1
|
Shibata K, Koibuchi N, Sanada F, Katsuragi N, Kanemoto Y, Tsunetoshi Y, Ikebe S, Yamamoto K, Morishita R, Shimazu K, Taniyama Y. The Importance of Suppressing Pathological Periostin Splicing Variants with Exon 17 in Both Stroma and Cancer. Cells 2024; 13:1410. [PMID: 39272982 PMCID: PMC11394140 DOI: 10.3390/cells13171410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Periostin (POSTN) is a type of matrix protein that functions by binding to other matrix proteins, cell surface receptors, or other molecules, such as cytokines and proteases. POSTN has four major splicing variants (PN1-4), which are primarily expressed in fibroblasts and cancer. We have reported that we should inhibit pathological POSTN (PN1-3), but not physiological POSTN (PN4). In particular, pathological POSTN with exon 17 is present in both stroma and cancer, but it is unclear whether the stroma or cancer pathological POSTN should be suppressed. METHODS AND RESULTS We transplanted 4T1 cells (breast cancer) secreting POSTN with exon 17 into 17KO mice lacking POSTN exon 17 to suppress stromal POSTN with exon 17. The results show that 17KO mice had smaller primary tumors and fewer metastases. Furthermore, to suppress cancer POSTN with exon 17, 4T1 cells transfected with POSTN exon 17 skipping oligo or control oligo were transplanted from the tail vein into the lungs. The results show that POSTN exon 17 skipping oligo significantly suppressed lung metastasis. CONCLUSIONS These findings suggest that it is important to suppress POSTN exon 17 in both stroma and cancer. Antibody targeting POSTN exon 17 may be a therapeutic candidate for breast cancer.
Collapse
Affiliation(s)
- Kana Shibata
- Department of Advanced Molecular Therapy, Graduate School of Medicine/Faculty of Medicine, Osaka University, Suita 565-0871, Japan; (K.S.); (N.K.)
| | - Nobutaka Koibuchi
- Department of Advanced Molecular Therapy, Graduate School of Medicine/Faculty of Medicine, Osaka University, Suita 565-0871, Japan; (K.S.); (N.K.)
| | - Fumihiro Sanada
- Department of Clinical Gene Therapy, Graduate School of Medicine/Faculty of Medicine, Osaka University, Suita 565-0871, Japan
| | - Naruto Katsuragi
- Department of Advanced Molecular Therapy, Graduate School of Medicine/Faculty of Medicine, Osaka University, Suita 565-0871, Japan; (K.S.); (N.K.)
| | - Yuko Kanemoto
- Department of Breast and Endocrine Surgery, Graduate School of Medicine/Faculty of Medicine, Osaka University, Suita 565-0871, Japan
| | - Yasuo Tsunetoshi
- Department of Geriatric and General Medicine, Graduate School of Medicine/Faculty of Medicine, Osaka University, Suita 565-0871, Japan
| | - Shoji Ikebe
- Graduate School of Dentistry (Oral and Maxillofacial Surgery), Osaka Dental University, Hirakata 573-1121, Japan
| | - Koichi Yamamoto
- Department of Geriatric and General Medicine, Graduate School of Medicine/Faculty of Medicine, Osaka University, Suita 565-0871, Japan
| | - Ryuichi Morishita
- Department of Clinical Gene Therapy, Graduate School of Medicine/Faculty of Medicine, Osaka University, Suita 565-0871, Japan
| | - Kenzo Shimazu
- Department of Breast and Endocrine Surgery, Graduate School of Medicine/Faculty of Medicine, Osaka University, Suita 565-0871, Japan
| | - Yoshiaki Taniyama
- Department of Advanced Molecular Therapy, Graduate School of Medicine/Faculty of Medicine, Osaka University, Suita 565-0871, Japan; (K.S.); (N.K.)
| |
Collapse
|
2
|
Okano K, Miyai K, Mikoshi A, Edo H, Ito K, Tsuda H, Shinmoto H. Histological parameters and stromal desmoplastic status affecting accurate diagnosis of extraprostatic extension of prostate cancer using multi-parametric magnetic resonance imaging. Int J Urol 2024; 31:475-482. [PMID: 38193247 DOI: 10.1111/iju.15385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024]
Abstract
OBJECTIVE To investigate the clinicopathological factors affecting discrepancies between multi-parametric magnetic resonance imaging (mpMRI) and histopathological evaluation for diagnosis of extraprostatic extension (EPE) of prostate cancer. METHODS One hundred-and-three lesions from 96 cases with suspected EPE on preoperative mpMRI, of which 60 and 43 showed bulging and frank capsular breach, respectively, were grouped according to pathological (p)EPE in radical prostatectomy specimens. Additionally, clinicopathological/immunohistochemical findings for periostin reflecting a desmoplastic stromal reaction were compared between these groups. RESULTS pEPE was detected in 49 (48%) of the 103 lesions. Of these, 25 (42%) showed bulging and 24 (56%) showed frank capsular breach on MRI. In the total cohort, the absence of pEPE was significantly associated with a lower Gleason Grade Group (GG) (p < 0.0001), anterior location (p = 0.003), absence of intraductal carcinoma of the prostate (IDC-P) (p = 0.026), and high stromal periostin expression (p < 0.0001). These trends were preserved in subgroups defined by MRI findings, except for anterior location/IDC-P in the bulging subgroup. CONCLUSIONS GG, anterior location, and periostin expression may cause mpMRI-pathological discrepancies regarding EPE. Periostin expression was a significant pEPE-negative factor in all subgroup analyses. Our results indicate that patients with suspected EPE on MRI, regardless of their pEPE results, should be followed as carefully as those with definite pEPE.
Collapse
Affiliation(s)
- Kousuke Okano
- Department of Radiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Kosuke Miyai
- Department of Basic Pathology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Ayako Mikoshi
- Department of Radiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hiromi Edo
- Department of Radiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Keiichi Ito
- Department of Urology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hitoshi Tsuda
- Department of Basic Pathology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hiroshi Shinmoto
- Department of Radiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
3
|
Sun D, Li C, Zhang F. MicroRNA-206 suppresses growth and metastasis of breast cancer stem cells via blocking EVI-1-mediated CALR expression. PLoS One 2022; 17:e0274919. [PMID: 36136972 PMCID: PMC9498949 DOI: 10.1371/journal.pone.0274919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/06/2022] [Indexed: 11/19/2022] Open
Abstract
Aim to investigate the effect of miR-206 on the growth and metastasis of breast cancer stem cells and clarify the precise mechanism of miR-206 on EVI-1-mediated CALR expression in driving malignant phenotype. Our results showed that miR-206 mimics suppressed CALR expression, inhibited the proliferation and metastasis ability of breast cancer stem cells and finally induced cellular apoptosis. Over-expression of CALR could effectively attenuate the cytotoxic effect of miR-206. Further studies demonstrated that EVI-1 could be served as a key regulator of miR206-mediated CALR expression. Elevation of EVI-1 can reverse the function of miR-206 on induction of CALR.
Collapse
Affiliation(s)
- Dapeng Sun
- Department of Clinical Pharmaceutics, The First Affiliated Hospital of JINZHOU Medical University, Jinzhou, China
- * E-mail: (FZ); (DS)
| | - Chenguang Li
- Department of Clinical Pharmaceutics, The First Affiliated Hospital of JINZHOU Medical University, Jinzhou, China
| | - Fengxiang Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of JINZHOU Medical University, Jinzhou, China
- * E-mail: (FZ); (DS)
| |
Collapse
|
4
|
Guo Y, Feng L. N6-methyladenosine-mediated upregulation of LINC00520 accelerates breast cancer progression via regulating miR-577/POSTN axis and downstream ILK/AKT/mTOR signaling pathway. Arch Biochem Biophys 2022; 729:109381. [PMID: 36027936 DOI: 10.1016/j.abb.2022.109381] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/03/2022] [Accepted: 08/18/2022] [Indexed: 11/19/2022]
Abstract
Various lncRNAs have been reported to be closely associated with cancer initiation and progression in breast cancer (BC), including LINC00520. However, the role and underlying mechanisms by which LINC00520 affects BC aggressiveness have not been fully delineated, and this study aimed to explore this issue. Through performing qRT-PCR analysis, we proved that LINC00520 was significantly upregulated in BC tissues and cells, compared with normal tissues and cells. Higher expression of LINC00520 was closely related to higher tumor grade, poor differentiation and shorter survival in BC patients. Next, the loss-of-function experiments evidenced that silencing LINC00520 suppressed BC cell proliferation, migration and epithelial-mesenchymal transition (EMT) in vitro, and inhibited tumorigenesis in vivo. Interestingly, we found that LINC00520 expression was positively regulated by METTL3-mediated N6-methyladenosine(m6A) modification in BC. Furthermore, we identified the tumor-suppressor miR-577 as the binding target of LINC00520 in BC. Mechanistically, LINC00520 elevated POSTN level via sponging miR-577, resulting in the activation of the downstream tumor-promoting ILK/Akt/mTOR pathway. Finally, the rescuing experiments evidenced that both POSTN knockdown and ILK/Akt/mTOR pathway inhibitor OSU-T315 abrogated the promoting effects of miR-577 ablation on the malignant phenotypes in BC. Collectively, this study firstly verified that LINC00520 acted as a ceRNA of miR-577 to advance BC aggressiveness in a m6A-dependent manner, providing novel biomarkers for BC diagnosis and therapy.
Collapse
Affiliation(s)
- Yang Guo
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
| | - Liang Feng
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
5
|
Gopinath P, Natarajan A, Sathyanarayanan A, Veluswami S, Gopisetty G. The multifaceted role of Matricellular Proteins in health and cancer, as biomarkers and therapeutic targets. Gene 2022; 815:146137. [PMID: 35007686 DOI: 10.1016/j.gene.2021.146137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/07/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023]
Abstract
The extracellular matrix (ECM) is composed of a mesh of proteins, proteoglycans, growth factors, and other secretory components. It constitutes the tumor microenvironment along with the endothelial cells, cancer-associated fibroblasts, adipocytes, and immune cells. The proteins of ECM can be functionally classified as adhesive proteins and matricellular proteins (MCP). In the tumor milieu, the ECM plays a major role in tumorigenesis and therapeutic resistance. The current review encompasses thrombospondins, osteonectin, osteopontin, tenascin C, periostin, the CCN family, laminin, biglycan, decorin, mimecan, and galectins. The matrix metalloproteinases (MMPs) are also discussed as they are an integral part of the ECM with versatile functions in the tumor stroma. In this review, the role of these proteins in tumor initiation, growth, invasion and metastasis have been highlighted, with emphasis on their contribution to tumor therapeutic resistance. Further, their potential as biomarkers and therapeutic targets based on existing evidence are discussed. Owing to the recent advancements in protein targeting, the possibility of agents to modulate MCPs in cancer as therapeutic options are discussed.
Collapse
Affiliation(s)
- Prarthana Gopinath
- Department of Molecular Oncology, Cancer Institute WIA, Chennai, Tamil Nadu, India
| | - Aparna Natarajan
- Department of Molecular Oncology, Cancer Institute WIA, Chennai, Tamil Nadu, India
| | | | - Sridevi Veluswami
- Deaprtment of Surgical Oncology, Cancer Institute (WIA), Chennai, Tamil Nadu, India
| | - Gopal Gopisetty
- Department of Molecular Oncology, Cancer Institute WIA, Chennai, Tamil Nadu, India.
| |
Collapse
|
6
|
Zhang Y, Sun L, Li H, Ai L, Ma Q, Qiao X, Yang J, Zhang H, Ou X, Wang Y, Chen G, Xue J, Zhu X, Zhao Y, Yang Y, Liu C. Binding blockade between TLN1 and integrin β1 represses triple-negative breast cancer. eLife 2022; 11:68481. [PMID: 35285795 PMCID: PMC8937232 DOI: 10.7554/elife.68481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/07/2022] [Indexed: 12/21/2022] Open
Abstract
Background: Integrin family are known as key gears in focal adhesion for triple-negative breast cancer (TNBC) metastasis. However, the integrin independent factor TLN1 remains vague in TNBC. Methods: Bioinformatics analysis was performed based on TCGA database and Shengjing Hospital cohort. Western blot and RT-PCR were used to detect the expression of TLN1 and integrin pathway in cells. A small-molecule C67399 was screened for blocking TLN1 and integrin β1 through a novel computational screening approach by targeting the protein-protein binding interface. Drug pharmacodynamics were determined through xenograft assay. Results: Upregulation of TLN1 in TNBC samples correlates with metastasis and worse prognosis. Silencing TLN1 in TNBC cells significantly attenuated the migration of tumour cells through interfering the dynamic formation of focal adhesion with integrin β1, thus regulating FAK-AKT signal pathway and epithelial-mesenchymal transformation. Targeting the binding between TLN1 and integrin β1 by C67399 could repress metastasis of TNBC. Conclusions: TLN1 overexpression contributes to TNBC metastasis and C67399 targeting TLN1 may hold promise for TNBC treatment. Funding: This study was supported by grants from the National Natural Science Foundation of China (No. 81872159, 81902607, 81874301), Liaoning Colleges Innovative Talent Support Program (Name: Cancer Stem Cell Origin and Biological Behaviour), Outstanding Scientific Fund of Shengjing Hospital (201803), and Outstanding Young Scholars of Liaoning Province (2019-YQ-10).
Collapse
Affiliation(s)
- Yixiao Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China.,Cancer Stem Cell and Translational Medicine Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lisha Sun
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China.,Cancer Stem Cell and Translational Medicine Laboratory, Shengjing Hospital of China Medical University, Shenyang, China.,Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shenyang, China
| | - Haonan Li
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Liping Ai
- Cancer Stem Cell and Translational Medicine Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qingtian Ma
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China.,Cancer Stem Cell and Translational Medicine Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinbo Qiao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China.,Cancer Stem Cell and Translational Medicine Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jie Yang
- Cancer Stem Cell and Translational Medicine Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hao Zhang
- Cancer Stem Cell and Translational Medicine Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xunyan Ou
- Cancer Stem Cell and Translational Medicine Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yining Wang
- Cancer Stem Cell and Translational Medicine Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Guanglei Chen
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China.,Cancer Stem Cell and Translational Medicine Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China.,Cancer Stem Cell and Translational Medicine Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xudong Zhu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China.,Cancer Stem Cell and Translational Medicine Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Zhao
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - Yongliang Yang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China.,School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Caigang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China.,Cancer Stem Cell and Translational Medicine Laboratory, Shengjing Hospital of China Medical University, Shenyang, China.,Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shenyang, China
| |
Collapse
|
7
|
Zhu D, Zhou W, Wang Z, Wang Y, Liu M, Zhang G, Guo X, Kang X. Periostin: An Emerging Molecule With a Potential Role in Spinal Degenerative Diseases. Front Med (Lausanne) 2021; 8:694800. [PMID: 34513869 PMCID: PMC8430223 DOI: 10.3389/fmed.2021.694800] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/23/2021] [Indexed: 12/22/2022] Open
Abstract
Periostin, an extracellular matrix protein, is widely expressed in a variety of tissues and cells. It has many biological functions and is related to many diseases: for example, it promotes cell proliferation and differentiation in osteoblasts, which are closely related to osteoporosis, and mediates cell senescence and apoptosis in chondrocytes, which are involved in osteoarthritis. Furthermore, it also plays an important role in mediating inflammation and reconstruction during bronchial asthma, as well as in promoting bone development, reconstruction, repair, and strength. Therefore, periostin has been explored as a potential biomarker for various diseases. Recently, periostin has also been found to be expressed in intervertebral disc cells as a component of the intervertebral extracellular matrix, and to play a crucial role in the maintenance and degeneration of intervertebral discs. This article reviews the biological role of periostin in bone marrow-derived mesenchymal stem cells, osteoblasts, osteoclasts, chondrocytes, and annulus fibrosus and nucleus pulposus cells, which are closely related to spinal degenerative diseases. The study of its pathophysiological effects is of great significance for the diagnosis and treatment of spinal degeneration, although additional studies are needed.
