1
|
Villagrán-Silva F, Loren P, Sandoval C, Lanas F, Salazar LA. Circulating microRNAs as Potential Biomarkers of Overweight and Obesity in Adults: A Narrative Review. Genes (Basel) 2025; 16:349. [PMID: 40149500 PMCID: PMC11942292 DOI: 10.3390/genes16030349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
In an obesogenic environment, such as the one we have been experiencing in recent decades, epigenetics provides answers to the relationship between hereditary and environmentally acquired patterns that have significantly contributed to the global rise in obesity prevalence. MicroRNA (miRNA) constitutes a diminutive non-coding small RNA molecule, 20 to 24 nucleotides in length, that functions as a regulator of gene regulation at the post-translational level. Circulating miRNAs (c-miRNAs) have been detected in multiple body fluids, including blood, plasma, serum, saliva, milk from breastfeeding mothers, and urine. These molecules hold significant therapeutic value and serve as extracellular biomarkers in metabolic diseases. They aid in the diagnosis and tracking of therapy responses, as well as dietary and physical habit modifications. Researchers have studied c-miRNAs as potential biomarkers for diagnosing and characterizing systemic diseases in people of all ages and backgrounds since then. These conditions encompass dyslipidemia, type 2 diabetes mellitus (T2DM), cardiovascular risk, metabolic syndrome, cardiovascular diseases, and obesity. This review therefore analyzes the usefulness of c-miRNAs as therapeutic markers over the past decades. It also provides an update on c-miRNAs associated with general obesity and overweight, as well as with the most prevalent pathologies in the adult population. It also examines the effect of different nutritional approaches and physical activity regarding the activity of miRNAs in circulation in adults with overweight or general obesity. All of this is done with the aim of evaluating their potential use as biomarkers in various research contexts related to overweight and obesity in adults.
Collapse
Affiliation(s)
- Francisca Villagrán-Silva
- Doctoral Program in Morphological Sciences, Faculty of Medicine, Universidad de la Frontera, Temuco 4811230, Chile;
- Center of Molecular Biology and Pharmacogenetics, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile; (P.L.); (F.L.)
| | - Pía Loren
- Center of Molecular Biology and Pharmacogenetics, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile; (P.L.); (F.L.)
| | - Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile;
- Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile
| | - Fernando Lanas
- Center of Molecular Biology and Pharmacogenetics, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile; (P.L.); (F.L.)
- Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile
| | - Luis A. Salazar
- Center of Molecular Biology and Pharmacogenetics, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile; (P.L.); (F.L.)
| |
Collapse
|
2
|
Hoshi Y, Matsuda S, Takeuchi M, Kawakubo H, Kitagawa Y. Liquid Biopsy and Multidisciplinary Treatment for Esophageal Cancer. Cancers (Basel) 2025; 17:196. [PMID: 39857978 PMCID: PMC11763614 DOI: 10.3390/cancers17020196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Esophageal cancer (EC) is one of the leading causes of cancer-related deaths globally. Surgery is the standard treatment for resectable EC after preoperative chemoradiotherapy or chemotherapy, followed by postoperative adjuvant chemotherapy in certain cases. Upper gastrointestinal endoscopy and computed tomography (CT) are predominantly performed to evaluate the efficacy of these treatments, but their sensitivity and accuracy for evaluating minimal residual disease remain unsatisfactory, thereby requiring the development of alternative methods. In recent years, interest has been increasing in using liquid biopsy to assess treatment responses. Liquid biopsy is a noninvasive technology for detecting cell components in the blood and other body fluids. It involves collecting a small sample of body fluid, which is then analyzed for the presence of components, including circulating tumor DNA (ctDNA), microRNA (miRNA), or circulating tumor cells (CTCs). Further, ctDNA and miRNA are analyzed with various techniques, including digital polymerase chain reaction (dPCR) and next-generation sequencing (NGS). CTCs are isolated by determining surface antigens using immunomagnetic techniques or by filtering the blood according to cell size and rigidity. Several studies indicate that investigating these materials helps predict EC prognosis and recurrence and possibly stratifies high-risk groups. Liquid biopsy may also apply to the selection of cases that have achieved a complete response through preoperative treatment to prevent surgery and preserve the esophagus, as well as identifying the suitability of postoperative chemotherapy and the timing of conversion surgery for unresectable EC. The potential of liquid biopsy to enhance treatment decisions will further advance EC treatment.
