in vivo. This discovery lays the foundation for exploring new therapeutic approaches directed at manipulating DDR protein localization in solid tumors.
Collapse
Affiliation(s)
- Matthew E. Randolph
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Marwa Afifi
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Aparna Gorthi
- Greehey Children’s Cancer Research Institute and Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Rachel Weil
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Breelyn A. Wilky
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Joshua Weinreb
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Paul Ciero
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Natalie ter Hoeve
- Department of Pathology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Paul J. van Diest
- Department of Pathology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Venu Raman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
- Department of Pharmacology, Johns Hopkins University, Baltimore, MD, USA
| | - Alexander J.R. Bishop
- Greehey Children’s Cancer Research Institute and Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - David M. Loeb
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
3
|
Asai T, Yokota M, Isomura H, Koide H, Sakurai N, Okamoto A, Ando H, Dewa T, Oku N. Treatment of PTEN-Null Breast Cancer by a Synthetic Lethal Approach Involving PARP1 Gene Silencing. J Pharm Sci 2023; 112:1908-1914. [PMID: 36828124 DOI: 10.1016/j.xphs.2023.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
The loss of the phosphatase and tensin homolog (PTEN) deleted from chromosome 10 is frequently observed in a variety of human cancers and appears to be an ideal target in synthetic lethality-based treatment. In this study, the synthetic lethal interaction between PTEN loss and the gene silencing of poly [ADP-ribose] polymerase 1 (PARP1) was examined in human triple-negative breast cancer cells (PTEN-null MDA-MB-468 and PTEN-positive MDA-MB-231 cells). Polycation liposomes previously developed by us were employed to deliver the small interfering ribonucleic acid (siRNA) targeted toward PARP1 (siPARP1) into the cancer cells. The silencing of the PARP1 gene exerted a cytocidal effect on the MDA-MB-468 cells but had no effect on the MDA-MB-231 cells and the human umbilical vein endothelial cells employed as normal cells. The simultaneous knockdown of PARP1 and PTEN in the MDA-MB-231 cells resulted in the significant inhibition of cell growth. The data suggest that the effects of the PARP1 knockdown on the cells were dependent on the PTEN status. A significant increase in the DNA breaks and the extent of apoptosis, possibly due to the failure of DNA repair, was observed upon PARP1 knockdown in the MDA-MB-468 cells compared with the case in the MDA-MB-231 cells. Our findings suggest that the synthetic lethal approach via PARP1 gene silencing holds promise for the treatment of patients with PTEN-null breast cancer.
Collapse
Affiliation(s)
- Tomohiro Asai
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Masafumi Yokota
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hideki Isomura
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiroyuki Koide
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Naoyuki Sakurai
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Ayaka Okamoto
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; Japan Society for the Promotion of Science (JSPS), 8 Ichibancho, Chiyoda-ku, Tokyo 102-8472, Japan
| | - Hidenori Ando
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Takehisa Dewa
- Department of Life and Materials Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555 Japan
| | - Naoto Oku
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605 Japan
| |
Collapse
|
4
|
Randolph ME, Afifi M, Gorthi A, Weil R, Wilky BA, Weinreb J, Ciero P, ter Hoeve N, van Diest PJ, Raman V, Bishop AJR, Loeb DM. RNA Helicase DDX3 Regulates RAD51 Localization and DNA Damage Repair in Ewing Sarcoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.10.544474. [PMID: 37333164 PMCID: PMC10274875 DOI: 10.1101/2023.06.10.544474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
We previously demonstrated that RNA helicase DDX3X (DDX3) can be a therapeutic target in Ewing sarcoma (EWS), but its role in EWS biology remains unclear. The present work demonstrates that DDX3 plays a unique role in DNA damage repair (DDR). We show that DDX3 interacts with several proteins involved in homologous recombination, including RAD51, RECQL1, RPA32, and XRCC2. In particular, DDX3 colocalizes with RAD51 and RNA:DNA hybrid structures in the cytoplasm of EWS cells. Inhibition of DDX3 RNA helicase activity increases cytoplasmic RNA:DNA hybrids, sequestering RAD51 in the cytoplasm, which impairs nuclear translocation of RAD51 to sites of double-stranded DNA breaks thus increasing sensitivity of EWS to radiation treatment, both in vitro and in vivo. This discovery lays the foundation for exploring new therapeutic approaches directed at manipulating DDR protein localization in solid tumors.
Collapse
Affiliation(s)
- Matthew E. Randolph
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY
| | - Marwa Afifi
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Aparna Gorthi
- Greehey Children’s Cancer Research Institute and Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, TX
| | - Rachel Weil
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Breelyn A. Wilky
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD
| | - Joshua Weinreb
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Paul Ciero
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY
| | - Natalie ter Hoeve
- Department of Pathology, University Medical Centre Utrecht, The Netherlands
| | - Paul J. van Diest
- Department of Pathology, University Medical Centre Utrecht, The Netherlands
| | - Venu Raman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD
- Department of Radiology, Johns Hopkins University, Baltimore, MD
- Department of Pharmacology, Johns Hopkins University, Baltimore, MD
| | - Alexander J. R. Bishop
- Greehey Children’s Cancer Research Institute and Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, TX
| | - David M. Loeb
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
5
|
Alese OB, Wu C, Chapin WJ, Ulanja MB, Zheng-Lin B, Amankwah M, Eads J. Update on Emerging Therapies for Advanced Colorectal Cancer. Am Soc Clin Oncol Educ Book 2023; 43:e389574. [PMID: 37155942 DOI: 10.1200/edbk_389574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Colorectal cancer (CRC) is the third most common malignancy worldwide. It is projected to increase by 3.2 million new cases and account for 1.6 million deaths by 2040. Mortality is largely due to limited treatment options for patients who present with advanced disease. Thus, the development of effective and tolerable therapies is crucial. Chemotherapy has been the backbone of systemic treatment of advanced CRC, but utility has been limited because of invariable resistance to therapy, narrow mechanisms of action, and unfavorable toxicity profile. Tumors that are mismatch repair-deficient have demonstrated remarkable response to immune checkpoint inhibitor therapy. However, most CRC tumors are mismatch repair-proficient and represent an unmet medical need. Although ERBB2 amplification occurs only in a few cases, it is associated with left-sided tumors and a higher incidence of brain metastasis. Numerous combinations of HER2 inhibitors have demonstrated efficacy, and antibody-drug conjugates against HER2 represent innovative strategies in this area. The KRAS protein has been classically considered undruggable. Fortunately, new agents targeting KRAS G12C mutation represent a paradigm shift in the management of affected patients and could lead the advancement in drug development for the more common KRAS mutations. Furthermore, aberrant DNA damage response is present in 15%-20% of CRCs, and emerging innovative combinations with poly (ADP-ribose) polymerase (PARP) inhibitors could improve the current therapeutic landscape. Multiple novel biomarker-driven approaches in the management of patients with advanced CRC tumors are reviewed in this article.
Collapse
Affiliation(s)
- Olatunji B Alese
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | | | - William J Chapin
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Mark B Ulanja
- Christus Ochsner St Patrick Hospital, Lake Charles, LA
| | | | | | - Jennifer Eads
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
6
|
Deb S, Chakrabarti A, Fox SB. Prognostic and Predictive Biomarkers in Familial Breast Cancer. Cancers (Basel) 2023; 15:cancers15041346. [PMID: 36831687 PMCID: PMC9953970 DOI: 10.3390/cancers15041346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023] Open
Abstract
Large numbers of breast cancers arise within a familial context, either with known inherited germline mutations largely within DNA repair genes, or with a strong family history of breast and/or ovarian cancer, with unknown genetic underlying mechanisms. These cancers appear to be different to sporadic cases, with earlier age of onset, increased multifocality and with association with specific breast cancer histological and phenotypic subtypes. Furthermore, tumours showing homologous recombination deficiency, due to loss of BRCA1, BRCA2, PALB2 and CHEK2 function, have been shown to be especially sensitive to platinum-based chemotherapeutics and PARP inhibition. While there is extensive research and data accrued on risk stratification and genetic predisposition, there are few data pertaining to relevant prognostic and predictive biomarkers within this breast cancer subgroup. The following is a review of such biomarkers in male and female familial breast cancer, although the data for the former are particularly sparse.
Collapse
Affiliation(s)
- Siddhartha Deb
- Anatpath, Gardenvale, VIC 3185, Australia
- Monash Health Pathology, Clayton, VIC 3168, Australia
- Correspondence:
| | | | - Stephen B. Fox
- Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre, University of Mebourne, Melbourne, VIC 3101, Australia
| |
Collapse
|
7
|
Jin N, Xia Y, Gao Q. Combined PARP inhibitors and small molecular inhibitors in solid tumor treatment (Review). Int J Oncol 2023; 62:28. [PMID: 36601757 PMCID: PMC9851129 DOI: 10.3892/ijo.2023.5476] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/23/2022] [Indexed: 01/05/2023] Open
Abstract
With the development of precision medicine, targeted therapy has attracted extensive attention. Poly(ADP‑ribose) polymerase inhibitors (PARPi) are critical clinical drugs designed to induce cell death and are major antitumor targeted agents. However, preclinical and clinical data have revealed the limitations of PARPi monotherapy. Therefore, their combination with other targeted drugs has become a research hotspot in tumor treatment. Recent studies have demonstrated the critical role of small molecular inhibitors in multiple haematological cancers and solid tumors via cellular signalling modulation, exhibiting potential as a combined pharmacotherapy. In the present review, studies focused on small molecular inhibitors targeting the homologous recombination pathway were summarized and clinical trials evaluating the safety and efficacy of combined treatment were discussed.
Collapse
Affiliation(s)
- Ning Jin
- Key Laboratory of The Ministry of Education, Cancer Biology Research Center, Tongji Hospital, Wuhan, Hubei 430000, P.R. China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Yu Xia
- Key Laboratory of The Ministry of Education, Cancer Biology Research Center, Tongji Hospital, Wuhan, Hubei 430000, P.R. China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Qinglei Gao
- Key Laboratory of The Ministry of Education, Cancer Biology Research Center, Tongji Hospital, Wuhan, Hubei 430000, P.R. China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| |
Collapse
|
8
|
Clark CA, Yang ES. Therapeutic Targeting of DNA Damage Repair in the Era of Precision Oncology and Immune Checkpoint Inhibitors. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2022; 6:31-49. [PMID: 36751656 PMCID: PMC9888518 DOI: 10.36401/jipo-22-15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/08/2022] [Accepted: 09/27/2022] [Indexed: 12/05/2022]
Abstract
Cancer manifestation is a multistep process involving accumulation of various genetic and epigenetic changes that results in oncogenic "hallmarks of cancer" processes including genomic instability. Exploitation of aberrant DNA-damage response (DDR) mechanisms in cancer is in part a goal of many therapeutic strategies, and recent evidence supports the role of targeting DDR in modulating the tumor immune microenvironment to enhance immunotherapeutic response. Improved cancer profiling, including next-generation and whole-genome mutational sequencing of tumor tissue, as well as circulating nucleic acids, has enhanced our understanding of the genetic and epigenetic molecular mechanisms in tumorigenesis and will become fundamental to precisely target tumors and achieve cancer control. With the successes of poly(ADP-ribose) polymerase inhibitors (PARPi) and immunotherapies, the intersection of DDR molecular machinery and corresponding antitumor immune response has gained much interest with a focus on achieving therapeutic synergy using DNA damage-targeting agents and immunotherapy. In this review, we provide a bench-to-bedside overview of the fundamentals of DDR signaling and repair as they relate to cancer therapeutic strategies including novel DDR-targeting agents. We also discuss the underlying mechanisms that link DDR signaling to antitumor immunity and immunotherapy efficacy, and how this knowledge can be used to improve precision medicine approaches in the treatment of cancer.
Collapse
Affiliation(s)
- Curtis A. Clark
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Eddy S. Yang
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
,Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| |
Collapse
|
9
|
Pre-Existing and Acquired Resistance to PARP Inhibitor-Induced Synthetic Lethality. Cancers (Basel) 2022; 14:cancers14235795. [PMID: 36497275 PMCID: PMC9741207 DOI: 10.3390/cancers14235795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
The advanced development of synthetic lethality has opened the doors for specific anti-cancer medications of personalized medicine and efficient therapies against cancers. One of the most popular approaches being investigated is targeting DNA repair pathways as the implementation of the PARP inhibitor (PARPi) into individual or combinational therapeutic schemes. Such treatment has been effectively employed against homologous recombination-defective solid tumors as well as hematopoietic malignancies. However, the resistance to PARPi has been observed in both preclinical research and clinical treatment. Therefore, elucidating the mechanisms responsible for the resistance to PARPi is pivotal for the further success of this intervention. Apart from mechanisms of acquired resistance, the bone marrow microenvironment provides a pre-existing mechanism to induce the inefficiency of PARPi in leukemic cells. Here, we describe the pre-existing and acquired mechanisms of the resistance to PARPi-induced synthetic lethality. We also discuss the potential rationales for developing effective therapies to prevent/repress the PARPi resistance in cancer cells.
Collapse
|
10
|
Chu YY, Yam C, Yamaguchi H, Hung MC. Biomarkers beyond BRCA: promising combinatorial treatment strategies in overcoming resistance to PARP inhibitors. J Biomed Sci 2022; 29:86. [PMID: 36284291 PMCID: PMC9594904 DOI: 10.1186/s12929-022-00870-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) exploit the concept of synthetic lethality and offer great promise in the treatment of tumors with deficiencies in homologous recombination (HR) repair. PARPi exert antitumor activity by blocking Poly(ADP-ribosyl)ation (PARylation) and trapping PARP1 on damaged DNA. To date, the U.S. Food and Drug Administration (FDA) has approved four PARPi for the treatment of several cancer types including ovarian, breast, pancreatic and prostate cancer. Although patients with HR-deficient tumors benefit from PARPi, majority of tumors ultimately develop acquired resistance to PARPi. Furthermore, even though BRCA1/2 mutations are commonly used as markers of PARPi sensitivity in current clinical practice, not all patients with BRCA1/2 mutations have PARPi-sensitive disease. Thus, there is an urgent need to elucidate the molecular mechanisms of PARPi resistance to support the development of rational effective treatment strategies aimed at overcoming resistance to PARPi, as well as reliable biomarkers to accurately identify patients who will most likely benefit from treatment with PARPi, either as monotherapy or in combination with other agents, so called marker-guided effective therapy (Mget). In this review, we summarize the molecular mechanisms driving the efficacy of and resistance to PARPi as well as emerging therapeutic strategies to overcome PARPi resistance. We also highlight the identification of potential markers to predict PARPi resistance and guide promising PARPi-based combination strategies.
