1
|
Zhu AH, Song ZK, Wang JF, Guan HW, Ma HX. Multi-Locus Phylogeny and Morphology Reveal Two New Species of Hypoxylon (Hypoxylaceae, Xylariales) from Motuo, China. Microorganisms 2023; 12:72. [PMID: 38257899 PMCID: PMC10819716 DOI: 10.3390/microorganisms12010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/12/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Hypoxylaceous fungi are abundant in China, but their discovery and report are uneven in various provinces, with more fungi in Yunnan and Hainan and fewer fungi in Tibet. During the investigation of macro-fungi in Motuo county, Tibet Autonomous Region, we collected a number of xylarialean specimens. Six hypoxylaceous specimens growing on dead angiosperm were collected from the forests of Motuo county, and they were described and illustrated as two new species in Hypoxylon based on a combination of morphological characters and molecular evidence. Hypoxylon diperithecium was characterized by its bistratal perithecia, purple-brown stromatal granules, citrine to rust KOH-extractable pigments, and light brown to brown ascospores ellipsoid-inequilateral with conspicuous coil-like ornamentation. Hypoxylon tibeticum was distinct from other species by having pulvinate and applanate stromata, surface vinaceous, with orange granules, orange KOH-extractable pigments, and brown ascospores with inconspicuous ornamentation. The multi-gene phylogenetic analyses (ITS-LSU-RPB2-TUB) supported the two new taxa as separate lineages in the genus Hypoxylon. A key to all known Hypoxylon taxa from China is provided.
Collapse
Affiliation(s)
- An-Hong Zhu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China; (A.-H.Z.); (Z.-K.S.); (J.-F.W.); (H.-W.G.)
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Zi-Kun Song
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China; (A.-H.Z.); (Z.-K.S.); (J.-F.W.); (H.-W.G.)
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Jun-Fang Wang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China; (A.-H.Z.); (Z.-K.S.); (J.-F.W.); (H.-W.G.)
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Hao-Wen Guan
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China; (A.-H.Z.); (Z.-K.S.); (J.-F.W.); (H.-W.G.)
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Hai-Xia Ma
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China; (A.-H.Z.); (Z.-K.S.); (J.-F.W.); (H.-W.G.)
- Haikou Key Laboratory for Protection and Utilization of Edible and Medicinal Fungi, Haikou 571101, China
- Hainan Key Laboratory of Tropical Microbe Resources, Haikou 571101, China
| |
Collapse
|
2
|
Calvert J, McTaggart A, Carvalhais LC, Rensink S, Dennis PG, Drenth A, Shivas R. Divergent rainforest tree microbiomes between phases of the monsoon cycle, host plants and tissues. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:860-870. [PMID: 37647418 DOI: 10.1111/plb.13569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/26/2023] [Indexed: 09/01/2023]
Abstract
The Australian Monsoon Tropics (AMT) contain some of the most biodiverse forests on the continent. Little is known about the dynamics of rainforest plant microbiomes in general, and there have been no community-level studies on Australian rainforest endophytes, their seasonality, tissue and host specificity. We tested whether community composition of tropical tree endophytes (fungi and bacteria) differs: (i) at different points during a monsoon cycle, (ii) between leaf and stem tissues, (iii) between forest microclimates (gully/ridge), and between (iv) host plant species, and (v) host plant clade, using amplicon sequencing of the bacterial 16S and fungal ITS2 gene regions. Results indicated that the composition of rainforest plant microbiomes differs between wet and dry seasons, which may be explained by physiological shifts in host plants due to annual climate fluctuations from mesic to xeric. Endophyte microbiomes differed between leaves and stems. Distinct fungal communities were associated with host species and clades, with some trees enriched in a number of fungal taxa compared to host plants in other clades. Diversity of bacterial endophytes in plant stems increased in the dry season. We conclude that the microbiomes of tropical plants are responsive to monsoonal climate variation, are highly compartmentalised between plant tissues, and may be partly shaped by the relatedness of their host plants.
Collapse
Affiliation(s)
- J Calvert
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Dutton Park, QLD, Australia
| | - A McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Dutton Park, QLD, Australia
| | - L C Carvalhais
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Dutton Park, QLD, Australia
| | - S Rensink
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Dutton Park, QLD, Australia
| | - P G Dennis
- School of Earth and Environmental Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - A Drenth
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Dutton Park, QLD, Australia
| | - R Shivas
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Dutton Park, QLD, Australia
| |
Collapse
|
3
|
Cedeño-Sanchez M, Charria-Girón E, Lambert C, Luangsa-ard JJ, Decock C, Franke R, Brönstrup M, Stadler M. Segregation of the genus Parahypoxylon (Hypoxylaceae, Xylariales) from Hypoxylon by a polyphasic taxonomic approach. MycoKeys 2023; 95:131-162. [DOI: 10.3897/mycokeys.95.98125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
During a mycological survey of the Democratic Republic of the Congo, a fungal specimen that morphologically resembled the American species Hypoxylon papillatum was encountered. A polyphasic approach including morphological and chemotaxonomic together with a multigene phylogenetic study (ITS, LSU, tub2, and rpb2) of Hypoxylon spp. and representatives of related genera revealed that this strain represents a new species of the Hypoxylaceae. However, the multi-locus phylogenetic inference indicated that the new fungus clustered with H. papillatum in a separate clade from the other species of Hypoxylon. Studies by ultrahigh performance liquid chromatography coupled to diode array detection and ion mobility tandem mass spectrometry (UHPLC-DAD-IM-MS/MS) were carried out on the stromatal extracts. In particular, the MS/MS spectra of the major stromatal metabolites of these species indicated the production of hitherto unreported azaphilone pigments with a similar core scaffold to the cohaerin-type metabolites, which are exclusively found in the Hypoxylaceae. Based on these results, the new genus Parahypoxylon is introduced herein. Aside from P. papillatum, the genus also includes P. ruwenzoriensesp. nov., which clustered together with the type species within a basal clade of the Hypoxylaceae together with its sister genus Durotheca.
Collapse
|
4
|
Song ZK, Zhu AH, Liu ZD, Qu Z, Li Y, Ma HX. Three New Species of Hypoxylon (Xylariales, Ascomycota) on a Multigene Phylogeny from Medog in Southwest China. J Fungi (Basel) 2022; 8:jof8050500. [PMID: 35628755 PMCID: PMC9146989 DOI: 10.3390/jof8050500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 11/28/2022] Open
Abstract
During a survey of hypoxylaceous fungi in Medog county (Tibet Autonomous Region, China), three new species, including Hypoxylon damuense, Hypoxylon medogense, and Hypoxylon zangii, were described and illustrated based on morphological and multi-gene phylogenetic analyses. Hypoxylon damuense is characterized by its yellow-brown stromatal granules, light-brown to brown ascospores, and frequently indehiscent perispore. Hypoxylon medogense is morphologically and phylogenetically related to H. erythrostroma but differs in having larger ascospores with straight spore-length germ slit and conspicuously coil-like perispore ornamentation. Hypoxylon zangii shows morphological similarities to H. texense but differs in having Amber (47), Fulvous (43) and Sienna (8) KOH-extractable pigments and larger ascospores with straight spore-length germ slit. The multi-gene phylogenetic analyses inferred from the datasets of ITS-RPB2-LSU-TUB2 supported the three new taxa as separate lineages within Hypoxylon. A key to all known Hypoxylon species from China and related species worldwide is provided.
Collapse
Affiliation(s)
- Zi-Kun Song
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.-K.S.); (Z.Q.)
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China;
| | - An-Hong Zhu
- Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
| | - Zhen-Dong Liu
- Food Science College, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China;
| | - Zhi Qu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.-K.S.); (Z.Q.)
| | - Yu Li
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China;
| | - Hai-Xia Ma
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.-K.S.); (Z.Q.)
- Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- Hainan Key Laboratory of Tropical Microbe Resources, Haikou 571101, China
- Correspondence:
| |
Collapse
|
5
|
Ma X, Chomnunti P, Doilom M, Daranagama DA, Kang J. Multigene Phylogeny Reveals Endophytic Xylariales Novelties from Dendrobium Species from Southwestern China and Northern Thailand. J Fungi (Basel) 2022; 8:jof8030248. [PMID: 35330250 PMCID: PMC8955275 DOI: 10.3390/jof8030248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 01/27/2023] Open
Abstract
Xylariales are common endophytes of Dendrobium. However, xylarialean species resolution remains difficult without sequence data and poor sporulation on artificial media and asexual descriptions for only several species and old type material. The surface-sterilized and morph-molecular methods were used for fungal isolation and identification. A total of forty-seven strains were identified as twenty-three species belonging to Apiosporaceae, Hypoxylaceae, Induratiaceae, and Xylariaceae. Five new species—Annulohypoxylon moniliformis, Apiospora dendrobii, Hypoxylon endophyticum, H. officinalis and Nemania dendrobii were discovered. Three tentative new species were speculated in Xylaria. Thirteen known fungal species from Hypoxylon, Nemania, Nigrospora, and Xylaria were also identified. Another two strains were only identified at the genus and family level (Induratia sp., Hypoxylaceae sp.). This study recorded 12 new hosts for xylarialean endophytes. This is the first report of Xylariales species as endophytes from Dendrobium aurantiacum var. denneanum, D. cariniferum, D. harveyanum, D. hercoglossum, D. moniliforme, and D. moschatum. Dendrobium is associated with abundant xylarialean taxa, especially species of Hypoxylon and Xylaria. We recommend the use of oat agar with low concentrations to induce sporulation of Xylaria strains.
