1
|
O’Hare JK, Wang J, Shala MD, Polleux F, Losonczy A. Variable recruitment of distal tuft dendrites shapes new hippocampal place fields. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582144. [PMID: 38464058 PMCID: PMC10925200 DOI: 10.1101/2024.02.26.582144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Hippocampal pyramidal neurons support episodic memory by integrating complementary information streams into new 'place fields'. Distal tuft dendrites are widely thought to initiate place field formation by locally generating prolonged, globally-spreading Ca 2+ spikes known as plateau potentials. However, the hitherto experimental inaccessibility of distal tuft dendrites in the hippocampus has rendered their in vivo function entirely unknown. Here we gained direct optical access to this elusive dendritic compartment. We report that distal tuft dendrites do not serve as the point of origin for place field-forming plateau potentials. Instead, the timing and extent of peri-formation distal tuft recruitment is variable and closely predicts multiple properties of resultant place fields. Therefore, distal tuft dendrites play a more powerful role in hippocampal feature selectivity than simply initiating place field formation. Moreover, place field formation is not accompanied by global Ca 2+ influx as previously thought. In addition to shaping new somatic place fields, distal tuft dendrites possess their own local place fields. Tuft place fields are back-shifted relative to that of their soma and appear to maintain somatic place fields via post-formation plateau potentials. Through direct in vivo observation, we provide a revised dendritic basis for hippocampal feature selectivity during navigational learning.
Collapse
Affiliation(s)
- Justin K. O’Hare
- Department of Neuroscience, Columbia University; New York, NY, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University; New York, NY, United States
| | - Jamie Wang
- Department of Biomedical Engineering, Duke University; Durham, NC, United States
| | - Margjele D. Shala
- Department of Neuroscience, Columbia University; New York, NY, United States
| | - Franck Polleux
- Department of Neuroscience, Columbia University; New York, NY, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University; New York, NY, United States
| | - Attila Losonczy
- Department of Neuroscience, Columbia University; New York, NY, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University; New York, NY, United States
- Lead contact
| |
Collapse
|
2
|
Huang S, Wu SJ, Sansone G, Ibrahim LA, Fishell G. Layer 1 neocortex: Gating and integrating multidimensional signals. Neuron 2024; 112:184-200. [PMID: 37913772 PMCID: PMC11180419 DOI: 10.1016/j.neuron.2023.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023]
Abstract
Layer 1 (L1) of the neocortex acts as a nexus for the collection and processing of widespread information. By integrating ascending inputs with extensive top-down activity, this layer likely provides critical information regulating how the perception of sensory inputs is reconciled with expectation. This is accomplished by sorting, directing, and integrating the complex network of excitatory inputs that converge onto L1. These signals are combined with neuromodulatory afferents and gated by the wealth of inhibitory interneurons that either are embedded within L1 or send axons from other cortical layers. Together, these interactions dynamically calibrate information flow throughout the neocortex. This review will primarily focus on L1 within the primary sensory cortex and will use these insights to understand L1 in other cortical areas.
Collapse
Affiliation(s)
- Shuhan Huang
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Program in Neuroscience, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sherry Jingjing Wu
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Giulia Sansone
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Leena Ali Ibrahim
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Gord Fishell
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
3
|
Vitale P, Librizzi F, Vaiana AC, Capuana E, Pezzoli M, Shi Y, Romani A, Migliore M, Migliore R. Different responses of mice and rats hippocampus CA1 pyramidal neurons to in vitro and in vivo-like inputs. Front Cell Neurosci 2023; 17:1281932. [PMID: 38130870 PMCID: PMC10733970 DOI: 10.3389/fncel.2023.1281932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
The fundamental role of any neuron within a network is to transform complex spatiotemporal synaptic input patterns into individual output spikes. These spikes, in turn, act as inputs for other neurons in the network. Neurons must execute this function across a diverse range of physiological conditions, often based on species-specific traits. Therefore, it is crucial to determine the extent to which findings can be extrapolated between species and, ultimately, to humans. In this study, we employed a multidisciplinary approach to pinpoint the factors accounting for the observed electrophysiological differences between mice and rats, the two species most used in experimental and computational research. After analyzing the morphological properties of their hippocampal CA1 pyramidal cells, we conducted a statistical comparison of rat and mouse electrophysiological features in response to somatic current injections. This analysis aimed to uncover the parameters underlying these distinctions. Using a well-established computational workflow, we created ten distinct single-cell computational models of mouse CA1 pyramidal neurons, ready to be used in a full-scale hippocampal circuit. By comparing their responses to a variety of somatic and synaptic inputs with those of rat models, we generated experimentally testable hypotheses regarding species-specific differences in ion channel distribution, kinetics, and the electrophysiological mechanisms underlying their distinct responses to synaptic inputs during the behaviorally relevant Gamma and Sharp-Wave rhythms.