Collapse
Affiliation(s)
- Yu-Yi Chu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Clinton Yam
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hirohito Yamaguchi
- Research Center for Cancer Biology, and Center for Molecular Medicine, Graduate Institute of Biomedical Sciences, China Medical University, 100, Sec 1, Jingmao Rd., Beitun, Taichung, 40402, Taiwan, ROC
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA. .,Research Center for Cancer Biology, and Center for Molecular Medicine, Graduate Institute of Biomedical Sciences, China Medical University, 100, Sec 1, Jingmao Rd., Beitun, Taichung, 40402, Taiwan, ROC. .,Department of Biotechnology, Asia University, Taichung, 413, Taiwan.
| |
Collapse
|
11
|
Mekonnen N, Yang H, Shin YK. Homologous Recombination Deficiency in Ovarian, Breast, Colorectal, Pancreatic, Non-Small Cell Lung and Prostate Cancers, and the Mechanisms of Resistance to PARP Inhibitors. Front Oncol 2022; 12:880643. [PMID: 35785170 PMCID: PMC9247200 DOI: 10.3389/fonc.2022.880643] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022] Open
Abstract
Homologous recombination (HR) is a highly conserved DNA repair mechanism that protects cells from exogenous and endogenous DNA damage. Breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2) play an important role in the HR repair pathway by interacting with other DNA repair proteins such as Fanconi anemia (FA) proteins, ATM, RAD51, PALB2, MRE11A, RAD50, and NBN. These pathways are frequently aberrant in cancer, leading to the accumulation of DNA damage and genomic instability known as homologous recombination deficiency (HRD). HRD can be caused by chromosomal and subchromosomal aberrations, as well as by epigenetic inactivation of tumor suppressor gene promoters. Deficiency in one or more HR genes increases the risk of many malignancies. Another conserved mechanism involved in the repair of DNA single-strand breaks (SSBs) is base excision repair, in which poly (ADP-ribose) polymerase (PARP) enzymes play an important role. PARP inhibitors (PARPIs) convert SSBs to more cytotoxic double-strand breaks, which are repaired in HR-proficient cells, but remain unrepaired in HRD. The blockade of both HR and base excision repair pathways is the basis of PARPI therapy. The use of PARPIs can be expanded to sporadic cancers displaying the “BRCAness” phenotype. Although PARPIs are effective in many cancers, their efficacy is limited by the development of resistance. In this review, we summarize the prevalence of HRD due to mutation, loss of heterozygosity, and promoter hypermethylation of 35 DNA repair genes in ovarian, breast, colorectal, pancreatic, non-small cell lung cancer, and prostate cancer. The underlying mechanisms and strategies to overcome PARPI resistance are also discussed.
Collapse
Affiliation(s)
- Negesse Mekonnen
- Department of Pharmacy, Research Institute of Pharmaceutical Science, Seoul National University College of Pharmacy, Seoul, South Korea
- Department of Veterinary Science, School of Animal Science and Veterinary Medicine, Bahir Dar University, Bahir Dar, Ethiopia
| | - Hobin Yang
- Department of Pharmacy, Research Institute of Pharmaceutical Science, Seoul National University College of Pharmacy, Seoul, South Korea
| | - Young Kee Shin
- Department of Pharmacy, Research Institute of Pharmaceutical Science, Seoul National University College of Pharmacy, Seoul, South Korea
- Bio-MAX/N-Bio, Seoul National University, Seoul, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University Graduate School of Convergence Science and Technology, Seoul, South Korea
- LOGONE Bio Convergence Research Foundation, Center for Companion Diagnostics, Seoul, South Korea
- *Correspondence: Young Kee Shin,
| |
Collapse
|
12
|
Lin S, Zhang X, Yu Z, Huang X, Xu J, Liu Y, Wu L. Synthesis of novel dual target inhibitors of PARP and EGFR and their antitumor activities in triple negative breast cancers. Bioorg Med Chem 2022; 61:116739. [PMID: 35393219 DOI: 10.1016/j.bmc.2022.116739] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 11/02/2022]
Abstract
The therapeutic strategy of poly (ADP-ribose) polymerase (PARP) inhibition of BRCA1/2 mutant cancers has been overwhelmingly successful, however, the highly aggressive triple negative breast cancers (TNBC) that receptor protein tyrosine kinase (RTKs) is known to be overexpressed are not sensitive to PARP inhibitors. Our research focused on exploring PARP inhibitors incorporating a bicyclic tetrahydropyridine pyrimidine. All synthesized compounds were more potent than Olaparib (ola) in killing tumor cells, especially in TNBC. Furthermore, compound 7 exhibited strong inhibitory effects on PARP enzymatic activity, moreover, the expression of EGFR and phosphorylated EGFR was inhibited by compound 7. Therefore, compound 7 can effectively inhibit TNBC cells with high expression of EGFR. In addition, significant synergistic effect of anti-tumor effect of new PARP inhibitors and adriamycin was also observed.
Collapse
Affiliation(s)
- Shanshan Lin
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, P.R. China; Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, P. R. China
| | - Xiao Zhang
- Yuncheng Central Hospital, Yuncheng, P.R. China
| | - Zelei Yu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, P.R. China; Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, P. R. China
| | - Xiuwang Huang
- Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, P. R. China; Department of Public Technology Service Center, Fujian Medical University (FMU), Fuzhou, P.R. China
| | - Jianhua Xu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, P.R. China; Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, P. R. China
| | - Yang Liu
- Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, P. R. China; Department of Pharmacochemistry, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, P.R. China.
| | - Lixian Wu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, P.R. China; Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, P. R. China.
| |
Collapse
|
13
|
Yang Y, Kozlovskaya V, Zhang Z, Xing C, Zaharias S, Dolmat M, Qian S, Zhang J, Warram JM, Yang ES, Kharlampieva E. Poly( N-vinylpyrrolidone)- block-Poly(dimethylsiloxane)- block-Poly( N-vinylpyrrolidone) Triblock Copolymer Polymersomes for Delivery of PARP1 siRNA to Breast Cancers. ACS APPLIED BIO MATERIALS 2022; 5:1670-1682. [PMID: 35294185 DOI: 10.1021/acsabm.2c00063] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nearly 20% of HER2-positive breast cancers develop resistance to HER2-targeted therapies requiring the use of advanced therapies. Silencing RNA therapy may be a powerful modality for treating resistant HER2 cancers due to its high specificity and low toxicity. However, the systemic administration of siRNAs requires a safe and efficient delivery platform because of siRNA's low stability in physiological fluids, inefficient cellular uptake, immunoreactivity, and rapid clearance. We have developed theranostic polymeric vesicles to overcome these hurdles for encapsulation and delivery of small functional molecules and PARP1 siRNA for in vivo delivery to breast cancer tumors. The 100 nm polymer vesicles were assembled from biodegradable and non-ionic poly(N-vinylpyrrolidone)14-block-poly(dimethylsiloxane)47-block-poly(N-vinylpyrrolidone)14 triblock copolymer PVPON14-PDMS47-PVPON14 using nanoprecipitation and thin-film hydration. We demonstrated that the vesicles assembled from the copolymer covalently tagged with the Cy5.5 fluorescent dye for in vivo imaging could also encapsulate the model drug with high loading efficiency (40%). The dye-loaded vesicles were accumulated in tumors after 18 h circulation in 4TR breast tumor-bearing mice via passive targeting. We found that PARP1 siRNA encapsulated into the vesicles was released intact (13%) into solution by the therapeutic ultrasound treatment as quantified by gel electrophoresis. The PARP1 siRNA-loaded polymersomes inhibited the proliferation of MDA-MB-361TR cells by 34% after 6 days of treatment by suppressing the NF-kB signaling pathway, unlike their scrambled siRNA-loaded counterparts. Finally, the treatment by PARP1 siRNA-loaded vesicles prolonged the survival of the mice bearing 4T1 breast cancer xenografts, with the 4-fold survival increase, unlike the untreated mice after 3 weeks following the treatment. These biodegradable, non-ionic PVPON14-PDMS47-PVPON14 polymeric nanovesicles capable of the efficient encapsulation and delivery of PARP1 siRNA to successfully knock down PARP1 in vivo can provide an advanced platform for the development of precision-targeted therapeutic carriers, which could help develop highly effective drug delivery nanovehicles for breast cancer gene therapy.
Collapse
Affiliation(s)
- Yiming Yang
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Veronika Kozlovskaya
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Zhuo Zhang
- Department of Radiation Oncology, The University of Alabama at Birmingham, Hazelrig Salter Radiation Oncology Center, Birmingham, Alabama 35294, United States.,The O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Chuan Xing
- Department of Radiation Oncology, The University of Alabama at Birmingham, Hazelrig Salter Radiation Oncology Center, Birmingham, Alabama 35294, United States.,The O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Steve Zaharias
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Maksim Dolmat
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Shuo Qian
- Neutron Scattering Division and Second Target Station, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jun Zhang
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Jason M Warram
- The O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States.,Departments of Otolaryngology, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Eddy S Yang
- Department of Radiation Oncology, The University of Alabama at Birmingham, Hazelrig Salter Radiation Oncology Center, Birmingham, Alabama 35294, United States.,The O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States.,Center for Nanoscale Materials and Biointegration, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Eugenia Kharlampieva
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States.,The O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States.,Center for Nanoscale Materials and Biointegration, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| |
Collapse
|
14
|
Iancu G, Serban D, Badiu CD, Tanasescu C, Tudosie MS, Tudor C, Costea DO, Zgura A, Iancu R, Vasile D. Tyrosine kinase inhibitors in breast cancer (Review). Exp Ther Med 2022; 23:114. [PMID: 34970337 PMCID: PMC8713180 DOI: 10.3892/etm.2021.11037] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/20/2021] [Indexed: 12/23/2022] Open
Abstract
Anti-epidermal growth factor receptor (EGFR)-targeted therapy has been intensely researched in the last years, motivated by the favorable results obtained with monoclonal antibodies in HER2-enriched breast cancer (BC) patients. Most researched alternatives of anti-EGFR agents were tyrosine kinase inhibitors (TKIs) and monoclonal antibodies. However, excluding monoclonal antibodies trastuzumab and pertuzumab, the remaining anti-EGFR molecules have exhibited disappointing results, due to the lack of specificity and frequent adverse side effects. TKIs have several advantages, including reduced cardiotoxicity, oral administration and favorable penetration of blood-brain barrier for brain metastatic BC. Lapatinib and neratinib and recently pyrotinib (approved only in China) are the only TKIs from dozens of molecules researched over the years that were approved to be used in clinical practice with limited indications, in a subset of BC patients, single or in combination with other chemotherapy or hormonal therapeutic agents. Improved identification of BC subtypes and improved characterization of aggressive forms (triple negative BC or inflammatory BC) should lead to advancements in shaping of targeted agents to improve the outcome of patients.
Collapse
Affiliation(s)
- George Iancu
- Department of Obstetrics and Gynecology, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Gynecology, ‘Filantropia’ Clinical Hospital, 011132 Bucharest, Romania
| | - Dragos Serban
- Department of General Surgery, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Fourth Department of General Surgery, Emergency University Hospital, 050098 Bucharest, Romania
| | - Cristinel Dumitru Badiu
- Department of General Surgery, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of General Surgery, ‘Prof. Dr. Bagdasar Arseni’ Emergency Clinical Hospital, 041915 Bucharest, Romania
| | - Ciprian Tanasescu
- Third Clinico-Surgical Department, Faculty of Medicine, ‘Lucian Blaga’ University, 550169 Sibiu, Romania
| | - Mihai Silviu Tudosie
- Department of Orthopedia and Intensive care, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
- ICU II Toxicology, Clinical Emergency Hospital, 014461 Bucharest, Romania
| | - Corneliu Tudor
- Department of General Surgery, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Daniel Ovidiu Costea
- Department of General Surgery, Faculty of Medicine, ‘Ovidius’ University, 900470 Constanta, Romania
- First Surgery Department, Emergency County Hospital, 900591 Constanta, Romania
| | - Anca Zgura
- Department of Oncology Radiotherapy, Institute of Oncology ‘Prof. Dr. Trestioreanu’, 022328 Bucharest, Romania
| | - Raluca Iancu
- Department of ENT-Opthalmology, Faculty of Medicine, Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Ophthalmology, Emergency University Hospital, 050098 Bucharest, Romania
| | - Danut Vasile
- Department of General Surgery, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
- First Department of General Surgery, Emergency University Hospital, 050098 Bucharest, Romania
| |
Collapse
|
15
|
Si Y, Chen K, Ngo HG, Guan JS, Totoro A, Zhou Z, Kim S, Kim T, Zhou L, Liu X. Targeted EV to Deliver Chemotherapy to Treat Triple-Negative Breast Cancers. Pharmaceutics 2022; 14:146. [PMID: 35057042 PMCID: PMC8781632 DOI: 10.3390/pharmaceutics14010146] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/29/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022] Open
Abstract
Triple-negative breast cancers (TNBCs) are heterogeneous and metastatic, and targeted therapy is highly needed for TNBC treatment. Recent studies showed that extracellular vesicles (EV) have great potential to deliver therapies to treat cancers. This study aimed to develop and evaluate a natural compound, verrucarin A (Ver-A), delivered by targeted EV, to treat TNBC. First, the surface expression of epidermal growth factor receptor (EGFR) and CD47 were confirmed with immunohistochemistry (IHC) staining of patient tissue microarray, flow cytometry and Western blotting. EVs were isolated from HEK 293F culture and surface tagged with anti-EGFR/CD47 mAbs to construct mAb-EV. The flow cytometry, confocal imaging and live-animal In Vivo Imaging System (IVIS) demonstrated that mAb-EV could effectively target TNBC and deliver the drug. The drug Ver-A, with dosage-dependent high cytotoxicity to TNBC cells, was packed in mAb-EV. The anti-TNBC efficacy study showed that Ver-A blocked tumor growth in both 4T1 xenografted immunocompetent mouse models and TNBC patient-derived xenograft models with minimal side effects. This study demonstrated that the targeted mAb-EV-Ver-A had great potential to treat TNBCs.