Collapse
Affiliation(s)
- Daxue Zhu
- Lanzhou University Second Hospital, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Wupin Zhou
- The 947th Army Hospital of the Chinese PLA, Kashgar, China
| | - Zhen Wang
- People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Yidian Wang
- Lanzhou University Second Hospital, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Mingqiang Liu
- Lanzhou University Second Hospital, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Guangzhi Zhang
- Lanzhou University Second Hospital, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Xudong Guo
- Lanzhou University Second Hospital, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Xuewen Kang
- Lanzhou University Second Hospital, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| |
Collapse
|
8
|
Borecka P, Ciaputa R, Janus I, Bubak J, Piotrowska A, Ratajczak-Wielgomas K, Podhorska-OkolÓw M, DziĘgiel P, Nowak M. Expression of Periostin in Mammary Cancer Cells of Female Dogs. In Vivo 2021; 34:3255-3262. [PMID: 33144431 DOI: 10.21873/invivo.12162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND/AIM Periostin (POSTN) has a significant role in proliferation and migration of tumour cells as well as tumour progression. This study aimed to determinate POSTN expression in cancer cells in malignant and benign tumours of the mammary gland in female dogs. MATERIALS AND METHODS All together 83 cancers, 24 adenomas and 7 unchanged fragments of the mammary glands of bitches were investigated. Immunohistochemistry was performed using anti-POSTN, Ki-67 and HER2 antibodies. RESULTS POSTN expression was observed in cancer cells in 31.3% of malignancies and 12.5% of benign tumours. A significantly positive correlation between expression of POSTN in cancer cells and the degree of histological malignancy, expression of Ki-67 antigen and expression of POSTN in CAFs was found. CONCLUSION The obtained results suggest the possible participation of POSTN in the process of carcinogenesis and progression of mammary tumors in bitches.
Collapse
Affiliation(s)
- Paulina Borecka
- Department of Pathology, Division of Pathomorphology and Forensic Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Rafal Ciaputa
- Department of Pathology, Division of Pathomorphology and Forensic Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Izabela Janus
- Department of Pathology, Division of Pathomorphology and Forensic Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Joanna Bubak
- Department of Pathology, Division of Pathomorphology and Forensic Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | | | | | | | - Piotr DziĘgiel
- Department of Histology and Embryology, Wroclaw Medical University, Wroclaw, Poland.,Department of Physiotherapy, University School of Physical Education in Wroclaw, Wroclaw, Poland
| | - Marcin Nowak
- Department of Pathology, Division of Pathomorphology and Forensic Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| |
Collapse
|
9
|
Ikeda-Iwabu Y, Taniyama Y, Katsuragi N, Sanada F, Koibuchi N, Shibata K, Shimazu K, Rakugi H, Morishita R. Periostin Short Fragment with Exon 17 via Aberrant Alternative Splicing Is Required for Breast Cancer Growth and Metastasis. Cells 2021; 10:892. [PMID: 33919736 PMCID: PMC8070743 DOI: 10.3390/cells10040892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Periostin (POSTN) is a 93 kDa matrix protein that helps to regulate collagen gene expression in the extracellular matrix. POSTN overexpression is a prognostic factor in malignant cancers; however, some researchers have observed it in the stroma, whereas others have reported it on tumors. OBJECTIVE This study aimed to investigate the function of POSTN on tumors. METHODS AND RESULTS We found that POSTN in cancer cells can be detected by using an antibody against the POSTN C-terminal region exon 17 (Ex17 antibody), but not with an antibody against the POSTN N-terminal region exon 12 (Ex12 antibody) in patients with breast cancer. In a fraction secreted from fibroblasts, LC-MS/MS analysis revealed a short fragment of POSTN of approximately 40 kDa with exon 17. In addition, molecular interaction analysis showed that POSTN with exon 17, but not POSTN without exon 17, bound specifically to wnt3a, and the Ex17 antibody inhibited the binding. CONCLUSION A short fragment of POSTN with exon 17, which originates in the fibroblasts, is transported to cancer cells, whereas POSTN fragments without exon 17 are retained in the stroma. The Ex17 antibody inhibits the binding between POSTN exon 17 and wnt3a.
Collapse
Affiliation(s)
- Yuka Ikeda-Iwabu
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; (Y.I.-I.); (N.K.); (F.S.); (N.K.); (K.S.)
| | - Yoshiaki Taniyama
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; (Y.I.-I.); (N.K.); (F.S.); (N.K.); (K.S.)
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan;
| | - Naruto Katsuragi
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; (Y.I.-I.); (N.K.); (F.S.); (N.K.); (K.S.)
| | - Fumihiro Sanada
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; (Y.I.-I.); (N.K.); (F.S.); (N.K.); (K.S.)
| | - Nobutaka Koibuchi
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; (Y.I.-I.); (N.K.); (F.S.); (N.K.); (K.S.)
| | - Kana Shibata
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; (Y.I.-I.); (N.K.); (F.S.); (N.K.); (K.S.)
| | - Kenzo Shimazu
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan;
| | - Hiromi Rakugi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan;
| | - Ryuichi Morishita
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; (Y.I.-I.); (N.K.); (F.S.); (N.K.); (K.S.)
| |
Collapse
|
10
|
Oo KK, Kamolhan T, Soni A, Thongchot S, Mitrpant C, O-Charoenrat P, Thuwajit C, Thuwajit P. Development of an engineered peptide antagonist against periostin to overcome doxorubicin resistance in breast cancer. BMC Cancer 2021; 21:65. [PMID: 33446140 PMCID: PMC7807878 DOI: 10.1186/s12885-020-07761-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/22/2020] [Indexed: 12/18/2022] Open
Abstract
Background Chemoresistance is one of the main problems in treatment of cancer. Periostin (PN) is a stromal protein which is mostly secreted from cancer associated fibroblasts in the tumor microenvironment and can promote cancer progression including cell survival, metastasis, and chemoresistance. The main objective of this study was to develop an anti-PN peptide from the bacteriophage library to overcome PN effects in breast cancer (BCA) cells. Methods A twelve amino acids bacteriophage display library was used for biopanning against the PN active site. A selected clone was sequenced and analyzed for peptide primary structure. A peptide was synthesized and tested for the binding affinity to PN. PN effects including a proliferation, migration and a drug sensitivity test were performed using PN overexpression BCA cells or PN treatment and inhibited by an anti-PN peptide. An intracellular signaling mechanism of inhibition was studied by western blot analysis. Lastly, PN expressions in BCA patients were analyzed along with clinical data. Results The results showed that a candidate anti-PN peptide was synthesized and showed affinity binding to PN. PN could increase proliferation and migration of BCA cells and these effects could be inhibited by an anti-PN peptide. There was significant resistance to doxorubicin in PN-overexpressed BCA cells and this effect could be reversed by an anti-PN peptide in associations with phosphorylation of AKT and expression of survivin. In BCA patients, serum PN showed a correlation with tissue PN expression but there was no significant correlation with clinical data. Conclusions This finding supports that anti-PN peptide is expected to be used in the development of peptide therapy to reduce PN-induced chemoresistance in BCA. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-020-07761-w.
Collapse
Affiliation(s)
- Khine Kyaw Oo
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Thanpawee Kamolhan
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Anish Soni
- Bachelor of Science Program in Biological Science (Biomedical Science), Mahidol University International College, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Suyanee Thongchot
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.,Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Chalermchai Mitrpant
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Pornchai O-Charoenrat
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.,Breast Center, Medpark Hospital, Bangkok, 10110, Thailand
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
11
|
The Tumor Microenvironment as a Driving Force of Breast Cancer Stem Cell Plasticity. Cancers (Basel) 2020; 12:cancers12123863. [PMID: 33371274 PMCID: PMC7766255 DOI: 10.3390/cancers12123863] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Breast cancer stem cells are a subset of transformed cells that sustain tumor growth and can metastasize to secondary organs. Since metastasis accounts for most cancer deaths, it is of paramount importance to understand the cellular and molecular mechanisms that regulate this subgroup of cells. The tumor microenvironment (TME) is the habitat in which transformed cells evolve, and it is composed by many different cell types and the extracellular matrix (ECM). A body of evidence strongly indicates that microenvironmental cues modulate stemness in breast cancer, and that the coevolution of the TME and cancer stem cells determine the fate of breast tumors. In this review, we summarize the studies providing links between the TME and the breast cancer stem cell phenotype and we discuss their specific interactions with immune cell subsets, stromal cells, and the ECM. Abstract Tumor progression involves the co-evolution of transformed cells and the milieu in which they live and expand. Breast cancer stem cells (BCSCs) are a specialized subset of cells that sustain tumor growth and drive metastatic colonization. However, the cellular hierarchy in breast tumors is rather plastic, and the capacity to transition from one cell state to another depends not only on the intrinsic properties of transformed cells, but also on the interplay with their niches. It has become evident that the tumor microenvironment (TME) is a major player in regulating the BCSC phenotype and metastasis. The complexity of the TME is reflected in its number of players and in the interactions that they establish with each other. Multiple types of immune cells, stromal cells, and the extracellular matrix (ECM) form an intricate communication network with cancer cells, exert a highly selective pressure on the tumor, and provide supportive niches for BCSC expansion. A better understanding of the mechanisms regulating these interactions is crucial to develop strategies aimed at interfering with key BCSC niche factors, which may help reducing tumor heterogeneity and impair metastasis.
Collapse
|
12
|
Rafaeva M, Erler JT. Framing cancer progression: influence of the organ- and tumour-specific matrisome. FEBS J 2020; 287:1454-1477. [PMID: 31972068 DOI: 10.1111/febs.15223] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/16/2019] [Accepted: 01/20/2020] [Indexed: 12/19/2022]
Abstract
The extracellular matrix (ECM) plays a crucial role in regulating organ homeostasis. It provides mechanical and biochemical cues directing cellular behaviour and, therefore, has control over the progression of diseases such as cancer. Recent efforts have greatly enhanced our knowledge of the protein composition of the ECM and its regulators, the so-called matrisome, in healthy and cancerous tissues; yet, an overview of the common signatures and organ-specific ECM in cancer is missing. Here, we address this by taking a detailed approach to review why cancer grows in certain organs, and focus on the influence of the matrisome at primary and metastatic tumour sites. Our in-depth and comprehensive review of the current literature and general understanding identifies important commonalities and distinctions, providing insight into the biology of metastasis, which could pave the way to improve future diagnostics and therapies.
Collapse
Affiliation(s)
- Maria Rafaeva
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen (UCPH), Denmark
| | - Janine T Erler
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen (UCPH), Denmark
| |
Collapse
|
13
|
Rigoglio NN, Rabelo ACS, Borghesi J, de Sá Schiavo Matias G, Fratini P, Prazeres PHDM, Pimentel CMMM, Birbrair A, Miglino MA. The Tumor Microenvironment: Focus on Extracellular Matrix. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1245:1-38. [PMID: 32266651 DOI: 10.1007/978-3-030-40146-7_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The extracellular matrix (ECM) regulates the development and maintains tissue homeostasis. The ECM is composed of a complex network of molecules presenting distinct biochemical properties to regulate cell growth, survival, motility, and differentiation. Among their components, proteoglycans (PGs) are considered one of the main components of ECM. Its composition, biomechanics, and anisotropy are exquisitely tuned to reflect the physiological state of the tissue. The loss of ECM's homeostasis is seen as one of the hallmarks of cancer and, typically, defines transitional events in tumor progression and metastasis. In this chapter, we discuss the types of proteoglycans and their roles in cancer. It has been observed that the amount of some ECM components is increased, while others are decreased, depending on the type of tumor. However, both conditions corroborate with tumor progression and malignancy. Therefore, ECM components have an increasingly important role in carcinogenesis and this leads us to believe that their understanding may be a key in the discovery of new anti-tumor therapies. In this book, the main ECM components will be discussed in more detail in each chapter.
Collapse
Affiliation(s)
- Nathia Nathaly Rigoglio
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Ana Carolina Silveira Rabelo
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Jessica Borghesi
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Gustavo de Sá Schiavo Matias
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Paula Fratini
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Alexander Birbrair
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
14
|
Yang T, Deng Z, Pan Z, Qian Y, Yao W, Wang J. Prognostic value of periostin in multiple solid cancers: A systematic review with meta-analysis. J Cell Physiol 2019; 235:2800-2808. [PMID: 31517399 DOI: 10.1002/jcp.29184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 08/26/2019] [Indexed: 12/15/2022]
Abstract
Previous studies have shown that the expression of periostin (POSTN) is significantly correlated with prognosis in multiple solid cancers. However, the function of POSTN in tumorigenesis and its relationship with clinical outcomes have not been systematically summarized and analyzed. Thus, a meta-analysis was performed to evaluate the prognostic pertinence of POSTN in solid cancer. We conducted a systematic search in the PubMed, EMBASE, Web of Science, and Cochrane library databases, and a total of 10 studies were used to assess the association of POSTN expression and patients' overall survival (OS) and disease-free survival (DFS). The hazard ratio (HR) or odds ratio (OR) and their corresponding 95% confidence intervals (95% CIs) were further calculated to estimate the association between POSTN and relevant clinical parameters of solid cancer patients. The pooled results indicated that POSTN overexpression was associated with poor OS (HR = 2.35, 95% CI = 1.88-2.93, p < .00001) and DFS (HR = 2.70, 95% CI = 2.00-3.65, p < .00001) in a cohort of 993 patients with cancer. Subsequent analyses showed that the positive expression ratio of POSTN was evidently higher in cancer tissues than in normal tissues (OR = 7.44, 95% CI = 3.66-13.95, p < .00001). In addition, subgroup analysis showed that POSTN was related to microvascular invasion (OR = 5.09, 95% CI = 3.07-8.44, p < .00001), tumor differentiation (OR = 2.03, 95% CI = 1.41-2.91, p = .0001), and lymph node metastasis (OR = 3.05, 95% CI = 2.01-4.64, p < .00001). These data showed that POSTN could be a credible prognostic biomarker and a potential therapeutic target in human solid cancer.