Collapse
Affiliation(s)
- Xiaoya Ma
- Engineering and Research Center for Southwest Biopharmaceutical Resource of National Education Ministry of China, Guizhou University, Guiyang 550025, China;
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand;
| | - Putarak Chomnunti
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand;
| | - Mingkwan Doilom
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Dinushani Anupama Daranagama
- Department of Plant and Molecular Biology, Faculty of Science, University of Kelaniya, Colombo 11300, Sri Lanka;
| | - Jichuan Kang
- Engineering and Research Center for Southwest Biopharmaceutical Resource of National Education Ministry of China, Guizhou University, Guiyang 550025, China;
- Correspondence: ; Tel.: +86-139-8558-8309
| |
Collapse
|
6
|
Multi-Gene Phylogeny and Taxonomy of Hypoxylon (Hypoxylaceae, Ascomycota) from China. DIVERSITY 2022. [DOI: 10.3390/d14010037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The Hypoxylon species play an important ecological role in tropical rainforest as wood-decomposers, and some might have benefical effects on their hosts as endophytes. The present work concerns a survey of the genus Hypoxylon from Hainan Tropical Rainforest National Park of China. Four new species: H. wuzhishanense, H. hainanense, H.chrysalidosporum, and H.cyclobalanopsidis, were discovered based on a combination of morphological characteristics and molecular data. Hypoxylon wuzhishanense is characterized by Rust pulvinate stromata, amyloid apical apparatus and brown ascospores, with most of the perispore being indehiscent in 10% KOH. Hypoxylon hainanense has effused–pulvinate and Violet stromata, amyloid apical apparatus, light-brown to brown ascospores with straight germ slit and dehiscent perispore. Hypoxylonchrysalidosporum is distinguished by glomerate to pulvinate stromata, highly reduced or absent inamyloid apical apparatus, and light-brown to brown ascospores with very conspicuous coil-like ornamentation. Hypoxyloncyclobalanopsidis has Livid Purple pulvinate stromata, highly reduced amyloid apical apparatus, faint bluing, brown ascospores and dehiscent perispore, and it grows on dead branches of Cyclobalanopsis. Detailed descriptions, illustrations, and contrasts with morphologically similar species are provided. Phylogenetic analyses inferred from ITS, RPB2, LSU, and β-tubulin sequences confirmed that the four new species are distinct within the genus Hypoxylon.
Collapse
|
7
|
Farinella VF, Kawafune ES, Tangerina MMP, Domingos HV, Costa-Lotufo LV, Ferreira MJP. OSMAC Strategy Integrated with Molecular Networking for Accessing Griseofulvin Derivatives from Endophytic Fungi of Moquiniastrum polymorphum (Asteraceae). Molecules 2021; 26:7316. [PMID: 34885898 PMCID: PMC8658887 DOI: 10.3390/molecules26237316] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 12/05/2022] Open
Abstract
Three endophytic fungi isolated from Moquiniastrum polymorphum (Less.) G. Sancho (Asteraceae) were cultivated using the one strain many compounds (OSMAC) strategy to evaluate the production of griseofulvin derivatives. Extracts obtained were analyzed by HPLC-MS/MS and the chromatographic and spectrometric data used to elaborate a feature-based molecular network (FBMN) through the GNPS platform. This approach allowed the observation of differences such as medium-specific and strain-specific production of griseofulvin derivatives and variations of cytotoxic activity in most extracts. To evaluate the efficiency of the OSMAC approach allied with FBMN analysis in the prospection of compounds of biotechnological interest, griseofulvin and 7-dechlorogriseofulvin were isolated, and the relative concentrations were estimated in all culture media using HPLC-UV, allowing for the inference of the best strain-medium combinations to maximize its production. Malt extract-peptone broth and Wickerham broth media produced the highest concentrations of both secondary metabolites.
Collapse
Affiliation(s)
- Victor F. Farinella
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, SP, Brazil; (V.F.F.); (E.S.K.); (M.M.P.T.)
| | - Eunizinis S. Kawafune
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, SP, Brazil; (V.F.F.); (E.S.K.); (M.M.P.T.)
| | - Marcelo M. P. Tangerina
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, SP, Brazil; (V.F.F.); (E.S.K.); (M.M.P.T.)
| | - Helori V. Domingos
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-090, SP, Brazil; (H.V.D.); (L.V.C.-L.)
| | - Leticia V. Costa-Lotufo
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-090, SP, Brazil; (H.V.D.); (L.V.C.-L.)
| | - Marcelo J. P. Ferreira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, SP, Brazil; (V.F.F.); (E.S.K.); (M.M.P.T.)
| |
Collapse
|
8
|
Jin QY, Peng HZ, Zhu TJ, Ye HL. Isolation and functional characteristics of the fungus Hypoxylon spp. Sj18 with biocontrol potential. Fungal Biol 2021; 126:174-184. [DOI: 10.1016/j.funbio.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 11/24/2021] [Accepted: 12/08/2021] [Indexed: 11/29/2022]
|
9
|
Arnold AE, Harrington AH, Huang YL, U'Ren JM, Massimo NC, Knight-Connoni V, Inderbitzin P. Coniochaeta elegans sp. nov., Coniochaeta montana sp. nov. and Coniochaeta nivea sp. nov., three new species of endophytes with distinctive morphology and functional traits. Int J Syst Evol Microbiol 2021; 71. [PMID: 34731078 DOI: 10.1099/ijsem.0.005003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A growing interest in fungi that occur within symptom-less plants and lichens (endophytes) has uncovered previously uncharacterized species in diverse biomes worldwide. In many temperate and boreal forests, endophytic Coniochaeta (Sacc.) Cooke (Coniochaetaceae, Coniochaetales, Sordariomycetes, Ascomycota) are commonly isolated on standard media, but rarely are characterized. We examined 26 isolates of Coniochaeta housed at the Gilbertson Mycological Herbarium. The isolates were collected from healthy photosynthetic tissues of conifers, angiosperms, mosses and lichens in Canada, Sweden and the United States. Their barcode sequences (nuclear ribosomal internal transcribed spacer and 5.8S; ITS rDNA) were ≤97% similar to any documented species available through GenBank. Phylogenetic analyses based on two loci (ITS rDNA and translation elongation factor 1-alpha) indicated that two isolates represented Coniochaeta cymbiformispora, broadening the ecological niche and geographic range of a species known previously from burned soil in Japan. The remaining 24 endophytes represented three previously undescribed species that we characterize here: Coniochaeta elegans sp. nov., Coniochaeta montana sp. nov. and Coniochaeta nivea sp. nov. Each has a wide host range, including lichens, bryophytes and vascular plants. C. elegans sp. nov. and C. nivea sp. nov. have wide geographic ranges. C. montana sp. nov. occurs in the Madrean biome of Arizona (USA), where it is sympatric with the other species described here. All three species display protease, chitinase and cellulase activity in vitro. Overall, this study provides insight into the ecological and evolutionary diversity of Coniochaeta and suggests that these strains may be amenable for studies of traits relevant to a horizontally transmitted, symbiotic lifestyle.
Collapse
Affiliation(s)
- A Elizabeth Arnold
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA.,Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Alison H Harrington
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Yu-Ling Huang
- Department of Biology, National Museum of Natural Science, Taichung, Taiwan, ROC
| | - Jana M U'Ren
- Department of Biosystems Engineering, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|
10
|
Lee K, Missaoui A, Mahmud K, Presley H, Lonnee M. Interaction between Grasses and Epichloë Endophytes and Its Significance to Biotic and Abiotic Stress Tolerance and the Rhizosphere. Microorganisms 2021. [PMID: 34835312 DOI: 10.1007/10.3390/microorganisms9112186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
Cool-season grasses are the most common forage types in livestock operations and amenities. Several of the cool-season grasses establish mutualistic associations with an endophytic fungus of the Epichloë genus. The grasses and endophytic fungi have evolved over a long period of time to form host-fungus specific relationships that confer protection for the grass against various stressors in exchange for housing and nutrients to the fungus. This review provides an overview of the mechanisms by which Epichloë endophytes and grasses interact, including molecular pathways for secondary metabolite production. It also outlines specific mechanisms by which the endophyte helps protect the plant from various abiotic and biotic stressors. Finally, the review provides information on how Epichloë infection of grass and stressors affect the rhizosphere environment of the plant.