Collapse
Affiliation(s)
- Yingnan Si
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (K.C.); (H.G.N.); (A.T.); (Z.Z.); (L.Z.)
| | - Kai Chen
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (K.C.); (H.G.N.); (A.T.); (Z.Z.); (L.Z.)
| | - Hanh Giai Ngo
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (K.C.); (H.G.N.); (A.T.); (Z.Z.); (L.Z.)
| | - Jia Shiung Guan
- Department of Medicine, University of Alabama at Birmingham (UAB), 703 19th Street South, Birmingham, AL 35294, USA; (J.S.G.); (S.K.); (T.K.)
| | - Angela Totoro
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (K.C.); (H.G.N.); (A.T.); (Z.Z.); (L.Z.)
| | - Zhuoxin Zhou
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (K.C.); (H.G.N.); (A.T.); (Z.Z.); (L.Z.)
| | - Seulhee Kim
- Department of Medicine, University of Alabama at Birmingham (UAB), 703 19th Street South, Birmingham, AL 35294, USA; (J.S.G.); (S.K.); (T.K.)
| | - Taehyun Kim
- Department of Medicine, University of Alabama at Birmingham (UAB), 703 19th Street South, Birmingham, AL 35294, USA; (J.S.G.); (S.K.); (T.K.)
| | - Lufang Zhou
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (K.C.); (H.G.N.); (A.T.); (Z.Z.); (L.Z.)
- Department of Medicine, University of Alabama at Birmingham (UAB), 703 19th Street South, Birmingham, AL 35294, USA; (J.S.G.); (S.K.); (T.K.)
| | - Xiaoguang Liu
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (K.C.); (H.G.N.); (A.T.); (Z.Z.); (L.Z.)
| |
Collapse
|
16
|
Poly(ADP-Ribose) Polymerase Inhibitor Combination Therapy. Cancer J 2021; 27:506-510. [PMID: 34904814 DOI: 10.1097/ppo.0000000000000565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT The introduction of poly(ADP-ribose) polymerase (PARP) inhibitors has led to significant improvements in outcome for several cancer types, most notably high-grade serous ovarian cancer. However, in general, benefit is restricted to tumors characterized by either BRCA1/2 mutation or homologous recombination deficiency. Combination therapy offers the potential to overcome innate and acquired PARP inhibitor resistance by either working synergistically with PARP inhibitors or by targeting the homologous recombination repair pathway through an alternate strategy, to restore homologous recombination deficiency. Several biological agents have been studied in combination with PARP inhibitors, including inhibitors of vascular endothelial growth factor (vascular endothelial growth factor; bevacizumab, cediranib), AKT (capivasertib), PI3K inhibitors (buparlisib, alpelisib), epidermal growth factor receptor and BET inhibitors. In general, PARP inhibitor and biological agent combinations are well tolerated, and early data suggest that they are clinically effective in both BRCA1/2 mutant and wild-type cancers. In this review, we discuss multiple clinical trials that are underway examining the antitumor activity of the most promising combination strategies.
Collapse
|
17
|
Ursprung S, Mossop H, Gallagher FA, Sala E, Skells R, Sipple JAN, Mitchell TJ, Chhabra A, Fife K, Matakidou A, Young G, Walker A, Thomas MG, Ortuzar MC, Sullivan M, Protheroe A, Oades G, Venugopal B, Warren AY, Stone J, Eisen T, Wason J, Welsh SJ, Stewart GD. The WIRE study a phase II, multi-arm, multi-centre, non-randomised window-of-opportunity clinical trial platform using a Bayesian adaptive design for proof-of-mechanism of novel treatment strategies in operable renal cell cancer - a study protocol. BMC Cancer 2021; 21:1238. [PMID: 34794412 PMCID: PMC8600815 DOI: 10.1186/s12885-021-08965-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 11/04/2021] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Window-of-opportunity trials, evaluating the engagement of drugs with their biological target in the time period between diagnosis and standard-of-care treatment, can help prioritise promising new systemic treatments for later-phase clinical trials. Renal cell carcinoma (RCC), the 7th commonest solid cancer in the UK, exhibits targets for multiple new systemic anti-cancer agents including DNA damage response inhibitors, agents targeting vascular pathways and immune checkpoint inhibitors. Here we present the trial protocol for the WIndow-of-opportunity clinical trial platform for evaluation of novel treatment strategies in REnal cell cancer (WIRE). METHODS WIRE is a Phase II, multi-arm, multi-centre, non-randomised, proof-of-mechanism (single and combination investigational medicinal product [IMP]), platform trial using a Bayesian adaptive design. The Bayesian adaptive design leverages outcome information from initial participants during pre-specified interim analyses to determine and minimise the number of participants required to demonstrate efficacy or futility. Patients with biopsy-proven, surgically resectable, cT1b+, cN0-1, cM0-1 clear cell RCC and no contraindications to the IMPs are eligible to participate. Participants undergo diagnostic staging CT and renal mass biopsy followed by treatment in one of the treatment arms for at least 14 days. Initially, the trial includes five treatment arms with cediranib, cediranib + olaparib, olaparib, durvalumab and durvalumab + olaparib. Participants undergo a multiparametric MRI before and after treatment. Vascularised and de-vascularised tissue is collected at surgery. A ≥ 30% increase in CD8+ T-cells on immunohistochemistry between the screening and nephrectomy is the primary endpoint for durvalumab-containing arms. Meanwhile, a reduction in tumour vascular permeability measured by Ktrans on dynamic contrast-enhanced MRI by ≥30% is the primary endpoint for other arms. Secondary outcomes include adverse events and tumour size change. Exploratory outcomes include biomarkers of drug mechanism and treatment effects in blood, urine, tissue and imaging. DISCUSSION WIRE is the first trial using a window-of-opportunity design to demonstrate pharmacological activity of novel single and combination treatments in RCC in the pre-surgical space. It will provide rationale for prioritising promising treatments for later phase trials and support the development of new biomarkers of treatment effect with its extensive translational agenda. TRIAL REGISTRATION ClinicalTrials.gov: NCT03741426 / EudraCT: 2018-003056-21 .
Collapse
Affiliation(s)
| | - Helen Mossop
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Ferdia A Gallagher
- CRUK Cambridge Centre, University of Cambridge, Cambridge, UK
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Evis Sala
- CRUK Cambridge Centre, University of Cambridge, Cambridge, UK
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Richard Skells
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- AstraZeneca, Cambridge, UK
| | - Jamal A N Sipple
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Thomas J Mitchell
- CRUK Cambridge Centre, University of Cambridge, Cambridge, UK
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, UK
| | - Anita Chhabra
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Kate Fife
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Athena Matakidou
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Gemma Young
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Amanda Walker
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Martin G Thomas
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Mark Sullivan
- Oxford University Hospitals National Health Service Foundation Trust, Oxford, UK
| | - Andrew Protheroe
- Oxford University Hospitals National Health Service Foundation Trust, Oxford, UK
| | - Grenville Oades
- Department of Urology, Queen Elizabeth University Hospital, Glasgow, UK
| | - Balaji Venugopal
- Institute of Cancer Sciences, University of Glasgow, Beatson West of Scotland Cancer Centre, Glasgow, UK
| | - Anne Y Warren
- CRUK Cambridge Centre, University of Cambridge, Cambridge, UK
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Tim Eisen
- CRUK Cambridge Centre, University of Cambridge, Cambridge, UK
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - James Wason
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Sarah J Welsh
- CRUK Cambridge Centre, University of Cambridge, Cambridge, UK
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Grant D Stewart
- CRUK Cambridge Centre, University of Cambridge, Cambridge, UK.
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| |
Collapse
|
18
|
Clark CA, Yang ES. Harnessing DNA Repair Defects to Augment Immune-Based Therapies in Triple-Negative Breast Cancer. Front Oncol 2021; 11:703802. [PMID: 34631532 PMCID: PMC8497895 DOI: 10.3389/fonc.2021.703802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) has poor prognosis with limited treatment options, with little therapeutic progress made during the past several decades. DNA damage response (DDR) associated therapies, including radiation and inhibitors of DDR, demonstrate potential efficacy against TNBC, especially under the guidance of genomic subtype-directed treatment. The tumor immune microenvironment also contributes greatly to TNBC malignancy and response to conventional and targeted therapies. Immunotherapy represents a developing trend in targeted therapies directed against TNBC and strategies combining immunotherapy and modulators of the DDR pathways are being pursued. There is increasing understanding of the potential interplay between DDR pathways and immune-associated signaling. As such, the question of how we treat TNBC regarding novel immuno-molecular strategies is continually evolving. In this review, we explore the current and upcoming treatment options of TNBC in the context of DNA repair mechanisms and immune-based therapies, with a focus on implications of recent genomic analyses and clinical trial findings.
Collapse
Affiliation(s)
- Curtis A. Clark
- Department of Radiation Oncology, University of Alabama at Birmingham (UAB) School of Medicine, Birmingham, AL, United States
| | - Eddy S. Yang
- Department of Radiation Oncology, University of Alabama at Birmingham (UAB) School of Medicine, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham (UAB) School of Medicine, Birmingham, AL, United States
- Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham (UAB) School of Medicine, Birmingham, AL, United States
| |
Collapse
|
19
|
Si Y, Zhang Y, Ngo HG, Guan JS, Chen K, Wang Q, Singh AP, Xu Y, Zhou L, Yang ES, Liu X(M. Targeted Liposomal Chemotherapies to Treat Triple-Negative Breast Cancer. Cancers (Basel) 2021; 13:cancers13153749. [PMID: 34359650 PMCID: PMC8345094 DOI: 10.3390/cancers13153749] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Triple-negative breast cancers (TNBCs) are mainly treated with standard chemotherapies. Combined therapies have been demonstrated as a promising treatment strategy in clinics. The aim of this study was to develop a new formulation of combined chemotherapies facilitated with a targeted delivery vehicle. We found that the mertansine and gemcitabine with different anti-cancer mechanisms resulted in high cytotoxicity in TNBC cells. The in vivo evaluations using two TNBC xenograft models confirmed the anti-tumor efficacy, i.e., significantly reduced tumor growth rate. Furthermore, the antibody-tagged liposomes effectively delivered the therapeutic drugs to TNBC tumor, which could reduce the side effects. This study is highly translational and the targeted liposomal drug formulation can be further investigated in future clinical trials for TNBC treatment. Abstract Triple-negative breast cancers (TNBCs) are highly aggressive and recurrent. Standard cytotoxic chemotherapies are currently the main treatment options, but their clinical efficacies are limited and patients usually suffer from severe side effects. The goal of this study was to develop and evaluate targeted liposomes-delivered combined chemotherapies to treat TNBCs. Specifically, the IC50 values of the microtubule polymerization inhibitor mertansine (DM1), mitotic spindle assembly defecting taxane (paclitaxel, PTX), DNA synthesis inhibitor gemcitabine (GC), and DNA damage inducer doxorubicin (AC) were tested in both TNBC MDA-MB-231 and MDA-MB-468 cells. Then we constructed the anti-epidermal growth factor receptor (EGFR) monoclonal antibody (mAb) tagged liposomes and confirmed its TNBC cell surface binding using flow cytometry, internalization with confocal laser scanning microscopy, and TNBC xenograft targeting in NSG female mice using In Vivo Imaging System. The safe dosage of anti-EGFR liposomal chemotherapies, i.e., <20% body weight change, was identified. Finally, the in vivo anti-tumor efficacy studies in TNBC cell line-derived xenograft and patient-derived xenograft models revealed that the targeted delivery of chemotherapies (mertansine and gemcitabine) can effectively inhibit tumor growth. This study demonstrated that the targeted liposomes enable the new formulations of combined therapies that improve anti-TNBC efficacy.
Collapse
Affiliation(s)
- Yingnan Si
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (H.G.N.); (K.C.); (Q.W.); (A.P.S.); (L.Z.)
| | - Ya Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (H.G.N.); (K.C.); (Q.W.); (A.P.S.); (L.Z.)
| | - Hanh Giai Ngo
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (H.G.N.); (K.C.); (Q.W.); (A.P.S.); (L.Z.)
| | - Jia-Shiung Guan
- Department of Medicine, University of Alabama at Birmingham, 703 19th Street South, Birmingham, AL 35294, USA; (J.-S.G.); (Y.X.)
| | - Kai Chen
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (H.G.N.); (K.C.); (Q.W.); (A.P.S.); (L.Z.)
| | - Qing Wang
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (H.G.N.); (K.C.); (Q.W.); (A.P.S.); (L.Z.)
| | - Ajeet Pal Singh
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (H.G.N.); (K.C.); (Q.W.); (A.P.S.); (L.Z.)
| | - Yuanxin Xu
- Department of Medicine, University of Alabama at Birmingham, 703 19th Street South, Birmingham, AL 35294, USA; (J.-S.G.); (Y.X.)
| | - Lufang Zhou
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (H.G.N.); (K.C.); (Q.W.); (A.P.S.); (L.Z.)
- Department of Medicine, University of Alabama at Birmingham, 703 19th Street South, Birmingham, AL 35294, USA; (J.-S.G.); (Y.X.)
| | - Eddy S. Yang
- Department of Radiation Oncology, University of Alabama at Birmingham, 1808 7th Avenue South, Birmingham, AL 35294, USA;
| | - Xiaoguang (Margaret) Liu
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (H.G.N.); (K.C.); (Q.W.); (A.P.S.); (L.Z.)