Collapse
Affiliation(s)
| | - Satoru Matsuda
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | | | | | | |
Collapse
|
3
|
Bernasconi R, Kuster GM. Non-coding RNAs and their potential exploitation in cancer therapy-related cardiotoxicity. Br J Pharmacol 2025; 182:296-315. [PMID: 38802331 DOI: 10.1111/bph.16416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/28/2024] [Accepted: 03/26/2024] [Indexed: 05/29/2024] Open
Abstract
Life expectancy in cancer patients has been extended in recent years, thanks to major breakthroughs in therapeutic developments. However, this also unmasked an increased incidence of cardiovascular diseases in cancer survivors, which is in part attributable to cancer therapy-related cardiovascular toxicity. Non-coding RNAs (ncRNAs) have received much appreciation due to their impact on gene expression. NcRNAs, which include microRNAs, long ncRNAs and circular RNAs, are non-protein-coding transcripts that are involved in the regulation of various biological processes, hence shaping cell identity and behaviour. They have also been implicated in disease development, including cardiovascular diseases, cancer and, more recently, cancer therapy-associated cardiotoxicity. This review outlines key features of cancer therapy-associated cardiotoxicity, what is known about the roles of ncRNAs in these processes and how ncRNAs could be exploited as therapeutic targets for cardioprotection. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- Riccardo Bernasconi
- Myocardial Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Gabriela M Kuster
- Myocardial Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Cardiology, University Heart Center Basel, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
4
|
Niazi SK, Magoola M. MicroRNA Nobel Prize: Timely Recognition and High Anticipation of Future Products-A Prospective Analysis. Int J Mol Sci 2024; 25:12883. [PMID: 39684593 PMCID: PMC11641023 DOI: 10.3390/ijms252312883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
MicroRNAs (miRNAs) maintain cellular homeostasis by blocking mRNAs by binding with them to fine-tune the expression of genes across numerous biological pathways. The 2024 Nobel Prize in Medicine and Physiology for discovering miRNAs was long overdue. We anticipate a deluge of research work involving miRNAs to repeat the history of prizes awarded for research on other RNAs. Although miRNA therapies are included for several complex diseases, the realization that miRNAs regulate genes and their roles in addressing therapies for hundreds of diseases are expected; but with advancement in drug discovery tools, we anticipate even faster entry of new drugs. To promote this, we provide details of the current science, logic, intellectual property, formulations, and regulatory process with anticipation that many more researchers will introduce novel therapies based on the discussion and advice provided in this paper.
Collapse
|
5
|
Paterek A, Załęska-Kocięcka M, Surzykiewicz M, Wojdyńska Z, Leszek P, Mączewski M. Non-coding RNA therapeutics in the treatment of heart failure. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2024; 10:353-360. [PMID: 38641424 DOI: 10.1093/ehjcvp/pvae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/15/2024] [Accepted: 04/18/2024] [Indexed: 04/21/2024]
Abstract
Non-coding RNA (ncRNA) therapeutics can target either ncRNAs or conventional messenger RNA, offering both superior pharmacokinetics and selectivity to conventional therapies and addressing new, previously unexplored pathways. Although no ncRNA has yet been approved for the treatment of heart failure, in this review we present five most promising pathways and agents that either are in human clinical trials or offer great promise in the near future.