Collapse
Affiliation(s)
- Kendall Lee
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA
| | - Ali Missaoui
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA
- Department of Crop and Soil Science, University of Georgia, Athens, GA 30602, USA
| | - Kishan Mahmud
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA
| | - Holly Presley
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA
| | - Marin Lonnee
- Department of Crop and Soil Science, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
11
|
Lee K, Missaoui A, Mahmud K, Presley H, Lonnee M. Interaction between Grasses and Epichloë Endophytes and Its Significance to Biotic and Abiotic Stress Tolerance and the Rhizosphere. Microorganisms 2021; 9:2186. [PMID: 34835312 PMCID: PMC8623577 DOI: 10.3390/microorganisms9112186] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Cool-season grasses are the most common forage types in livestock operations and amenities. Several of the cool-season grasses establish mutualistic associations with an endophytic fungus of the Epichloë genus. The grasses and endophytic fungi have evolved over a long period of time to form host-fungus specific relationships that confer protection for the grass against various stressors in exchange for housing and nutrients to the fungus. This review provides an overview of the mechanisms by which Epichloë endophytes and grasses interact, including molecular pathways for secondary metabolite production. It also outlines specific mechanisms by which the endophyte helps protect the plant from various abiotic and biotic stressors. Finally, the review provides information on how Epichloë infection of grass and stressors affect the rhizosphere environment of the plant.
Collapse
Affiliation(s)
- Kendall Lee
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA; (K.L.); (H.P.)
| | - Ali Missaoui
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA; (K.L.); (H.P.)
- Department of Crop and Soil Science, University of Georgia, Athens, GA 30602, USA;
| | - Kishan Mahmud
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA;
| | - Holly Presley
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA; (K.L.); (H.P.)
| | - Marin Lonnee
- Department of Crop and Soil Science, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
12
|
Li Q, Gong X, Zhang X, Pi Y, Long S, Wu Y, Shen X, Kang Y, Kang J. Phylogeny of Graphostromatacea with two new species (Biscogniauxia glaucae sp. nov. and Graphostroma guizhouensis sp. nov.) and new record of Camillea broomeana isolated in China. Arch Microbiol 2021; 203:6119-6129. [PMID: 34550408 DOI: 10.1007/s00203-021-02574-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/29/2022]
Abstract
In the process of studying the diversity of Xylariales in China, three species owning characteristics of Graphostromataceae were observed in China. Morphology of the described species with illustrations and their phylogeny based on regions of internal transcribed spacers (ITS), the second-largest subunit of the RNA polymerase II (RPB2), β-tubulin (TUB2) and α-actin (ACT) are provided. Two new species and one new record from China are identified. Morphologically, Biscogniauxia glaucae sp. nov. differs from B. atropunctata var. maritima, B. citriformis var. macrospora, B. fuscella and B. mediterranea by its stromata with raised margins, clear outlines, punctate ostioles openings and ascospores which are equilateral with broadly rounded ends, a straight spore-length germ slit on the more concave side, lacking appendages and sheathes. Graphostroma guizhouensis is identified as a new species based on the multi-gene phylogenetic tree. Camillea broomeana with scanning electron microscope description of ascospores is illustrated as a new record from China. Cryptostroma is proposed in Graphostromataceae based on molecular data. Vivantia is accepted in Graphostromataceae based on its morphological characteristics and Nodulisporiurn anamorphs which are similar to those of Biscogniauxia.
Collapse
Affiliation(s)
- Qirui Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550004, China.,The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang, Guizhou, China.,The Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China
| | - Xiaofeng Gong
- Guizhou Science and Technology Information Center, Guiyang, 550002, People's Republic of China
| | - Xu Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550004, China
| | - Yinhui Pi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550004, China
| | - Sihan Long
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550004, China
| | - Youpeng Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550004, China
| | - Xiangchun Shen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550004, China.,The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang, Guizhou, China
| | - Yingqian Kang
- Departments of Microbiology, Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Jichuan Kang
- The Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.
| |
Collapse
|
13
|
Pi YH, Long SH, Wu YP, Liu LL, Lin Y, Long QD, Kang JC, Kang YQ, Chang CR, Shen XC, Wijayawardene NN, Zhang X, Li QR. A taxonomic study of Nemania from China, with six new species. MycoKeys 2021; 83:39-67. [PMID: 34539206 PMCID: PMC8408098 DOI: 10.3897/mycokeys.83.69906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/29/2021] [Indexed: 11/23/2022] Open
Abstract
During an investigation of Xylariaceae from 2019 to 2020, isolates representing eight Nemania (Xylariacese) species were collected from Yunnan, Guizhou and Hainan Provinces in China. Morphological and multi-gene phylogenetic analyses, based on combined ITS, α-actin, rpb2 and β-tubulin sequences, confirmed that six of them are new to science, viz. Nemaniacamelliae, N.changningensis, N.cyclobalanopsina, N.feicuiensis, N.lishuicola and N.rubi; one is a new record (N.caries) for China and one is a known species (N.diffusa). Morphological descriptions and illustrations of all species are detailed. In addition, the characteristics of Nemania are summarised and prevailing contradictions in generic concepts are discussed.
Collapse
Affiliation(s)
- Yin Hui Pi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China Guizhou Medical University Guiyang China.,The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China Guizhou University Guiyang China
| | - Si Han Long
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China Guizhou Medical University Guiyang China
| | - You Peng Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China Guizhou Medical University Guiyang China
| | - Li Li Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China Guizhou Medical University Guiyang China
| | - Yan Lin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China Guizhou Medical University Guiyang China
| | - Qing De Long
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China Guizhou Medical University Guiyang China
| | - Ji Chuan Kang
- Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou University, Guiyang, Guizhou 550025, China Qujing Normal University Qujing China
| | - Ying Qian Kang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou and Guizhou Talent Base for Microbiology and Human Health, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China Guizhou Medical University Guiyang China
| | - Chu Rui Chang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China Guizhou Medical University Guiyang China
| | - Xiang Chun Shen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China Guizhou Medical University Guiyang China.,The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China Guizhou University Guiyang China
| | - Nalin N Wijayawardene
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China Guizhou Medical University Guiyang China.,Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China Guizhou University Guiyang China.,Section of Genetics, Institute for Research and Development in Health and Social Care, No: 393/3, Lily Avenue, Off Robert Gunawardane Mawatha, Battaramulla 10120, Sri Lanka Qujing Normal University Qujing China
| | - Xu Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China Guizhou Medical University Guiyang China
| | - Qi Rui Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China Guizhou Medical University Guiyang China.,The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China Guizhou University Guiyang China
| |
Collapse
|
14
|
Kuhnert E, Navarro-Muñoz J, Becker K, Stadler M, Collemare J, Cox R. Secondary metabolite biosynthetic diversity in the fungal family Hypoxylaceae and Xylaria hypoxylon. Stud Mycol 2021; 99:100118. [PMID: 34527085 PMCID: PMC8403587 DOI: 10.1016/j.simyco.2021.100118] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To date little is known about the genetic background that drives the production and diversification of secondary metabolites in the Hypoxylaceae. With the recent availability of high-quality genome sequences for 13 representative species and one relative (Xylaria hypoxylon) we attempted to survey the diversity of biosynthetic pathways in these organisms to investigate their true potential as secondary metabolite producers. Manual search strategies based on the accumulated knowledge on biosynthesis in fungi enabled us to identify 783 biosynthetic pathways across 14 studied species, the majority of which were arranged in biosynthetic gene clusters (BGC). The similarity of BGCs was analysed with the BiG-SCAPE engine which organised the BGCs into 375 gene cluster families (GCF). Only ten GCFs were conserved across all of these fungi indicating that speciation is accompanied by changes in secondary metabolism. From the known compounds produced by the family members some can be directly correlated with identified BGCs which is highlighted herein by the azaphilone, dihydroxynaphthalene, tropolone, cytochalasan, terrequinone, terphenyl and brasilane pathways giving insights into the evolution and diversification of those compound classes. Vice versa, products of various BGCs can be predicted through homology analysis with known pathways from other fungi as shown for the identified ergot alkaloid, trigazaphilone, curvupallide, viridicatumtoxin and swainsonine BGCs. However, the majority of BGCs had no obvious links to known products from the Hypoxylaceae or other well-studied biosynthetic pathways from fungi. These findings highlight that the number of known compounds strongly underrepresents the biosynthetic potential in these fungi and that a tremendous number of unidentified secondary metabolites is still hidden. Moreover, with increasing numbers of genomes for further Hypoxylaceae species becoming available, the likelihood of revealing new biosynthetic pathways that encode new, potentially useful compounds will significantly improve. Reaching a better understanding of the biology of these producers, and further development of genetic methods for their manipulation, will be crucial to access their treasures.