Collapse
Affiliation(s)
- Paola Vitale
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Fabio Librizzi
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Andrea C. Vaiana
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Elisa Capuana
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Maurizio Pezzoli
- Laboratory of Neural Microcircuitry, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Ying Shi
- Laboratory of Neural Microcircuitry, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Armando Romani
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Michele Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Rosanna Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy
| |
Collapse
|
4
|
Pagkalos M, Chavlis S, Poirazi P. Introducing the Dendrify framework for incorporating dendrites to spiking neural networks. Nat Commun 2023; 14:131. [PMID: 36627284 PMCID: PMC9832130 DOI: 10.1038/s41467-022-35747-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Computational modeling has been indispensable for understanding how subcellular neuronal features influence circuit processing. However, the role of dendritic computations in network-level operations remains largely unexplored. This is partly because existing tools do not allow the development of realistic and efficient network models that account for dendrites. Current spiking neural networks, although efficient, are usually quite simplistic, overlooking essential dendritic properties. Conversely, circuit models with morphologically detailed neuron models are computationally costly, thus impractical for large-network simulations. To bridge the gap between these two extremes and facilitate the adoption of dendritic features in spiking neural networks, we introduce Dendrify, an open-source Python package based on Brian 2. Dendrify, through simple commands, automatically generates reduced compartmental neuron models with simplified yet biologically relevant dendritic and synaptic integrative properties. Such models strike a good balance between flexibility, performance, and biological accuracy, allowing us to explore dendritic contributions to network-level functions while paving the way for developing more powerful neuromorphic systems.
Collapse
Affiliation(s)
- Michalis Pagkalos
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology Hellas (FORTH), Heraklion, 70013, Greece
- Department of Biology, University of Crete, Heraklion, 70013, Greece
| | - Spyridon Chavlis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology Hellas (FORTH), Heraklion, 70013, Greece
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology Hellas (FORTH), Heraklion, 70013, Greece.
| |
Collapse
|
5
|
Entorhinal cortex directs learning-related changes in CA1 representations. Nature 2022; 611:554-562. [DOI: 10.1038/s41586-022-05378-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 09/20/2022] [Indexed: 11/16/2022]
Abstract
AbstractLearning-related changes in brain activity are thought to underlie adaptive behaviours1,2. For instance, the learning of a reward site by rodents requires the development of an over-representation of that location in the hippocampus3–6. How this learning-related change occurs remains unknown. Here we recorded hippocampal CA1 population activity as mice learned a reward location on a linear treadmill. Physiological and pharmacological evidence suggests that the adaptive over-representation required behavioural timescale synaptic plasticity (BTSP)7. BTSP is known to be driven by dendritic voltage signals that we proposed were initiated by input from entorhinal cortex layer 3 (EC3). Accordingly, the CA1 over-representation was largely removed by optogenetic inhibition of EC3 activity. Recordings from EC3 neurons revealed an activity pattern that could provide an instructive signal directing BTSP to generate the over-representation. Consistent with this function, our observations show that exposure to a second environment possessing a prominent reward-predictive cue resulted in both EC3 activity and CA1 place field density that were more elevated at the cue than at the reward. These data indicate that learning-related changes in the hippocampus are produced by synaptic plasticity directed by an instructive signal from the EC3 that seems to be specifically adapted to the behaviourally relevant features of the environment.