- Correspondence:
| |
Collapse
|
20
|
Ghadaksaz A, Imani Fooladi AA, Mahmoodzadeh Hosseini H, Nejad Satari T, Amin M. ARA-linker-TGFαL3: a novel chimera protein to target breast cancer cells. Med Oncol 2021; 38:96. [PMID: 34273028 DOI: 10.1007/s12032-021-01546-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
Targeted cancer therapies based on overexpressed receptors and the fractions containing immunotoxins and bacterial metabolites are one of the well-known methods to overcome the chemotherapy resistance of cancer cells. In this paper, we designed ARA-linker-TGFαL3, using Arazyme, a Serratia proteamaculans metabolite, and a third loop segment of TGFα to target EGFR-expressing breast cancer cells. After cloning in pET28a (+), the expression of recombinant protein was optimized in Escherichia coli strain BL21 (DE3). MDA-MB-468 (EGFR positive) and MDA-MB-453 (EGFR negative) breast cancer cell lines were employed. Also, the chemotherapeutic drug, Taxotere (Docetaxel), was employed to compare cytotoxicity effects. Cell ELISA assessed the binding affinity of recombinant proteins to the receptor, and the cytotoxicity was detected by MTT and lactate dehydrogenase release assays. The interfacing with cancer cell adhesion was evaluated. Furthermore, the induction of apoptosis was examined utilizing flow cytometric analysis, and caspase-3 activity assay. Moreover, RT-PCR was conducted to study the expression of apoptosis (bax, bcl2, and casp3), angiogenesis (vegfr2), and metastasis (mmp2 and mmp9) genes. ARA-linker-TGFαL3 revealed a higher binding affinity, cytotoxicity, and early apoptosis induction in MDA-MB-468 cells compared to the effects of Arazyme while both recombinant proteins showed similar effects on MDA-MB-453. In addition, the Taxotere caused the highest cytotoxicity on cancer cells through induction of late apoptosis. Meanwhile, the expression of angiogenesis and metastasis genes was decreased in both cell lines after treatment with either ARA-linker-TGFαL3 or Arazyme. Our in vitro results indicated the therapeutic effect of ARA-linker-TGFαL3 on breast cancer cells.
Collapse
Affiliation(s)
- Abdolamir Ghadaksaz
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Hamideh Mahmoodzadeh Hosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Taher Nejad Satari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohsen Amin
- Department of Drug and Food Control, Faculty of Pharmacy, and The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
You KS, Yi YW, Cho J, Park JS, Seong YS. Potentiating Therapeutic Effects of Epidermal Growth Factor Receptor Inhibition in Triple-Negative Breast Cancer. Pharmaceuticals (Basel) 2021; 14:589. [PMID: 34207383 PMCID: PMC8233743 DOI: 10.3390/ph14060589] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a subset of breast cancer with aggressive characteristics and few therapeutic options. The lack of an appropriate therapeutic target is a challenging issue in treating TNBC. Although a high level expression of epidermal growth factor receptor (EGFR) has been associated with a poor prognosis among patients with TNBC, targeted anti-EGFR therapies have demonstrated limited efficacy for TNBC treatment in both clinical and preclinical settings. However, with the advantage of a number of clinically approved EGFR inhibitors (EGFRis), combination strategies have been explored as a promising approach to overcome the intrinsic resistance of TNBC to EGFRis. In this review, we analyzed the literature on the combination of EGFRis with other molecularly targeted therapeutics or conventional chemotherapeutics to understand the current knowledge and to provide potential therapeutic options for TNBC treatment.
Collapse
Affiliation(s)
- Kyu Sic You
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 3116, Chungcheongnam-do, Korea
| | - Yong Weon Yi
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| | - Jeonghee Cho
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| | - Jeong-Soo Park
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
| | - Yeon-Sun Seong
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 3116, Chungcheongnam-do, Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| |
Collapse
|
22
|
Covell DG. Bioinformatic analysis linking genomic defects to chemosensitivity and mechanism of action. PLoS One 2021; 16:e0243336. [PMID: 33909629 PMCID: PMC8081165 DOI: 10.1371/journal.pone.0243336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/16/2021] [Indexed: 11/18/2022] Open
Abstract
A joint analysis of the NCI60 small molecule screening data, their genetically defective genes, and mechanisms of action (MOA) of FDA approved cancer drugs screened in the NCI60 is proposed for identifying links between chemosensitivity, genomic defects and MOA. Self-Organizing-Maps (SOMs) are used to organize the chemosensitivity data. Student's t-tests are used to identify SOM clusters with enhanced chemosensitivity for tumor cell lines with versus without genetically defective genes. Fisher's exact and chi-square tests are used to reveal instances where defective gene to chemosensitivity associations have enriched MOAs. The results of this analysis find a relatively small set of defective genes, inclusive of ABL1, AXL, BRAF, CDC25A, CDKN2A, IGF1R, KRAS, MECOM, MMP1, MYC, NOTCH1, NRAS, PIK3CG, PTK2, RPTOR, SPTBN1, STAT2, TNKS and ZHX2, as possible candidates for roles in chemosensitivity for compound MOAs that target primarily, but not exclusively, kinases, nucleic acid synthesis, protein synthesis, apoptosis and tubulin. These results find exploitable instances of enhanced chemosensitivity of compound MOA's for selected defective genes. Collectively these findings will advance the interpretation of pre-clinical screening data as well as contribute towards the goals of cancer drug discovery, development decision making, and explanation of drug mechanisms.
Collapse
Affiliation(s)
- David G. Covell
- Information Technologies Branch, Developmental Therapeutics Program, National Cancer Institute, Frederick, MD, United States of America
| |
Collapse
|
23
|
Stringer-Reasor EM, May JE, Olariu E, Caterinicchia V, Li Y, Chen D, Della Manna DL, Rocque GB, Vaklavas C, Falkson CI, Nabell LM, Acosta EP, Forero-Torres A, Yang ES. An open-label, pilot study of veliparib and lapatinib in patients with metastatic, triple-negative breast cancer. Breast Cancer Res 2021; 23:30. [PMID: 33663560 PMCID: PMC7934554 DOI: 10.1186/s13058-021-01408-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/18/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Poly (ADP-ribose)-polymerase inhibitors (PARPi) have been approved for cancer patients with germline BRCA1/2 (gBRCA1/2) mutations, and efforts to expand the utility of PARPi beyond BRCA1/2 are ongoing. In preclinical models of triple-negative breast cancer (TNBC) with intact DNA repair, we have previously shown an induced synthetic lethality with combined EGFR inhibition and PARPi. Here, we report the safety and clinical activity of lapatinib and veliparib in patients with metastatic TNBC. METHODS A first-in-human, pilot study of lapatinib and veliparib was conducted in metastatic TNBC (NCT02158507). The primary endpoint was safety and tolerability. Secondary endpoints were objective response rates and pharmacokinetic evaluation. Gene expression analysis of pre-treatment tumor biopsies was performed. Key eligibility included TNBC patients with measurable disease and prior anthracycline-based and taxane chemotherapy. Patients with gBRCA1/2 mutations were excluded. RESULTS Twenty patients were enrolled, of which 17 were evaluable for response. The median number of prior therapies in the metastatic setting was 1 (range 0-2). Fifty percent of patients were Caucasian, 45% African-American, and 5% Hispanic. Of evaluable patients, 4 demonstrated a partial response and 2 had stable disease. There were no dose-limiting toxicities. Most AEs were limited to grade 1 or 2 and no drug-drug interactions noted. Exploratory gene expression analysis suggested baseline DNA repair pathway score was lower and baseline immunogenicity was higher in the responders compared to non-responders. CONCLUSIONS Lapatinib plus veliparib therapy has a manageable safety profile and promising antitumor activity in advanced TNBC. Further investigation of dual therapy with EGFR inhibition and PARP inhibition is needed. TRIAL REGISTRATION ClinicalTrials.gov , NCT02158507 . Registered on 12 September 2014.
Collapse
Affiliation(s)
- Erica M Stringer-Reasor
- Department of Medicine, Division of Hematology Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jori E May
- Department of Medicine, Division of Hematology Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eva Olariu
- Department of Medicine, Brookwood Baptist Health, Birmingham, AL, USA
| | - Valerie Caterinicchia
- Department of Medicine, Division of Hematology Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yufeng Li
- Department of Medicine, Division of Hematology Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dongquan Chen
- Department of Medicine, Division of Hematology Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Deborah L Della Manna
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gabrielle B Rocque
- Department of Medicine, Division of Hematology Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christos Vaklavas
- Department of Medicine, Division of Hematology Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Carla I Falkson
- Department of Medicine, Division of Hematology Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lisle M Nabell
- Department of Medicine, Division of Hematology Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Edward P Acosta
- Department of Pharmacology/Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andres Forero-Torres
- Department of Medicine, Division of Hematology Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eddy S Yang
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA. .,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, 1700 6th Avenue South, HSROC Suite 2232 (176F), Birmingham, AL, 35249, USA.
| |
Collapse
|
24
|
Si Y, Xu Y, Guan J, Chen K, Kim S, Yang ES, Zhou L, Liu XM. Anti-EGFR antibody-drug conjugate for triple-negative breast cancer therapy. Eng Life Sci 2021; 21:37-44. [PMID: 33531889 PMCID: PMC7837297 DOI: 10.1002/elsc.202000027] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancers (TNBCs) are highly aggressive, metastatic and recurrent. Cytotoxic chemotherapies with limited clinical benefits and severe side effects are the standard therapeutic strategies, but, to date, there is no efficacious targeted therapy. Literature and our data showed that epidermal growth factor receptor (EGFR) is overexpressed on TNBC cell surface and is a promising oncological target. The objective of this study was to develop an antibody-drug conjugate (ADC) to target EGFR+ TNBC and deliver high-potency drug. First, we constructed an ADC by conjugating anti-EGFR monoclonal antibody with mertansine which inhibits microtubule assembly via linker Sulfo-SMCC. Second, we confirmed the TNBC-targeting specificity of anti-EGFR ADC by evaluating its surface binding and internalization in MDA-MB-468 cells and targeting to TNBC xenograft in subcutaneous mouse mode. The live-cell and live-animal imaging with confocal laser scanning microscopy and In Vivo Imaging System (IVIS) confirmed the TNBC-targeting. Finally, both in vitro toxicity assay and in vivo anti-cancer efficacy study in TNBC xenograft models showed that the constructed ADC significantly inhibited TNBC growth, and the pharmacokinetics study indicated its high circulation stability. This study indicated that the anti-EGFR ADC has a great potential to against TNBC.
Collapse
Affiliation(s)
- Yingnan Si
- Department of Biomedical EngineeringUniversity of Alabama at Birmingham (UAB)BirminghamALUSA
| | - Yuanxin Xu
- Department of Biomedical EngineeringUniversity of Alabama at Birmingham (UAB)BirminghamALUSA
| | | | - Kai Chen
- Department of MedicineUABBirminghamALUSA
| | - Seulhee Kim
- Department of Biomedical EngineeringUniversity of Alabama at Birmingham (UAB)BirminghamALUSA
| | - Eddy S. Yang
- Department of Radiation OncologyO'Neal Comprehensive Cancer Center at UABBirminghamALUSA
| | | | - Xiaoguang Margaret Liu
- Department of Biomedical EngineeringUniversity of Alabama at Birmingham (UAB)BirminghamALUSA
| |
Collapse
|
25
|
Chabot T, Cheraud Y, Fleury F. Relationships between DNA repair and RTK-mediated signaling pathways. Biochim Biophys Acta Rev Cancer 2020; 1875:188495. [PMID: 33346130 DOI: 10.1016/j.bbcan.2020.188495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/06/2020] [Accepted: 12/13/2020] [Indexed: 10/22/2022]
Abstract
Receptor Tyrosine Kinases (RTK) are an important family involved in numerous signaling pathways essential for proliferation, cell survival, transcription or cell-cycle regulation. Their role and involvement in cancer cell survival have been widely described in the literature, and are generally associated with overexpression and/or excessive activity in the cancer pathology. Because of these characteristics, RTKs are relevant targets in the fight against cancer. In the last decade, increasingly numerous works describe the role of RTK signaling in the modulation of DNA repair, thus providing evidence of the relationship between RTKs and the protein actors in the repair pathways. In this review, we propose a summary of RTKs described as potential modulators of double-stranded DNA repair pathways in order to put forward new lines of research aimed at the implementation of new therapeutic strategies targeting both DNA repair pathways and RTK-mediated signaling pathways.
Collapse
Affiliation(s)
- Thomas Chabot
- Mechanism and regulation of DNA repair team, UFIP, CNRS UMR 6286, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes, France
| | - Yvonnick Cheraud
- Mechanism and regulation of DNA repair team, UFIP, CNRS UMR 6286, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes, France
| | - Fabrice Fleury
- Mechanism and regulation of DNA repair team, UFIP, CNRS UMR 6286, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes, France.
| |
Collapse
|
26
|
Yang AY, Choi EB, So Park M, Kim SK, Park MS, Kim MY. PARP1 and PRC2 double deficiency promotes BRCA-proficient breast cancer growth by modification of the tumor microenvironment. FEBS J 2020; 288:2888-2910. [PMID: 33205541 DOI: 10.1111/febs.15636] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 10/12/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) and polycomb-repressive complex 2 (PRC2) are each known for their individual roles in cancer, but their cooperative roles have only been studied in the DNA damage repair process in the context of BRCA-mutant cancers. Here, we show that simultaneous inhibition of PARP1 and PRC2 in the MDA-MB-231 BRCA-proficient triple-negative breast cancer (TNBC) cell line leads to a synthetic viability independent of the mechanisms of DNA damage repair. Specifically, we find that either genetic depletion or pharmacological inhibition of both PARP1 and PRC2 can accelerate tumor growth rate. We attribute this to modifications in the tumor microenvironment (TME) that are induced by double-depleted breast cancer cells, such as promoting intratumoral angiogenesis and increasing the proportion of tumor-promoting type 2 (M2) macrophages. These changes subsequently inhibit cell death and promote proliferation. Mechanistically, we find that PARP1 and PRC2 double depletion induces not only a basal activation of the NF-κB pathway but also a maximal activation of NF-κB within the TME in response to external stimuli such as hypoxia and the presence of macrophages. In summary, our study reveals an unprecedented synthetic viable interaction between PARP1 and PRC2 in BRCA-proficient TNBC and identifies NF-κB as the downstream mediator. DATABASE: RNA-seq data are available in the GEO databases under the accession GSE142769.