Collapse
Affiliation(s)
- E. Kuhnert
- Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167, Hannover, Germany
| | - J.C. Navarro-Muñoz
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - K. Becker
- Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167, Hannover, Germany
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - M. Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - J. Collemare
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - R.J. Cox
- Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167, Hannover, Germany
| |
Collapse
|
15
|
Biological potential of bioactive metabolites derived from fungal endophytes associated with medicinal plants. Mycol Prog 2021. [DOI: 10.1007/s11557-021-01695-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Resolution of the Hypoxylon fuscum Complex (Hypoxylaceae, Xylariales) and Discovery and Biological Characterization of Two of Its Prominent Secondary Metabolites. J Fungi (Basel) 2021; 7:jof7020131. [PMID: 33670169 PMCID: PMC7916920 DOI: 10.3390/jof7020131] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/06/2021] [Accepted: 02/06/2021] [Indexed: 12/17/2022] Open
Abstract
Hypoxylon, a large, cosmopolitan genus of Ascomycota is in the focus of our current poly-thetic taxonomic studies, and served as an excellent source for bioactive secondary metabolites at the same time. The present work concerns a survey of the Hypoxylon fuscum species complex based on specimens from Iran and Europe by morphological studies and high performance liquid chromatography coupled to mass spectrometry and diode array detection (HPLC-MS-DAD). Apart from known chemotaxonomic markers like binaphthalene tetrol (BNT) and daldinin F, two unprece-dented molecules were detected and subsequently isolated to purity by semi preparative HPLC. Their structures were established by nuclear-magnetic resonance (NMR) spectroscopy as 3′-malonyl-daldinin F (6) and pseudofuscochalasin A (4). The new daldinin derivative 6 showed weak cytotoxicity towards mammalian cells but bactericidal activity. The new cytochalasin 4 was compared to cytochalasin C in an actin disruption assay using fluorescence microscopy of human osteo-sarcoma U2OS cells, revealing comparable activity towards F-actin but being irreversible compared to cytochalasin C. Concurrently, a multilocus molecular phylogeny based on ribosomal and proteinogenic nucleotide sequences of Hypoxylon species resulted in a well-supported clade for H. fuscum and its allies. From a comparison of morphological, chemotaxonomic and phylogenetic evidence, we introduce the new species H. eurasiaticum and H. pseudofuscum.
Collapse
|
17
|
Burragoni SG, Jeon J. Applications of endophytic microbes in agriculture, biotechnology, medicine, and beyond. Microbiol Res 2021; 245:126691. [PMID: 33508761 DOI: 10.1016/j.micres.2020.126691] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/14/2020] [Accepted: 12/30/2020] [Indexed: 12/26/2022]
Abstract
Endophytes are emerging as integral components of plant microbiomes. Some of them play pivotal roles in plant development and plant responses to pathogens and abiotic stresses, whereas others produce useful and/or interesting secondary metabolites. The appreciation of their abilities to affect plant phenotypes and produce useful compounds via genetic and molecular interactions has paved the way for these abilities to be exploited for health and welfare of plants, humans and ecosystems. Here we comprehensively review current and potential applications of endophytes in the agricultural, pharmaceutical, and industrial sectors. In addition, we briefly discuss the research objectives that should be focused upon in the coming years in order for endophytes and their metabolites to be fully harnessed for potential use in diverse areas.
Collapse
Affiliation(s)
- Sravanthi Goud Burragoni
- Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Junhyun Jeon
- Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
18
|
Becker K, Stadler M. Recent progress in biodiversity research on the Xylariales and their secondary metabolism. J Antibiot (Tokyo) 2021; 74:1-23. [PMID: 33097836 PMCID: PMC7732752 DOI: 10.1038/s41429-020-00376-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/16/2020] [Accepted: 09/19/2020] [Indexed: 12/18/2022]
Abstract
The families Xylariaceae and Hypoxylaceae (Xylariales, Ascomycota) represent one of the most prolific lineages of secondary metabolite producers. Like many other fungal taxa, they exhibit their highest diversity in the tropics. The stromata as well as the mycelial cultures of these fungi (the latter of which are frequently being isolated as endophytes of seed plants) have given rise to the discovery of many unprecedented secondary metabolites. Some of those served as lead compounds for development of pharmaceuticals and agrochemicals. Recently, the endophytic Xylariales have also come in the focus of biological control, since some of their species show strong antagonistic effects against fungal and other pathogens. New compounds, including volatiles as well as nonvolatiles, are steadily being discovered from these ascomycetes, and polythetic taxonomy now allows for elucidation of the life cycle of the endophytes for the first time. Moreover, recently high-quality genome sequences of some strains have become available, which facilitates phylogenomic studies as well as the elucidation of the biosynthetic gene clusters (BGC) as a starting point for synthetic biotechnology approaches. In this review, we summarize recent findings, focusing on the publications of the past 3 years.
Collapse
Affiliation(s)
- Kevin Becker
- Department Microbial Drugs, Helmholtz Centre for Infection Research GmbH, Inhoffenstraße 7, 38124, Braunschweig, Germany
- German Centre for Infection Research Association (DZIF), partner site Hannover-Braunschweig, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research GmbH, Inhoffenstraße 7, 38124, Braunschweig, Germany.
- German Centre for Infection Research Association (DZIF), partner site Hannover-Braunschweig, Inhoffenstraße 7, 38124, Braunschweig, Germany.
| |
Collapse
|
19
|
|
20
|
Phylogenetic Assignment of the Fungicolous Hypoxylon invadens (Ascomycota, Xylariales) and Investigation of its Secondary Metabolites. Microorganisms 2020; 8:microorganisms8091397. [PMID: 32932875 PMCID: PMC7565716 DOI: 10.3390/microorganisms8091397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022] Open
Abstract
The ascomycete Hypoxylon invadens was described in 2014 as a fungicolous species growing on a member of its own genus, H.fragiforme, which is considered a rare lifestyle in the Hypoxylaceae. This renders H.invadens an interesting target in our efforts to find new bioactive secondary metabolites from members of the Xylariales. So far, only volatile organic compounds have been reported from H.invadens, but no investigation of non-volatile compounds had been conducted. Furthermore, a phylogenetic assignment following recent trends in fungal taxonomy via a multiple sequence alignment seemed practical. A culture of H.invadens was thus subjected to submerged cultivation to investigate the produced secondary metabolites, followed by isolation via preparative chromatography and subsequent structure elucidation by means of nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry (HR-MS). This approach led to the identification of the known flaviolin (1) and 3,3-biflaviolin (2) as the main components, which had never been reported from the order Xylariales before. Assessment of their antimicrobial and cytotoxic effects via a panel of commonly used microorganisms and cell lines in our laboratory did not yield any effects of relevance. Concurrently, genomic DNA from the fungus was used to construct a multigene phylogeny using ribosomal sequence information from the internal transcribed spacer region (ITS), the 28S large subunit of ribosomal DNA (LSU), and proteinogenic nucleotide sequences from the second largest subunit of the DNA-directed RNA polymerase II (RPB2) and β-tubulin (TUB2) genes. A placement in a newly formed clade with H.trugodes was strongly supported in a maximum-likelihood (ML) phylogeny using sequences derived from well characterized strains, but the exact position of said clade remains unclear. Both, the chemical and the phylogenetic results suggest further inquiries into the lifestyle of this unique fungus to get a better understanding of both, its ecological role and function of its produced secondary metabolites hitherto unique to the Xylariales.
Collapse
|
21
|
Wu Z, Su Q, Cui Y, He H, Wang J, Zhang Y, Zhao Y, Abul H, Yang Y, Long Y. Temporal and spatial pattern of endophytic fungi diversity of Camellia sinensis (cv. Shu Cha Zao). BMC Microbiol 2020; 20:270. [PMID: 32859152 PMCID: PMC7455901 DOI: 10.1186/s12866-020-01941-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/11/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The experimental materials were a 60-year-old tea tree (Camellia sinensis cv. Shu Cha Zao; SCZ) (the mother plant) and 1-year-old and 20-year-old plants of SCZ that originated as mother plant cuttings. The aim of this study was to use high-throughput sequencing to study the spatial and dynamic distribution of endophytic fungi in different leaf niches (upper leaves, middle leaves, lower leaves) and rhizosphere soil on tea plants of different ages in the same garden. RESULTS Ascomycota (83.77%), Basidiomycota (11.71%), and Zygomycota (3.45%) were the dominant fungal phyla in all samples. Cladosporium (12.73%), Zymoseptoria (9.18%), and Strelitziana (13.11%) were the dominant genera in the leaf. Alpha diversity analysis revealed that endophytic communities in leaves differed from those in rhizosphere soil and different leaf niches had similar fungal diversity. Shannon's indices and NMDS analysis indicated significant differences in fungal diversity and composition among the SCZ trees of different ages (p ≤ 0.01). The abundance of Cladosporium and Zymoseptoria decreased with increasing SCZ age, whereas the abundance of Strelitziana increased. CONCLUSIONS The results illustrate variation in endophytic fungi among different niches on tea plants of different ages. The distribution of endophytic fungi in leaves of C. sinensis shows spatiotemporal variation.
Collapse
Affiliation(s)
- Zhenzhen Wu
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Qingqing Su
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Yuchen Cui
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Hongzhu He
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Jiali Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Yong Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Yu Zhao
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Hassan Abul
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Yunqiu Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| | - Yanhua Long
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| |
Collapse
|
22
|
Bharadwaj R, Jagadeesan H, Kumar SR, Ramalingam S. Molecular mechanisms in grass-Epichloë interactions: towards endophyte driven farming to improve plant fitness and immunity. World J Microbiol Biotechnol 2020; 36:92. [PMID: 32562008 DOI: 10.1007/s11274-020-02868-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/10/2020] [Indexed: 11/26/2022]
Abstract
All plants harbor many microbial species including bacteria and fungi in their tissues. The interactions between the plant and these microbes could be symbiotic, mutualistic, parasitic or commensalistic. Mutualistic microorganisms are endophytic in nature and are known to play a role in plant growth, development and fitness. Endophytes display complex diversity depending upon the agro-climatic conditions and this diversity could be exploited for crop improvement and sustainable agriculture. Plant-endophyte partnerships are highly specific, several genetic and molecular cascades play a key role in colonization of endophytes in host plants leading to rapid changes in host and endophyte metabolism. This results in the accumulation of secondary metabolites, which play an important role in plant defense against biotic and abiotic stress conditions. Alkaloids are one of the important class of metabolites produced by Epichloë genus and other related classes of endophytes and confer protection against insect and mammalian herbivory. In this context, this review discusses the evolutionary aspects of the Epichloë genus along with key molecular mechanisms determining the lifestyle of Epichloë endophytes in host system. Novel hypothesis is proposed to outline the initial cellular signaling events during colonization of Epichloë in cool season grasses. Complex clustering of alkaloid biosynthetic genes and molecular mechanisms involved in the production of alkaloids have been elaborated in detail. The natural defense and advantages of the endophyte derived metabolites have also been extensively discussed. Finally, this review highlights the importance of endophyte-arbitrated plant immunity to develop novel approaches for eco-friendly agriculture.