Collapse
|
6
|
Roy A, Narayanan R. Spatial information transfer in hippocampal place cells depends on trial-to-trial variability, symmetry of place-field firing, and biophysical heterogeneities. Neural Netw 2021; 142:636-660. [PMID: 34399375 PMCID: PMC7611579 DOI: 10.1016/j.neunet.2021.07.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/25/2021] [Accepted: 07/21/2021] [Indexed: 11/19/2022]
Abstract
The relationship between the feature-tuning curve and information transfer profile of individual neurons provides vital insights about neural encoding. However, the relationship between the spatial tuning curve and spatial information transfer of hippocampal place cells remains unexplored. Here, employing a stochastic search procedure spanning thousands of models, we arrived at 127 conductance-based place-cell models that exhibited signature electrophysiological characteristics and sharp spatial tuning, with parametric values that exhibited neither clustering nor strong pairwise correlations. We introduced trial-to-trial variability in responses and computed model tuning curves and information transfer profiles, using stimulus-specific (SSI) and mutual (MI) information metrics, across locations within the place field. We found spatial information transfer to be heterogeneous across models, but to reduce consistently with increasing levels of variability. Importantly, whereas reliable low-variability responses implied that maximal information transfer occurred at high-slope regions of the tuning curve, increase in variability resulted in maximal transfer occurring at the peak-firing location in a subset of models. Moreover, experience-dependent asymmetry in place-field firing introduced asymmetries in the information transfer computed through MI, but not SSI, and the impact of activity-dependent variability on information transfer was minimal compared to activity-independent variability. We unveiled ion-channel degeneracy in the regulation of spatial information transfer, and demonstrated critical roles for N-methyl-d-aspartate receptors, transient potassium and dendritic sodium channels in regulating information transfer. Our results demonstrate that trial-to-trial variability, tuning-curve shape and biological heterogeneities critically regulate the relationship between the spatial tuning curve and spatial information transfer in hippocampal place cells.
Collapse
Affiliation(s)
- Ankit Roy
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India; Undergraduate program, Indian Institute of Science, Bangalore, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
7
|
Brandalise F, Kalmbach BE, Mehta P, Thornton O, Johnston D, Zemelman BV, Brager DH. Fragile X Mental Retardation Protein Bidirectionally Controls Dendritic I h in a Cell Type-Specific Manner between Mouse Hippocampus and Prefrontal Cortex. J Neurosci 2020; 40:5327-5340. [PMID: 32467357 PMCID: PMC7329306 DOI: 10.1523/jneurosci.1670-19.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 11/21/2022] Open
Abstract
Channelopathies are implicated in Fragile X syndrome (FXS), yet the dysfunction of a particular ion channel varies with cell type. We previously showed that HCN channel function is elevated in CA1 dendrites of the fmr1-/y mouse model of FXS, but reduced in L5 PFC dendrites. Using male mice, we tested whether Fragile X Mental Retardation Protein (FMRPO), the protein whose absence causes FXS, differentially modulates HCN channels in CA1 versus L5 PFC dendrites. Using a combination of viral tools, intracellular peptide, and dendritic electrophysiology, we found that FMRP regulates HCN channels via a cell-autonomous protein-protein interaction. Virally expressed FMRP restored WT HCN channel-related dendritic properties in both CA1 and L5 neurons. Rapid intracellular perfusion of the non-mRNA binding N-terminal fragment, FMRP1-298, similarly restored dendritic function. In support of a protein-protein interaction, we found that FMRP associated with HCN-TRIP8b complexes in both hippocampus and PFC. Finally, voltage-clamp recordings showed that FMRP modulated Ih by regulating the number of functional dendritic HCN channels rather than individual channel properties. Together, these represent three novel findings as to the nature of the changes in dendritic function in CA1 and PFC neurons based on the presence or absence of FMRP. Moreover, our findings provide evidence that FMRP can regulate its targets in opposite directions depending upon the cellular milieu.SIGNIFICANCE STATEMENT Changes in dendritic function, and voltage-gated ion channels in particular, are increasingly the focus of neurological disorders. We, and others, previously identified cell type-specific channelopathies in a mouse of model of Fragile X syndrome. The present study shows that replacing Fragile X Mental Retardation Protein, which is absent in Fragile X syndrome, in adult CA1 and L5 PFC neurons regulates the number of functional dendritic HCN channels in a cell type-specific manner. These results suggest that Fragile X Mental Retardation Protein regulates dendritic HCN channels via a cell-autonomous protein--protein mechanism.