Collapse
Affiliation(s)
- A-Yeong Yang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Eun-Bee Choi
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Mi So Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Seon-Kyu Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Korea
| | - Min-Seok Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Mi-Young Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.,KAIST Institute for the BioCentury, Cancer Metastasis Control Center, Daejeon, Korea
| |
Collapse
|
27
|
Zeng L, Boggs DH, Xing C, Zhang Z, Anderson JC, Wajapeyee N, Veale C, Bredel M, Shi LZ, Bonner JA, Willey CD, Yang ES. Combining PARP and DNA-PK Inhibitors With Irradiation Inhibits HPV-Negative Head and Neck Cancer Squamous Carcinoma Growth. Front Genet 2020; 11:1036. [PMID: 33133138 PMCID: PMC7511754 DOI: 10.3389/fgene.2020.01036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/11/2020] [Indexed: 01/24/2023] Open
Abstract
Novel targeted agents to inhibit DNA repair pathways to sensitize tumors to irradiation (IR) are being investigated as an alternative to chemoradiation for locally advanced human papilloma virus negative (HPV-negative) head and neck squamous cell carcinoma (HNSCC). Two well-characterized targets that, when inhibited, exhibit potent IR sensitization are PARP1 and DNA-PKcs. However, their cooperation in sensitizing HPV-negative HNSCC to IR remains to be explored given that PARP1 and DNA-PkCS bind to unresected stalled DNA replication forks and cooperate to recruit XRCC1 to facilitate double-strand break repair. Here, we show that the combination of the DNA-PK inhibitor NU7441 and the PARP inhibitor olaparib significantly decrease proliferation (61–78%) compared to no reduction with either agent alone (p < 0.001) in both SCC1 and SCC6 cell lines. Adding IR to the combination further decreased cell proliferation (91–92%, p < 0.001) in SCC1 and SCC6. Similar results were observed using long-term colony formation assays [dose enhancement ratio (DER) 2.3–3.2 at 4Gy, p < 0.05]. Reduced cell survival was attributed to increased apoptosis and G2/M cell cycle arrest. Kinomic analysis using tyrosine (PTK) and serine/threonine (STK) arrays reveals that combination treatment results in the most potent inhibition of kinases involved in the CDK and ERK pathways compared to either agent alone. In vivo, a significant delay of tumor growth was observed in UM-SCC1 xenografts receiving IR with olaparib and/or NU7441, which was similar to the cisplatin-IR group. Both regimens were less toxic than cisplatin-IR as assessed by loss of mouse body weight. Taken together, these results demonstrate that the combination of NU7441 and olaparib with IR enhances HPV-negative HNSCC inhibition in both cell culture and in mice, suggesting a potential innovative combination for effectively treating patients with HPV-negative HNSCC.
Collapse
Affiliation(s)
- Ling Zeng
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Drexell Hunter Boggs
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Chuan Xing
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Zhuo Zhang
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Joshua C Anderson
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Narendra Wajapeyee
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States.,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Chris Veale
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Markus Bredel
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Lewis Z Shi
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - James A Bonner
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Christopher D Willey
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States.,Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States.,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States.,Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Eddy S Yang
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States.,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States.,Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States.,Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| |
Collapse
|
28
|
Wang Y, Zuo M, Jin H, Lai M, Luo J, Cheng Z. Inhibition of ELF3 confers synthetic lethality of PARP inhibitor in non-small cell lung cancer. J Recept Signal Transduct Res 2020; 41:304-311. [PMID: 32814472 DOI: 10.1080/10799893.2020.1808676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND E74 Like ETS Transcription Factor 3 (ELF3) functions as a transcriptional factor to regulate non-small cell lung cancer (NSCLC) differentiation and progression. Poly(ADP-ribose) polymerase (PARP) inhibitors demonstrate anti-tumor effect in NSCLC. This study aimed to investigate whether ELF3 confers synthetic lethal with PARP inhibitor in NSCLC. MATERIALS AND METHODS The sensitivity of PARP inhibitor, Olaparib, to different NSCLC cell lines was determined by half maximal inhibitory concentration (IC50). Expression of ELF3 in NSCLC cell lines was evaluated by western blot. The effects of ELF3 on cytotoxicity of Olaparib to NSCLC were investigated by MTT (3-(4,5- di methyl thiazol -2-yl)-2,5-di phenyl tetrazolium bromide) and colony formation assays. The underlying mechanism involved in synthetic lethality with ELF3 and PARP inhibitors in NSCLC were detected by immunofluorescence and Western blot. RESULTS ELF3 was up-regulated in NSCLC cell lines exhibiting resistance to PARP inhibitor, Olaparib. Knock down of ELF3 decreased the sensitivity and enhanced cytotoxicity of Olaparib to NSCLC cells. Moreover, knock down of ELF3 increased S139 phosphorylated histone H2AX (γH2AX), and inhibited homologous recombination activity via down-regulation of DNA repair protein RAD51 homolog 1 (RAD51), thus showing deficiency in DNA damage repair. Over-expression of ELF3 could up-regulate phosphorylation of AKT (Protein kinase B), while knock down of ELF3 regulated homologous recombination-mediated DNA repair via down-regulation of phosphorylation of AKT. CONCLUSION Knock down of ELF3 revealed homologous recombination deficiency via AKT signaling pathway, and synthetic lethality with ELF3 inhibition and PARP inhibitor indicated the clinical significance of PARP inhibitor in ELF3-deficient NSCLC.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pathology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Min Zuo
- Department of Pathology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Hongtao Jin
- Department of Pathology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Meina Lai
- Department of Pathology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Jinfeng Luo
- Department of Pathology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Zhiqiang Cheng
- Department of Pathology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
29
|
Wang L, Zhang S, Yu X, Guo C. Novel Poly(ADP-ribose) Polymerase-1 Inhibitor DDHCB Inhibits Proliferation of BRCA Mutant Breast Cancer Cell In Vitro and In Vivo through a Synthetic Lethal Mechanism. Chem Res Toxicol 2020; 33:1874-1881. [PMID: 32394702 DOI: 10.1021/acs.chemrestox.0c00087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors are drugs that are effectively used to treat breast cancer. We synthesized a novel bromophenol derivative ethyl (E)-4-(2-(2,3-dibromo-4,5-dimethoxybenzylidene)hydrazine-1-carbothioamido)benzoate (DDHCB) as a novel PARP-1 inhibitor. Our study found that DDHCB could inhibit PARP-1 activity with an IC50 value of 58.3 nM. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphe-nyltetrazolium bromide (MTT) assay indicated that DDHCB could selectively inhibit proliferation of BRCA mutant cells and demonstrate the ability of synthetic lethality. DDHCB could also induce DNA double-strand breaks with the ability to increase the foci quantitation of γ-H2AX. Moreover, DDHCB could increase PARP-1-DNA trapping and inhibit PAR formation in HCC-1937 cells. Further investigation showed that DDHCB induced apoptosis and G2/M cycle arrest. Finally, we found that DDHCB inhibited the growth of HCC-1937 xenografts with low toxicity. In vivo mechanisms showed that the level of γ-H2AX was increased in the DDHCB-treated tumors, indicating the PARP-1 inhibition ability of DDHCB in vivo. Our study results indicated that the future development of DDHCB for the treatment of breast cancer is promising.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.,CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Shuhong Zhang
- Qingdao Chengyang People's Hospital, Qingdao 266109, China
| | - Xuemin Yu
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Qingdao, Shandong 266035, China
| | - Chuanlong Guo
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
30
|
Zeng L, Nikolaev A, Xing C, Della Manna DL, Yang ES. CHK1/2 Inhibitor Prexasertib Suppresses NOTCH Signaling and Enhances Cytotoxicity of Cisplatin and Radiation in Head and Neck Squamous Cell Carcinoma. Mol Cancer Ther 2020; 19:1279-1288. [PMID: 32371584 DOI: 10.1158/1535-7163.mct-19-0946] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/08/2020] [Accepted: 04/01/2020] [Indexed: 11/16/2022]
Abstract
Platinum-based chemoradiotherapy is a mainstay of organ-preserving therapy for patients with head and neck squamous cell carcinoma cancer (HNSCC). However, the disease eventually becomes resistant to treatment necessitating new therapies. Checkpoint kinase 1 and 2 (CHK1/2) are serine/threonine kinases that activate cell-cycle checkpoints and serve a critical role in the DNA-damage response (DDR). As resistance to cisplatin and radiation may involve a heightened DDR, we hypothesized that prexasertib, an inhibitor of CHK1/2, may enhance the cytotoxicity induced by cisplatin and irradiation in HNSCC. In this study, we found that combining prexasertib with cisplatin and radiation significantly decreased the in vitro survival fraction in HNSCC cell lines both with and without radiotherapy. Reduced survival was accompanied by inhibition of DNA repair checkpoint activation, which resulted in persistent DNA damage and increased apoptosis. In addition, NanoString analysis with the PanCancer Pathways Panel revealed that prexasertib downregulated NOTCH signaling target genes (NOTCH1, NOTCH2, and NOTCH3) and their associated ligands (JAG1, JAG2, SKP2, MAML2, and DLL1). Prexasertib also reduced NOTCH1, NOTCH3 and HES1 protein expression. Importantly, a significant tumor growth delay was observed in vivo in both human papillomavirus (HPV)-positive UM-SCC47 and HPV-negative UM-SCC1 cell line xenografts treated with prexasertib, cisplatin, and radiotherapy without increased toxicity as measured by mouse body weight. Taken together, prexasertib reduced NOTCH signaling and enhanced the in vitro and in vivo response of HNSCCs to cisplatin and radiation, suggesting combination therapy may increase clinical benefit. A clinical trial has recently completed accrual (NCT02555644).
Collapse
Affiliation(s)
- Ling Zeng
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Anatoly Nikolaev
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Chuan Xing
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Deborah L Della Manna
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Eddy S Yang
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama. .,Department of Pharmacology and Toxiology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| |
Collapse
|
31
|
Targeted therapy and drug resistance in triple-negative breast cancer: the EGFR axis. Biochem Soc Trans 2020; 48:657-665. [DOI: 10.1042/bst20191055] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023]
Abstract
Targeting of estrogen receptor is commonly used as a first-line treatment for hormone-positive breast cancer patients, and is considered as a keystone of systemic cancer therapy. Likewise, HER2-targeted therapy significantly improved the survival of HER2-positive breast cancer patients, indicating that targeted therapy is a powerful therapeutic strategy for breast cancer. However, for triple-negative breast cancer (TNBC), an aggressive breast cancer subtype, there are no clinically approved targeted therapies, and thus, an urgent need to identify potent, highly effective therapeutic targets. In this mini-review, we describe general strategies to inhibit tumor growth by targeted therapies and briefly discuss emerging resistance mechanisms. Particularly, we focus on therapeutic targets for TNBC and discuss combination therapies targeting the epidermal growth factor receptor (EGFR) and associated resistance mechanisms.
Collapse
|
32
|
Gotoh N, Minato Y, Saitoh T, Takahashi N, Kasamatsu T, Souma K, Oda T, Hoshino T, Sakura T, Ishizaki T, Shimizu H, Takizawa M, Yokohama A, Tsukamoto N, Handa H, Murakami H. PARP1 V762A polymorphism affects the prognosis of myelodysplastic syndromes. Eur J Haematol 2020; 104:526-537. [PMID: 32003046 DOI: 10.1111/ejh.13393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/26/2020] [Accepted: 01/28/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Myelodysplastic syndromes (MDS), caused by various genetic mutations in hematopoietic stem cells, are associated with highly variable outcomes. Poly (ADP-ribose) polymerase-1 (PARP1) plays an important role in DNA damage repair and contributes to the progression of several types of cancer. Here, we investigated the impact of PARP1 V762A polymorphism on the susceptibility to and prognosis of MDS. METHODS Samples collected from 105 MDS patients and 202 race-matched healthy controls were subjected to polymerase chain reaction-restriction fragment length polymorphism for genotyping. RESULTS The allele and genotype frequencies of PARP1 V762A did not differ between MDS patients and the control group. However, MDS patients with the PARP1 V762A non-AA genotype, which is associated with high gene activity, had shorter overall survival rates (P = .01) than those with the AA genotype. Multivariate analysis of overall survival also revealed PARP1 V762A non-AA genotype as a poor prognostic factor (P = .02). When patients were analyzed according to treatment history, the PARP1 V762A non-AA genotype was only associated with poor survival in patients who had received treatment (P = .02). CONCLUSION PARP1 V762A polymorphism may be an independent prognostic factor for MDS, and a predictive biomarker for MDS treatment.