Collapse
Affiliation(s)
- Tao Yang
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhengdong Deng
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongya Pan
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yawei Qian
- Department of Hepato-Biliary-Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei Yao
- Department of Oncology Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianming Wang
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Affiliated Tianyou Hospital, Wuhan University of Science & Technology, Wuhan, China
| |
Collapse
|
15
|
Sterzyńska K, Kaźmierczak D, Klejewski A, Świerczewska M, Wojtowicz K, Nowacka M, Brązert J, Nowicki M, Januchowski R. Expression of Osteoblast-Specific Factor 2 (OSF-2, Periostin) Is Associated with Drug Resistance in Ovarian Cancer Cell Lines. Int J Mol Sci 2019; 20:ijms20163927. [PMID: 31412536 PMCID: PMC6719218 DOI: 10.3390/ijms20163927] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/02/2019] [Accepted: 08/07/2019] [Indexed: 12/22/2022] Open
Abstract
One of the main obstacles to the effective treatment of ovarian cancer patients continues to be the drug resistance of cancer cells. Osteoblast-Specific Factor 2 (OSF-2, Periostin) is a secreted extracellular matrix protein (ECM) expressed in fibroblasts during bone and teeth development. Expression of OSF-2 has been also related to the progression and drug resistance of different tumors. The present study investigated the role of OSF-2 by evaluating its expression in the primary serous ovarian cancer cell line, sensitive (W1) and resistant to doxorubicin (DOX) (W1DR) and methotrexate (MTX) (W1MR). The OSF-2 transcript (real-time PCR analysis), protein expression in cell lysates and cell culture medium (western blot), and expression of the OSF-2 protein in cell lines (immunofluorescence) were investigated in this study. Increased expression of OSF-2 mRNA was observed in drug-resistant cells and followed by increased protein expression in cell culture media of drug-resistant cell lines. A subpopulation of ALDH1A1-positive cells was noted for W1DR and W1MR cell lines; however, no direct co-expression with OSF-2 was demonstrated. Both drugs induced OSF-2 expression after a short period of exposure of the drug-sensitive cell line to DOX and MTX. The obtained results indicate that OSF-2 expression might be associated with the development of DOX and MTX resistance in the primary serous W1 ovarian cancer cell line.
Collapse
Affiliation(s)
- Karolina Sterzyńska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland
| | - Dominika Kaźmierczak
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland
| | - Andrzej Klejewski
- Department of Nursing, Poznan University of Medical Sciences, Smoluchowskiego 11 St., 60-179 Poznań, Poland
- Department of Obstetrics and Women's Diseases, Poznan University of Medical Sciences, Polna 33 St., 60-535 Poznań, Poland
| | - Monika Świerczewska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland
| | - Karolina Wojtowicz
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland
| | - Marta Nowacka
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland
| | - Jacek Brązert
- Department of Obstetrics and Women's Diseases, Poznan University of Medical Sciences, Polna 33 St., 60-535 Poznań, Poland
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland
| | - Radosław Januchowski
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland.
| |
Collapse
|
16
|
Guerin Lemaire H, Merle B, Borel O, Gensburger D, Chapurlat R. Serum periostin levels and severity of fibrous dysplasia of bone. Bone 2019; 121:68-71. [PMID: 30616028 DOI: 10.1016/j.bone.2019.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/04/2018] [Accepted: 01/03/2019] [Indexed: 01/16/2023]
Abstract
Fibrous dysplasia of bone (FD) is a rare congenital bone disease, characterized by a fibrous component in the bone marrow. Periostin has been extensively researched because of its implication in various fibrotic or inflammatory diseases. Periostin may be associated with the burden or the severity of FD. The case control PERIOSDYS study aimed at assessing serum periostin levels in FD patients. Sixty four patients with monostotic or polyostotic disease were included, in order to evaluate whether the concentrations were greater in patients than in 128 healthy age, BMI and sex-matched controls and if they were more elevated in patients with the more severe phenotypes. We found that periostin levels were greater in patients with FD compared to controls (mean = 1085 vs 958 pmol/l, p = 0.026), especially in those with a history of fracture (mean = 1475 vs 966 pmol/l, p = 0.0005), polyostotic forms (mean = 1214 vs 955 pmol/l, p = 0.004) or McCune-Albright syndrome (mean = 1585 vs 1023 pmol/l, p = 0.0048). In contrast, high pain levels were not associated with periostin levels (mean = 1137 vs 1036 pmol/l, p = 0.445). Furthermore, patients undergoing bisphosphonate therapy had significantly lower levels than treatment naïve patients (mean = 953 vs 1370 pmol/l, p = 0.002). In conclusion, periostin may be a biochemical marker indicative of the most severe forms of FD and could be used to monitor patients treated with bisphosphonates.
Collapse
Affiliation(s)
- H Guerin Lemaire
- Department of Rheumatology, Edouard Herriot University Hospital, 5 Place d'Arsonval, 69003 Lyon, France.
| | - B Merle
- INSERM UMR 1033, Université de Lyon, Division of Rheumatology, Edouard Herriot University Hospital, 5 Place d'Arsonval, 69003 Lyon, France
| | - O Borel
- INSERM UMR 1033, Université de Lyon, Division of Rheumatology, Edouard Herriot University Hospital, 5 Place d'Arsonval, 69003 Lyon, France
| | - D Gensburger
- INSERM UMR 1033, Université de Lyon, Division of Rheumatology, Edouard Herriot University Hospital, 5 Place d'Arsonval, 69003 Lyon, France
| | - R Chapurlat
- INSERM UMR 1033, Université de Lyon, Division of Rheumatology, Edouard Herriot University Hospital, 5 Place d'Arsonval, 69003 Lyon, France
| |
Collapse
|
17
|
The Multiaspect Functions of Periostin in Tumor Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1132:125-136. [DOI: 10.1007/978-981-13-6657-4_13] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Periostin and Integrin Signaling in Stem Cell Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1132:163-176. [DOI: 10.1007/978-981-13-6657-4_16] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Fibulin-2 is required for basement membrane integrity of mammary epithelium. Sci Rep 2018; 8:14139. [PMID: 30237579 PMCID: PMC6148073 DOI: 10.1038/s41598-018-32507-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/17/2018] [Indexed: 12/25/2022] Open
Abstract
Fibulin-2 (FBLN2) is a secreted extracellular matrix glycoprotein which has been associated with tissue development and remodelling. In the mouse mammary gland, FBLN2 can be detected during ductal morphogenesis in cap cells and myoepithelial cells at puberty and early pregnancy, respectively. In an attempt to assign its function, we knocked down Fbln2 in the mouse mammary epithelial cell line EpH4. FBLN2 reduction led to an increase in the size of spheroidal structures when compared to scrambled control shRNA-transduced cells plated on Matrigel matrix. This phenotype was associated with a disruption of the collagen IV sheath around the epithelial spheroids and downregulation of integrin β1, suggesting a role for FBLN2 in stabilizing the basement membrane (BM). In contrast to mice, in normal adult human breast tissue, FBLN2 was detected in ductal stroma, and in the interlobular stroma, but was not detectable within the lobular regions. In tissue sections of 65 breast cancers FBLN2 staining was lost around malignant cells with retained staining in the neighbouring histologically normal tissue margins. These results are consistent with a role of FBLN2 in mammary epithelial BM stability, and that its down-regulation in breast cancer is associated with loss of the BM and early invasion.
Collapse
|
20
|
Fiorino S, Di Saverio S, Leandri P, Tura A, Birtolo C, Silingardi M, de Biase D, Avisar E. The role of matricellular proteins and tissue stiffness in breast cancer: a systematic review. Future Oncol 2018; 14:1601-1627. [PMID: 29939077 DOI: 10.2217/fon-2017-0510] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 03/26/2018] [Indexed: 02/08/2023] Open
Abstract
Malignancies consist not only of cancerous and nonmalignant cells, but also of additional elements, as extracellular matrix. The aim of this review is to summarize meta-analyses, describing breast tissue stiffness and risk of breast carcinoma (BC) assessing the potential relationship between matricellular proteins (MPs) and survival. A systematic computer-based search of published articles, according to PRISMA statement, was conducted through Ovid interface. Mammographic density and tissue stiffness are associated with the risk of BC development, suggesting that MPs may influence BC prognosis. No definitive conclusions are available and additional researches are required to definitively clarify the role of each MP, mammographic density and stiffness in BC development and the mechanisms involved in the onset of this malignancy.
Collapse
Affiliation(s)
- Sirio Fiorino
- Internal Medicine 'C' Unit, Maggiore Hospital, Local Health Unit of Bologna, Bologna, Italy
| | - Salomone Di Saverio
- Cambridge Colorectal Unit, Box 201, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0QQ, UK
| | - Paolo Leandri
- Internal Medicine 'C' Unit, Maggiore Hospital, Local Health Unit of Bologna, Bologna, Italy
| | - Andrea Tura
- Metabolic Unit, CNR Institute of Neuroscience, Padova, Italy
| | - Chiara Birtolo
- Geriatric Unit, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Mauro Silingardi
- Internal Medicine 'A' Unit, Maggiore Hospital, Local Health Unit of Bologna, Bologna, Italy
| | - Dario de Biase
- Department of Pharmacy & Biotechnology, Molecular Pathology Unit, University of Bologna, Bologna, Italy
| | - Eli Avisar
- Division of Surgical Oncology, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
21
|
Wei YC, Yang SF, Chang SL, Chen TJ, Lee SW, Chen HS, Lin LC, Li CF. Periostin overexpression is associated with worse prognosis in nasopharyngeal carcinoma from endemic area: a cohort study. Onco Targets Ther 2018; 11:3205-3213. [PMID: 29881294 PMCID: PMC5985804 DOI: 10.2147/ott.s163626] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Purpose Nasopharyngeal carcinoma (NPC) is a heterogeneous disease. We searched for genes that function in cell adhesion in GSE12452, a published transcriptomic database. We found that POSTN, which encodes periostin (POSTN), was significantly upregulated in NPC tumorigenesis. Herein, we sought to analyze the expression of POSTN and its prognostic significances in patients with NPC. Materials and methods In this single-institution retrospective study, we determined and analyzed POSTN expression by immunohistochemistry and H-score method, respectively, in 124 patients with NPC. The results indicated that POSTN expression was correlated with the clinicopathologic features, disease-specific survival (DSS), distant metastasis-free survival (DMFS), and local recurrence-free survival (LRFS) of NPC. We performed univariate and multivariate analyses to determinate the statistical significance. Results High POSTN expression was significantly associated with lymph node metastasis (p=0.004) and advanced American Joint Committee on Cancer (AJCC) stage (p=0.006). In univariate analysis, high POSTN expression served as a significant prognostic factor for worse DSS (p=0.0002), DMFS (p=0.0138), and LRFS (p=0.0028). In multivariate Cox regression analyses, which was adjusted for AJCC stages, POSTN expression was independently associated with cancer-related death (HR: 2.311; 95% CI: 1.327-4.027; p=0.003) and local tumor recurrence (HR: 3.187; 95% CI: 1.108-4.408; p=0.024). Conclusion High POSTN expression is associated with tumor aggressiveness and worse clinical outcomes in NPC, indicating that it may be a potential prognostic biomarker and a therapeutic target.
Collapse
Affiliation(s)
- Yu-Ching Wei
- Department of Pathology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan.,Department of Pathology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sheau-Fang Yang
- Department of Pathology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shih-Lun Chang
- Department of Otolaryngology, Chi Mei Medical Center, Tainan, Taiwan.,Department of Optometry, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Tzu-Ju Chen
- Department of Optometry, Chung Hwa University of Medical Technology, Tainan, Taiwan.,Department of Pathology, Chi Mei Medical Center, Tainan, Taiwan
| | - Sung-Wei Lee
- Department of Radiation Oncology, Chi Mei Medical Center, Liouying, Tainan, Taiwan
| | - Hung-Sung Chen
- Department of Pathology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Li-Ching Lin
- Department of Radiation Oncology, Chi Mei Medical Center, Tainan, Taiwan
| | - Chien-Feng Li
- Department of Pathology, Chi Mei Medical Center, Tainan, Taiwan.,National Institute of Cancer Research, National Health Research Institute, Tainan, Taiwan.,Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| |
Collapse
|
22
|
Li C, Xu J, Wang Q, Geng S, Yan Z, You J, Li Z, Zou X. Prognostic value of periostin in early-stage breast cancer treated with conserving surgery and radiotherapy. Oncol Lett 2018; 15:8072-8078. [PMID: 29725485 DOI: 10.3892/ol.2018.8310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 12/08/2017] [Indexed: 12/22/2022] Open
Abstract
The present study was performed to explore the prognostic significance of periostin expression in a cohort of patients with early-stage breast cancer treated with breast conserving surgery following radiotherapy. A tissue microarray of tumor samples from 259 patients with early-stage breast cancer was assayed for periostin, estrogen receptor (ER), progesterone receptor (PR), ErbB2 receptor tyrosine kinase 2 and Ki-67 expression by immunohistochemistry. The association of periostin with other clinicopathological parameters and clinical outcomes, including local recurrence free survival (RFS), distant metastasis free survival (DFS) and overall survival (OS), were assessed through log-rank tests and univariate and multivariate analysis. Periostin expression was identified in 91 of the 259 tissue samples (35%). The periostin status was significantly associated with histological grade (P=0.001), nodal status (P=0.023), molecular subtype (P<0.01), ER status (P<0.01), PR status (P<0.01) and Ki-67 expression (P=0.011). Furthermore, periostin expression was associated with an increased risk of five-year local recurrence (95.8% vs. 89.0%; P=0.017) and distant metastasis (92.3% vs. 79.1%; P=0.001) in patients with early stage breast cancer. Multivariate analysis using Cox's proportional hazards model demonstrated that periostin expression was an independent predictor of all clinical outcomes in breast cancer (RFS, P=0.018; DFS, P=0.025; OS, P=0.047). Therefore, it was concluded that periostin is associated with an increased risk of local relapse and distant metastasis in early-stage breast cancer treated with conserving surgery and radiotherapy. This association should be further investigated in larger cohorts to validate the clinical significance of periostin expression.