Collapse
Affiliation(s)
- Federico Brandalise
- Center for Learning and Memory, University of Texas at Austin, Austin, Texas 78712
- Department of Neuroscience, University of Texas at Austin, Austin, Texas 78712
| | - Brian E Kalmbach
- Center for Learning and Memory, University of Texas at Austin, Austin, Texas 78712
- Department of Neuroscience, University of Texas at Austin, Austin, Texas 78712
| | - Preeti Mehta
- Center for Learning and Memory, University of Texas at Austin, Austin, Texas 78712
- Department of Neuroscience, University of Texas at Austin, Austin, Texas 78712
| | - Olivia Thornton
- Center for Learning and Memory, University of Texas at Austin, Austin, Texas 78712
- Department of Neuroscience, University of Texas at Austin, Austin, Texas 78712
| | - Daniel Johnston
- Center for Learning and Memory, University of Texas at Austin, Austin, Texas 78712
- Department of Neuroscience, University of Texas at Austin, Austin, Texas 78712
| | - Boris V Zemelman
- Center for Learning and Memory, University of Texas at Austin, Austin, Texas 78712
- Department of Neuroscience, University of Texas at Austin, Austin, Texas 78712
| | - Darrin H Brager
- Center for Learning and Memory, University of Texas at Austin, Austin, Texas 78712
- Department of Neuroscience, University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
8
|
Zhao X, Wang Y, Spruston N, Magee JC. Membrane potential dynamics underlying context-dependent sensory responses in the hippocampus. Nat Neurosci 2020; 23:881-891. [PMID: 32451487 DOI: 10.1038/s41593-020-0646-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 04/22/2020] [Indexed: 12/19/2022]
Abstract
As animals navigate, they must identify features within context. In the mammalian brain, the hippocampus has the ability to separately encode different environmental contexts, even when they share some prominent features. To do so, neurons respond to sensory features in a context-dependent manner; however, it is not known how this encoding emerges. To examine this, we performed electrical recordings in the hippocampus as mice navigated in two distinct virtual environments. In CA1, both synaptic input to single neurons and population activity strongly tracked visual cues in one environment, whereas responses were almost completely absent when the same cue was presented in a second environment. A very similar, highly context-dependent pattern of cue-driven spiking was also observed in CA3. These results indicate that CA1 inherits a complex spatial code from upstream regions, including CA3, that have already computed a context-dependent representation of environmental features.
Collapse
Affiliation(s)
- Xinyu Zhao
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA
| | - Yingxue Wang
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA.,Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Nelson Spruston
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA.
| | - Jeffrey C Magee
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA. .,Howard Hughes Medical Institute, Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
9
|
Basak R, Narayanan R. Spatially dispersed synapses yield sharply-tuned place cell responses through dendritic spike initiation. J Physiol 2018; 596:4173-4205. [PMID: 29893405 PMCID: PMC6117611 DOI: 10.1113/jp275310] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/01/2018] [Indexed: 12/24/2022] Open
Abstract
KEY POINTS The generation of dendritic spikes and the consequent sharp tuning of neuronal responses are together attainable even when iso-feature synapses are randomly dispersed across the dendritic arbor. Disparate combinations of channel conductances with distinct configurations of randomly dispersed place field synapses concomitantly yield similar sharp tuning profiles and similar functional maps of several intrinsic properties. Targeted synaptic plasticity converts silent cells to place cells for specific place fields in models with disparate channel combinations that receive dispersed synaptic inputs from multiple place field locations. Dispersed localization of iso-feature synapses is a strong candidate for achieving sharp feature selectivity in neurons across sensory-perceptual systems, with several degrees of freedom in relation to synaptic locations. Quantitative evidence for the possibility that degeneracy (i.e. the ability of disparate structural components to yield similar functional outcomes) could act as a broad framework that effectively accomplishes the twin goals of input-feature encoding and homeostasis of intrinsic properties without cross interferences. ABSTRACT A prominent hypothesis spanning several sensory-perceptual systems implicates spatially clustered synapses in the generation of dendritic spikes that mediate sharply-tuned neuronal responses to input features. In this conductance-based morphologically-precise computational study, we tested this hypothesis by systematically analysing the impact of distinct synaptic and channel localization profiles on sharpness of spatial tuning in hippocampal pyramidal neurons. We found that the generation of dendritic spikes, the emergence of an excitatory ramp in somatic voltage responses, the expression of several intrinsic somatodendritic functional maps and sharp tuning of place-cell responses were all attainable even when iso-feature synapses are randomly dispersed across the dendritic arbor of models with disparate channel combinations. Strikingly, the generation and propagation of dendritic spikes, reliant on dendritic sodium channels and N-methyl-d-asparate receptors, mediated the sharpness of spatial tuning achieved with dispersed synaptic localization. To ensure that our results were not artefacts of narrow parametric choices, we confirmed these conclusions with independent multiparametric stochastic search algorithms spanning thousands of unique models for each synaptic localization scenario. Next, employing virtual knockout models, we demonstrated a vital role for dendritically expressed voltage-gated ion channels, especially the transient potassium channels, in maintaining sharpness of place-cell tuning. Importantly, we established that synaptic potentiation targeted to afferents from one specific place field was sufficient to impart place field selectivity even when intrinsically disparate neurons received randomly dispersed afferents from multiple place field locations. Our results provide quantitative evidence for disparate combinations of channel and synaptic localization profiles to concomitantly yield similar tuning and similar intrinsic properties.