Collapse
Affiliation(s)
- Nanami Gotoh
- Graduate School of Health Sciences, Gunma University, Gunma, Japan
| | - Yusuke Minato
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, Gunma, Japan.,Department of Anatomy and Cell Biology, Hyogo College of Medicine, Hyogo, Japan
| | - Takayuki Saitoh
- Graduate School of Health Sciences, Gunma University, Gunma, Japan
| | | | | | - Kana Souma
- Graduate School of Health Sciences, Gunma University, Gunma, Japan
| | - Tsukasa Oda
- Laboratory of Molecular Genetics, Institute for Molecular and Cellular Regulation, Gunma University, Gunma, Japan
| | - Takumi Hoshino
- Leukemia Research Center, Saiseikai Maebashi Hospital, Gunma, Japan
| | - Toru Sakura
- Leukemia Research Center, Saiseikai Maebashi Hospital, Gunma, Japan
| | - Takuma Ishizaki
- Department of Hematology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Hiroaki Shimizu
- Department of Hematology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Makiko Takizawa
- Department of Hematology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Akihiko Yokohama
- Division of Blood Transfusion Service, Gunma University Hospital, Gunma, Japan
| | | | - Hiroshi Handa
- Department of Hematology, Gunma University Graduate School of Medicine, Gunma, Japan
| | | |
Collapse
|
33
|
Iida M, Harari PM, Wheeler DL, Toulany M. Targeting AKT/PKB to improve treatment outcomes for solid tumors. Mutat Res 2020; 819-820:111690. [PMID: 32120136 DOI: 10.1016/j.mrfmmm.2020.111690] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/31/2020] [Accepted: 02/11/2020] [Indexed: 12/16/2022]
Abstract
The serine/threonine kinase AKT, also known as protein kinase B (PKB), is the major substrate to phosphoinositide 3-kinase (PI3K) and consists of three paralogs: AKT1 (PKBα), AKT2 (PKBβ) and AKT3 (PKBγ). The PI3K/AKT pathway is normally activated by binding of ligands to membrane-bound receptor tyrosine kinases (RTKs) as well as downstream to G-protein coupled receptors and integrin-linked kinase. Through multiple downstream substrates, activated AKT controls a wide variety of cellular functions including cell proliferation, survival, metabolism, and angiogenesis in both normal and malignant cells. In human cancers, the PI3K/AKT pathway is most frequently hyperactivated due to mutations and/or overexpression of upstream components. Aberrant expression of RTKs, gain of function mutations in PIK3CA, RAS, PDPK1, and AKT itself, as well as loss of function mutation in AKT phosphatases are genetic lesions that confer hyperactivation of AKT. Activated AKT stimulates DNA repair, e.g. double strand break repair after radiotherapy. Likewise, AKT attenuates chemotherapy-induced apoptosis. These observations suggest that a crucial link exists between AKT and DNA damage. Thus, AKT could be a major predictive marker of conventional cancer therapy, molecularly targeted therapy, and immunotherapy for solid tumors. In this review, we summarize the current understanding by which activated AKT mediates resistance to cancer treatment modalities, i.e. radiotherapy, chemotherapy, and RTK targeted therapy. Next, the effect of AKT on response of tumor cells to RTK targeted strategies will be discussed. Finally, we will provide a brief summary on the clinical trials of AKT inhibitors in combination with radiochemotherapy, RTK targeted therapy, and immunotherapy.
Collapse
Affiliation(s)
- M Iida
- Department of Human Oncology, University of Wisconsin in Madison, Madison, WI, USA.
| | - P M Harari
- Department of Human Oncology, University of Wisconsin in Madison, Madison, WI, USA
| | - D L Wheeler
- Department of Human Oncology, University of Wisconsin in Madison, Madison, WI, USA
| | - M Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany; German Cancer Consortium (DKTK), Partner Site Tuebingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
34
|
Huang DY, Chen WY, Chen CL, Wu NL, Lin WW. Synergistic Anti-Tumour Effect of Syk Inhibitor and Olaparib in Squamous Cell Carcinoma: Roles of Syk in EGFR Signalling and PARP1 Activation. Cancers (Basel) 2020; 12:cancers12020489. [PMID: 32093123 PMCID: PMC7072502 DOI: 10.3390/cancers12020489] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/05/2020] [Accepted: 02/17/2020] [Indexed: 12/19/2022] Open
Abstract
Syk is a non-receptor tyrosine kinase involved in the signalling of immunoreceptors and growth factor receptors. Previously, we reported that Syk mediates epidermal growth factor receptor (EGFR) signalling and plays a negative role in the terminal differentiation of keratinocytes. To understand whether Syk is a potential therapeutic target of cancer cells, we further elucidated the role of Syk in disease progression of squamous cell carcinoma (SCC), which is highly associated with EGFR overactivation, and determined the combined effects of Syk and PARP1 inhibitors on SCC viability. We found that pharmacological inhibition of Syk could attenuate the EGF-induced phosphorylation of EGFR, JNK, p38 MAPK, STAT1, and STAT3 in A431, CAL27 and SAS cells. In addition, EGF could induce a Syk-dependent IL-8 gene and protein expression in SCC. Confocal microscopic data demonstrated the ability of the Syk inhibitor to change the subcellular distribution patterns of EGFR after EGF treatment in A431 and SAS cells. Moreover, according to Kaplan-Meier survival curve analysis, higher Syk expression is correlated with poorer patient survival rate and prognosis. Notably, both Syk and EGFR inhibitors could induce PARP activation, and synergistic cytotoxic actions were observed in SCC cells upon the combined treatment of the PARP1 inhibitor olaparib with Syk or the EGFR inhibitor. Collectively, we reported Syk as an important signalling molecule downstream of EGFR that plays crucial roles in SCC development. Combining Syk and PARP inhibition may represent an alternative therapeutic strategy for treating SCC.
Collapse
Affiliation(s)
- Duen-Yi Huang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
| | - Wei-Yu Chen
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 106, Taiwan;
| | - Chi-Long Chen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 106, Taiwan;
- Department of Pathology, Taipei Medical University Hospital, Taipei 106, Taiwan
| | - Nan-Lin Wu
- Department of Medicine, Mackay Medical College, New Taipei City 251, Taiwan;
- Department of Dermatology, Mackay Memorial Hospital, Taipei 104, Taiwan
- Mackay Junior College of Medicine, Nursing, and Management, New Taipei City 252, Taiwan
| | - Wan-Wan Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei 106, Taiwan
- Correspondence: ; Tel.: +886-223-123-456 (ext. 88315); Fax: +886-223-513-716
| |
Collapse
|
35
|
de Silva HC, Lin MZ, Phillips L, Martin JL, Baxter RC. IGFBP-3 interacts with NONO and SFPQ in PARP-dependent DNA damage repair in triple-negative breast cancer. Cell Mol Life Sci 2019; 76:2015-2030. [PMID: 30725116 PMCID: PMC11105386 DOI: 10.1007/s00018-019-03033-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/09/2019] [Accepted: 01/28/2019] [Indexed: 12/18/2022]
Abstract
Women with triple-negative breast cancer (TNBC) are generally treated by chemotherapy but their responsiveness may be blunted by DNA double-strand break (DSB) repair. We previously reported that IGFBP-3 forms nuclear complexes with EGFR and DNA-dependent protein kinase (DNA-PKcs) to modulate DSB repair by non-homologous end-joining (NHEJ) in TNBC cells. To discover IGFBP-3 binding partners involved in chemoresistance through stimulation of DSB repair, we analyzed the IGFBP-3 interactome by LC-MS/MS and confirmed interactions by coimmunoprecipitation and proximity ligation assay. Functional effects were demonstrated by DNA end-joining in vitro and measurement of γH2AX foci. In response to 20 µM etoposide, the DNA/RNA-binding protein, non-POU domain-containing octamer-binding protein (NONO) and its dimerization partner splicing factor, proline/glutamine-rich (SFPQ) formed complexes with IGFBP-3, demonstrated in basal-like TNBC cell lines HCC1806 and MDA-MB-468. NONO binding to IGFBP-3 was also shown in a cell-free biochemical assay. IGFBP-3 complexes with NONO and SFPQ were blocked by inhibiting EGFR with gefitinib or DNA-PKcs with NU7026, and by the PARP inhibitors veliparib and olaparib, which also reduced DNA end-joining activity and delayed the resolution of the γH2AX signal (i.e. inhibited DNA DSB repair). Downregulation of the long noncoding RNA in NHEJ pathway 1 (LINP1) by siRNA also blocked IGFBP-3 interaction with NONO-SFPQ. These findings suggest a PARP-dependent role for NONO and SFPQ in IGFBP-3-dependent DSB repair and the involvement of LINP1 in the complex formation. We propose that targeting of the DNA repair function of IGFBP-3 may enhance chemosensitivity in basal-like TNBC, thus improving patient outcomes.
Collapse
Affiliation(s)
- Hasanthi C de Silva
- Kolling Institute, Royal North Shore Hospital, The University of Sydney, St. Leonards, NSW, 2065, Australia
| | - Mike Z Lin
- Kolling Institute, Royal North Shore Hospital, The University of Sydney, St. Leonards, NSW, 2065, Australia
- Orange Family Medical Centre, 95 Peisley Street, Orange, NSW, 2800, Australia
| | - Leo Phillips
- Kolling Institute, Royal North Shore Hospital, The University of Sydney, St. Leonards, NSW, 2065, Australia
| | - Janet L Martin
- Kolling Institute, Royal North Shore Hospital, The University of Sydney, St. Leonards, NSW, 2065, Australia
| | - Robert C Baxter
- Kolling Institute, Royal North Shore Hospital, The University of Sydney, St. Leonards, NSW, 2065, Australia.
| |
Collapse
|
36
|
Shao N, Shi Y, Yu L, Ye R, Shan Z, Zhang Z, Zhang Y, Lin Y. Prospect for Application of PARP Inhibitor in Patients with HER2 Negative Breast Cancer. Int J Biol Sci 2019; 15:962-972. [PMID: 31182917 PMCID: PMC6535782 DOI: 10.7150/ijbs.30721] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/13/2018] [Indexed: 12/25/2022] Open
Abstract
Human epidermal growth factor receptor (HER2) negative metastatic breast cancer (BC) accounts for 73% of BC. The molecular analysis of this disease is essential for potential options for targeted therapy. Several promising clinical strategies are being evaluated which includes endocrine therapy, modified chemotherapy, angiogenesis inhibitors, immune checkpoint inhibitors, and anti-androgens. New therapeutic approaches are being developed that target BC patients with germline mutations in either BRCA1, BRCA2 as well as BRCAness, a condition in which tumors have molecular similarity to BRCA-mutated tumors. Poly (ADP-ribose) polymerase inhibitors (PARPi) which are effective therapy in germline BRCA1 and BRCA2 mutations, are also observed to be effective in somatic mutations. Germline mutations in the homologous recombination pathway genes could also contribute to PARPi sensitivity. PARPi act as chemo- and radio-sensitizers by limiting the DNA-damage response and potentiating the activity of chemo- and radio-therapy when used alone or in combination with chemotherapy. Apart from PARPi as monotherapy, additional researches are ongoing in combination with cytotoxic chemotherapeutics and targeted agents in HER2 negative BC. This review aims at the most recent developments in the targeted therapy, summarizes the recent clinical trials outcomes, along with the overview of ongoing clinical trials in HER2 negative patients with BRCA1/2 mutations and sporadic tumors with BRCAness.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ying Lin
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, ZhongShan Er Lu, Guangzhou, Guangdong, 510080, P.R. China
| |
Collapse
|
37
|
Toulany M. Targeting DNA Double-Strand Break Repair Pathways to Improve Radiotherapy Response. Genes (Basel) 2019; 10:genes10010025. [PMID: 30621219 PMCID: PMC6356315 DOI: 10.3390/genes10010025] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/07/2018] [Accepted: 12/27/2018] [Indexed: 12/13/2022] Open
Abstract
More than half of cancer patients receive radiotherapy as a part of their cancer treatment. DNA double-strand breaks (DSBs) are considered as the most lethal form of DNA damage and a primary cause of cell death and are induced by ionizing radiation (IR) during radiotherapy. Many malignant cells carry multiple genetic and epigenetic aberrations that may interfere with essential DSB repair pathways. Additionally, exposure to IR induces the activation of a multicomponent signal transduction network known as DNA damage response (DDR). DDR initiates cell cycle checkpoints and induces DSB repair in the nucleus by non-homologous end joining (NHEJ) or homologous recombination (HR). The canonical DSB repair pathways function in both normal and tumor cells. Thus, normal-tissue toxicity may limit the targeting of the components of these two pathways as a therapeutic approach in combination with radiotherapy. The DSB repair pathways are also stimulated through cytoplasmic signaling pathways. These signaling cascades are often upregulated in tumor cells harboring mutations or the overexpression of certain cellular oncogenes, e.g., receptor tyrosine kinases, PIK3CA and RAS. Targeting such cytoplasmic signaling pathways seems to be a more specific approach to blocking DSB repair in tumor cells. In this review, a brief overview of cytoplasmic signaling pathways that have been reported to stimulate DSB repair is provided. The state of the art of targeting these pathways will be discussed. A greater understanding of the underlying signaling pathways involved in DSB repair may provide valuable insights that will help to design new strategies to improve treatment outcomes in combination with radiotherapy.
Collapse
Affiliation(s)
- Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Roentgenweg 11, 72076 Tuebingen, Germany.
| |
Collapse
|
38
|
Beggs R, Yang ES. Targeting DNA repair in precision medicine. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 115:135-155. [PMID: 30798930 DOI: 10.1016/bs.apcsb.2018.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Precision medicine is an emerging treatment paradigm that aims to find the right therapy at the right time based on an individual's unique genetic background, environment, and lifestyle. One area of precision medicine that has had success is targeting DNA repair in cancer. DNA is exposed to constant stress and there are repair mechanisms in place to maintain genetic integrity. These repair mechanisms can be targeted as a treatment strategy. In this chapter, we will focus on current efforts to target DNA repair pathways as part of precision oncology-based treatments.
Collapse
Affiliation(s)
- Reena Beggs
- Department of Radiation Oncology, University of Alabama-Birmingham School of Medicine, Birmingham, AL, United States
| | - Eddy S Yang
- Department of Radiation Oncology, University of Alabama-Birmingham School of Medicine, Birmingham, AL, United States; Hugh Kaul Precision Medicine Institute, University of Alabama-Birmingham School of Medicine, Birmingham, AL, United States.
| |
Collapse
|
39
|
Papadimitriou M, Mountzios G, Papadimitriou CA. The role of PARP inhibition in triple-negative breast cancer: Unraveling the wide spectrum of synthetic lethality. Cancer Treat Rev 2018; 67:34-44. [PMID: 29753961 DOI: 10.1016/j.ctrv.2018.04.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/26/2018] [Accepted: 04/28/2018] [Indexed: 02/07/2023]
Abstract
Triple-negative breast cancer (TNBC) accounts for approximately 15-20% of all breast cancers and is characterized by a lack of immunohistochemical expression of estrogen receptors (ER), progesterone receptors (PR) and HER2. TNBC is associated with poor long-term outcomes compared with other breast cancer subtypes. Many of these tumors are also basal-like cancers which are characterized by an aggressive biological behavior with a distant recurrence peak observed early at 3 years following diagnosis. Furthermore, metastatic TNBC bears a dismal prognosis with an average survival of 12 months. Although the prevalence of genetic alterations among women with TNBC differs significantly by ethnicity, race and age, BRCA mutations (including both germline mutations and somatic genetic aberrations) are found in up to 20-25% of unselected patients and especially in those of the basal-like immunophenotype. Therefore, defects in the DNA repair pathway could represent a promising therapeutic target for this subgroup of TNBC patients. Poly(ADP-ribose) polymerase (PARP) inhibitors exploit this deficiency through synthetic lethality and have emerged as promising anticancer therapies, especially in BRCA1 or BRCA2 mutation carriers. Several PARP inhibitors are currently being evaluated in the adjuvant, neo-adjuvant, and metastatic setting for the treatment of breast cancer patients with a deficient homologous recombination pathway. In this article, we review the major molecular characteristics of TNBC, the mechanisms of homologous recombination, and the role of PARP inhibition as an emerging therapeutic strategy.