Collapse
Affiliation(s)
- Changyou Li
- Biotherapy Center, Qingdao Central Hospital, The Second Affiliated Hospital of Qingdao University, Qingdao, Shandong 266042, P.R. China
| | - Jing Xu
- Department of Pathology, Qingdao Central Hospital, The Second Affiliated Hospital of Qingdao University, Qingdao, Shandong 266042, P.R. China
| | - Qi Wang
- Department of Pathology, Qingdao Cancer Hospital, The Second Affiliated Hospital of Qingdao University, Qingdao, Shandong 266042, P.R. China
| | - Shaoqing Geng
- Department of Pathology, Qingdao Central Hospital, The Second Affiliated Hospital of Qingdao University, Qingdao, Shandong 266042, P.R. China
| | - Zheng Yan
- Department of Breast Surgery, Qingdao Central Hospital, The Second Affiliated Hospital of Qingdao University, Qingdao, Shandong 266042, P.R. China
| | - Jin You
- Anorectal Department, Qingdao Central Hospital, The Second Affiliated Hospital of Qingdao University, Qingdao, Shandong 266042, P.R. China
| | - Zhenfeng Li
- Department of Breast Surgery, Qingdao Central Hospital, The Second Affiliated Hospital of Qingdao University, Qingdao, Shandong 266042, P.R. China
| | - Xiao Zou
- Department of Breast Surgery, Qingdao Central Hospital, The Second Affiliated Hospital of Qingdao University, Qingdao, Shandong 266042, P.R. China
| |
Collapse
|
23
|
Heterogeneous Periostin Expression in Different Histological Variants of Papillary Thyroid Carcinoma. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8701386. [PMID: 29435461 PMCID: PMC5757104 DOI: 10.1155/2017/8701386] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 11/19/2017] [Accepted: 12/03/2017] [Indexed: 12/24/2022]
Abstract
Background Periostin (PN) epithelial and stromal overexpression in tumor pathology has been studied according to tumor growth, angiogenesis, invasiveness, and metastasis, but a limited number of studies address PN in thyroid tumors. Aim Our study aimed to analyze PN expression in different histological variants of PTC and to correlate its expression with the clinicopathological prognostic factors. Material and Methods PN expression has been immunohistochemically assessed in 50 cases of PTC (conventional, follicular, oncocytic, macrofollicular, and tall cell variants), in tumor epithelial cells and intratumoral stroma. The association between PN expression and clinicopathological characteristics has been evaluated. Results Our results show that PTC presented different patterns of PN immunoreaction, stromal PN being significantly associated with advanced tumor stage and extrathyroidal extension. No correlations were found between PN overexpression in tumor epithelial cells and clinicopathological features, except for specific histological variants, the highest risk of poor outcome being registered for the conventional subtype in comparison to the oncocytic type. Conclusions Our study demonstrates differences in PN expression in histological subtypes of PTC. Our results plead in favor of a dominant protumorigenic role of stromal PN, while the action of epithelial PN is less noticeable.
Collapse
|
24
|
Cui D, Huang Z, Liu Y, Ouyang G. The multifaceted role of periostin in priming the tumor microenvironments for tumor progression. Cell Mol Life Sci 2017; 74:4287-4291. [PMID: 28884337 PMCID: PMC11107730 DOI: 10.1007/s00018-017-2646-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 09/04/2017] [Indexed: 12/13/2022]
Abstract
Tumor microenvironment consists of tumor cells, stromal cells, extracellular matrix and a plethora of soluble components. The complex array of interactions between tumor cells and their surrounding tumor microenvironments contribute to the determination of the fate of tumor cells during tumorigenesis and metastasis. Matricellular protein periostin is generally absent in most adult tissues but is highly expressed in tumor microenvironments. Current evidence reveals that periostin plays a critical role in establishing and remodeling tumor microenvironments such as the metastatic niche, cancer stem cell niche, perivascular niche, pre-metastatic niche, fibrotic microenvironment and bone marrow microenvironment. Here, we summarize the current knowledge of the multifaceted role of periostin in the tumor microenvironments.
Collapse
Affiliation(s)
- Dan Cui
- First Affiliated Hospital of Xiamen University, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zhengjie Huang
- First Affiliated Hospital of Xiamen University, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yingfu Liu
- Department of Basic Medical Sciences, Medical College, Xiamen University, Xiamen, China
| | - Gaoliang Ouyang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
25
|
Kim GE, Lee JS, Park MH, Yoon JH. Epithelial periostin expression is correlated with poor survival in patients with invasive breast carcinoma. PLoS One 2017; 12:e0187635. [PMID: 29161296 PMCID: PMC5697858 DOI: 10.1371/journal.pone.0187635] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/23/2017] [Indexed: 01/08/2023] Open
Abstract
Invasion and metastasis are direct causes of mortality in patients with breast cancer and require reciprocal interactions between cancer cells and the extracellular matrix (ECM). Periostin, a fasciclin-containing adhesive ECM glycoprotein, is frequently overexpressed in various types of human cancer, and its overexpression in cancer-associated stroma and/or cancer cells is usually associated with poor clinical outcomes. However, the expression of periostin in the successive steps of breast tumorigenesis and its association with outcome variables have not been well established in breast carcinoma. The present study aimed to assess the role of periostin alteration in breast tumorigenesis and evaluate the putative prognostic value of periostin as a function of its compartmentalization. Immunohistochemical staining with anti-periostin antibody was performed in a total of 300 patients (26 patients with normal breast tissues, 76 patients with ductal carcinoma in situ [DCIS], and 198 patients with invasive breast carcinoma [IBC]) using tissue microarray. Periostin immunoreactivity was assessed in both epithelial tissue and the surrounding stromal compartment. The mRNA and protein expression of periostin were analyzed in 10 paired normal/invasive cancer frozen specimens by quantitative real time-polymerase chain reaction and western blot analysis, respectively. In cancer tissues, periostin mRNA and protein expression were increased compared with adjacent normal tissues. Both epithelial and stromal periostin staining scores significantly increased in a stepwise manner with disease progression from normal breast tissue to DCIS and IBC (P = 0.000 and 0.000, respectively). High epithelial and stromal periostin expression was observed in 109/189 (57.7%) and 158/189 (83.6%) cases of IBC, respectively. High epithelial periostin expression was more frequently observed in the distant metastatic relapse-positive group than in the distant metastatic relapse-negative group (41/51 [80.4%] vs. 68/138 [49.3%] cases [P = 0.000]). Furthermore, high epithelial periostin expression was associated with reduced disease-free survival and overall survival in univariate and multivariate analysis. Periostin may play an important role in the progression of breast tumor, and epithelial periostin expression may serve as a new parameter for prediction of prognosis in patients with IBC. Further studies examining periostin expression and its potential as a target of IBC therapy are warranted.
Collapse
Affiliation(s)
- Ga-Eon Kim
- Department of Pathology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Ji Shin Lee
- Department of Pathology, Chonnam National University Medical School, Gwangju, Republic of Korea
- * E-mail:
| | - Min Ho Park
- Department of Surgery, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Jung Han Yoon
- Department of Surgery, Chonnam National University Medical School, Gwangju, Republic of Korea
| |
Collapse
|
26
|
Ratajczak-Wielgomas K, Grzegrzolka J, Piotrowska A, Matkowski R, Wojnar A, Rys J, Ugorski M, Dziegiel P. Expression of periostin in breast cancer cells. Int J Oncol 2017; 51:1300-1310. [DOI: 10.3892/ijo.2017.4109] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/28/2017] [Indexed: 11/05/2022] Open
|
27
|
Konac E, Kiliccioglu I, Sogutdelen E, Dikmen AU, Albayrak G, Bilen CY. Do the expressions of epithelial-mesenchymal transition proteins, periostin, integrin-α4 and fibronectin correlate with clinico-pathological features and prognosis of metastatic castration-resistant prostate cancer? Exp Biol Med (Maywood) 2017; 242:1795-1801. [PMID: 28836852 DOI: 10.1177/1535370217728499] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Development of metastatic castration-resistant prostate cancer is a result of the lack of an apoptotic response by the tumor cells and loss of the ability to stick to adjacent cells through epithelial-mesenchymal transition. Although there are several strongly recommended biomarkers for determining prognosis of metastatic castration-resistant prostate cancer, only few of them may help decide the selection of the optimal treatment option. The mode of treatment sequencing in metastatic castration-resistant prostate cancer will be based on the individual characteristics of the patient. In this study, we aimed to explain the correlation between the expression characteristics of periostin, integrin-α4, and fibronectin in metastatic castration-resistant prostate cancer patients and their clinico-pathological data comprising Gleason score, PSA levels, and metastatic sites in the process of epithelial-mesenchymal transition. We evaluated by using Western blotting, periostin, integrin-α4, and fibronectin expressions in peripheral blood samples of metastatic castration-resistant prostate cancer patients ( n = 40), benign prostatic hyperplasia patients ( n = 20), and the healthy control group ( n = 20). Associations between changes in the protein expressions and clinico-pathological parameters were also analyzed in the metastatic castration-resistant prostate cancer group. When comparing BPH and healthy groups with the metastatic castration-resistant prostate cancer group, a reduced expression of integrin-α4 was found in metastatic patients, albeit being statistically insignificant ( P > 0.05). Protein expressions of periostin and fibronectin in the metastatic castration-resistant prostate cancer group were higher than those in the BPH and heathy groups ( P < 0.001). Increased periostin expression in metastatic patients was significantly associated with bone metastasis ( P < 0.05). Elevated periostin and fibronectin levels in metastatic castration-resistant prostate cancer patients may be appropriate targets of therapeutic intervention in the future. Impact statement Prostate cancer is the third most common cancer in the world and the most common cancer among men. Development of metastatic castration-resistant prostate cancer (mCRPC) is a result of the lack of an apoptotic response by the tumor cells and loss of the ability to stick to adjacent cells through epithelial-mesenchymal transition (EMT). The present study analyzes for the first time the expressions of EMT marker proteins - periostin, integrin α4, fibronectin - in mCRPC and in benign prostatic hyperplasia (BPH) with the aim to determine the clinical relevance of changes in these three proteins vis-a-vis the PCa aggressive phenotype. In doing so, it sheds light on the molecular mechanism underlying the disease. We concluded that elevated periostin and fibronectin levels in mCRPC patients may be appropriate targets of therapeutic intervention in the future; hence, adopting methods that target these proteins may help treat prostate cancer effectively.
Collapse
Affiliation(s)
- Ece Konac
- 1 Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, Ankara 06510, Turkey
| | - Ilker Kiliccioglu
- 1 Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, Ankara 06510, Turkey
| | - Emrullah Sogutdelen
- 2 Department of Urology, Faculty of Medicine, Hacettepe University, Sıhhiye, Ankara 06100, Turkey
| | - Asiye U Dikmen
- 3 Department of Public Health, Faculty of Medicine, Gazi University, Besevler, Ankara 06510, Turkey
| | - Gulsah Albayrak
- 1 Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, Ankara 06510, Turkey
| | - Cenk Y Bilen
- 2 Department of Urology, Faculty of Medicine, Hacettepe University, Sıhhiye, Ankara 06100, Turkey
| |
Collapse
|
28
|
High levels of periostin correlate with increased fracture rate, diffuse MRI pattern, abnormal bone remodeling and advanced disease stage in patients with newly diagnosed symptomatic multiple myeloma. Blood Cancer J 2016; 6:e482. [PMID: 27716740 PMCID: PMC5098262 DOI: 10.1038/bcj.2016.90] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/28/2016] [Accepted: 09/08/2016] [Indexed: 12/17/2022] Open
Abstract
Periostin is an extracellular matrix protein that is implicated in the biology of normal bone remodeling and in different cancer cell growth and metastasis. However, there is no information on the role of periostin in multiple myeloma (MM). Thus, we evaluated periostin in six myeloma cell lines in vitro; in the bone marrow plasma and serum of 105 newly diagnosed symptomatic MM (NDMM) patients and in the serum of 23 monoclonal gammopathy of undetermined significance (MGUS), 33 smoldering MM (SMM) patients, 30 patients at the plateau phase post-first-line therapy, 30 patients at first relapse and 30 healthy controls. We found high levels of periostin in the supernatants of myeloma cell lines compared with ovarian cancer cell lines that were not influenced by the incubation with the stromal cell line HS5. In NDMM patients the bone marrow plasma periostin was almost fourfold higher compared with the serum levels of periostin and correlated with the presence of fractures and of diffuse magnetic resonance imaging pattern of marrow infiltration. Serum periostin was elevated in NDMM patients compared with healthy controls, MGUS and SMM patients and correlated with advanced disease stage, high lactate dehydrogenase, increased activin-A, increased bone resorption and reduced bone formation. Patients at first relapse had also elevated periostin compared with healthy controls, MGUS and SMM patients, while even patients at the plateau phase had elevated serum periostin compared with healthy controls. These results support an important role of periostin in the biology of myeloma and reveal periostin as a possible target for the development of antimyeloma drugs.
Collapse
|
29
|
Ratajczak-Wielgomas K, Grzegrzolka J, Piotrowska A, Gomulkiewicz A, Witkiewicz W, Dziegiel P. Periostin expression in cancer-associated fibroblasts of invasive ductal breast carcinoma. Oncol Rep 2016; 36:2745-2754. [PMID: 27633896 DOI: 10.3892/or.2016.5095] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 08/12/2016] [Indexed: 11/06/2022] Open
Abstract
Periostin (POSTN) is a secreted cell adhesion glycoprotein that plays an important role in proliferation, adhesion and migration processes, as well as in regulation of mechanisms related to epithelial-mesenchymal transition (EMT). It also plays a key role in angio- and lymphangiogenesis and in formation of distant metastases. The aim of this work was to determine expression of POSTN in invasive ductal breast carcinoma (IDC) and in non-invasive ductal carcinoma in situ (DCIS) and to correlate its expression with clinicopathological parameters. Material for immunohistochemical studies (IHC) comprise of 70 IDC cases, 44 DCIS cases and 21 cases of fibrocystic change (FC). Frozen (-80˚C) fragments of tumours taken from 41 patients with IDC were used for molecular studies (real-time PCR), including 11 cases of IDC subjected to laser capture microdissection (LCM). POSTN expression was shown mainly in tumour stromal cells, i.e. cancer-associated fibroblasts (CAFs). Statistically significant higher level of POSTN expression in CAFs in IDC as compared to FC (p<0.0001) was observed. Additionally, statistically elevated expression level of POSTN in CAFs in IDC relative to DCIS (p<0.0001) and significantly increased expression of POSTN in CAFs in DCIS in comparison to FC (p=0.0158) was also shown. High level of POSTN expression in CAFs in IDC (>8 IRS points) was significantly correlated with tumour malignancy grade (G) (p=0.0070). Moreover, higher POSTN expression by CAFs was associated with patient shorter overall survival. Significant increase of POSTN expression on mRNA and protein level in CAFs in IDC with the growing malignancy grade of the tumours (G) was shown. Furthermore, with the use of LCM method, statistically significant higher expression of mRNA POSTN in stromal cells relative to cancer cells (p<0.001) was noted. POSTN might be a factor playing an important role in the mechanism of IDC progression.