Collapse
Affiliation(s)
- Reshma Basak
- Cellular Neurophysiology LaboratoryMolecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| | - Rishikesh Narayanan
- Cellular Neurophysiology LaboratoryMolecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| |
Collapse
|
10
|
Generalization of Conditioned Auditory Fear is Regulated by Maternal Effects on Ventral Hippocampal Synaptic Plasticity. Neuropsychopharmacology 2018; 43:1297-1307. [PMID: 29154366 PMCID: PMC5916357 DOI: 10.1038/npp.2017.281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 09/30/2017] [Accepted: 11/12/2017] [Indexed: 01/09/2023]
Abstract
Maternal care shapes individual differences in fear-associated neural circuitry. In rats, maternal licking and grooming (LG) in early life regulates ventral hippocampal (VH) function and plasticity in adulthood, but its consequent effect on the regulation of fear memories remains unknown. We report an effect of maternal care on generalization of learned fear, such that offspring of high LG mothers express generalized fear responses when confronted with neutral stimuli following auditory fear conditioning. These animals simultaneously display a reduction in the magnitude of VH long-term potentiation (LTP) expressed and reduced input-output transformation in Schaffer collateral synapses. Inhibition of VH-LTP during learning specifically increases fear generalization in offspring of low LG mothers during recall, suggesting a role for VH synaptic plasticity in the specification of fear memories. These findings suggest that rearing by low LG dams enhances the efficacy of fear-related neural systems to support accurate encoding of fear memories through effects on the VH.
Collapse
|
11
|
Sun MY, Chisari M, Eisenman LN, Zorumski CF, Mennerick SJ. Contributions of space-clamp errors to apparent time-dependent loss of Mg 2+ block induced by NMDA. J Neurophysiol 2017; 118:532-543. [PMID: 28356471 DOI: 10.1152/jn.00106.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/17/2017] [Accepted: 03/27/2017] [Indexed: 11/22/2022] Open
Abstract
N-methyl-d-aspartate receptors (NMDARs) govern synaptic plasticity, development, and neuronal response to insult. Prolonged activation of NMDARs such as during an insult may activate secondary currents or modulate Mg2+ sensitivity, but the conditions under which these occur are not fully defined. We reexamined the effect of prolonged NMDAR activation in juvenile mouse hippocampal slices. NMDA (10 μM) elicited current with the expected negative-slope conductance in the presence of 1.2 mM Mg2+ However, several minutes of continued NMDA exposure elicited additional inward current at -70 mV. A higher concentration of NMDA (100 µM) elicited the current more rapidly. The additional current was not dependent on Ca2+, network activity, or metabotropic NMDAR function and did not persist on agonist removal. Voltage ramps revealed no alteration of either reversal potential or NMDA-elicited conductance between -30 mV and +50 mV. The result was a more linear NMDA current-voltage relationship. The current linearization was also induced in interneurons and in mature dentate granule neurons but not immature dentate granule cells, dissociated cultured hippocampal neurons, or nucleated patches excised from CA1 pyramidal neurons. Comparative simulations of NMDA application to a CA1 pyramidal neuron and to a cultured neuron revealed that linearization can be explained by space-clamp errors arising from gradual recruitment of distal dendritic NMDARs. We conclude that persistent secondary currents do not strongly contribute to NMDAR responses in juvenile mouse hippocampus and careful discernment is needed to exclude contributions of clamp artifacts to apparent secondary currents.NEW & NOTEWORTHY We report that upon sustained activation of NMDARs in juvenile mouse hippocampal neurons there is apparent loss of Mg2+ block at negative membrane potentials. However, the phenomenon is explained by loss of dendritic voltage clamp, leading to a linear current-voltage relationship. Our results give a specific example of how spatial voltage errors in voltage-clamp recordings can readily be misinterpreted as biological modulation.