Collapse
Affiliation(s)
- Marios Papadimitriou
- Second Department of Surgery, Aretaieion University Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece.
| | - Giannis Mountzios
- Department of Medical Oncology, 251 Airforce General Hospital, Athens, Greece
| | - Christos A Papadimitriou
- Second Department of Surgery, Aretaieion University Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| |
Collapse
|
40
|
Wielgos ME, Zhang Z, Rajbhandari R, Cooper TS, Zeng L, Forero A, Esteva FJ, Osborne CK, Schiff R, LoBuglio AF, Nozell SE, Yang ES. Trastuzumab-Resistant HER2 + Breast Cancer Cells Retain Sensitivity to Poly (ADP-Ribose) Polymerase (PARP) Inhibition. Mol Cancer Ther 2018; 17:921-930. [PMID: 29592880 DOI: 10.1158/1535-7163.mct-17-0302] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/29/2017] [Accepted: 02/23/2018] [Indexed: 01/24/2023]
Abstract
HER2-targeted therapies, such as trastuzumab, have increased the survival rates of HER2+ breast cancer patients. However, despite these therapies, many tumors eventually develop resistance to these therapies. Our lab previously reported an unexpected sensitivity of HER2+ breast cancer cells to poly (ADP-ribose) polymerase inhibitors (PARPi), agents that target homologous recombination (HR)-deficient tumors, independent of a DNA repair deficiency. In this study, we investigated whether HER2+ trastuzumab-resistant (TR) breast cancer cells were susceptible to PARPi and the mechanism behind PARPi induced cytotoxicity. We demonstrate that the PARPi ABT-888 (veliparib) decreased cell survival in vitro and tumor growth in vivo of HER2+ TR breast cancer cells. PARP-1 siRNA confirmed that cytotoxicity was due, in part, to PARP-1 inhibition. Furthermore, PARP-1 silencing had variable effects on the expression of several NF-κB-regulated genes. In particular, silencing PARP-1 inhibited NF-κB activity and reduced p65 binding at the IL8 promoter, which resulted in a decrease in IL8 mRNA and protein expression. Our results provide insight in the potential mechanism by which PARPi induces cytotoxicity in HER2+ breast cancer cells and support the testing of PARPi in patients with HER2+ breast cancer resistant to trastuzumab. Mol Cancer Ther; 17(5); 921-30. ©2018 AACR.
Collapse
Affiliation(s)
- Monica E Wielgos
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Zhuo Zhang
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rajani Rajbhandari
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tiffiny S Cooper
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ling Zeng
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Andres Forero
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Francisco J Esteva
- Breast Medical Oncology Program, NYU Cancer Institute, New York, New York
| | - C Kent Osborne
- Lester and Sue Smith Breast Cancer, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Rachel Schiff
- Lester and Sue Smith Breast Cancer, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Albert F LoBuglio
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Susan E Nozell
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Eddy S Yang
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama.
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
41
|
Targeting Oxidatively Induced DNA Damage Response in Cancer: Opportunities for Novel Cancer Therapies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2389523. [PMID: 29770165 PMCID: PMC5892224 DOI: 10.1155/2018/2389523] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/22/2018] [Indexed: 12/17/2022]
Abstract
Cancer is a death cause in economically developed countries that results growing also in developing countries. Improved outcome through targeted interventions faces the scarce selectivity of the therapies and the development of resistance to them that compromise the therapeutic effects. Genomic instability is a typical cancer hallmark due to DNA damage by genetic mutations, reactive oxygen and nitrogen species, ionizing radiation, and chemotherapeutic agents. DNA lesions can induce and/or support various diseases, including cancer. The DNA damage response (DDR) is a crucial signaling-transduction network that promotes cell cycle arrest or cell death to repair DNA lesions. DDR dysregulation favors tumor growth as downregulated or defective DDR generates genomic instability, while upregulated DDR may confer treatment resistance. Redox homeostasis deeply and capillary affects DDR as ROS activate/inhibit proteins and enzymes integral to DDR both in healthy and cancer cells, although by different routes. DDR regulation through modulating ROS homeostasis is under investigation as anticancer opportunity, also in combination with other treatments since ROS affect DDR differently in the patients during cancer development and treatment. Here, we highlight ROS-sensitive proteins whose regulation in oxidatively induced DDR might allow for selective strategies against cancer that are better tailored to the patients.
Collapse
|
42
|
Saki M, Makino H, Javvadi P, Tomimatsu N, Ding LH, Clark JE, Gavin E, Takeda K, Andrews J, Saha D, Story MD, Burma S, Nirodi CS. EGFR Mutations Compromise Hypoxia-Associated Radiation Resistance through Impaired Replication Fork-Associated DNA Damage Repair. Mol Cancer Res 2017; 15:1503-1516. [PMID: 28801308 PMCID: PMC5668182 DOI: 10.1158/1541-7786.mcr-17-0136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/29/2017] [Accepted: 08/03/2017] [Indexed: 12/20/2022]
Abstract
EGFR signaling has been implicated in hypoxia-associated resistance to radiation or chemotherapy. Non-small cell lung carcinomas (NSCLC) with activating L858R or ΔE746-E750 EGFR mutations exhibit elevated EGFR activity and downstream signaling. Here, relative to wild-type (WT) EGFR, mutant (MT) EGFR expression significantly increases radiosensitivity in hypoxic cells. Gene expression profiling in human bronchial epithelial cells (HBEC) revealed that MT-EGFR expression elevated transcripts related to cell cycle and replication in aerobic and hypoxic conditions and downregulated RAD50, a critical component of nonhomologous end joining and homologous recombination DNA repair pathways. NSCLCs and HBEC with MT-EGFR revealed elevated basal and hypoxia-induced γ-H2AX-associated DNA lesions that were coincident with replication protein A in the S-phase nuclei. DNA fiber analysis showed that, relative to WT-EGFR, MT-EGFR NSCLCs harbored significantly higher levels of stalled replication forks and decreased fork velocities in aerobic and hypoxic conditions. EGFR blockade by cetuximab significantly increased radiosensitivity in hypoxic cells, recapitulating MT-EGFR expression and closely resembling synthetic lethality of PARP inhibition.Implications: This study demonstrates that within an altered DNA damage response of hypoxic NSCLC cells, mutant EGFR expression, or EGFR blockade by cetuximab exerts a synthetic lethality effect and significantly compromises radiation resistance in hypoxic tumor cells. Mol Cancer Res; 15(11); 1503-16. ©2017 AACR.
Collapse
Affiliation(s)
- Mohammad Saki
- Department of Oncologic Sciences, University of South Alabama Mitchell Cancer Institute, Mobile, Alabama
| | - Haruhiko Makino
- Division of Medical Oncology and Molecular Respirology, Faculty of Medicine Tottori University, Yonago, Tottori, Japan
| | - Prashanthi Javvadi
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Nozomi Tomimatsu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Liang-Hao Ding
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jennifer E Clark
- Department of Oncologic Sciences, University of South Alabama Mitchell Cancer Institute, Mobile, Alabama
| | - Elaine Gavin
- Department of Oncologic Sciences, University of South Alabama Mitchell Cancer Institute, Mobile, Alabama
| | - Kenichi Takeda
- Division of Medical Oncology and Molecular Respirology, Faculty of Medicine Tottori University, Yonago, Tottori, Japan
| | - Joel Andrews
- Department of Oncologic Sciences, University of South Alabama Mitchell Cancer Institute, Mobile, Alabama
| | - Debabrata Saha
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Michael D Story
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sandeep Burma
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Chaitanya S Nirodi
- Department of Oncologic Sciences, University of South Alabama Mitchell Cancer Institute, Mobile, Alabama.
| |
Collapse
|
43
|
Kawahara N, Ogawa K, Nagayasu M, Kimura M, Sasaki Y, Kobayashi H. Candidate synthetic lethality partners to PARP inhibitors in the treatment of ovarian clear cell cancer. Biomed Rep 2017; 7:391-399. [PMID: 29109859 DOI: 10.3892/br.2017.990] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 09/14/2017] [Indexed: 02/06/2023] Open
Abstract
Inhibitors of poly(ADP-ribose) polymerase (PARP) are new types of personalized treatment of relapsed platinum-sensitive ovarian cancer harboring BRCA1/2 mutations. Ovarian clear cell cancer (CCC), a subset of ovarian cancer, often appears as low-stage disease with a higher incidence among Japanese. Advanced CCC is highly aggressive with poor patient outcome. The aim of the present study was to determine the potential synthetic lethality gene pairs for PARP inhibitions in patients with CCC through virtual and biological screenings as well as clinical studies. We conducted a literature review for putative PARP sensitivity genes that are associated with the CCC pathophysiology. Previous studies identified a variety of putative target genes from several pathways associated with DNA damage repair, chromatin remodeling complex, PI3K-AKT-mTOR signaling, Notch signaling, cell cycle checkpoint signaling, BRCA-associated complex and Fanconi's anemia susceptibility genes that could be used as biomarkers or therapeutic targets for PARP inhibition. BRCA1/2, ATM, ATR, BARD1, CCNE1, CHEK1, CKS1B, DNMT1, ERBB2, FGFR2, MRE11A, MYC, NOTCH1 and PTEN were considered as candidate genes for synthetic lethality gene partners for PARP interactions. When considering the biological background underlying PARP inhibition, we hypothesized that PARP inhibitors would be a novel synthetic lethal therapeutic approach for CCC tumors harboring homologous recombination deficiency and activating oncogene mutations. The results showed that the majority of CCC tumors appear to have indicators of DNA repair dysfunction similar to those in BRCA-mutation carriers, suggesting the possible utility of PARP inhibitors in a subset of CCC.
Collapse
Affiliation(s)
- Naoki Kawahara
- Department of Obstetrics and Gynecology, Nara Medical University, Nara 634-8522, Japan
| | - Kenji Ogawa
- Department of Obstetrics and Gynecology, Nara Medical University, Nara 634-8522, Japan
| | - Mika Nagayasu
- Department of Obstetrics and Gynecology, Nara Medical University, Nara 634-8522, Japan
| | - Mai Kimura
- Department of Obstetrics and Gynecology, Nara Medical University, Nara 634-8522, Japan
| | - Yoshikazu Sasaki
- Department of Obstetrics and Gynecology, Nara Medical University, Nara 634-8522, Japan
| | - Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, Nara 634-8522, Japan
| |
Collapse
|
44
|
Bartelink IH, Prideaux B, Krings G, Wilmes L, Lee PRE, Bo P, Hann B, Coppé JP, Heditsian D, Swigart-Brown L, Jones EF, Magnitsky S, Keizer RJ, de Vries N, Rosing H, Pawlowska N, Thomas S, Dhawan M, Aggarwal R, Munster PN, Esserman LJ, Ruan W, Wu AHB, Yee D, Dartois V, Savic RM, Wolf DM, van ’t Veer L. Heterogeneous drug penetrance of veliparib and carboplatin measured in triple negative breast tumors. Breast Cancer Res 2017; 19:107. [PMID: 28893315 PMCID: PMC5594551 DOI: 10.1186/s13058-017-0896-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/14/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Poly(ADP-ribose) polymerase inhibitors (PARPi), coupled to a DNA damaging agent is a promising approach to treating triple negative breast cancer (TNBC). However, not all patients respond; we hypothesize that non-response in some patients may be due to insufficient drug penetration. As a first step to testing this hypothesis, we quantified and visualized veliparib and carboplatin penetration in mouse xenograft TNBCs and patient blood samples. METHODS MDA-MB-231, HCC70 or MDA-MB-436 human TNBC cells were implanted in 41 beige SCID mice. Low dose (20 mg/kg) or high dose (60 mg/kg) veliparib was given three times daily for three days, with carboplatin (60 mg/kg) administered twice. In addition, blood samples were analyzed from 19 patients from a phase 1 study of carboplatin + PARPi talazoparib. Veliparib and carboplatin was quantified using liquid chromatography-mass spectrometry (LC-MS). Veliparib tissue penetration was visualized using matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI) and platinum adducts (covalent nuclear DNA-binding) were quantified using inductively coupled plasma-mass spectrometry (ICP-MS). Pharmacokinetic modeling and Pearson's correlation were used to explore associations between concentrations in plasma, tumor cells and peripheral blood mononuclear cells (PBMCs). RESULTS Veliparib penetration in xenograft tumors was highly heterogeneous between and within tumors. Only 35% (CI 95% 26-44%), 74% (40-97%) and 46% (9-37%) of veliparib observed in plasma penetrated into MDA-MB-231, HCC70 and MDA-MB-436 cell-based xenografts, respectively. Within tumors, penetration heterogeneity was larger with the 60 mg/kg compared to the 20 mg/kg dose (RSD 155% versus 255%, P = 0.001). These tumor concentrations were predicted similar to clinical dosing levels, but predicted tumor concentrations were below half maximal concentration values as threshold of response. Xenograft veliparib concentrations correlated positively with platinum adduct formation (R 2 = 0.657), but no PARPi-platinum interaction was observed in patients' PBMCs. Platinum adduct formation was significantly higher in five gBRCA carriers (ratio of platinum in DNA in PBMCs/plasma 0.64% (IQR 0.60-1.16%) compared to nine non-carriers (ratio 0.29% (IQR 0.21-0.66%, P < 0.0001). CONCLUSIONS PARPi/platinum tumor penetration can be measured by MALDI-MSI and ICP-MS in PBMCs and fresh frozen, OCT embedded core needle biopsies. Large variability in platinum adduct formation and spatial heterogeneity in veliparib distribution may lead to insufficient drug exposure in select cell populations.