Collapse
Affiliation(s)
| | - Jedrzej Grzegrzolka
- Department of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Aleksandra Piotrowska
- Department of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Agnieszka Gomulkiewicz
- Department of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Wojciech Witkiewicz
- Regional Specialist Hospital, Research and Development Center, 51-124 Wroclaw, Poland
| | - Piotr Dziegiel
- Department of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
30
|
Jin C, Zhang X, Sun M, Zhang Y, Zhang G, Wang B. Clinical implications of the coexpression of SRC1 and NANOG in HER-2-overexpressing breast cancers. Onco Targets Ther 2016; 9:5483-8. [PMID: 27660465 PMCID: PMC5021056 DOI: 10.2147/ott.s102386] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objective Given the lack of clarity on the expression status of SRC1 protein in breast cancer, we attempted to ascertain the clinical implications of the expression of this protein in breast cancer. Methods Samples from 312 breast cancer patients who were followed up for 5 years were analyzed in this study. The associations of SRC1 expression and clinicopathological factors with the prognosis of breast cancer were determined. Results The 312 breast cancer patients underwent radical resection, and 155 (49.68%) of them demonstrated high expression of SRC1 protein. No significant differences were found for tumor size, estrogen receptor expression, or progesterone receptor expression (P=0.191, 0.888, or 0.163, respectively). It is noteworthy that SRC1 expression was found to be related to HER-2 and Ki-67 expression (P=0.044 and P=0.001, respectively). According to logistic regression analysis, SRC1 expression was also significantly correlated with Ki-67 and HER-2 expression (P=0.032 and P=0.001, respectively). Survival analysis showed that patients with a high expression of SRC1 and NANOG and those with SRC1 and NANOG coexpression had significantly poorer postoperative disease-specific survival than those with no expression in the HER-2-positive group (P=0.032, 0.01, and P=0.01, respectively). Conclusion High SRC1 protein expression was related to the prognosis of HER-2-overexpressing breast cancers.
Collapse
Affiliation(s)
| | | | - Mei Sun
- Department of Pathology, The Second Affiliated Hospital of Jilin University, Changchun, People's Republic of China
| | | | | | | |
Collapse
|
31
|
Wang Z, Xiong S, Mao Y, Chen M, Ma X, Zhou X, Ma Z, Liu F, Huang Z, Luo Q, Ouyang G. Periostin promotes immunosuppressive premetastatic niche formation to facilitate breast tumour metastasis. J Pathol 2016; 239:484-95. [PMID: 27193093 DOI: 10.1002/path.4747] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 04/14/2016] [Accepted: 05/14/2016] [Indexed: 01/19/2023]
Abstract
Periostin (POSTN) is a limiting factor in the metastatic colonization of disseminated tumour cells. However, the role of POSTN in regulating the immunosuppressive function of immature myeloid cells in tumour metastasis has not been documented. Here, we demonstrate that POSTN promotes the pulmonary accumulation of myeloid-derived suppressor cells (MDSCs) during the early stage of breast tumour metastasis. Postn deletion decreases neutrophil and monocytic cell populations in the bone marrow of mice and suppresses the accumulation of MDSCs to premetastatic sites. We also found that POSTN-deficient MDSCs display reduced activation of ERK, AKT and STAT3 and that POSTN deficiency decreases the immunosuppressive functions of MDSCs during tumour progression. Moreover, the pro-metastatic role of POSTN is largely limited to ER-negative breast cancer patients. Lysyl oxidase contributes to POSTN-promoted premetastatic niche formation and tumour metastasis. Our findings indicate that POSTN is essential for immunosuppressive premetastatic niche formation in the lungs during breast tumour metastasis and is a potential target for the prevention and treatment of breast tumour metastasis. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Zhe Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, People's Republic of China
- Engineering Research Centre of Molecular Diagnostics, Ministry of Education, School of Life Sciences, Xiamen University, People's Republic of China
| | - Shanshan Xiong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, People's Republic of China
- Engineering Research Centre of Molecular Diagnostics, Ministry of Education, School of Life Sciences, Xiamen University, People's Republic of China
| | - Yubin Mao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, People's Republic of China
- Medical College of Xiamen University, People's Republic of China
| | - Mimi Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, People's Republic of China
| | - Xiaohong Ma
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, People's Republic of China
| | - Xueliang Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, People's Republic of China
| | - Zhenling Ma
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, People's Republic of China
| | - Fan Liu
- Medical College of Xiamen University, People's Republic of China
| | - Zhengjie Huang
- Department of Surgical Oncology, First Affiliated Hospital of Xiamen University, People's Republic of China
| | - Qi Luo
- Department of Surgical Oncology, First Affiliated Hospital of Xiamen University, People's Republic of China
| | - Gaoliang Ouyang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, People's Republic of China
- Engineering Research Centre of Molecular Diagnostics, Ministry of Education, School of Life Sciences, Xiamen University, People's Republic of China
| |
Collapse
|
32
|
Zhang H, Luo M, Jin Z, Wang D, Sun M, Zhao X, Zhao Z, Lei H, Li M, Liu C. Expression and clinicopathological significance of FSIP1 in breast cancer. Oncotarget 2016; 6:10658-66. [PMID: 25826084 PMCID: PMC4496383 DOI: 10.18632/oncotarget.3381] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/14/2015] [Indexed: 12/19/2022] Open
Abstract
Aim To investigate the clinicopathological significance of the expression of fibrous sheath interacting protein 1 (FSIP1) in breast cancer, serum samples, and wound fluid from patients with breast cancer. Methods Wound fluid and serum samples from female patients with primary breast cancer, recurrent and metastatic breast cancer, and benign tumors were analyzed for FSIP1 expression using ELISA. 286 paraffin-embedded surgical specimens from breast cancer patients with at least 5 years of follow-up were included for FSIP1 expression assay using immunohistochemistry. Results Expression of FSIP1 protein was significantly higher in breast cancer tissues compared to tumor-adjacent tissues (p = 0.001). Strong correlation was observed between FSIP1 expression and human epidermal growth factor receptor 2 (Her-2) or Ki67 expression in breast cancer (p = 0.027 and 0.002, respectively). Similarly, serum level of FSIP1 was higher in patients with recurrent and metastatic breast cancer compared to that of primary breast cancer (7, 713 ± 3, 065 vs. 4, 713 ± 3, 065 pg/ml, p = 0.003). Finally, patients with high FSIP1 expression showed a worse post-operative disease-specific survival (p = 0.024). Conclusion FSIP1 may play an important role in the tumorigenesis and invasion of breast cancer and is a potential biomarker for breast cancer diagnosis or prognosis.
Collapse
Affiliation(s)
- Hao Zhang
- Breast Disease and Reconstruction Center, Breast Cancer Key Lab of Dalian, The Second Hospital of Dalian Medical University, Dalian, China
| | - Minna Luo
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Zining Jin
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Dan Wang
- Breast Disease and Reconstruction Center, Breast Cancer Key Lab of Dalian, The Second Hospital of Dalian Medical University, Dalian, China
| | - Ming Sun
- Shengjing Hospital, China Medical University, Shenyang, China
| | - Xinhan Zhao
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Zuowei Zhao
- Breast Disease and Reconstruction Center, Breast Cancer Key Lab of Dalian, The Second Hospital of Dalian Medical University, Dalian, China
| | - Haixin Lei
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Man Li
- Breast Disease and Reconstruction Center, Breast Cancer Key Lab of Dalian, The Second Hospital of Dalian Medical University, Dalian, China
| | - Caigang Liu
- Breast Disease and Reconstruction Center, Breast Cancer Key Lab of Dalian, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
33
|
Nuzzo PV, Rubagotti A, Zinoli L, Salvi S, Boccardo S, Boccardo F. The prognostic value of stromal and epithelial periostin expression in human breast cancer: correlation with clinical pathological features and mortality outcome. BMC Cancer 2016; 16:95. [PMID: 26872609 PMCID: PMC4752779 DOI: 10.1186/s12885-016-2139-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 02/08/2016] [Indexed: 11/12/2022] Open
Abstract
Background PN is a secreted cell adhesion protein critical for carcinogenesis. In breast cancer, it is overexpressed compared to normal breast, and a few reports suggest that it has a potential role as a prognostic marker. Methods Tumour samples obtained at the time of mastectomy from 200 women followed for a median time of 18.7 years (range 0.5–29.5 years) were investigated through IHC with a polyclonal anti-PN antibody using tissue microarrays. Epithelial and stromal PN expression were scored independently according to the percentage of coloured cells; the 60th percentile of PN epithelial expression, corresponding to 1 %, and the median value of PN stromal expression, corresponding to 90 %, were used as arbitrary cut-offs. The relationships between epithelial and stromal PN expression and clinical-pathological features, tumour phenotype and the risk of mortality following surgery were analysed. Appropriate statistics, including the Fine and Gray competing risk proportional hazard regression model, were used. Results The expression of PN in tumour epithelial cells was significantly lower than that which was observed in stromal cells (p < 0.000). No specific association between epithelial or stromal PN expression and any of the clinical-pathological parameters analysed was found as it was observed in respect to mortality when these variables were analysed individually. However, when both variables were considered as a function of the other one, the expression of PN in the stromal cells maintained a statistically significant predictive value with respect to both all causes and cancer-specific mortality only in the presence of high epithelial expression levels. No significant differences in either all causes or BCa-specific mortality rates were shown according to epithelial expression for tumours displaying higher stromal PN expression rates. However, the trends were opposite for the higher stromal values and the patients with high epithelial expression levels denoted the group with the worst prognosis, while higher epithelial values in patients with lower stromal expression levels denoted the group with the best prognosis, suggesting that PN epithelial/stromal interactions play a crucial role in breast carcinogenesis, most likely due to functional cross-talk between the two compartments. On the basis of PN expression in both compartments, we defined 4 subgroups of patients with different mortality rates with the group of patients characterized by positive epithelial and low stromal PN expression cells showing the lowest mortality risk as opposed to the groups of patients identified by a high PN expression in both cell compartments or those identified by a low or absent PN expression in both cell compartments showing the worst mortality rates. The differences were highly statistically significant and were also retained after multiparametric analysis. Competing risk analysis demonstrated that PN expression patterns characterizing each of previous groups are specifically associated with cancer-specific mortality. Conclusions Although they require further validation through larger studies, our findings suggest that the patterns of expression of PN in both compartments can allow for the development of IHC “signatures” that maintain a strong independent predictive value of both all causes and, namely, of cancer-specific mortality.
Collapse
Affiliation(s)
- P V Nuzzo
- Academic Unit of Medical Oncology, IRCCS AOU San Martino-IST, San Martino University Hospital and National Cancer Research Institute, L.go R. Benzi 10, 16132, Genoa, Italy.,Department of Internal Medicine, School of Medicine, University of Genoa, L.go R. Benzi 10, 16132, Genoa, Italy
| | - A Rubagotti
- Academic Unit of Medical Oncology, IRCCS AOU San Martino-IST, San Martino University Hospital and National Cancer Research Institute, L.go R. Benzi 10, 16132, Genoa, Italy.,Department of Internal Medicine, School of Medicine, University of Genoa, L.go R. Benzi 10, 16132, Genoa, Italy
| | - L Zinoli
- Academic Unit of Medical Oncology, IRCCS AOU San Martino-IST, San Martino University Hospital and National Cancer Research Institute, L.go R. Benzi 10, 16132, Genoa, Italy
| | - S Salvi
- Histopathology and Cytology Unit, IRCCS AOU San Martino-IST, San Martino University Hospital and National Cancer Research Institute, L.go R. Benzi 10, 16132, Genoa, Italy
| | - S Boccardo
- Histopathology and Cytology Unit, IRCCS AOU San Martino-IST, San Martino University Hospital and National Cancer Research Institute, L.go R. Benzi 10, 16132, Genoa, Italy
| | - F Boccardo
- Academic Unit of Medical Oncology, IRCCS AOU San Martino-IST, San Martino University Hospital and National Cancer Research Institute, L.go R. Benzi 10, 16132, Genoa, Italy. .,Department of Internal Medicine, School of Medicine, University of Genoa, L.go R. Benzi 10, 16132, Genoa, Italy.
| |
Collapse
|
34
|
Trotter TN, Yang Y. Matricellular proteins as regulators of cancer metastasis to bone. Matrix Biol 2016; 52-54:301-314. [PMID: 26807761 DOI: 10.1016/j.matbio.2016.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/19/2016] [Accepted: 01/19/2016] [Indexed: 01/08/2023]
Abstract
Metastasis is the major cause of death in cancer patients, and a frequent site of metastasis for many cancers is the bone marrow. Therefore, understanding the mechanisms underlying the metastatic process is necessary for future prevention and treatment. The tumor microenvironment is now known to play a role in the metastatic cascade, both at the primary tumor and in metastatic sites, and includes both cellular and non-cellular components. The extracellular matrix (ECM) provides structural support and signaling cues to cells. One particular group of molecules associated with the ECM, known as matricellular proteins, modulate multiple aspects of tumor biology, including growth, migration, invasion, angiogenesis and metastasis. These proteins are also important for normal function in the bone by regulating bone formation and bone resorption. Recent studies have described a link between some of these proteins and metastasis of various tumors to the bone. The aim of this review is to summarize what is currently known about matricellular protein influence on bone metastasis. Particular attention to the contribution of both tumor cells and non-malignant cells in the bone has been given.