Collapse
Affiliation(s)
- Aleksandra Paterek
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Marta Załęska-Kocięcka
- Heart Failure and Transplantology Department, Mechanical Circulatory Support and Transplant Department, National Institute of Cardiology, Alpejska 42, 04-628, Warsaw, Poland
| | - Mateusz Surzykiewicz
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Zuzanna Wojdyńska
- Heart Failure and Transplantology Department, Mechanical Circulatory Support and Transplant Department, National Institute of Cardiology, Alpejska 42, 04-628, Warsaw, Poland
| | - Przemysław Leszek
- Heart Failure and Transplantology Department, Mechanical Circulatory Support and Transplant Department, National Institute of Cardiology, Alpejska 42, 04-628, Warsaw, Poland
| | - Michał Mączewski
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813, Warsaw, Poland
| |
Collapse
|
6
|
Metcalf GAD. MicroRNAs: circulating biomarkers for the early detection of imperceptible cancers via biosensor and machine-learning advances. Oncogene 2024; 43:2135-2142. [PMID: 38839942 PMCID: PMC11226400 DOI: 10.1038/s41388-024-03076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
This review explores the topic of microRNAs (miRNAs) for improved early detection of imperceptible cancers, with potential to advance precision medicine and improve patient outcomes. Historical research exploring miRNA's role in cancer detection collectively revealed initial hurdles in identifying specific miRNA signatures for early-stage and difficult-to-detect cancers. Early studies faced challenges in establishing robust biomarker panels and overcoming the heterogeneity of cancer types. Despite this, recent developments have supported the potential of miRNAs as sensitive and specific biomarkers for early cancer detection as well as having demonstrated remarkable potential as diagnostic tools for imperceptible cancers, such as those with elusive symptoms or challenging diagnostic criteria. This review discusses the advent of high-throughput technologies that have enabled comprehensive detection and profiling of unique miRNA signatures associated with early-stage cancers. Furthermore, advancements in bioinformatics and machine-learning techniques are considered, exploring the integration of multi-omics data which have potential to enhance both the accuracy and reliability of miRNA-based cancer detection assays. Finally, perspectives on the continuing development on technologies as well as discussion around challenges that remain, such as the need for standardised protocols and addressing the complex interplay of miRNAs in cancer biology are conferred.
Collapse
Affiliation(s)
- Gavin A D Metcalf
- School of Life Sciences, Faculty of Science and Engineering, Anglia Ruskin University, Cambridge, UK.
| |
Collapse
|
7
|
Zablon F, Desai P, Dellinger K, Aravamudhan S. Cellular and Exosomal MicroRNAs: Emerging Clinical Relevance as Targets for Breast Cancer Diagnosis and Prognosis. Adv Biol (Weinh) 2024; 8:e2300532. [PMID: 38258348 PMCID: PMC11198028 DOI: 10.1002/adbi.202300532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/26/2023] [Indexed: 01/24/2024]
Abstract
Breast cancer accounts for the highest cancer cases globally, with 12% of occurrences progressing to metastatic breast cancer with a low survival rate and limited effective early intervention strategies augmented by late diagnosis. Moreover, a low concentration of prognostic and predictive markers hinders disease monitoring. Circulating and exosomal microRNAs (miRNAs) have recently shown a considerable interplay in breast cancer, standing out as effective diagnostic and prognostic markers. The primary functions are as gene regulatory agents at the genetic and epigenetic levels. An array of dysregulated miRNAs stimulates cancer-promoting mechanisms, activating oncogenes and controlling tumor-suppressing genes and mechanisms. Exosomes are vastly studied extracellular vesicles, carrying, and transporting cargo, including noncoding RNAs with premier roles in oncogenesis. Translocation of miRNAs from the circulation to exosomes, with RNA-binding proteins in stress-induced conditions, has shown significant cooperation in function to promote breast cancer. This review examines cellular and exosomal miRNA biogenesis and loading, the clinical implications of their dysregulation, their function in diagnosis, prognosis, and prediction of breast cancer, and in regulating cancer signaling pathways. The influence of cellular and exosomal miRNAs presents clinical significance on breast cancer diagnosis, subtyping, staging, prediction, and disease monitoring during treatment, hence a potent marker for breast cancer.