Collapse
Affiliation(s)
- Imke H. Bartelink
- Department of Medicine, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 9411 USA
| | - Brendan Prideaux
- Rutgers New Jersey Medical School, Public Health Research Institute, Rutgers, The State University of New Jersey, 225 Warren Ave, Newark, NJ USA
| | - Gregor Krings
- Department of Pathology, University of California, San Francisco, CA USA
| | - Lisa Wilmes
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA USA
| | - Pei Rong Evelyn Lee
- Department of Laboratory Medicine, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA USA
| | - Pan Bo
- Department of Laboratory Medicine, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA USA
| | - Byron Hann
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA USA
| | - Jean-Philippe Coppé
- Department of Laboratory Medicine, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA USA
| | - Diane Heditsian
- Patient advocate University of California, San Francisco Breast Science Advocacy Core, San Francisco, CA USA
| | - Lamorna Swigart-Brown
- Department of Laboratory Medicine, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA USA
| | - Ella F. Jones
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA USA
| | - Sergey Magnitsky
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA USA
| | - Ron J Keizer
- Department of Bioengineering & Therapeutic Sciences, University of California San Francisco, San Francisco, USA
| | - Niels de Vries
- Department of Clinical Pharmacy, Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, NKI-AVL, Amsterdam, The Netherlands
| | - Hilde Rosing
- Department of Clinical Pharmacy, Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, NKI-AVL, Amsterdam, The Netherlands
| | - Nela Pawlowska
- Department of Medicine, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 9411 USA
| | - Scott Thomas
- Department of Medicine, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 9411 USA
| | - Mallika Dhawan
- Department of Medicine, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 9411 USA
| | - Rahul Aggarwal
- Department of Medicine, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 9411 USA
| | - Pamela N. Munster
- Department of Medicine, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 9411 USA
| | - Laura J. Esserman
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA USA
| | - Weiming Ruan
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA USA
| | - Alan H. B. Wu
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA USA
| | - Douglas Yee
- Division of Hematology Oncology, University of Minnesota, Minneapolis, MN USA
| | - Véronique Dartois
- Rutgers New Jersey Medical School, Public Health Research Institute, Rutgers, The State University of New Jersey, 225 Warren Ave, Newark, NJ USA
| | - Radojka M. Savic
- Department of Bioengineering & Therapeutic Sciences, University of California San Francisco, San Francisco, USA
| | - Denise M. Wolf
- Department of Laboratory Medicine, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA USA
| | - Laura van ’t Veer
- Department of Laboratory Medicine, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA USA
| |
Collapse
|
45
|
Rajawat J, Shukla N, Mishra DP. Therapeutic Targeting of Poly(ADP-Ribose) Polymerase-1 (PARP1) in Cancer: Current Developments, Therapeutic Strategies, and Future Opportunities. Med Res Rev 2017; 37:1461-1491. [PMID: 28510338 DOI: 10.1002/med.21442] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/31/2017] [Accepted: 02/16/2017] [Indexed: 12/16/2022]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) plays a central role in numerous cellular processes including DNA repair, replication, and transcription. PARP interacts directly, indirectly or via PARylation with various oncogenic proteins and regulates several transcription factors thereby modulating carcinogenesis. Therapeutic inhibition of PARP is therefore perceived as a promising anticancer strategy and a number of PARP inhibitors (PARPi) are currently under development and clinical evaluation. PARPi inhibit the DNA repair pathway and thus form the concept of synthetic lethality in cancer therapeutics. Preclinical and clinical studies have shown the potential of PARPi as chemopotentiator, radiosensitizer, or as adjuvant therapeutic agents. Recent studies have shown that PARP-1 could be either oncogenic or tumor suppressive in different cancers. PARP inhibitor resistance is also a growing concern in the clinical setting. Recently, changes in the levels of PARP-1 activity or expression in cancer patients have provided the basis for consideration of PARP-1 regulatory proteins as potential biomarkers. This review focuses on the current developments related to the role of PARP in cancer progression, therapeutic strategies targeting PARP-associated oncogenic signaling, and future opportunities in use of PARPi in anticancer therapeutics.
Collapse
Affiliation(s)
- Jyotika Rajawat
- Cell Death Research Laboratory, Endocrinology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh, 226031, India
| | - Nidhi Shukla
- Cell Death Research Laboratory, Endocrinology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh, 226031, India
| | - Durga Prasad Mishra
- Cell Death Research Laboratory, Endocrinology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh, 226031, India
| |
Collapse
|
46
|
Crippa E, Folini M, Pennati M, Zaffaroni N, Pierotti MA, Gariboldi M. miR-342 overexpression results in a synthetic lethal phenotype in BRCA1-mutant HCC1937 breast cancer cells. Oncotarget 2017; 7:18594-604. [PMID: 26919240 PMCID: PMC4951312 DOI: 10.18632/oncotarget.7617] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/11/2016] [Indexed: 12/02/2022] Open
Abstract
Expression of miR-342 has been strongly correlated with estrogen receptor (ER) status in breast cancer, where it is highest in ER-positive and lowest in triple-negative tumors. We investigated the effects of miR-342 transfection in the triple-negative breast cancer cell lines MDA-MB-231 and HCC1937, the latter carrying a germ-line BRCA1 mutation. Reconstitution of miR-342 led to caspase-dependent induction of apoptosis only in HCC1937 cells, while overexpression of wild-type BRCA1 in HCC1937 cells counteracted miR-342-mediated induction of apoptosis, suggesting that miR-342 overexpression and the lack of functional BRCA1 result in a synthetic lethal phenotype. Moreover, siRNA-mediated depletion of BRCA1 in MDA-MB-231 cells expressing the wild-type protein led to apoptosis upon transfection with miR-342. Using an in silico approach and a luciferase reporter system, we identified and functionally validated the Baculoviral IAP repeat-containing 6 gene (BIRC6), which encodes the anti-apoptotic factor Apollon/BRUCE, as a target of miR-342. In our model, BIRC6 likely acts as a determinant of the miRNA-dependent induction of apoptosis in BRCA1-mutant HCC1937 cells. Together, our findings suggest a tumor-suppressive function of miR-342 that could be exploited in the treatment of a subset of BRCA1-mutant hereditary breast cancers.
Collapse
Affiliation(s)
- Elisabetta Crippa
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Molecular Genetics of Cancer, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | - Marco Folini
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marzia Pennati
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Nadia Zaffaroni
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marco A Pierotti
- Molecular Genetics of Cancer, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | - Manuela Gariboldi
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Molecular Genetics of Cancer, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| |
Collapse
|
47
|
Costa R, Shah AN, Santa-Maria CA, Cruz MR, Mahalingam D, Carneiro BA, Chae YK, Cristofanilli M, Gradishar WJ, Giles FJ. Targeting Epidermal Growth Factor Receptor in triple negative breast cancer: New discoveries and practical insights for drug development. Cancer Treat Rev 2017; 53:111-119. [DOI: 10.1016/j.ctrv.2016.12.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 12/23/2016] [Accepted: 12/24/2016] [Indexed: 12/25/2022]
|
48
|
Zeng L, Beggs RR, Cooper TS, Weaver AN, Yang ES. Combining Chk1/2 Inhibition with Cetuximab and Radiation Enhances In Vitro and In Vivo Cytotoxicity in Head and Neck Squamous Cell Carcinoma. Mol Cancer Ther 2017; 16:591-600. [PMID: 28138028 PMCID: PMC5560482 DOI: 10.1158/1535-7163.mct-16-0352] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 12/21/2022]
Abstract
EGFR inhibition and radiotherapy are potent inducers of DNA damage. Checkpoint kinases 1 and 2 (Chk1/2) are critical regulators of the DNA-damage response, controlling cell-cycle checkpoints that may permit recovery from therapy-associated genomic stress. We hypothesized that Chk1/2 inhibition (CHKi) with prexasertib may enhance cytotoxicity from EGFR inhibition plus radiotherapy in head and neck squamous cell carcinoma (HNSCC). In this study, we found that the addition of CHKi to the EGFR inhibitor cetuximab with and without radiotherapy significantly decreased cell proliferation and survival fraction in human papillomavirus virus (HPV)-positive and HPV-negative HNSCC cell lines. Reduced proliferation was accompanied by decreased checkpoint activation, induced S-phase accumulation, persistent DNA damage, and increased caspase cleavage and apoptosis. Importantly, a significant tumor growth delay was observed in vivo in both HPV-positive and HPV-negative cell line xenografts receiving triple combination therapy with CHKi, cetuximab, and radiotherapy without a concomitant increase in toxicity as assessed by mouse body weight. Taken together, the combination of CHKi with cetuximab plus irradiation displayed significant antitumor effects in HNSCCs both in vitro and in vivo, suggesting that this combination therapy may increase clinical benefit. A clinical trial to test this treatment for patients with head and neck cancer is currently ongoing (NCT02555644).
Collapse
Affiliation(s)
- Ling Zeng
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Reena R Beggs
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Tiffiny S Cooper
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Alice N Weaver
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Eddy S Yang
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama. .,Department of Pharmacology and Toxiology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| |
Collapse
|
49
|
Dulaney C, Marcrom S, Stanley J, Yang ES. Poly(ADP-ribose) polymerase activity and inhibition in cancer. Semin Cell Dev Biol 2017; 63:144-153. [PMID: 28087320 DOI: 10.1016/j.semcdb.2017.01.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 01/03/2017] [Accepted: 01/09/2017] [Indexed: 12/20/2022]
Abstract
Genomic instability resultant from defective DNA repair mechanisms is a fundamental hallmark of cancer. The poly(ADP-ribose) polymerase (PARP) proteins 1, 2 and 3 catalyze the polymerization of poly(ADP-ribose) and covalent attachment to proteins in a phylogenetically ancient form of protein modification. PARPs play a role in base excision repair, homologous recombination, and non-homologous end joining. The discovery that loss of PARP activity had cytotoxic effects in cells deficient in homologous recombination has sparked a decade of translational research efforts that culminated in the FDA approval of an oral PARP inhibitor for clinical use in patients with ovarian cancer and defective homologous recombination. Five PARP inhibitors are now in late-stage development in clinical trials that are seeking to expand the understanding of targeted therapies and DNA repair defects in human cancer. This review examines the cell biology of PARP, the discovery of synthetic lethality with HR deficiency, the clinical development of PARP inhibitors, and the role of PARP inhibitors in ongoing clinical trials and clinical practice.
Collapse
Affiliation(s)
- Caleb Dulaney
- Department of Radiation Oncology, University of Alabama at Birmingham, 1700 6th Avenue South, 176F Hazelrig-Salter Radiation Oncology Center, Room 2232-N, Birmingham, AL 35249-6832, United States
| | - Samuel Marcrom
- Department of Radiation Oncology, University of Alabama at Birmingham, 1700 6th Avenue South, 176F Hazelrig-Salter Radiation Oncology Center, Room 2232-N, Birmingham, AL 35249-6832, United States
| | - Jennifer Stanley
- Department of Radiation Oncology, University of Alabama at Birmingham, 1700 6th Avenue South, 176F Hazelrig-Salter Radiation Oncology Center, Room 2232-N, Birmingham, AL 35249-6832, United States
| | - Eddy S Yang
- Department of Radiation Oncology, University of Alabama at Birmingham, 1700 6th Avenue South, 176F Hazelrig-Salter Radiation Oncology Center, Room 2232-N, Birmingham, AL 35249-6832, United States.
| |
Collapse
|
50
|
Liu CY, Hu MH, Hsu CJ, Huang CT, Wang DS, Tsai WC, Chen YT, Lee CH, Chu PY, Hsu CC, Chen MH, Shiau CW, Tseng LM, Chen KF. Lapatinib inhibits CIP2A/PP2A/p-Akt signaling and induces apoptosis in triple negative breast cancer cells. Oncotarget 2016; 7:9135-49. [PMID: 26824320 PMCID: PMC4891031 DOI: 10.18632/oncotarget.7035] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 01/19/2016] [Indexed: 12/14/2022] Open
Abstract
We tested the efficacy of lapatinib, a dual tyrosine kinase inhibitor which interrupts the HER2 and epidermal growth factor receptor (EGFR) pathways, in a panel of triple-negative breast cancer (TNBC) cells, and examined the drug mechanism. Lapatinib showed an anti-proliferative effect in HCC 1937, MDA-MB-468, and MDA-MB-231 cell lines. Lapatinib induced significant apoptosis and inhibited CIP2A and p-Akt in a dose and time-dependent manner in the three TNBC cell lines. Overexpression of CIP2A reduced lapatinib-induced apoptosis in MDA-MB-468 cells. In addition, lapatinib increased PP2A activity (in relation to CIP2A inhibition). Moreover, lapatinib-induced apoptosis and p-Akt downregulation was attenuated by PP2A antagonist okadaic acid. Furthermore, lapatinib indirectly decreased CIP2A transcription by disturbing the binding of Elk1 to the CIP2A promoter. Importantly, lapatinib showed anti-tumor activity in mice bearing MDA-MB-468 xenograft tumors, and suppressed CIP2A as well as p-Akt in these xenografted tumors. In summary, inhibition of CIP2A determines the effects of lapatinib-induced apoptosis in TNBC cells. In addition to being a dual tyrosine kinase inhibitor of HER2 and EGFR, lapatinib also inhibits CIP2A/PP2A/p-Akt signaling in TNBC cells.
Collapse
Affiliation(s)
- Chun-Yu Liu
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ming-Hung Hu
- Division of Hematology and Oncology, Department of Medicine, Cardinal Tien Hospital, New Taipei City, Taiwan.,School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chia-Jung Hsu
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chun-Teng Huang
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Hematology & Oncology, Department of Medicine, Yang-Ming Branch of Taipei City Hospital, Taipei, Taiwan
| | - Duen-Shian Wang
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Chun Tsai
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Ting Chen
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chia-Han Lee
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, Changhua City, Taiwan
| | - Chia-Chi Hsu
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Ming-Huang Chen
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Wai Shiau
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Ling-Ming Tseng
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kuen-Feng Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|