Collapse
Affiliation(s)
- Min-Yu Sun
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Mariangela Chisari
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Lawrence N Eisenman
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Charles F Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri.,Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri.,Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri.,Center for Brain Research in Mood Disorders, Washington University School of Medicine, St. Louis, Missouri; and
| | - Steven J Mennerick
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; .,Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri.,Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
12
|
Apostolides PF, Milstein AD, Grienberger C, Bittner KC, Magee JC. Axonal Filtering Allows Reliable Output during Dendritic Plateau-Driven Complex Spiking in CA1 Neurons. Neuron 2016; 89:770-83. [PMID: 26833135 DOI: 10.1016/j.neuron.2015.12.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/04/2015] [Accepted: 12/15/2015] [Indexed: 12/12/2022]
Abstract
In CA1 pyramidal neurons, correlated inputs trigger dendritic plateau potentials that drive neuronal plasticity and firing rate modulation. Given the strong electrotonic coupling between soma and axon, the >25 mV depolarization associated with the plateau could propagate through the axon to influence action potential initiation, propagation, and neurotransmitter release. We examined this issue in brain slices, awake mice, and a computational model. Despite profoundly inactivating somatic and proximal axon Na(+) channels, plateaus evoked action potentials that recovered to full amplitude in the distal axon (>150 μm) and triggered neurotransmitter release similar to regular spiking. This effect was due to strong attenuation of plateau depolarizations by axonal K(+) channels, allowing full axon repolarization and Na(+) channel deinactivation. High-pass filtering of dendritic plateaus by axonal K(+) channels should thus enable accurate transmission of gain-modulated firing rates, allowing neuronal firing to be efficiently read out by downstream regions as a simple rate code.
Collapse
|
13
|
Yuan Y, Seong E, Yuan L, Singh D, Arikkath J. Differential regulation of apical-basolateral dendrite outgrowth by activity in hippocampal neurons. Front Cell Neurosci 2015; 9:314. [PMID: 26321915 PMCID: PMC4531327 DOI: 10.3389/fncel.2015.00314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/28/2015] [Indexed: 11/13/2022] Open
Abstract
Hippocampal pyramidal neurons have characteristic dendrite asymmetry, characterized by structurally and functionally distinct apical and basolateral dendrites. The ability of the neuron to generate and maintain dendrite asymmetry is vital, since synaptic inputs received are critically dependent on dendrite architecture. Little is known about the role of neuronal activity in guiding maintenance of dendrite asymmetry. Our data indicate that dendrite asymmetry is established and maintained early during development. Further, our results indicate that cell intrinsic and global alterations of neuronal activity have differential effects on net extension of apical and basolateral dendrites. Thus, apical and basolateral dendrite extension may be independently regulated by cell intrinsic and network neuronal activity during development, suggesting that individual dendrites may have autonomous control over net extension. We propose that regulated individual dendrite extension in response to cell intrinsic and neuronal network activity may allow temporal control of synapse specificity in the developing hippocampus.
Collapse
Affiliation(s)
- Yang Yuan
- Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE USA
| | - Eunju Seong
- Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE USA
| | - Li Yuan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE USA
| | - Dipika Singh
- Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE USA
| | - Jyothi Arikkath
- Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE USA ; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE USA
| |
Collapse
|
14
|
Kim Y, Hsu CL, Cembrowski MS, Mensh BD, Spruston N. Dendritic sodium spikes are required for long-term potentiation at distal synapses on hippocampal pyramidal neurons. eLife 2015; 4:e06414. [PMID: 26247712 PMCID: PMC4576155 DOI: 10.7554/elife.06414] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 08/05/2015] [Indexed: 12/12/2022] Open
Abstract
Dendritic integration of synaptic inputs mediates rapid neural computation as well as longer-lasting plasticity. Several channel types can mediate dendritically initiated spikes (dSpikes), which may impact information processing and storage across multiple timescales; however, the roles of different channels in the rapid vs long-term effects of dSpikes are unknown. We show here that dSpikes mediated by Nav channels (blocked by a low concentration of TTX) are required for long-term potentiation (LTP) in the distal apical dendrites of hippocampal pyramidal neurons. Furthermore, imaging, simulations, and buffering experiments all support a model whereby fast Nav channel-mediated dSpikes (Na-dSpikes) contribute to LTP induction by promoting large, transient, localized increases in intracellular calcium concentration near the calcium-conducting pores of NMDAR and L-type Cav channels. Thus, in addition to contributing to rapid neural processing, Na-dSpikes are likely to contribute to memory formation via their role in long-lasting synaptic plasticity.