Collapse
Affiliation(s)
- R Bharadwaj
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - H Jagadeesan
- Department of Biotechnology, PSG College of Technology, Coimbatore, Tamil Nadu, India
| | - S R Kumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - S Ramalingam
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India.
| |
Collapse
|
23
|
High quality genome sequences of thirteen Hypoxylaceae (Ascomycota) strengthen the phylogenetic family backbone and enable the discovery of new taxa. FUNGAL DIVERS 2020. [DOI: 10.1007/s13225-020-00447-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractThe Hypoxylaceae (Xylariales, Ascomycota) is a diverse family of mainly saprotrophic fungi, which commonly occur in angiosperm-dominated forests around the world. Despite their importance in forest and plant ecology as well as a prolific source of secondary metabolites and enzymes, genome sequences of related taxa are scarce and usually derived from environmental isolates. To address this lack of knowledge thirteen taxonomically well-defined representatives of the family and one member of the closely related Xylariaceae were genome sequenced using combinations of Illumina and Oxford nanopore technologies or PacBio sequencing. The workflow leads to high quality draft genome sequences with an average N50 of 3.0 Mbp. A backbone phylogenomic tree was calculated based on the amino acid sequences of 4912 core genes reflecting the current accepted taxonomic concept of the Hypoxylaceae. A Percentage of Conserved Proteins (POCP) analysis revealed that 70% of the proteins are conserved within the family, a value with potential application for the definition of family boundaries within the order Xylariales. Also, Hypomontagnella spongiphila is proposed as a new marine derived lineage of Hypom. monticulosa based on in-depth genomic comparison and morphological differences of the cultures. The results showed that both species share 95% of their genes corresponding to more than 700 strain-specific proteins. This difference is not reflected by standard taxonomic assessments (morphology of sexual and asexual morph, chemotaxonomy, phylogeny), preventing species delimitation based on traditional concepts. Genetic changes are likely to be the result of environmental adaptations and selective pressure, the driving force of speciation. These data provide an important starting point for the establishment of a stable phylogeny of the Xylariales; they enable studies on evolution, ecological behavior and biosynthesis of natural products; and they significantly advance the taxonomy of fungi.
Collapse
|
24
|
Pourmoghaddam MJ, Lambert C, Surup F, Khodaparast SA, Krisai-Greilhuber I, Voglmayr H, Stadler M. Discovery of a new species of the Hypoxylon rubiginosum complex from Iran and antagonistic activities of Hypoxylon spp. against the Ash Dieback pathogen, Hymenoscyphus fraxineus, in dual culture. MycoKeys 2020; 66:105-133. [PMID: 32377154 PMCID: PMC7195382 DOI: 10.3897/mycokeys.66.50946] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/17/2020] [Indexed: 11/13/2022] Open
Abstract
During a survey of xylarialean fungi in Northern Iran, several specimens that showed affinities to the Hypoxylonrubiginosum complex were collected and cultured. A comparison of their morphological characters, combined with a chemotaxonomic study based on high performance liquid chromatography, coupled with diode array detection and mass spectrometry (HPLC-DAD/MS) and a multi-locus phylogeny based on ITS, LSU, rbp2 and tub2 DNA sequences, revealed a new species here described as Hypoxylonguilanense. In addition, Hypoxylonrubiginosumsensu stricto was also encountered. Concurrently, an endophytic isolate of the latter species showed strong antagonistic activities against the Ash Dieback pathogen, Hymenoscyphusfraxineus, in a dual culture assay in our laboratory. Therefore, we decided to test the new Iranian fungi for antagonistic activities against the pathogen, along with several cultures of other Hypoxylon species that are related to H.rubiginosum. Our results suggest that the antagonistic effects of Hypoxylon spp. against Hym.fraxineus are widespread and that they are due to the production of antifungal phomopsidin derivatives in the presence of the pathogen.
Collapse
Affiliation(s)
- Mohammad Javad Pourmoghaddam
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran Helmholtz-Zentrum für Infektionsforschung GmbH Braunschweig Germany.,Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030, Wien, Austria University of Guilan Rasht Islamic Republic of Iran.,Helmholtz-Zentrum für Infektionsforschung GmbH, Dept. Microbial Drugs, Inhoffenstrasse 7, 38124, Braunschweig, Germany University of Vienna Vienna Austria
| | - Christopher Lambert
- Helmholtz-Zentrum für Infektionsforschung GmbH, Dept. Microbial Drugs, Inhoffenstrasse 7, 38124, Braunschweig, Germany University of Vienna Vienna Austria
| | - Frank Surup
- Helmholtz-Zentrum für Infektionsforschung GmbH, Dept. Microbial Drugs, Inhoffenstrasse 7, 38124, Braunschweig, Germany University of Vienna Vienna Austria
| | - Seyed Akbar Khodaparast
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran Helmholtz-Zentrum für Infektionsforschung GmbH Braunschweig Germany
| | - Irmgard Krisai-Greilhuber
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030, Wien, Austria University of Guilan Rasht Islamic Republic of Iran
| | - Hermann Voglmayr
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030, Wien, Austria University of Guilan Rasht Islamic Republic of Iran.,Institute of Forest Entomology, Forest Pathology and Forest Protection, Department of Forest and Soil Sciences, BOKU-University of Natural Resources and Life Sciences, Franz-Schwackhöfer-Haus, Peter-Jordan-Straße 82/I, 1190, Vienna, Austria BOKU-University of Natural Resources and Life Sciences Vienna Austria
| | - Marc Stadler
- Helmholtz-Zentrum für Infektionsforschung GmbH, Dept. Microbial Drugs, Inhoffenstrasse 7, 38124, Braunschweig, Germany University of Vienna Vienna Austria
| |
Collapse
|
25
|
Ibrahim A, Tanney JB, Fei F, Seifert KA, Cutler GC, Capretta A, Miller JD, Sumarah MW. Metabolomic-guided discovery of cyclic nonribosomal peptides from Xylaria ellisii sp. nov., a leaf and stem endophyte of Vaccinium angustifolium. Sci Rep 2020; 10:4599. [PMID: 32165688 PMCID: PMC7067778 DOI: 10.1038/s41598-020-61088-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/28/2020] [Indexed: 12/17/2022] Open
Abstract
Fungal endophytes are sources of novel bioactive compounds but relatively few agriculturally important fruiting plants harboring endophytes have been carefully studied. Previously, we identified a griseofulvin-producing Xylaria species isolated from Vaccinium angustifolium, V. corymbosum, and Pinus strobus. Morphological and genomic analysis determined that it was a new species, described here as Xylaria ellisii. Untargeted high-resolution LC-MS metabolomic analysis of the extracted filtrates and mycelium from 15 blueberry isolates of this endophyte revealed differences in their metabolite profiles. Toxicity screening of the extracts showed that bioactivity was not linked to production of griseofulvin, indicating this species was making additional bioactive compounds. Multivariate statistical analysis of LC-MS data was used to identify key outlier features in the spectra. This allowed potentially new compounds to be targeted for isolation and characterization. This approach resulted in the discovery of eight new proline-containing cyclic nonribosomal peptides, which we have given the trivial names ellisiiamides A-H. Three of these peptides were purified and their structures elucidated by one and two-dimensional nuclear magnetic resonance spectroscopy (1D and 2D NMR) and high-resolution tandem mass spectrometry (HRMS/MS) analysis. The remaining five new compounds were identified and annotated by high-resolution mass spectrometry. Ellisiiamide A demonstrated Gram-negative activity against Escherichia coli BW25113, which is the first reported for this scaffold. Additionally, several known natural products including griseofulvin, dechlorogriseofulvin, epoxy/cytochalasin D, zygosporin E, hirsutatin A, cyclic pentapeptides #1–2 and xylariotide A were also characterized from this species.