Collapse
Affiliation(s)
- Timothy N Trotter
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yang Yang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States; Comprehensive Cancer Center and the Center for Metabolic Bone Disease, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
35
|
McConnell JC, O'Connell OV, Brennan K, Weiping L, Howe M, Joseph L, Knight D, O'Cualain R, Lim Y, Leek A, Waddington R, Rogan J, Astley SM, Gandhi A, Kirwan CC, Sherratt MJ, Streuli CH. Increased peri-ductal collagen micro-organization may contribute to raised mammographic density. Breast Cancer Res 2016; 18:5. [PMID: 26747277 PMCID: PMC4706673 DOI: 10.1186/s13058-015-0664-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/15/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND High mammographic density is a therapeutically modifiable risk factor for breast cancer. Although mammographic density is correlated with the relative abundance of collagen-rich fibroglandular tissue, the causative mechanisms, associated structural remodelling and mechanical consequences remain poorly defined. In this study we have developed a new collaborative bedside-to-bench workflow to determine the relationship between mammographic density, collagen abundance and alignment, tissue stiffness and the expression of extracellular matrix organising proteins. METHODS Mammographic density was assessed in 22 post-menopausal women (aged 54-66 y). A radiologist and a pathologist identified and excised regions of elevated non-cancerous X-ray density prior to laboratory characterization. Collagen abundance was determined by both Masson's trichrome and Picrosirius red staining (which enhances collagen birefringence when viewed under polarised light). The structural specificity of these collagen visualisation methods was determined by comparing the relative birefringence and ultrastructure (visualised by atomic force microscopy) of unaligned collagen I fibrils in reconstituted gels with the highly aligned collagen fibrils in rat tail tendon. Localised collagen fibril organisation and stiffness was also evaluated in tissue sections by atomic force microscopy/spectroscopy and the abundance of key extracellular proteins was assessed using mass spectrometry. RESULTS Mammographic density was positively correlated with the abundance of aligned periductal fibrils rather than with the abundance of amorphous collagen. Compared with matched tissue resected from the breasts of low mammographic density patients, the highly birefringent tissue in mammographically dense breasts was both significantly stiffer and characterised by large (>80 μm long) fibrillar collagen bundles. Subsequent proteomic analyses not only confirmed the absence of collagen fibrosis in high mammographic density tissue, but additionally identified the up-regulation of periostin and collagen XVI (regulators of collagen fibril structure and architecture) as potential mediators of localised mechanical stiffness. CONCLUSIONS These preliminary data suggest that remodelling, and hence stiffening, of the existing stromal collagen microarchitecture promotes high mammographic density within the breast. In turn, this aberrant mechanical environment may trigger neoplasia-associated mechanotransduction pathways within the epithelial cell population.
Collapse
Affiliation(s)
- James C McConnell
- Centre for Tissue Injury & Repair, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK.
| | - Oliver V O'Connell
- Wellcome Trust Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Life Sciences, University of Manchester, Manchester, UK.
| | - Keith Brennan
- Wellcome Trust Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Life Sciences, University of Manchester, Manchester, UK.
| | - Lisa Weiping
- Wellcome Trust Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Life Sciences, University of Manchester, Manchester, UK.
| | - Miles Howe
- University Hospital of South Manchester, Manchester, UK.
| | - Leena Joseph
- University Hospital of South Manchester, Manchester, UK.
| | - David Knight
- Wellcome Trust Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Life Sciences, University of Manchester, Manchester, UK.
| | - Ronan O'Cualain
- Wellcome Trust Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Life Sciences, University of Manchester, Manchester, UK. ronan.o'
| | - Yit Lim
- University Hospital of South Manchester, Manchester, UK.
| | - Angela Leek
- Manchester Cancer Research Centre Tissue Biobank, University of Manchester, Manchester, UK.
| | - Rachael Waddington
- Manchester Cancer Research Centre Tissue Biobank, University of Manchester, Manchester, UK.
| | - Jane Rogan
- Manchester Cancer Research Centre Tissue Biobank, University of Manchester, Manchester, UK.
| | - Susan M Astley
- Centre for Imaging Sciences, Institute of Population Health, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK.
| | - Ashu Gandhi
- University Hospital of South Manchester, Manchester, UK.
| | - Cliona C Kirwan
- Institute of Cancer Sciences, Manchester Academic Health Sciences Centre, University Hospital of South Manchester, University of Manchester, Manchester, UK.
| | - Michael J Sherratt
- Centre for Tissue Injury & Repair, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK.
| | - Charles H Streuli
- Wellcome Trust Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Life Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
36
|
Lambert AW, Wong CK, Ozturk S, Papageorgis P, Raghunathan R, Alekseyev Y, Gower AC, Reinhard BM, Abdolmaleky HM, Thiagalingam S. Tumor Cell-Derived Periostin Regulates Cytokines That Maintain Breast Cancer Stem Cells. Mol Cancer Res 2015; 14:103-13. [PMID: 26507575 DOI: 10.1158/1541-7786.mcr-15-0079] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 10/14/2015] [Indexed: 01/05/2023]
Abstract
UNLABELLED Basal-like breast cancer (BLBC) is an aggressive subtype of breast cancer which is often enriched with cancer stem cells (CSC), but the underlying molecular basis for this connection remains elusive. We hypothesized that BLBC cells are able to establish a niche permissive to the maintenance of CSCs and found that tumor cell-derived periostin (POSTN), a component of the extracellular matrix, as well as a corresponding cognate receptor, integrin α(v)β(3), are highly expressed in a subset of BLBC cell lines as well as in CSC-enriched populations. Furthermore, we demonstrated that an intact periostin-integrin β3 signaling axis is required for the maintenance of breast CSCs. POSTN activates the ERK signaling pathway and regulates NF-κB-mediated transcription of key cytokines, namely IL6 and IL8, which in turn control downstream activation of STAT3. In summary, these findings suggest that BLBC cells have an innate ability to establish a microenvironmental niche supportive of CSCs. IMPLICATIONS The findings reported here indicate that POSTN produced by CSCs acts to reinforce the stem cell state through the activation of integrin receptors and the production of key cytokines.
Collapse
Affiliation(s)
- Arthur W Lambert
- Department of Medicine, Molecular Medicine Program, Section of Biomedical Genetics and Cancer Center, Boston University School of Medicine, Boston, Massachusetts
| | - Chen Khuan Wong
- Department of Medicine, Molecular Medicine Program, Section of Biomedical Genetics and Cancer Center, Boston University School of Medicine, Boston, Massachusetts. Department of Genetics and Genomics, Boston University School of Medicine, Boston, Massachusetts
| | - Sait Ozturk
- Department of Medicine, Molecular Medicine Program, Section of Biomedical Genetics and Cancer Center, Boston University School of Medicine, Boston, Massachusetts
| | - Panagiotis Papageorgis
- Department of Medicine, Molecular Medicine Program, Section of Biomedical Genetics and Cancer Center, Boston University School of Medicine, Boston, Massachusetts. Department of Genetics and Genomics, Boston University School of Medicine, Boston, Massachusetts
| | - Rekha Raghunathan
- Department of Medicine, Molecular Medicine Program, Section of Biomedical Genetics and Cancer Center, Boston University School of Medicine, Boston, Massachusetts
| | - Yuriy Alekseyev
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Adam C Gower
- Clinical and Translational Science Institute, Boston University, Boston, Massachusetts
| | - Björn M Reinhard
- Department of Chemistry, Boston University, Boston, Massachusetts
| | - Hamid M Abdolmaleky
- Department of Medicine, Molecular Medicine Program, Section of Biomedical Genetics and Cancer Center, Boston University School of Medicine, Boston, Massachusetts
| | - Sam Thiagalingam
- Department of Medicine, Molecular Medicine Program, Section of Biomedical Genetics and Cancer Center, Boston University School of Medicine, Boston, Massachusetts. Department of Genetics and Genomics, Boston University School of Medicine, Boston, Massachusetts. Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
37
|
Chiappori A, De Ferrari L, Folli C, Mauri P, Riccio AM, Canonica GW. Biomarkers and severe asthma: a critical appraisal. Clin Mol Allergy 2015; 13:20. [PMID: 26430389 PMCID: PMC4590266 DOI: 10.1186/s12948-015-0027-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/04/2015] [Indexed: 01/17/2023] Open
Abstract
Severe asthma (SA) is a clinically and etiologically heterogeneous respiratory disease which affects among 5–10 % of asthmatic patients. Despite high-dose therapy, a large patients percentage is not fully controlled and has a poor quality of life. In this review, we describe the biomarkers actually known in scientific literature and used in clinical practice for SA assessment and management: neutrophils, eosinophils, periostin, fractional exhaled nitric oxide, exhaled breath condensate and galectins. Moreover, we give an overview on clinical and biological features characterizing severe asthma, paying special attention to the potential use of these ones as reliable markers. We finally underline the need to define different biomarkers panels to select patients affected by severe asthma for specific and personalized therapeutic approach.
Collapse
Affiliation(s)
- Alessandra Chiappori
- DIMI-Department of Internal Medicine, Respiratory Diseases and Allergy Clinic, University of Genoa, IRCCS AOU S.Martino-IST, Genoa, Italy
| | - Laura De Ferrari
- DIMI-Department of Internal Medicine, Respiratory Diseases and Allergy Clinic, University of Genoa, IRCCS AOU S.Martino-IST, Genoa, Italy
| | - Chiara Folli
- DIMI-Department of Internal Medicine, Respiratory Diseases and Allergy Clinic, University of Genoa, IRCCS AOU S.Martino-IST, Genoa, Italy
| | - Pierluigi Mauri
- Institute for Biomedical Technologies, CNR, Segrate, Milan, Italy
| | - Anna Maria Riccio
- DIMI-Department of Internal Medicine, Respiratory Diseases and Allergy Clinic, University of Genoa, IRCCS AOU S.Martino-IST, Genoa, Italy
| | - Giorgio Walter Canonica
- DIMI-Department of Internal Medicine, Respiratory Diseases and Allergy Clinic, University of Genoa, IRCCS AOU S.Martino-IST, Genoa, Italy
| |
Collapse
|
38
|
Transforming growth factor β type II receptor as a marker in diffuse large B cell lymphoma. Tumour Biol 2015; 36:9903-8. [PMID: 26168957 DOI: 10.1007/s13277-015-3700-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 06/22/2015] [Indexed: 12/22/2022] Open
Abstract
The objective of this study was to investigate the expression and significance of the transforming growth factor β type II receptor (TGFβRII) in diffuse large B cell lymphoma. All patients were enrolled at the First Affiliated Hospital of Liaoning Medical University between 2001 and 2007. The median follow-up period was 53.3 months. Of the 338 patients studied, 131 (38.76 %) had TGFβRII positive expression on immunohistochemistry. The 5 year survival rate was significantly higher in patients with TGFβRII expression than in those without TGFβRII expression (40.3 vs. 31.6 %, P = 0.041). Multivariate analysis identified TGFβRII expression as an independent predictive parameter for survival, in addition to lactate dehydrogenase, clinical stage, and histologic subtype. TGFβRII expression may be considered a new prognostic factor of diffuse large B cell lymphoma.
Collapse
|
39
|
Incardona F, Doroudchi MM, Ismail N, Carreno A, Griner E, Anna Lim M. Registered report: Interactions between cancer stem cells and their niche govern metastatic colonization. eLife 2015; 4:e06938. [PMID: 26086719 PMCID: PMC4470052 DOI: 10.7554/elife.06938] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 05/22/2015] [Indexed: 12/27/2022] Open
Abstract
The Reproducibility Project: Cancer Biology seeks to address growing concerns about reproducibility in scientific research by replicating selected results from a substantial number of high-profile papers in the field of cancer biology published between 2010 and 2012. This Registered report describes the proposed replication plan of key experiments from ‘Interactions between cancer stem cells and their niche govern metastatic colonization’ by Malanchi and colleagues, published in Nature in 2012 (Malanchi et al., 2012). The key experiments that will be replicated are those reported in Figures 2H, 3A, 3B, and S13. In these experiments, Malanchi and colleagues analyze messenger RNA levels of periostin (POSTN) in pulmonary fibroblasts, endothelial cells, and immune cells isolated from mice with micrometastases to determine which cell type is producing POSTN in the metastatic niche (Figure 2H; Malanchi et al., 2012). Additionally, they examine MMTV-PyMT control or POSTN null mice to test the effect of POSTN on primary tumor growth and metastasis (Figures 3A, 3B, and S13; Malanchi et al., 2012). The Reproducibility Project: Cancer Biology is a collaboration between the Center for Open Science and Science Exchange, and the results of the replications will be published in eLife. DOI:http://dx.doi.org/10.7554/eLife.06938.001
Collapse
Affiliation(s)
| | | | | | | | - Erin Griner
- University of Virginia, Charlottesville, Virginia
| | | | | |
Collapse
|
40
|
Lister NC, Clemson M, Morris KV. RNA-directed epigenetic silencing of Periostin inhibits cell motility. ROYAL SOCIETY OPEN SCIENCE 2015; 2:140545. [PMID: 26543579 PMCID: PMC4632543 DOI: 10.1098/rsos.140545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 05/14/2015] [Indexed: 06/05/2023]
Abstract
The over-expression of Periostin, a member of the fasciclin family of proteins, has been reported in a number of cancers and, in particular, in metastatic tumours. These include breast, ovarian, lung, colon, head and neck, pancreatic, prostate, neuroblastoma and thyroid cancers. It is thought that Periostin plays a major role in the development of metastases owing to its apparent involvement in restructuring of the extracellular matrix to create a microenvironment favouring invasion and metastases, angiogenesis, independent proliferation, avoidance of apoptosis and the ability for cells to re-enter the cell cycle. As such we reasoned that targeted suppression of Periostin at the promoter and epigenetic level could result in the stable inhibition of cell motility. We find here that promoter-directed small antisense non-coding RNAs can induce transcriptional gene silencing of Periostin that results ultimately in a loss of cellular motility. The observations presented here suggest that cell motility and possibly metastasis can be controlled by transcriptional and epigenetic regulation of Periostin, offering a potentially new and novel manner to control the spread of cancerous cells.
Collapse
Affiliation(s)
- Nicholas C. Lister
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Matthew Clemson
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Kevin V. Morris
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
- Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
41
|
Li Z, Zhang X, Yang Y, Yang S, Dong Z, Du L, Wang L, Wang C. Periostin expression and its prognostic value for colorectal cancer. Int J Mol Sci 2015; 16:12108-18. [PMID: 26023718 PMCID: PMC4490432 DOI: 10.3390/ijms160612108] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 05/07/2015] [Accepted: 05/08/2015] [Indexed: 12/11/2022] Open
Abstract
Integrin is important for cell growth, invasion and metastasis, which are frequently observed in malignant tumors. The periostin (POSTN) gene encodes the ligand for integrin, one of the key focal adhesion proteins contributing to the formation of a structural link between the extracellular matrix and integrins. High expression levels of the POSTN gene are correlated with numerous human malignancies. We examined POSTN protein in colorectal cancer specimens from 115 patients by strictly following up using immunohistochemistry. Cytoplasm immunohistochemical staining showed POSTN protein expression in colorectal cancers. The positive expression rate of POSTN protein (59.13%, 68/115) in colorectal cancers was significantly higher than that in adjacent normal colon mucosa (0.47%, 11/109). POSTN over-expression in colorectal cancers was positively correlated with tumor size, differentiation, lymph node metastasis, serosal invasion, clinical stage and five-year survival rates. Further analysis showed that patients with advanced stage colorectal cancer and high POSTN expression levels had lower survival rates than those with early stage colorectal cancer and low POSTN expression levels. Overall, our results showed that POSTN played an important role in the progression of colorectal cancers.
Collapse
Affiliation(s)
- Zewu Li
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan 250012, China.