Collapse
Affiliation(s)
- Faith Zablon
- Joint School of Nanoscience and Nanoengineering, North Carolina, A & T State University, 2904 E. Gate City Blvd, Greensboro, NC-27401
| | - Parth Desai
- University of North Carolina, Greensboro, 2904 E. Gate City Blvd, Greensboro, NC-27401
| | - Kristen Dellinger
- Joint School of Nanoscience and Nanoengineering, North Carolina, A & T State University, 2904 E. Gate City Blvd, Greensboro, NC-27401
| | - Shyam Aravamudhan
- Joint School of Nanoscience and Nanoengineering, North Carolina, A & T State University, 2904 E. Gate City Blvd, Greensboro, NC-27401
| |
Collapse
|
8
|
Chen SY, Chen YL, Li PC, Cheng TS, Chu YS, Shen YS, Chen HT, Tsai WN, Huang CL, Sieber M, Yeh YC, Liu HS, Chiang CL, Chang CH, Lee AS, Tseng YH, Lee LJ, Liao HJ, Yip HK, Huang CYF. Engineered extracellular vesicles carrying let-7a-5p for alleviating inflammation in acute lung injury. J Biomed Sci 2024; 31:30. [PMID: 38500170 PMCID: PMC10949767 DOI: 10.1186/s12929-024-01019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/05/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Acute lung injury (ALI) is a life-threatening respiratory condition characterized by severe inflammation and lung tissue damage, frequently causing rapid respiratory failure and long-term complications. The microRNA let-7a-5p is involved in the progression of lung injury, inflammation, and fibrosis by regulating immune cell activation and cytokine production. This study aims to use an innovative cellular electroporation platform to generate extracellular vesicles (EVs) carring let-7a-5p (EV-let-7a-5p) derived from transfected Wharton's jelly-mesenchymal stem cells (WJ-MSCs) as a potential gene therapy for ALI. METHODS A cellular nanoporation (CNP) method was used to induce the production and release of EV-let-7a-5p from WJ-MSCs transfected with the relevant plasmid DNA. EV-let-7a-5p in the conditioned medium were isolated using a tangential flow filtration (TFF) system. EV characterization followed the minimal consensus guidelines outlined by the International Society for Extracellular Vesicles. We conducted a thorough set of therapeutic assessments, including the antifibrotic effects using a transforming growth factor beta (TGF-β)-induced cell model, the modulation effects on macrophage polarization, and the influence of EV-let-7a-5p in a rat model of hyperoxia-induced ALI. RESULTS The CNP platform significantly increased EV secretion from transfected WJ-MSCs, and the encapsulated let-7a-5p in engineered EVs was markedly higher than that in untreated WJ-MSCs. These EV-let-7a-5p did not influence cell proliferation and effectively mitigated the TGF-β-induced fibrotic phenotype by downregulating SMAD2/3 phosphorylation in LL29 cells. Furthermore, EV-let-7a-5p regulated M2-like macrophage activation in an inflammatory microenvironment and significantly induced interleukin (IL)-10 secretion, demonstrating their modulatory effect on inflammation. Administering EVs from untreated WJ-MSCs slightly improved lung function and increased let-7a-5p expression in plasma in the hyperoxia-induced ALI rat model. In comparison, EV-let-7a-5p significantly reduced macrophage infiltration and collagen deposition while increasing IL-10 expression, causing a substantial improvement in lung function. CONCLUSION This study reveals that the use of the CNP platform to stimulate and transfect WJ-MSCs could generate an abundance of let-7a-5p-enriched EVs, which underscores the therapeutic potential in countering inflammatory responses, fibrotic activation, and hyperoxia-induced lung injury. These results provide potential avenues for developing innovative therapeutic approaches for more effective interventions in ALI.
Collapse
Affiliation(s)
- Sin-Yu Chen
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833401, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833401, Taiwan
| | - Po-Chen Li
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Tai-Shan Cheng
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
- Department of Orthopedic Surgery, Far Eastern Memorial Hospital, New Taipei City, 220216, Taiwan
| | - Yeh-Shiu Chu
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Yi-Shan Shen
- Department of Orthopedic Surgery, Far Eastern Memorial Hospital, New Taipei City, 220216, Taiwan
- Department of Biomedical Engineering, National Taiwan University, Taipei, 106319, Taiwan
| | - Hsin-Tung Chen
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Wei-Ni Tsai
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Chien-Ling Huang
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | | | - Yuan-Chieh Yeh
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, 204201, Taiwan
- Program in Molecular Medicine, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Hsiao-Sheng Liu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, 701401, Taiwan
- Center for Cancer Research, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
- Teaching and Research Center, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 812015, Taiwan
| | - Chi-Ling Chiang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Chih-Hung Chang
- Department of Orthopedic Surgery, Far Eastern Memorial Hospital, New Taipei City, 220216, Taiwan
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, 320315, Taiwan
| | | | - Yen-Han Tseng
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
| | - Ly James Lee
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan.
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA.
- Spot Biosystems Ltd., Palo Alto, CA, 94305, USA.
| | - Hsiu-Jung Liao
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan.
- Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City, 220216, Taiwan.
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833401, Taiwan.
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833401, Taiwan.
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833401, Taiwan.
- Department of Nursing, Asia University, Taichung, 413305, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 404328, Taiwan.
| | - Chi-Ying F Huang
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan.
- Department of Biochemistry, School of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan.
| |
Collapse
|
9
|
Ryningen A, Rostad K, Ersvær E, Sjøholt G, Paulsen G, Gundersen H, Kristoffersen M, Bjørkhaug L. Acute response in circulating microRNAs following a single bout of short-sprint and heavy strength training in well-trained cyclists. Front Physiol 2024; 15:1365357. [PMID: 38532845 PMCID: PMC10963392 DOI: 10.3389/fphys.2024.1365357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Background: Heavy strength (HS) and short-sprint (SS) are commonly used training methods for competitive road cyclists, with the aim to improve the anaerobic power and short time cycling performance. Knowledge of how such training methods affects biochemical as well as molecular factors, are particularly important for determining individual recovery and long-term adaptations. The primary aim of the current study was to investigate the expression levels of small non-coding RNAs in response to HS and SS training in elite cyclists as potential biomarkers for individual optimal restitution time. Methods: Eleven well trained cyclists performed one session of HS training and one session of SS training on separate days. Blood samples were taken at baseline and 5 min, 1 h and 21 h post training. Along with physiological measurements and biochemical factors (serum creatine kinase, myoglobin, human growth hormone and plasma lactate), real-time quantitative PCR was used to explore whether HS and/or SS training influenced the abundance of 24 circulating miRNAs, in serum, associated with muscle development, angiogenesis, and/or inflammation. Results: Based on complete miRNA profiles from nine cyclists, the miRNAs showing most altered expression after both training sessions included the three striated muscle-specific miRNAs (myomiRs) miR-1-3p, 133a-3p and 133b-3p. While all three miRNAs showed significantly highest expression at 1 h post HS session, the acute effect of the SS session included a significantly higher level of miR-1-3p alone, at 5 min (highest), as well as at 1 h and 21 h post session. Correlation (negative) with biochemical markers was only shown for miR-133a-3p and CK (r = -0.786, p = 0.041) and between miR-133b-3p and [La-] (r = -0.711, p = .032), at 21 h post SS session. Conclusion: Our findings support that unique myomiRs are regulated by HS and SS training. Such knowledge may be important for individually adjusted restitution times.
Collapse
Affiliation(s)
- Anita Ryningen
- Department of Safety, Chemistry and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Kari Rostad
- Department of Safety, Chemistry and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Elisabeth Ersvær
- Department of Safety, Chemistry and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Bergen, Norway
- Department of Biotechnology, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Gry Sjøholt
- Department of Safety, Chemistry and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Gøran Paulsen
- Department of Sport, Food and Natural Sciences, Western Norway University of Applied Sciences, Sogndal, Norway
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Hilde Gundersen
- Department of Sport and Physical Activity, Western Norway University of Applied Sciences, Bergen, Norway
| | - Morten Kristoffersen
- Department of Sport and Physical Activity, Western Norway University of Applied Sciences, Bergen, Norway
| | - Lise Bjørkhaug
- Department of Safety, Chemistry and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| |
Collapse
|
10
|
Petrova T, Kalinina O, Aquino A, Grigoryev E, Dubashynskaya NV, Zubkova K, Kostareva A, Golovkin A. Topographic Distribution of miRNAs (miR-30a, miR-223, miR-let-7a, miR-let-7f, miR-451, and miR-486) in the Plasma Extracellular Vesicles. Noncoding RNA 2024; 10:15. [PMID: 38392970 PMCID: PMC10892389 DOI: 10.3390/ncrna10010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/27/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
There are many articles on the quantitative analysis of miRNAs contained in a population of EVs of different sizes under various physiological and pathological conditions. For such analysis, it is important to correctly quantify the miRNA contents of EVs. It should be considered that quantification is skewed depending on the isolation protocol, and different miRNAs are degraded by nucleases with different efficiencies. In addition, it is important to consider the contribution of miRNAs coprecipitating with the EVs population, because the amount of miRNAs in the EVs population under study is skewed without appropriate enzymatic treatment. By studying a population of EVs from the blood plasma of healthy donors, we found that the absolute amount of miRNA inside the vesicles is commensurate with the amount of the same type of miRNA adhered to the outside of the EVs. The inside/outside ratio ranged from 1.02 to 2.64 for different investigated miRNAs. According to our results, we propose the hypothesis that high occupancy of miRNAs on the outer surface of EVs influence on the transporting RNA repertoire no less than the inner cargo received from the host cell.