Collapse
Affiliation(s)
- Ashraf Ibrahim
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, L8S 4M1, Canada.,LifeMine Therapeutics, Cambridge, Massachusetts, 02140, USA
| | - Joey B Tanney
- Department of Chemistry, Carleton University, Ottawa, Ontario, K1S 5B6, Canada.,Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, Victoria, British Columbia, V8Z 1M5, Canada.,Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, K1A 0C6, Canada
| | - Fan Fei
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, L8S 4M1, Canada
| | - Keith A Seifert
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, K1A 0C6, Canada
| | - G Christopher Cutler
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | - Alfredo Capretta
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, L8S 4M1, Canada
| | - J David Miller
- Department of Chemistry, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Mark W Sumarah
- Department of Chemistry, Carleton University, Ottawa, Ontario, K1S 5B6, Canada. .,London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada.
| |
Collapse
|
26
|
Stadler M, Lambert C, Wibberg D, Kalinowski J, Cox RJ, Kolařík M, Kuhnert E. Intragenomic polymorphisms in the ITS region of high-quality genomes of the Hypoxylaceae (Xylariales, Ascomycota). Mycol Prog 2020. [DOI: 10.1007/s11557-019-01552-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
AbstractThe internal transcribed spacer (ITS) region of the ribosomal DNA (rDNA) has been established (and is generally accepted) as a primary “universal” genetic barcode for fungi for many years, but the actual value for taxonomy has been heavily disputed among mycologists. Recently, twelve draft genome sequences, mainly derived from type species of the family Hypoxylaceae (Xylariales, Ascomycota) and the ex-epitype strain of Xylaria hypoxylon have become available during the course of a large phylogenomic study that was primarily aimed at establishing a correlation between the existing multi-gene-based genealogy with a genome-based phylogeny and the discovery of novel biosynthetic gene clusters encoding for secondary metabolites. The genome sequences were obtained using combinations of Illumina and Oxford nanopore technologies or PacBio sequencing, respectively, and resulted in high-quality sequences with an average N50 of 3.2 Mbp. While the main results will be published concurrently in a separate paper, the current case study was dedicated to the detection of ITS nrDNA copies in the genomes, in an attempt to explain certain incongruities and apparent mismatches between phenotypes and genotypes that had been observed during previous polyphasic studies. The results revealed that all of the studied strains had at least three copies of rDNA in their genomes, with Hypoxylon fragiforme having at least 19 copies of the ITS region, followed by Xylaria hypoxylon with at least 13 copies. Several of the genomes contained 2–3 copies that were nearly identical, but in some cases drastic differences, below 97% identity were observed. In one case, ascribable to the presence of a pseudogene, the deviations of the ITS sequences from the same genome resulted in only ca. 90% of overall homology. These results are discussed in the scope of the current trends to use ITS data for species recognition and segregation of fungi. We propose that additional genomes should be checked for such ITS polymorphisms to reassess the validity of this non-coding part of the fungal DNA for molecular identification.
Collapse
|
27
|
Voglmayr H, Beenken L. Linosporopsis, a new leaf-inhabiting scolecosporous genus in Xylariaceae. Mycol Prog 2020; 19:205-222. [PMID: 32104168 PMCID: PMC7008769 DOI: 10.1007/s11557-020-01559-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 12/02/2022]
Abstract
Based on molecular phylogenetic and morphological evidence, the new genus Linosporopsis (Xylariales) is established for several species previously classified within Linospora (Diaporthales). Fresh collections of Linospora ischnotheca from dead overwintered leaves of Fagus sylvatica and of L. ochracea from dead overwintered leaves of Malus domestica, Pyrus communis, and Sorbus intermedia were isolated in pure culture, and molecular phylogenetic analyses of a multi-locus matrix of partial nuITS-LSU rDNA, RPB2 and TUB2 sequences as well as morphological investigations revealed that both species are unrelated to the diaporthalean genus Linospora, but belong to Xylariaceae sensu stricto. The new combinations Linosporopsis ischnotheca and L. ochracea are proposed, the species are described and illustrated, and their basionyms lecto- and epitypified. Linospora faginea is synonymized with L. ischnotheca. Based on similar morphology and ecology, Linospora carpini and Linospora magnagutiana from dead leaves of Carpinus betulus and Sorbus torminalis, respectively, are also combined in Linosporopsis. The four accepted species of Linosporopsis are illustrated, a key to species is provided and their ecology is discussed.
Collapse
Affiliation(s)
- Hermann Voglmayr
- Institute of Forest Entomology, Forest Pathology and Forest Protection, Dept. of Forest and Soil Sciences, BOKU-University of Natural Resources and Life Sciences, Franz Schwackhöfer Haus, Peter-Jordan-Straße 82/I, 1190 Vienna, Austria
- Division of Systematic and Evolutionary Botany, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Wien, Austria
| | - Ludwig Beenken
- Eidgenössische Forschungsanstalt WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| |
Collapse
|
28
|
Silva CSD, Pereira MB, Pereira J. New accounts on Hypoxylaceae and Xylariaceae from Brazil. RODRIGUÉSIA 2020. [DOI: 10.1590/2175-7860202071146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract This work aims to bring new reports of Hypoxylaceae and Xylariaceae from Brazil. The collections were performed in cocoa plantations in Ilhéus, Bahia, Brazil. Six new occurrences of Hypoxylaceae and two Xylariaceae species are reported to Brazil, Northeast and/or Bahia. A dichotomous key to the species treated is provided.
Collapse
Affiliation(s)
| | | | - Jadergudson Pereira
- Universidade Estadual de Santa Cruz, Brazil; Universidade Estadual de Santa Cruz, Brazil
| |
Collapse
|
29
|
Ludlow EJ, Vassiliadis S, Ekanayake PN, Hettiarachchige IK, Reddy P, Sawbridge TI, Rochfort SJ, Spangenberg GC, Guthridge KM. Analysis of the Indole Diterpene Gene Cluster for Biosynthesis of the Epoxy-Janthitrems in Epichloë Endophytes. Microorganisms 2019; 7:microorganisms7110560. [PMID: 31766147 PMCID: PMC6921081 DOI: 10.3390/microorganisms7110560] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/01/2019] [Accepted: 11/07/2019] [Indexed: 02/04/2023] Open
Abstract
Epoxy-janthitrems are a class of indole diterpenes with structural similarity to lolitrem B. Two taxa of asexual Epichloë endophytes have been reported to produce epoxy-janthitrems, LpTG-3 (Lolium perenne Taxonomic Group 3; e.g., NEA12) and LpTG-4 (e.g., E1). Epichloë epoxy-janthitrems are not well understood, the biosynthetic pathway and associated gene complement have not been described and while the literature suggests they are associated with superior protection against pasture insect pests and are tremorgenic in grazing mammals, these properties have not been confirmed using isolated and purified compounds. Whole genome sequence analysis was used to identify candidate genes for epoxy-janthitrem biosynthesis that are unique to epoxy-janthitrem producing strains of Epichloë. A gene, jtmD, was identified with homology to aromatic prenyl transferases involved in synthesis of indole diterpenes. The location of the epoxy-janthitrem biosynthesis gene cluster (JTM locus) was determined in the assembled nuclear genomes of NEA12 and E1. The JTM locus contains cluster 1 and cluster 2 of the lolitrem B biosynthesis gene cluster (LTM locus), as well as four genes jtmD, jtmO, jtm01, and jtm02 that are unique to Epichloë spp. that produce epoxy-janthitrems. Expression of each of the genes identified was confirmed using transcriptome analysis of perennial ryegrass-NEA12 and perennial ryegrass-E1 symbiota. Sequence analysis confirmed the genes are functionally similar to those involved in biosynthesis of related indole diterpene compounds. RNAi silencing of jtmD and in planta assessment in host-endophyte associations confirms the role of jtmD in epoxy-janthitrem production. Using LCMS/MS technologies, a biosynthetic pathway for the production of epoxy-janthitrems I-IV in Epichloë endophytes is proposed.
Collapse
Affiliation(s)
- Emma J. Ludlow
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; (E.J.L.); (S.V.); (P.N.E.); (I.K.H.); (P.R.); (T.I.S.); (S.J.R.); (G.C.S.)
| | - Simone Vassiliadis
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; (E.J.L.); (S.V.); (P.N.E.); (I.K.H.); (P.R.); (T.I.S.); (S.J.R.); (G.C.S.)
| | - Piyumi N. Ekanayake
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; (E.J.L.); (S.V.); (P.N.E.); (I.K.H.); (P.R.); (T.I.S.); (S.J.R.); (G.C.S.)
| | - Inoka K. Hettiarachchige
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; (E.J.L.); (S.V.); (P.N.E.); (I.K.H.); (P.R.); (T.I.S.); (S.J.R.); (G.C.S.)
| | - Priyanka Reddy
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; (E.J.L.); (S.V.); (P.N.E.); (I.K.H.); (P.R.); (T.I.S.); (S.J.R.); (G.C.S.)
| | - Tim I. Sawbridge
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; (E.J.L.); (S.V.); (P.N.E.); (I.K.H.); (P.R.); (T.I.S.); (S.J.R.); (G.C.S.)
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia
| | - Simone J. Rochfort
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; (E.J.L.); (S.V.); (P.N.E.); (I.K.H.); (P.R.); (T.I.S.); (S.J.R.); (G.C.S.)
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia
| | - German C. Spangenberg
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; (E.J.L.); (S.V.); (P.N.E.); (I.K.H.); (P.R.); (T.I.S.); (S.J.R.); (G.C.S.)
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia
| | - Kathryn M. Guthridge
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; (E.J.L.); (S.V.); (P.N.E.); (I.K.H.); (P.R.); (T.I.S.); (S.J.R.); (G.C.S.)