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan 250012, China.
| | - Yongmei Yang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan 250012, China.
| | - Sanhui Yang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan 250012, China.
| | - Zhaogang Dong
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan 250012, China.
| | - Lutao Du
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan 250012, China.
| | - Lili Wang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan 250012, China.
| | - Chuanxin Wang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan 250012, China.
| |
Collapse
|
42
|
Liu Y, Du L. Role of pancreatic stellate cells and periostin in pancreatic cancer progression. Tumour Biol 2015; 36:3171-7. [PMID: 25840689 DOI: 10.1007/s13277-015-3386-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/24/2015] [Indexed: 12/30/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive and one of the five most lethal malignancies characterized by prominent desmoplastic reaction. Accumulating evidences indicate that tumor desmoplasia plays a pivotal role in PDAC progression, and it has been largely ignored until recent times. It has now been unequivocally shown that pancreatic stellate cells (PSCs) are the principal effector cells responsible for stroma production. Periostin, also known as osteoblast-specific factor 2, is a secretory protein and originally identified as an osteoblast-specific factor that expressed in periosteum. Periostin is exclusively produced by activated PSCs, and periostin overexpression presents in various malignant tumors and closely relates with disease progression. In addition, periostin has been suggested to stimulate pancreatic cancer cells proliferation and enhance their resistance to serum starvation and hypoxia. Therefore, the interplay between cancer cells and stromal cells plays a vital role in PDAC development. However, the function of periostin in pancreatic cancer development is controversial. This review summarizes existing knowledge about the role of PSCs in cancer stroma production, the interaction between PSCs and pancreatic cancer cells, tumor angiogenesis, and hypoxic microenvironment, with particular focus on the expression and function as well as signaling pathways of periostin in PDAC cells and PSCs.
Collapse
Affiliation(s)
- Yang Liu
- Department of Ultrasound, Shanghai First People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, People's Republic of China
| | | |
Collapse
|
43
|
Tian Y, Choi CH, Li QK, Rahmatpanah FB, Chen X, Kim SR, Veltri R, Chia D, Zhang Z, Mercola D, Zhang H. Overexpression of periostin in stroma positively associated with aggressive prostate cancer. PLoS One 2015; 10:e0121502. [PMID: 25781169 PMCID: PMC4362940 DOI: 10.1371/journal.pone.0121502] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 02/01/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Periostin is an important extracellular matrix protein involved in cell development and adhesion. Previously, we identified periostin to be up-regulated in aggressive prostate cancer (CaP) using quantitative glycoproteomics and mass spectrometry. The expression of periostin was further evaluated in primary radical prostatectomy (RP) prostate tumors and adjacent non-tumorous prostate tissues using immunohistochemistry (IHC). Our IHC results revealed a low background periostin levels in the adjacent non-tumorous prostate tissues, but overexpressed periostin levels in the peritumoral stroma of primary CaP tumors. METHODS In this study, periostin expression in CaP was further examined on multiple tissue microarrays (TMAs), which were conducted in four laboratories. To achieve consistent staining, all TMAs were stained with same protocol and scored by same image computation tool to determine the total periostin staining intensities. The TMAs were further scored by pathologists to characterize the stromal staining and epithelial staining. RESULTS The periostin staining was observed mainly in peritumoral stromal cells and in some cases in tumor epithelial cells though the stronger staining was found in peritumoral stromal cells. Both periostin stromal staining and epithelial staining can differentiate BPH from CaP including low grade CaP (Gleason score ≤6), with significant p-value of 2.2e-16 and 0.001, respectively. Periostin epithelial staining differentiated PIN from low grade CaP (Gleason score ≤6) (p=0.001), while periostin stromal staining differentiated low grade Cap (Gleason score ≤6) from high grade Cap (Gleason score ≤6) (p=1.7e-05). In addition, a positive correlation between total periostin staining and Gleason score was observed (r=0.87, p=0.002). CONCLUSIONS The results showed that periostin staining was positively correlated with increasing Gleason score and the aggressiveness of prostate disease.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Caitlin H. Choi
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Qing Kay Li
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Farah B. Rahmatpanah
- Department of Pathology, University of California at Irvine, Irvine, California, United States of America
| | - Xin Chen
- Department of Pathology, University of California at Irvine, Irvine, California, United States of America
| | - Sara Ruth Kim
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Robert Veltri
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - David Chia
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Zhen Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Dan Mercola
- Department of Pathology, University of California at Irvine, Irvine, California, United States of America
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
44
|
Lv J, Zhu B, Zhang L, Xie Q, Zhuo W. Detection and screening of small molecule agents for overcoming Sorafenib resistance of hepatocellular carcinoma: a bioinformatics study. Int J Clin Exp Med 2015; 8:2317-2325. [PMID: 25932168 PMCID: PMC4402815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 02/03/2015] [Indexed: 06/04/2023]
Abstract
Sorafenib, a novel orally-available multikinase inhibitor blocking several crucial oncogenic signaling pathways, presented survival benefits and became the first-line drug for treatment of patients with Hepatocellular carcinoma (HCC). However, the acquired resistance to Sorafenib resulted in limited benefits. In this study, we aimed to explore possible agents that might overcome Sorafenib resistance by bioinformatics methods. The gene expression profiles of HCC-3sp (acquired Sorafenib-resistance) and HCC-3p (Sorafenib-sensitive) cell line were downloaded from Gene Expression Omnibus (GEO) database. Then, the differentially expressed genes (DEGs) were selected using dChip software. Furthermore, Gene Ontology (GO) and pathway enrichment analyses were performed by DAVID database. Finally, the Connectivity Map was utilized to predict potential chemicals for reversing Sorafenib resistance. Consequently, a total of 541 DEGs were identified, which were associated with cell extracellular matrix, cell adhesion and binding-related items. KEGG pathway analysis indicated that 8 dysfunctional pathways were enriched. Finally, several small molecules, such as pregnenolone and lomustine, were screened out as potential therapeutic agents capable of overcoming Sorafenib resistance. The data identified some potential small molecule drugs for treatment of Sorafenib resistance and offered a novel strategy for investigation and treatments of HCC.
Collapse
Affiliation(s)
- Jinli Lv
- Institute of Cancer, Xinqiao Hospital, Third Military Medical UniversityChongqing 400037, China
- Department of General Surgery, The 153th Central Hospital of PLAZhengzhou 450007, Henan, China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical UniversityChongqing 400037, China
| | - Liang Zhang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical UniversityChongqing 400037, China
| | - Qichao Xie
- Institute of Cancer, Xinqiao Hospital, Third Military Medical UniversityChongqing 400037, China
| | - Wenlei Zhuo
- Institute of Cancer, Xinqiao Hospital, Third Military Medical UniversityChongqing 400037, China
| |
Collapse
|
45
|
Mass spectrometric analysis revealing phosphorylation modifications of periostin. Chem Res Chin Univ 2014. [DOI: 10.1007/s40242-014-4317-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
46
|
Abstract
Over the last decade, identification and characterization of novel markers of progression and targets for therapy of chronic kidney disease (CKD) have been challenging for the research community. Several promising candidates have emerged, mainly from experimental models of CKD that are yet to be investigated in clinical studies. The authors identified two candidate genes: periostin, an extracellular matrix protein involved in bone and dental development, and the discoidin domain receptor 1 (DDR1), a collagen-binding membrane receptor with tyrosine kinase activity. Both genes are inactive in adulthood under normal conditions but have been shown to be highly inducible following injury to glomerular or tubular epithelial cells. The objective of this review is to summarize recent evidence supporting the role of periostin and DDR1 as potential novel biomarkers and therapeutic targets in CKD.
Collapse
|
47
|
LaPorta E, Welsh J. Modeling vitamin D actions in triple negative/basal-like breast cancer. J Steroid Biochem Mol Biol 2014; 144 Pt A:65-73. [PMID: 24239860 PMCID: PMC4021002 DOI: 10.1016/j.jsbmb.2013.10.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/21/2013] [Accepted: 10/23/2013] [Indexed: 10/26/2022]
Abstract
Breast cancer is a heterogeneous disease with six molecularly defined subtypes, the most aggressive of which are triple negative breast cancers that lack expression of estrogen receptor (ER) and progesterone receptor (PR) and do not exhibit amplification of the growth factor receptor HER2. Triple negative breast cancers often exhibit basal-like gene signatures and are enriched for CD44+ cancer stem cells. In this report we have characterized the molecular actions of the VDR in a model of triple negative breast cancer. Estrogen independent, invasive mammary tumor cell lines established from wild-type (WT) and VDR knockout (VDRKO) mice were used to demonstrate that VDR is necessary for 1,25-dihydroxyvitamin D3 (1,25D) mediated anti-cancer actions in vitro and to identify novel targets of this receptor. Western blotting confirmed differential VDR expression and demonstrated the lack of ER, PR and Her2 in these cell lines. Re-introduction of human VDR (hVDR) into VDRKO cells restored the anti-proliferative actions of 1,25D. Genomic profiling demonstrated that 1,25D failed to alter gene expression in KO240 cells whereas major changes were observed in WT145 cells and in KO clones stably expressing hVDR (KO(hVDR) cells). With a 2-fold cutoff, 117 transcripts in WT145 cells and 197 transcripts in the KO(hVDR) clones were significantly altered by 1,25D. Thirty-five genes were found to be commonly regulated by 1,25D in all VDR-positive cell lines. Of these, we identified a cohort of four genes (Plau, Hbegf, Postn, Has2) that are known to drive breast cancer invasion and metastasis whose expression was markedly down regulated by 1,25D. These data support a model whereby 1,25D coordinately suppresses multiple proteins that are required for survival of triple-negative/basal-like breast cancer cells. Since studies have demonstrated a high prevalence of vitamin D deficiency in women with basal-like breast cancer, correction of vitamin D deficiency in these women represents a reasonable, but as yet untested, strategy to delay recurrence and extend survival. This article is part of a Special Issue entitled '16th Vitamin D Workshop'.
Collapse
Affiliation(s)
- Erika LaPorta
- Cancer Research Center, University at Albany, USA; Department of Biomedical Sciences, University at Albany, USA
| | - JoEllen Welsh
- Cancer Research Center, University at Albany, USA; Department of Environmental Health Sciences, University at Albany, USA.
| |
Collapse
|
48
|
CD109 is a potential target for triple-negative breast cancer. Tumour Biol 2014; 35:12083-90. [PMID: 25149155 DOI: 10.1007/s13277-014-2509-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 08/14/2014] [Indexed: 01/25/2023] Open
Abstract
The aim of this study is to explore the expression of CD109 in breast cancer stem cells and the relationship between CD109 protein and clinicopathological characteristics of breast cancer. CD44+/CD24- tumor cells (CSCs) were selected by flow cytometry. The protein expression of CD109 was analyzed by immunohistochemistry staining, and the relationship between CD109 and clinicopathological parameters of breast cancer was determined. CD109 positively regulated the proliferation of breast CSCs in vitro, and CD109 protein expression was significantly higher in triple-negative breast cancer (TNBC) compared to non-TNBC (63.78 vs. 3.71 %, P = 0.001). Moreover, CD109 protein expression was related to the histological grade of breast cancer (P = 0.015), whereas age (P = 0.731), tumor size (P = 0.995), clinical stage (P = 0.644), and lymph node metastasis (P = 0.924) were not. In the logistic regression model, histological grade (P = 0.001) and molecular type (P = 0.001) were significantly related to CD109 expression. The patients with high expression of CD109 protein had significantly poorer postoperative disease-specific survival than those with no or low expression of CD109 protein (P = 0.001). In the Cox regression, CD109 was an independent prognostic factor (P = 0.001). CD109 is highly expressed in TNBC and is a potential biomarker for the initiation, progression, and differentiation of breast cancer tumors.
Collapse
|
49
|
Mikheev AM, Mikheeva SA, Trister AD, Tokita MJ, Emerson SN, Parada CA, Born DE, Carnemolla B, Frankel S, Kim DH, Oxford RG, Kosai Y, Tozer-Fink KR, Manning TC, Silber JR, Rostomily RC. Periostin is a novel therapeutic target that predicts and regulates glioma malignancy. Neuro Oncol 2014; 17:372-82. [PMID: 25140038 DOI: 10.1093/neuonc/nou161] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 07/10/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Periostin is a secreted matricellular protein critical for epithelial-mesenchymal transition and carcinoma metastasis. In glioblastoma, it is highly upregulated compared with normal brain, and existing reports indicate potential prognostic and functional importance in glioma. However, the clinical implications of periostin expression and function related to its therapeutic potential have not been fully explored. METHODS Periostin expression levels and patterns were examined in human glioma cells and tissues by quantitative real-time PCR and immunohistochemistry and correlated with glioma grade, type, recurrence, and survival. Functional assays determined the impact of altering periostin expression and function on cell invasion, migration, adhesion, and glioma stem cell activity and tumorigenicity. The prognostic and functional relevance of periostin and its associated genes were analyzed using the TCGA and REMBRANDT databases and paired recurrent glioma samples. RESULTS Periostin expression levels correlated directly with tumor grade and recurrence, and inversely with survival, in all grades of adult human glioma. Stromal deposition of periostin was detected only in grade IV gliomas. Secreted periostin promoted glioma cell invasion and adhesion, and periostin knockdown markedly impaired survival of xenografted glioma stem cells. Interactions with αvβ3 and αvβ5 integrins promoted adhesion and migration, and periostin abrogated cytotoxicity of the αvβ3/β5 specific inhibitor cilengitide. Periostin-associated gene signatures, predominated by matrix and secreted proteins, corresponded to patient prognosis and functional motifs related to increased malignancy. CONCLUSION Periostin is a robust marker of glioma malignancy and potential tumor recurrence. Abrogation of glioma stem cell tumorigenicity after periostin inhibition provides support for exploring the therapeutic impact of targeting periostin.