Collapse
Affiliation(s)
- Yujin Kim
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
- Department of Neurobiology, Northwestern University, Evanston, United States
| | - Ching-Lung Hsu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
- Department of Neurobiology, Northwestern University, Evanston, United States
| | - Mark S Cembrowski
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Brett D Mensh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Nelson Spruston
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
- Department of Neurobiology, Northwestern University, Evanston, United States
| |
Collapse
|
15
|
Distribution and function of HCN channels in the apical dendritic tuft of neocortical pyramidal neurons. J Neurosci 2015; 35:1024-37. [PMID: 25609619 DOI: 10.1523/jneurosci.2813-14.2015] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The apical tuft is the most remote area of the dendritic tree of neocortical pyramidal neurons. Despite its distal location, the apical dendritic tuft of layer 5 pyramidal neurons receives substantial excitatory synaptic drive and actively processes corticocortical input during behavior. The properties of the voltage-activated ion channels that regulate synaptic integration in tuft dendrites have, however, not been thoroughly investigated. Here, we use electrophysiological and optical approaches to examine the subcellular distribution and function of hyperpolarization-activated cyclic nucleotide-gated nonselective cation (HCN) channels in rat layer 5B pyramidal neurons. Outside-out patch recordings demonstrated that the amplitude and properties of ensemble HCN channel activity were uniform in patches excised from distal apical dendritic trunk and tuft sites. Simultaneous apical dendritic tuft and trunk whole-cell current-clamp recordings revealed that the pharmacological blockade of HCN channels decreased voltage compartmentalization and enhanced the generation and spread of apical dendritic tuft and trunk regenerative activity. Furthermore, multisite two-photon glutamate uncaging demonstrated that HCN channels control the amplitude and duration of synaptically evoked regenerative activity in the distal apical dendritic tuft. In contrast, at proximal apical dendritic trunk and somatic recording sites, the blockade of HCN channels decreased excitability. Dynamic-clamp experiments revealed that these compartment-specific actions of HCN channels were heavily influenced by the local and distributed impact of the high density of HCN channels in the distal apical dendritic arbor. The properties and subcellular distribution pattern of HCN channels are therefore tuned to regulate the interaction between integration compartments in layer 5B pyramidal neurons.
Collapse
|
16
|
Mishra P, Narayanan R. High-conductance states and A-type K+ channels are potential regulators of the conductance-current balance triggered by HCN channels. J Neurophysiol 2015; 113:23-43. [DOI: 10.1152/jn.00601.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An increase in the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel conductance reduces input resistance, whereas the consequent increase in the inward h current depolarizes the membrane. This results in a delicate and unique conductance-current balance triggered by the expression of HCN channels. In this study, we employ experimentally constrained, morphologically realistic, conductance-based models of hippocampal neurons to explore certain aspects of this conductance-current balance. First, we found that the inclusion of an experimentally determined gradient in A-type K+ conductance, but not in M-type K+ conductance, tilts the HCN conductance-current balance heavily in favor of conductance, thereby exerting an overall restorative influence on neural excitability. Next, motivated by the well-established modulation of neuronal excitability by synaptically driven high-conductance states observed under in vivo conditions, we inserted thousands of excitatory and inhibitory synapses with different somatodendritic distributions. We measured the efficacy of HCN channels, independently and in conjunction with other channels, in altering resting membrane potential (RMP) and input resistance ( Rin) when the neuron received randomized or rhythmic synaptic bombardments through variable numbers of synaptic inputs. We found that the impact of HCN channels on average RMP, Rin, firing frequency, and peak-to-peak voltage response was severely weakened under high-conductance states, with the impinging synaptic drive playing a dominant role in regulating these measurements. Our results suggest that the debate on the role of HCN channels in altering excitability should encompass physiological and pathophysiological neuronal states under in vivo conditions and the spatiotemporal interactions of HCN channels with other channels.
Collapse
Affiliation(s)
- Poonam Mishra
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| |
Collapse
|
17
|
Spine neck plasticity regulates compartmentalization of synapses. Nat Neurosci 2014; 17:678-85. [DOI: 10.1038/nn.3682] [Citation(s) in RCA: 302] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 02/25/2014] [Indexed: 02/06/2023]
|
18
|
Active dendrites regulate spectral selectivity in location-dependent spike initiation dynamics of hippocampal model neurons. J Neurosci 2014; 34:1195-211. [PMID: 24453312 DOI: 10.1523/jneurosci.3203-13.2014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
How does the presence of plastic active dendrites in a pyramidal neuron alter its spike initiation dynamics? To answer this question, we measured the spike-triggered average (STA) from experimentally constrained, conductance-based hippocampal neuronal models of various morphological complexities. We transformed the STA computed from these models to the spectral and the spectrotemporal domains and found that the spike initiation dynamics exhibited temporally localized selectivity to a characteristic frequency. In the presence of the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, the STA characteristic frequency strongly correlated with the subthreshold resonance frequency in the theta frequency range. Increases in HCN channel density or in input variance increased the STA characteristic frequency and its selectivity strength. In the absence of HCN channels, the STA exhibited weak delta frequency selectivity and the characteristic frequency was related to the repolarization dynamics of the action potentials and the recovery kinetics of sodium channels from inactivation. Comparison of STA obtained with inputs at various dendritic locations revealed that nonspiking and spiking dendrites increased and reduced the spectrotemporal integration window of the STA with increasing distance from the soma as direct consequences of passive filtering and dendritic spike initiation, respectively. Finally, the presence of HCN channels set the STA characteristic frequency in the theta range across the somatodendritic arbor and specific STA measurements were strongly related to equivalent transfer-impedance-related measurements. Our results identify explicit roles for plastic active dendrites in neural coding and strongly recommend a dynamically reconfigurable multi-STA model to characterize location-dependent input feature selectivity in pyramidal neurons.