- Correspondence:
| |
Collapse
|
30
|
Relationships between endophytic and pathogenic strains of Inonotus (Basidiomycota) and Daldinia (Ascomycota) from urban trees. Mycol Prog 2019. [DOI: 10.1007/s11557-019-01514-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Sir EB, Becker K, Lambert C, Bills GF, Kuhnert E. Observations on Texas hypoxylons, including two new Hypoxylon species and widespread environmental isolates of the H. croceum complex identified by a polyphasic approach. Mycologia 2019; 111:832-856. [PMID: 31460851 DOI: 10.1080/00275514.2019.1637705] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Two new species and a new combination of Hypoxylon from Texas were identified and described based on morphological, multigene phylogenetic (ITS [nuc rDNA internal transcribed spacer region ITS1-5.8S-ITS2], 28S [5' 1200 bp of nuc 28S rDNA], RPB2 [partial second largest subunit of the DNA-directed RNA polymerase II], TUB2 [partial β-tubulin]), and chemotaxonomic data. Hypoxylon olivaceopigmentum is characterized by its pulvinate to glomerate stromata, olivaceous KOH-extractable pigments, equilateral ascospores, and indehiscent perispore. Hypoxylon texense can be distinguished from morphologically similar species by its rust to dark brick KOH-extractable pigments and the high-performance liquid chromatography (HPLC) profile of its stromatal secondary metabolites. Hypoxylon hinnuleum is proposed as the sexual morph of Nodulisporium hinnuleum, featuring dark vinaceous glomerate stromata with dark brick KOH-extractable pigments composed of cohaerin-type azaphilones and smooth equilateral ascospores with indehiscent perispore. Based on these diagnostic characters, H. hinnuleum forms a complex with H. croceum and H. minicroceum. More than 50 ITS sequences with high identity originating from North American and East Asian environmental isolates formed a well-supported clade with the type of N. hinnuleum, demonstrating the widespread distribution of the species complex. In addition, updated descriptions and comprehensive illustrations with detailed information on the diagnostic features of H. fendleri and H. perforatum are provided. The multilocus phylogenetic reconstruction of Hypoxylon supported the status of the new species and broadened the knowledge about intergeneric relationships.
Collapse
Affiliation(s)
- Esteban B Sir
- Instituto de Bioprospección y Fisiología Vegetal-INBIOFIV (CONICET-UNT) , San Miguel de Tucumán , Argentina.,Laboratorio Criptogámico, Fundación Miguel Lillo, San Miguel de Tucumán , Argentina
| | - Kevin Becker
- Department of Microbial Drugs, Helmholtz-Zentrum für Infektionsforschung GmbH , 38124 Braunschweig , Germany.,German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig , 38124 Braunschweig , Germany
| | - Christopher Lambert
- Department of Microbial Drugs, Helmholtz-Zentrum für Infektionsforschung GmbH , 38124 Braunschweig , Germany.,German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig , 38124 Braunschweig , Germany
| | - Gerald F Bills
- Texas Therapeutics Institute, the Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston , Houston , Texas 77054
| | - Eric Kuhnert
- Institute for Organic Chemistry and Centre of Biomolecular Drug Research (BMWZ), Leibniz University Hannover , Hannover , 30167 , Germany
| |
Collapse
|
32
|
Helaly SE, Thongbai B, Stadler M. Diversity of biologically active secondary metabolites from endophytic and saprotrophic fungi of the ascomycete order Xylariales. Nat Prod Rep 2019; 35:992-1014. [PMID: 29774351 DOI: 10.1039/c8np00010g] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: up to December 2017 The diversity of secondary metabolites in the fungal order Xylariales is reviewed with special emphasis on correlations between chemical diversity and biodiversity as inferred from recent taxonomic and phylogenetic studies. The Xylariales are arguably among the predominant fungal endophytes, which are the producer organisms of pharmaceutical lead compounds including the antimycotic sordarins and the antiparasitic nodulisporic acids, as well as the marketed drug, emodepside. Many Xylariales are "macromycetes", which form conspicuous fruiting bodies (stromata), and the metabolite profiles that are predominant in the stromata are often complementary to those encountered in corresponding mycelial cultures of a given species. Secondary metabolite profiles have recently been proven highly informative as additional parameters to support classical morphology and molecular phylogenetic approaches in order to reconstruct evolutionary relationships among these fungi. Even the recent taxonomic rearrangement of the Xylariales has been relying on such approaches, since certain groups of metabolites seem to have significance at the species, genus or family level, respectively, while others are only produced in certain taxa and their production is highly dependent on the culture conditions. The vast metabolic diversity that may be encountered in a single species or strain is illustrated based on examples like Daldinia eschscholtzii, Hypoxylon rickii, and Pestalotiopsis fici. In the future, it appears feasible to increase our knowledge of secondary metabolite diversity by embarking on certain genera that have so far been neglected, as well as by studying the volatile secondary metabolites more intensively. Methods of bioinformatics, phylogenomics and transcriptomics, which have been developed to study other fungi, are readily available for use in such scenarios.
Collapse
Affiliation(s)
- Soleiman E Helaly
- Dept Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany.
| | | | | |
Collapse
|
33
|
|
34
|
Hypomontagnella (Hypoxylaceae): a new genus segregated from Hypoxylon by a polyphasic taxonomic approach. Mycol Prog 2018. [DOI: 10.1007/s11557-018-1452-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Godfrey NA, Schatz DJ, Pronin SV. Twelve-Step Asymmetric Synthesis of (-)-Nodulisporic Acid C. J Am Chem Soc 2018; 140:12770-12774. [PMID: 30261724 PMCID: PMC6791361 DOI: 10.1021/jacs.8b09965] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A short, enantioselective synthesis of (-)-nodulisporic acid C is described. The route features two highly diastereoselective polycyclizations en route to the terpenoid core and the indenopyran fragment and a highly convergent assembly of a challenging indole moiety. Application of this chemistry allows for a 12-step synthesis of the target indoloterpenoid from commercially available material.
Collapse
Affiliation(s)
- Nicole A. Godfrey
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Devon J. Schatz
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Sergey V. Pronin
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| |
Collapse
|
36
|
|
37
|
Salazar-Cerezo S, Martinez-Montiel N, Cruz-Lopez MDC, Martinez-Contreras RD. Fungal Diversity and Community Composition of Culturable Fungi in Stanhopea trigrina Cast Gibberellin Producers. Front Microbiol 2018; 9:612. [PMID: 29670591 PMCID: PMC5893766 DOI: 10.3389/fmicb.2018.00612] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/16/2018] [Indexed: 02/01/2023] Open
Abstract
Stanhopea tigrina is a Mexican endemic orchid reported as a threatened species. The naturally occurring microorganisms present in S. tigrina are unknown. In this work, we analyzed the diversity of endophytic and epiphytic culturable fungi in S. tigrina according to morphological and molecular identification. Using this combined approach, in this study we retrieved a total of 634 fungal isolates that presented filamentous growth, which were grouped in 134 morphotypes that were associated to 63 genera, showing that S. tigrina harbors a rich diversity of both endophytic and epiphytic fungi. Among these, the majority of the isolates corresponded to Ascomycetes, with Trichoderma and Penicillium as the most frequent genera followed by Fusarium and Aspergillus. Non-ascomycetes isolated were associated only to the genus Mucor (Mucoromycota) and Schizophyllum (Basidiomycota). Identified genera showed a differential distribution considering their epiphytic or endophytic origin, the tissue from which they were isolated, and the ability of the orchid to grow on different substrates. To our knowledge, this work constitutes the first study of the mycobiome of S. tigrina. Interestingly, 21 fungal isolates showed the ability to produce gibberellins. Almost half of the isolates were related to the gibberellin-producer genus Penicillium based on morphological and molecular identification. However, the rest of the isolates were related to the following genera, which have not been reported as gibberellin producers so far: Bionectria, Macrophoma, Nectria, Neopestalotiopsis, Talaromyces, Trichoderma, and Diplodia. Taken together, we found that S. tigrina possess a significant fungal diversity that could be a rich source of fungal metabolites with the potential to develop biotechnological approaches oriented to revert the threatened state of this orchid in the near future.
Collapse
Affiliation(s)
- Sonia Salazar-Cerezo
- Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Nancy Martinez-Montiel
- Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | | | - Rebeca D. Martinez-Contreras
- Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
38
|
Dickschat JS, Wang T, Stadler M. Volatiles from the xylarialean fungus Hypoxylon invadens. Beilstein J Org Chem 2018; 14:734-746. [PMID: 29719571 PMCID: PMC5905279 DOI: 10.3762/bjoc.14.62] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/20/2018] [Indexed: 11/23/2022] Open
Abstract
The volatiles emitted by agar plate cultures of the xylarialean fungus Hypoxylon invadens were investigated by use of a closed loop stripping apparatus in combination with GC-MS. Several aromatic compounds were found that could only be identified by comparison to all possible constitutional isomers with different ring substitution patterns. For the set of identified compounds a plausible biosynthetic scheme was suggested that gives further support for the assigned structures.