Collapse
Affiliation(s)
- Andrei M Mikheev
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M, S.N.E., C.A.P., R.G.O., J.R.S., R.C.R.); Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington (A.D.T.); Division of Medical Genetics, Department of Internal Medicine, University of Washington School of Medicine, Seattle, Washington (M.J.T); Department of Bioengineering, University of Washington School of Medicine, Seattle, Washington (S.F., D.-H.K.); Department of Radiology, University of Washington School of Medicine, Seattle, Washington (K.R.T.-F.); Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M., S.F., D.-H.K., R.C.R.); Sage Bionetworks, Seattle, Washington (A.D.T.); Neuropathology Service, Department of Pathology, Stanford University School of Medicine, Stanford, California (D.E.B.); Laboratory of Immunology, IRCCS San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy (B.C.); Case Western Reserve School of Medicine, Cleveland, Ohio (Y.K.); Neuroscience Associates, Boise, Idaho (T.C.M.)
| | - Svetlana A Mikheeva
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M, S.N.E., C.A.P., R.G.O., J.R.S., R.C.R.); Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington (A.D.T.); Division of Medical Genetics, Department of Internal Medicine, University of Washington School of Medicine, Seattle, Washington (M.J.T); Department of Bioengineering, University of Washington School of Medicine, Seattle, Washington (S.F., D.-H.K.); Department of Radiology, University of Washington School of Medicine, Seattle, Washington (K.R.T.-F.); Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M., S.F., D.-H.K., R.C.R.); Sage Bionetworks, Seattle, Washington (A.D.T.); Neuropathology Service, Department of Pathology, Stanford University School of Medicine, Stanford, California (D.E.B.); Laboratory of Immunology, IRCCS San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy (B.C.); Case Western Reserve School of Medicine, Cleveland, Ohio (Y.K.); Neuroscience Associates, Boise, Idaho (T.C.M.)
| | - Andrew D Trister
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M, S.N.E., C.A.P., R.G.O., J.R.S., R.C.R.); Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington (A.D.T.); Division of Medical Genetics, Department of Internal Medicine, University of Washington School of Medicine, Seattle, Washington (M.J.T); Department of Bioengineering, University of Washington School of Medicine, Seattle, Washington (S.F., D.-H.K.); Department of Radiology, University of Washington School of Medicine, Seattle, Washington (K.R.T.-F.); Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M., S.F., D.-H.K., R.C.R.); Sage Bionetworks, Seattle, Washington (A.D.T.); Neuropathology Service, Department of Pathology, Stanford University School of Medicine, Stanford, California (D.E.B.); Laboratory of Immunology, IRCCS San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy (B.C.); Case Western Reserve School of Medicine, Cleveland, Ohio (Y.K.); Neuroscience Associates, Boise, Idaho (T.C.M.)
| | - Mari J Tokita
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M, S.N.E., C.A.P., R.G.O., J.R.S., R.C.R.); Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington (A.D.T.); Division of Medical Genetics, Department of Internal Medicine, University of Washington School of Medicine, Seattle, Washington (M.J.T); Department of Bioengineering, University of Washington School of Medicine, Seattle, Washington (S.F., D.-H.K.); Department of Radiology, University of Washington School of Medicine, Seattle, Washington (K.R.T.-F.); Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M., S.F., D.-H.K., R.C.R.); Sage Bionetworks, Seattle, Washington (A.D.T.); Neuropathology Service, Department of Pathology, Stanford University School of Medicine, Stanford, California (D.E.B.); Laboratory of Immunology, IRCCS San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy (B.C.); Case Western Reserve School of Medicine, Cleveland, Ohio (Y.K.); Neuroscience Associates, Boise, Idaho (T.C.M.)
| | - Samuel N Emerson
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M, S.N.E., C.A.P., R.G.O., J.R.S., R.C.R.); Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington (A.D.T.); Division of Medical Genetics, Department of Internal Medicine, University of Washington School of Medicine, Seattle, Washington (M.J.T); Department of Bioengineering, University of Washington School of Medicine, Seattle, Washington (S.F., D.-H.K.); Department of Radiology, University of Washington School of Medicine, Seattle, Washington (K.R.T.-F.); Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M., S.F., D.-H.K., R.C.R.); Sage Bionetworks, Seattle, Washington (A.D.T.); Neuropathology Service, Department of Pathology, Stanford University School of Medicine, Stanford, California (D.E.B.); Laboratory of Immunology, IRCCS San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy (B.C.); Case Western Reserve School of Medicine, Cleveland, Ohio (Y.K.); Neuroscience Associates, Boise, Idaho (T.C.M.)
| | - Carolina A Parada
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M, S.N.E., C.A.P., R.G.O., J.R.S., R.C.R.); Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington (A.D.T.); Division of Medical Genetics, Department of Internal Medicine, University of Washington School of Medicine, Seattle, Washington (M.J.T); Department of Bioengineering, University of Washington School of Medicine, Seattle, Washington (S.F., D.-H.K.); Department of Radiology, University of Washington School of Medicine, Seattle, Washington (K.R.T.-F.); Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M., S.F., D.-H.K., R.C.R.); Sage Bionetworks, Seattle, Washington (A.D.T.); Neuropathology Service, Department of Pathology, Stanford University School of Medicine, Stanford, California (D.E.B.); Laboratory of Immunology, IRCCS San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy (B.C.); Case Western Reserve School of Medicine, Cleveland, Ohio (Y.K.); Neuroscience Associates, Boise, Idaho (T.C.M.)
| | - Donald E Born
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M, S.N.E., C.A.P., R.G.O., J.R.S., R.C.R.); Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington (A.D.T.); Division of Medical Genetics, Department of Internal Medicine, University of Washington School of Medicine, Seattle, Washington (M.J.T); Department of Bioengineering, University of Washington School of Medicine, Seattle, Washington (S.F., D.-H.K.); Department of Radiology, University of Washington School of Medicine, Seattle, Washington (K.R.T.-F.); Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M., S.F., D.-H.K., R.C.R.); Sage Bionetworks, Seattle, Washington (A.D.T.); Neuropathology Service, Department of Pathology, Stanford University School of Medicine, Stanford, California (D.E.B.); Laboratory of Immunology, IRCCS San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy (B.C.); Case Western Reserve School of Medicine, Cleveland, Ohio (Y.K.); Neuroscience Associates, Boise, Idaho (T.C.M.)
| | - Barbara Carnemolla
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M, S.N.E., C.A.P., R.G.O., J.R.S., R.C.R.); Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington (A.D.T.); Division of Medical Genetics, Department of Internal Medicine, University of Washington School of Medicine, Seattle, Washington (M.J.T); Department of Bioengineering, University of Washington School of Medicine, Seattle, Washington (S.F., D.-H.K.); Department of Radiology, University of Washington School of Medicine, Seattle, Washington (K.R.T.-F.); Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M., S.F., D.-H.K., R.C.R.); Sage Bionetworks, Seattle, Washington (A.D.T.); Neuropathology Service, Department of Pathology, Stanford University School of Medicine, Stanford, California (D.E.B.); Laboratory of Immunology, IRCCS San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy (B.C.); Case Western Reserve School of Medicine, Cleveland, Ohio (Y.K.); Neuroscience Associates, Boise, Idaho (T.C.M.)
| | - Sam Frankel
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M, S.N.E., C.A.P., R.G.O., J.R.S., R.C.R.); Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington (A.D.T.); Division of Medical Genetics, Department of Internal Medicine, University of Washington School of Medicine, Seattle, Washington (M.J.T); Department of Bioengineering, University of Washington School of Medicine, Seattle, Washington (S.F., D.-H.K.); Department of Radiology, University of Washington School of Medicine, Seattle, Washington (K.R.T.-F.); Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M., S.F., D.-H.K., R.C.R.); Sage Bionetworks, Seattle, Washington (A.D.T.); Neuropathology Service, Department of Pathology, Stanford University School of Medicine, Stanford, California (D.E.B.); Laboratory of Immunology, IRCCS San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy (B.C.); Case Western Reserve School of Medicine, Cleveland, Ohio (Y.K.); Neuroscience Associates, Boise, Idaho (T.C.M.)
| | - Deok-Ho Kim
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M, S.N.E., C.A.P., R.G.O., J.R.S., R.C.R.); Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington (A.D.T.); Division of Medical Genetics, Department of Internal Medicine, University of Washington School of Medicine, Seattle, Washington (M.J.T); Department of Bioengineering, University of Washington School of Medicine, Seattle, Washington (S.F., D.-H.K.); Department of Radiology, University of Washington School of Medicine, Seattle, Washington (K.R.T.-F.); Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M., S.F., D.-H.K., R.C.R.); Sage Bionetworks, Seattle, Washington (A.D.T.); Neuropathology Service, Department of Pathology, Stanford University School of Medicine, Stanford, California (D.E.B.); Laboratory of Immunology, IRCCS San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy (B.C.); Case Western Reserve School of Medicine, Cleveland, Ohio (Y.K.); Neuroscience Associates, Boise, Idaho (T.C.M.)
| | - Rob G Oxford
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M, S.N.E., C.A.P., R.G.O., J.R.S., R.C.R.); Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington (A.D.T.); Division of Medical Genetics, Department of Internal Medicine, University of Washington School of Medicine, Seattle, Washington (M.J.T); Department of Bioengineering, University of Washington School of Medicine, Seattle, Washington (S.F., D.-H.K.); Department of Radiology, University of Washington School of Medicine, Seattle, Washington (K.R.T.-F.); Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M., S.F., D.-H.K., R.C.R.); Sage Bionetworks, Seattle, Washington (A.D.T.); Neuropathology Service, Department of Pathology, Stanford University School of Medicine, Stanford, California (D.E.B.); Laboratory of Immunology, IRCCS San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy (B.C.); Case Western Reserve School of Medicine, Cleveland, Ohio (Y.K.); Neuroscience Associates, Boise, Idaho (T.C.M.)
| | - Yoshito Kosai
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M, S.N.E., C.A.P., R.G.O., J.R.S., R.C.R.); Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington (A.D.T.); Division of Medical Genetics, Department of Internal Medicine, University of Washington School of Medicine, Seattle, Washington (M.J.T); Department of Bioengineering, University of Washington School of Medicine, Seattle, Washington (S.F., D.-H.K.); Department of Radiology, University of Washington School of Medicine, Seattle, Washington (K.R.T.-F.); Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M., S.F., D.-H.K., R.C.R.); Sage Bionetworks, Seattle, Washington (A.D.T.); Neuropathology Service, Department of Pathology, Stanford University School of Medicine, Stanford, California (D.E.B.); Laboratory of Immunology, IRCCS San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy (B.C.); Case Western Reserve School of Medicine, Cleveland, Ohio (Y.K.); Neuroscience Associates, Boise, Idaho (T.C.M.)
| | - Kathleen R Tozer-Fink
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M, S.N.E., C.A.P., R.G.O., J.R.S., R.C.R.); Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington (A.D.T.); Division of Medical Genetics, Department of Internal Medicine, University of Washington School of Medicine, Seattle, Washington (M.J.T); Department of Bioengineering, University of Washington School of Medicine, Seattle, Washington (S.F., D.-H.K.); Department of Radiology, University of Washington School of Medicine, Seattle, Washington (K.R.T.-F.); Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M., S.F., D.-H.K., R.C.R.); Sage Bionetworks, Seattle, Washington (A.D.T.); Neuropathology Service, Department of Pathology, Stanford University School of Medicine, Stanford, California (D.E.B.); Laboratory of Immunology, IRCCS San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy (B.C.); Case Western Reserve School of Medicine, Cleveland, Ohio (Y.K.); Neuroscience Associates, Boise, Idaho (T.C.M.)
| | - Thomas C Manning
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M, S.N.E., C.A.P., R.G.O., J.R.S., R.C.R.); Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington (A.D.T.); Division of Medical Genetics, Department of Internal Medicine, University of Washington School of Medicine, Seattle, Washington (M.J.T); Department of Bioengineering, University of Washington School of Medicine, Seattle, Washington (S.F., D.-H.K.); Department of Radiology, University of Washington School of Medicine, Seattle, Washington (K.R.T.-F.); Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M., S.F., D.-H.K., R.C.R.); Sage Bionetworks, Seattle, Washington (A.D.T.); Neuropathology Service, Department of Pathology, Stanford University School of Medicine, Stanford, California (D.E.B.); Laboratory of Immunology, IRCCS San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy (B.C.); Case Western Reserve School of Medicine, Cleveland, Ohio (Y.K.); Neuroscience Associates, Boise, Idaho (T.C.M.)
| | - John R Silber
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M, S.N.E., C.A.P., R.G.O., J.R.S., R.C.R.); Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington (A.D.T.); Division of Medical Genetics, Department of Internal Medicine, University of Washington School of Medicine, Seattle, Washington (M.J.T); Department of Bioengineering, University of Washington School of Medicine, Seattle, Washington (S.F., D.-H.K.); Department of Radiology, University of Washington School of Medicine, Seattle, Washington (K.R.T.-F.); Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M., S.F., D.-H.K., R.C.R.); Sage Bionetworks, Seattle, Washington (A.D.T.); Neuropathology Service, Department of Pathology, Stanford University School of Medicine, Stanford, California (D.E.B.); Laboratory of Immunology, IRCCS San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy (B.C.); Case Western Reserve School of Medicine, Cleveland, Ohio (Y.K.); Neuroscience Associates, Boise, Idaho (T.C.M.)
| | - Robert C Rostomily
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M, S.N.E., C.A.P., R.G.O., J.R.S., R.C.R.); Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington (A.D.T.); Division of Medical Genetics, Department of Internal Medicine, University of Washington School of Medicine, Seattle, Washington (M.J.T); Department of Bioengineering, University of Washington School of Medicine, Seattle, Washington (S.F., D.-H.K.); Department of Radiology, University of Washington School of Medicine, Seattle, Washington (K.R.T.-F.); Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M., S.F., D.-H.K., R.C.R.); Sage Bionetworks, Seattle, Washington (A.D.T.); Neuropathology Service, Department of Pathology, Stanford University School of Medicine, Stanford, California (D.E.B.); Laboratory of Immunology, IRCCS San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy (B.C.); Case Western Reserve School of Medicine, Cleveland, Ohio (Y.K.); Neuroscience Associates, Boise, Idaho (T.C.M.)
| |
Collapse
|
50
|
Increased MTHFD2 expression is associated with poor prognosis in breast cancer. Tumour Biol 2014; 35:8685-90. [PMID: 24870594 DOI: 10.1007/s13277-014-2111-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/15/2014] [Indexed: 02/01/2023] Open
Abstract
The aim of this study was to investigate the expression levels of methylenetetrahydrofolate dehydrogenase (NADP + -dependent) 2 (MTHFD2) and the associated clinical implications in breast cancer. MTHFD2 expression was measured by Western blot and immunohistochemistry in 698 tissue sections taken from breast cancer patients. The relationship between MTHFD2 expression, clinicopathological parameters, and the prognosis of breast cancer was subsequently determined. In comparison with para-carcinoma tissue specimens, an enhanced expression of MTHFD2 was observed in breast cancer tissue specimens (P < 0.05). In total, 41.12 % (287/698) of breast cancer tissue specimens had high levels of MTHFD2. After universal and Spearman regression correlation analyses, MTHFD2 expression was found to correlate with tumor size, histological grade, lymph node metastasis, and distant metastases (P = 0.001, 0.002, 0.001, and 0.001, respectively). Furthermore, patients with MTHFD2-expressing tumors had a significantly poorer prognosis than those with no or low MTHFD2 expression. (P = 0.002). Using the Cox regression test, MTHFD2 was identified as an independent prognostic factor (P = 0.001). MTHFD2 was differentially expressed in breast cancer tissue. Therefore, this protein may be an independent prognostic factor and a potential therapeutic target for future breast cancer treatments.
Collapse
|