Collapse
|
19
|
Brager DH, Johnston D. Channelopathies and dendritic dysfunction in fragile X syndrome. Brain Res Bull 2014; 103:11-7. [PMID: 24462643 DOI: 10.1016/j.brainresbull.2014.01.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/06/2014] [Accepted: 01/13/2014] [Indexed: 11/17/2022]
Abstract
Dendritic spine abnormalities and the metabotropic glutamate receptor theory put the focus squarely on synapses and protein synthesis as the cellular locus of fragile X syndrome. Synapses however, are only partly responsible for information processing in neuronal networks. Neurotransmitter triggered excitatory postsynaptic potentials (EPSPs) are shaped and integrated by dendritic voltage-gated ion channels. These EPSPs, and in some cases the resultant dendritic spikes, are further modified by dendritic voltage-gated ion channels as they propagate to the soma. If the resultant somatic depolarization is large enough, action potential(s) will be triggered and propagate both orthodromically down the axon, where it may trigger neurotransmitter release, and antidromically back into the dendritic tree, where it can activate and modify dendritic voltage-gated and receptor activated ion channels. Several channelopathies, both soma-dendritic (L-type calcium channels, Slack potassium channels, h-channels, A-type potassium channels) and axo-somatic (BK channels and delayed rectifier potassium channels) were identified in the fmr1-/y mouse model of fragile X syndrome. Pathological function of these channels will strongly influence the excitability of individual neurons as well as overall network function. In this chapter we discuss the role of voltage-gated ion channels in neuronal processing and describe how identified channelopathies in models of fragile X syndrome may play a role in dendritic pathophysiology.
Collapse
Affiliation(s)
- Darrin H Brager
- Center for Learning and Memory, University of Texas at Austin, Austin, TX 78712, United States.
| | - Daniel Johnston
- Center for Learning and Memory, University of Texas at Austin, Austin, TX 78712, United States
| |
Collapse
|
20
|
O’Donnell C, Nolan MF. Stochastic Ion Channel Gating and Probabilistic Computation in Dendritic Neurons. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/978-1-4614-8094-5_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
21
|
Dougherty KA, Nicholson DA, Diaz L, Buss EW, Neuman KM, Chetkovich DM, Johnston D. Differential expression of HCN subunits alters voltage-dependent gating of h-channels in CA1 pyramidal neurons from dorsal and ventral hippocampus. J Neurophysiol 2013; 109:1940-53. [PMID: 23324324 PMCID: PMC3628004 DOI: 10.1152/jn.00010.2013] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 01/12/2013] [Indexed: 12/23/2022] Open
Abstract
The rodent hippocampus can be divided into dorsal (DHC) and ventral (VHC) domains on the basis of behavioral, anatomical, and biochemical differences. Recently, we reported that CA1 pyramidal neurons from the VHC were intrinsically more excitable than DHC neurons, but the specific ionic conductances contributing to this difference were not determined. Here we investigated the hyperpolarization-activated current (I(h)) and the expression of HCN1 and HCN2 channel subunits in CA1 pyramidal neurons from the DHC and VHC. Measurement of Ih with cell-attached patches revealed a significant depolarizing shift in the V(1/2) of activation for dendritic h-channels in VHC neurons (but not DHC neurons), and ultrastructural immunolocalization of HCN1 and HCN2 channels revealed a significantly larger HCN1-to-HCN2 ratio for VHC neurons (but not DHC neurons). These observations suggest that a shift in the expression of HCN1 and HCN2 channels drives functional changes in I(h) for VHC neurons (but not DHC neurons) and could thereby significantly alter the capacity for dendritic integration of these neurons.
Collapse
Affiliation(s)
- Kelly A Dougherty
- Center for Learning and Memory, The University of Texas at Austin, Austin, TX 78712, USA.
| | | | | | | | | | | | | |
Collapse
|