Collapse
Affiliation(s)
- Tatiana Petrova
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (T.P.); (O.K.); (A.A.); (K.Z.); (A.K.)
| | - Olga Kalinina
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (T.P.); (O.K.); (A.A.); (K.Z.); (A.K.)
| | - Arthur Aquino
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (T.P.); (O.K.); (A.A.); (K.Z.); (A.K.)
| | - Evgeniy Grigoryev
- St. Petersburg State University, Research Park, 199034 St. Petersburg, Russia;
| | - Natallia V. Dubashynskaya
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia;
| | - Kseniya Zubkova
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (T.P.); (O.K.); (A.A.); (K.Z.); (A.K.)
| | - Anna Kostareva
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (T.P.); (O.K.); (A.A.); (K.Z.); (A.K.)
| | - Alexey Golovkin
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (T.P.); (O.K.); (A.A.); (K.Z.); (A.K.)
| |
Collapse
|
11
|
Solomon MC, Chandrashekar C, Kulkarni S, Shetty N, Pandey A. Exosomes: Mediators of cellular communication in potentially malignant oral lesions and head and neck cancers. F1000Res 2023; 12:58. [PMID: 38059133 PMCID: PMC10696492 DOI: 10.12688/f1000research.127368.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/26/2023] [Indexed: 12/08/2023] Open
Abstract
Exosomes are a unique type of extracellular vesicles that contain a plethora of biological cargo such as miRNA, mRNA, long non-coding RNA, DNA, proteins and lipids. Exosomes serve as very effective means of intercellular communication. Due the presence of a lipid bilayer membrane, exosomes are resistant to degradation and are highly stable. This makes them easily identifiable in blood and other bodily fluids such as saliva. The exosomes that are secreted from a parent cell directly release their contents into the cytoplasm of a recipient cell and influence their cellular activity and function. Exosomes can also transfer their content between cancer cells and normal cells and regulate the tumor microenvironment. Exosomes play a vital role in tumor growth, tumor invasion and metastasis. Exosomes provide a multitude of molecular and genetic information and have become valuable indicators of disease activity at the cellular level. This review explores the molecular characteristics of exosomes and the role that exosomes play in the tumorigenesis pathway of potentially malignant oral lesions and head and neck cancers The application of exosomes in the treatment of oral cancers is also envisioned. Exosomes are very small and can easily pass through various biological barriers, making them very good delivery vectors for therapeutic drugs as well as to selectively induce DNA's mRNA and miRNAs into targeted cancer cells.
Collapse
Affiliation(s)
- Monica Charlotte Solomon
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Chetana Chandrashekar
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Spoorti Kulkarni
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Nisha Shetty
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Aditi Pandey
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
12
|
Abstract
circRNA is a type of RNA molecule with a circular structure. From initially thinking it was useless to now discovering that it has important and complex functions, the importance of circRNA is increasingly being recognized. circRNA was first discovered as an ncRNA with a molecular sponge function. Clinically, due to its special molecular structure, researchers are generally interested in its potential as a biomarker. Recently, circRNA has been proven to have many functions other than encoding proteins. In the clinical setting, circRNA also has strong potential for application in vaccine preparation and targeted therapy. This article discusses the synthesis of circRNA, introduces its functions and discusses its future development prospects.