Collapse
Affiliation(s)
- Jeroen S Dickschat
- Kekulé-Institut für Organische Chemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Tao Wang
- Kekulé-Institut für Organische Chemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Marc Stadler
- Abteilung Mikrobielle Wirkstoffe, Helmholtz-Zentrum für Infektionsforschung, Inhoffenstraße 7, 38124 Braunschweig, Germany
| |
Collapse
|
39
|
Draft Genome Sequence of the Filamentous Fungus Hypoxylon pulicicidum ATCC 74245. GENOME ANNOUNCEMENTS 2018; 6:6/2/e01380-17. [PMID: 29326208 PMCID: PMC5764932 DOI: 10.1128/genomea.01380-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hypoxylon pulicicidum strain MF5954 (ATCC 74245) (formerly classified as Nodulisporium sp.) is a filamentous fungal species known for its production of the secondary metabolite nodulisporic acid A. We present here the 41.5-Mb draft genome sequence for this organism.
Collapse
|
40
|
Van de Bittner KC, Nicholson MJ, Bustamante LY, Kessans SA, Ram A, van Dolleweerd CJ, Scott B, Parker EJ. Heterologous Biosynthesis of Nodulisporic Acid F. J Am Chem Soc 2018; 140:582-585. [DOI: 10.1021/jacs.7b10909] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Kyle C. Van de Bittner
- Ferrier
Research Institute, Victoria University of Wellington, Wellington 6012, New Zealand
- Biomolecular
Interaction Centre, University of Canterbury, 20 Kirkwood Avenue, Christchurch 8041, New Zealand
| | - Matthew J. Nicholson
- Ferrier
Research Institute, Victoria University of Wellington, Wellington 6012, New Zealand
- Biomolecular
Interaction Centre, University of Canterbury, 20 Kirkwood Avenue, Christchurch 8041, New Zealand
| | - Leyla Y. Bustamante
- Ferrier
Research Institute, Victoria University of Wellington, Wellington 6012, New Zealand
- Biomolecular
Interaction Centre, University of Canterbury, 20 Kirkwood Avenue, Christchurch 8041, New Zealand
| | - Sarah A. Kessans
- Biomolecular
Interaction Centre, University of Canterbury, 20 Kirkwood Avenue, Christchurch 8041, New Zealand
| | - Arvina Ram
- Institute
of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Craig J. van Dolleweerd
- Protein Science & Engineering, Callaghan Innovation, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Barry Scott
- Institute
of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Emily J. Parker
- Ferrier
Research Institute, Victoria University of Wellington, Wellington 6012, New Zealand
- Biomolecular
Interaction Centre, University of Canterbury, 20 Kirkwood Avenue, Christchurch 8041, New Zealand
| |
Collapse
|
41
|
Endophytic Fungi and Bioactive Metabolites Production: An Update. Microb Biotechnol 2018. [DOI: 10.1007/978-981-10-7140-9_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
42
|
Branco A, A. Reis I, C. Ribeiro F, M. Almeida P, B. Costa L, Kamida H, T. Uetanabaro A. Characterization of the secondary metabolites from endophytic fungiNodulisporiumsp. isolated from the medicinal plantMikania laevigata(Asteraceae) by reversed-phase high-performance liquid chromatography coupled with mass spectrometric multistage. Pharmacogn Mag 2018. [DOI: 10.4103/pm.pm_616_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
43
|
Wendt L, Sir EB, Kuhnert E, Heitkämper S, Lambert C, Hladki AI, Romero AI, Luangsa-ard JJ, Srikitikulchai P, Peršoh D, Stadler M. Resurrection and emendation of the Hypoxylaceae, recognised from a multigene phylogeny of the Xylariales. Mycol Prog 2017. [DOI: 10.1007/s11557-017-1311-3] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Raja H, Miller AN, Pearce CJ, Oberlies NH. Fungal Identification Using Molecular Tools: A Primer for the Natural Products Research Community. JOURNAL OF NATURAL PRODUCTS 2017; 80:756-770. [PMID: 28199101 PMCID: PMC5368684 DOI: 10.1021/acs.jnatprod.6b01085] [Citation(s) in RCA: 391] [Impact Index Per Article: 55.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Indexed: 05/17/2023]
Abstract
Fungi are morphologically, ecologically, metabolically, and phylogenetically diverse. They are known to produce numerous bioactive molecules, which makes them very useful for natural products researchers in their pursuit of discovering new chemical diversity with agricultural, industrial, and pharmaceutical applications. Despite their importance in natural products chemistry, identification of fungi remains a daunting task for chemists, especially those who do not work with a trained mycologist. The purpose of this review is to update natural products researchers about the tools available for molecular identification of fungi. In particular, we discuss (1) problems of using morphology alone in the identification of fungi to the species level; (2) the three nuclear ribosomal genes most commonly used in fungal identification and the potential advantages and limitations of the ITS region, which is the official DNA barcoding marker for species-level identification of fungi; (3) how to use NCBI-BLAST search for DNA barcoding, with a cautionary note regarding its limitations; (4) the numerous curated molecular databases containing fungal sequences; (5) the various protein-coding genes used to augment or supplant ITS in species-level identification of certain fungal groups; and (6) methods used in the construction of phylogenetic trees from DNA sequences to facilitate fungal species identification. We recommend that, whenever possible, both morphology and molecular data be used for fungal identification. Our goal is that this review will provide a set of standardized procedures for the molecular identification of fungi that can be utilized by the natural products research community.
Collapse
Affiliation(s)
- Huzefa
A. Raja
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Andrew N. Miller
- Illinois
Natural History Survey, University of Illinois, Champaign, Illinois 61820, United States
| | - Cedric J. Pearce
- Mycosynthetix,
Inc., 505 Meadowland
Drive, Suite 103, Hillsborough, North Carolina 27278, United States
| | - Nicholas H. Oberlies
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| |
Collapse
|
45
|
Bober AE, Proto JT, Brummond KM. Intramolecular Didehydro-Diels–Alder Reaction for the Synthesis of Benzo- and Dihydrobenzo-Fused Heterocycles. Org Lett 2017; 19:1500-1503. [DOI: 10.1021/acs.orglett.7b00155] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ashley E. Bober
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Justin T. Proto
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Kay M. Brummond
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
46
|
Liu Y, Stuhldreier F, Kurtán T, Mándi A, Arumugam S, Lin W, Stork B, Wesselborg S, Weber H, Henrich B, Daletos G, Proksch P. Daldinone derivatives from the mangrove-derived endophytic fungus Annulohypoxylon sp. RSC Adv 2017. [DOI: 10.1039/c6ra27306h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Three new benzo[j]fluoranthene metabolites, including an isolation artefact which induces intrinsic apoptosis and blocks autophagy, were isolated fromAnnulohypoxylonsp.
Collapse
|
47
|
Phylogenetic and chemotaxonomic resolution of the genus Annulohypoxylon (Xylariaceae) including four new species. FUNGAL DIVERS 2016. [DOI: 10.1007/s13225-016-0377-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
48
|
Maharachchikumbura SSN, Hyde KD, Jones EBG, McKenzie EHC, Bhat JD, Dayarathne MC, Huang SK, Norphanphoun C, Senanayake IC, Perera RH, Shang QJ, Xiao Y, D’souza MJ, Hongsanan S, Jayawardena RS, Daranagama DA, Konta S, Goonasekara ID, Zhuang WY, Jeewon R, Phillips AJL, Abdel-Wahab MA, Al-Sadi AM, Bahkali AH, Boonmee S, Boonyuen N, Cheewangkoon R, Dissanayake AJ, Kang J, Li QR, Liu JK, Liu XZ, Liu ZY, Luangsa-ard JJ, Pang KL, Phookamsak R, Promputtha I, Suetrong S, Stadler M, Wen T, Wijayawardene NN. Families of Sordariomycetes. FUNGAL DIVERS 2016. [DOI: 10.1007/s13225-016-0369-6] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
Sica VP, Rees ER, Tchegnon E, Bardsley RH, Raja HA, Oberlies NH. Spatial and Temporal Profiling of Griseofulvin Production in Xylaria cubensis Using Mass Spectrometry Mapping. Front Microbiol 2016; 7:544. [PMID: 27199902 PMCID: PMC4844619 DOI: 10.3389/fmicb.2016.00544] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/04/2016] [Indexed: 11/24/2022] Open
Abstract
A large portion of natural products research revolves around the discovery of new, bioactive chemical entities; however, studies to probe the biological purpose of such secondary metabolites for the host organism are often limited. Mass spectrometry mapping of secondary metabolite biosynthesis in situ can be used to probe a series of ecological questions about fungi that may be lost through traditional natural products chemistry extraction protocols. A griseofulvin-producing fungal culture of the Xylariaceae family, isolated as an endophyte of the tree Asimina triloba, was analyzed through a series of spatial and temporal mapping experiments. This fungus produced unique fungal characteristics, such as guttates and stroma, both of which were explored spatially. The distribution of griseofulvin on this culture in isolation was compared to its dispersal when grown in co-culture with a competing Penicillium species via a droplet–based surface sampling system. The fungistatic properties of griseofulvin were visualized, including the consequences for biosynthesis of polyhydroxyanthraquinones in a rival culture.
Collapse
Affiliation(s)
- Vincent P Sica
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro NC, USA
| | - Evan R Rees
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro NC, USA
| | - Edem Tchegnon
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro NC, USA
| | - Robert H Bardsley
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro NC, USA
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro NC, USA
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro NC, USA
| |
Collapse
|
50
|
|