Collapse
Affiliation(s)
- Hanlin Li
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| |
Collapse
|
13
|
Schleif WS, Sarasua SM, DeLuca JM. Preanalytic and Analytic Quality System Considerations in Noncoding RNA Biomarker Development for Clinical Diagnostics. Genet Test Mol Biomarkers 2023; 27:172-182. [PMID: 37257182 DOI: 10.1089/gtmb.2022.0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023] Open
Abstract
A frequent topic of biomedical research is the potential clinical use of non-coding (nc) RNAs as quantitative biomarkers for a broad spectrum of health and disease. However, ncRNA analyses have not been pressed into widespread diagnostic use. Strong preclinical evidence suggests obstacles in the translation and reproducibility of this type of biomarker which may result from preanalytical and analytical variation in the non-standardized processes used to collect, process, and store samples, as well as the substantive differences between small and long ncRNA. We performed a narrative review of selected literature, through the lens of key laboratory-developed test (LDT) regulations under the Clinical Laboratory Improvement Amendments (CLIA) in the United States, to study critical gaps in ncRNA validation studies. This review describes the leading candidate ncRNA subclasses, their biogenesis and cellular function, and identifies specific pre-analytical variables with disproportionate impact on testing performance. We summarize these findings with strategic recommendations to clinicians and biomedical scientists involved in the design, conduct, and translation of ncRNA biomarker development.
Collapse
Affiliation(s)
- William S Schleif
- Healthcare Genetics Program, School of Nursing, College of Health, Education, and Human Development, Clemson University, Clemson, South Carolina, USA
- Program in Pediatric Biospecimen Science, Johns Hopkins All Children's Institute for Clinical and Translational Research, St. Petersburg, Florida, USA
| | - Sara M Sarasua
- Healthcare Genetics Program, School of Nursing, College of Health, Education, and Human Development, Clemson University, Clemson, South Carolina, USA
| | - Jane M DeLuca
- Healthcare Genetics Program, School of Nursing, College of Health, Education, and Human Development, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
14
|
Hosen MR, Goody PR, Zietzer A, Xiang X, Niepmann ST, Sedaghat A, Tiyerili V, Chennupati R, Moore JB, Boon RA, Uchida S, Sinning JM, Zimmer S, Latz E, Werner N, Nickenig G, Jansen F. Circulating MicroRNA-122-5p Is Associated With a Lack of Improvement in Left Ventricular Function After Transcatheter Aortic Valve Replacement and Regulates Viability of Cardiomyocytes Through Extracellular Vesicles. Circulation 2022; 146:1836-1854. [PMID: 35862223 DOI: 10.1161/circulationaha.122.060258] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/14/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Transcatheter aortic valve replacement (TAVR) is a well-established treatment option for high- and intermediate-risk patients with severe symptomatic aortic valve stenosis. A majority of patients exhibit improvements in left ventricular ejection fraction (LVEF) after TAVR in response to TAVR-associated afterload reduction. However, a specific role for circulating microRNAs (miRNAs) in the improvement of cardiac function for patients after TAVR has not yet been investigated. Here, we profiled the differential expression of miRNAs in circulating extracellular vesicles (EVs) in patients after TAVR and, in particular, the novel role of circulating miR-122-5p in cardiomyocytes. METHODS Circulating EV-associated miRNAs were investigated by use of an unbiased Taqman-based human miRNA array. Several EV miRNAs (miR-122-5p, miR-26a, miR-192, miR-483-5p, miR-720, miR-885-5p, and miR-1274) were significantly deregulated in patients with aortic valve stenosis at day 7 after TAVR compared with the preprocedural levels in patients without LVEF improvement. The higher levels of miR-122-5p were negatively correlated with LVEF improvement at both day 7 (r=-0.264 and P=0.015) and 6 months (r=-0.328 and P=0.0018) after TAVR. RESULTS Using of patient-derived samples and a murine aortic valve stenosis model, we observed that the expression of miR-122-5p correlates negatively with cardiac function, which is associated with LVEF. Mice with graded wire injury-induced aortic valve stenosis demonstrated a higher level of miR-122-5p, which was related to cardiomyocyte dysfunction. Murine ex vivo experiments revealed that miR-122-5p is highly enriched in endothelial cells compared with cardiomyocytes. Coculture experiments, copy-number analysis, and fluorescence microscopy with Cy3-labeled miR-122-5p demonstrated that miR-122-5p can be shuttled through large EVs from endothelial cells into cardiomyocytes. Gain- and loss-of-function experiments suggested that EV-mediated shuttling of miR-122-5p increases the level of miR-122-5p in recipient cardiomyocytes. Mechanistically, mass spectrometry, miRNA pulldown, electrophoretic mobility shift assay, and RNA immunoprecipitation experiments confirmed that miR-122-5p interacts with the RNA-binding protein hnRNPU (heterogeneous nuclear ribonucleoprotein U) in a sequence-specific manner to encapsulate miR-122-5p into large EVs. On shuttling, miR-122-5p reduces the expression of the antiapoptotic gene BCL2 by binding to its 3' untranslated region to inhibit its translation, thereby decreasing the viability of target cardiomyocytes. CONCLUSIONS Increased levels of circulating proapoptotic EV-incorporated miR-122-5p are associated with reduced LVEF after TAVR. EV shuttling of miR-122-5p regulates the viability and apoptosis of cardiomyocytes in a BCL2-dependent manner.
Collapse
Affiliation(s)
- Mohammed Rabiul Hosen
- Heart Center Bonn, Department of Internal Medicine II (M.R.H., P.R.G., A.Z., X.X., S.T.N., A.S., V.T., S.Z., G.N., F.J.), University Hospital Bonn, Venusberg-Campus Germany
| | - Philip Roger Goody
- Heart Center Bonn, Department of Internal Medicine II (M.R.H., P.R.G., A.Z., X.X., S.T.N., A.S., V.T., S.Z., G.N., F.J.), University Hospital Bonn, Venusberg-Campus Germany
| | - Andreas Zietzer
- Heart Center Bonn, Department of Internal Medicine II (M.R.H., P.R.G., A.Z., X.X., S.T.N., A.S., V.T., S.Z., G.N., F.J.), University Hospital Bonn, Venusberg-Campus Germany
| | - Xu Xiang
- Heart Center Bonn, Department of Internal Medicine II (M.R.H., P.R.G., A.Z., X.X., S.T.N., A.S., V.T., S.Z., G.N., F.J.), University Hospital Bonn, Venusberg-Campus Germany
- Department of International Medical Center, Affiliated Hospital of Qingdao University, Shinan, Qingdao, Shandong, China (X.X.)
| | - Sven Thomas Niepmann
- Heart Center Bonn, Department of Internal Medicine II (M.R.H., P.R.G., A.Z., X.X., S.T.N., A.S., V.T., S.Z., G.N., F.J.), University Hospital Bonn, Venusberg-Campus Germany
| | - Alexander Sedaghat
- Heart Center Bonn, Department of Internal Medicine II (M.R.H., P.R.G., A.Z., X.X., S.T.N., A.S., V.T., S.Z., G.N., F.J.), University Hospital Bonn, Venusberg-Campus Germany
| | - Vedat Tiyerili
- Heart Center Bonn, Department of Internal Medicine II (M.R.H., P.R.G., A.Z., X.X., S.T.N., A.S., V.T., S.Z., G.N., F.J.), University Hospital Bonn, Venusberg-Campus Germany
| | - Ramesh Chennupati
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Germany (R.C.)
| | - Joseph B Moore
- Christina Lee Brown Environment Institute, Department of Medicine, University of Louisville, KY (J.B.M.)
- Diabetes and Obesity Center, Louisville, KY (J.B.M.)
| | - Reinier A Boon
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt am Main, Germany (R.A.B.)
- Center for Cardiovascular Research (DZHK), Partner Site-Rhein-Main, Frankfurt am Main, Germany (R.A.B.)
- Department of Physiology, VU University Medical Center, Amsterdam, the Netherlands (R.A.B.)
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark (S.U.)
| | - Jan-Malte Sinning
- Department of Internal Medicine-III-Cardiology, St. Vinzenz Hospital, Cologne, Germany (J.-M.S.)
| | - Sebastian Zimmer
- Heart Center Bonn, Department of Internal Medicine II (M.R.H., P.R.G., A.Z., X.X., S.T.N., A.S., V.T., S.Z., G.N., F.J.), University Hospital Bonn, Venusberg-Campus Germany
| | - Eicke Latz
- Institute of Innate Immunity (E.L.), University Hospital Bonn, Venusberg-Campus Germany
| | - Nikos Werner
- Department of Internal Medicine/ Cardiology, Krankenhaus der Barmherzigen Brüder Trier, Germany (N.W.)
| | - Georg Nickenig
- Heart Center Bonn, Department of Internal Medicine II (M.R.H., P.R.G., A.Z., X.X., S.T.N., A.S., V.T., S.Z., G.N., F.J.), University Hospital Bonn, Venusberg-Campus Germany
| | - Felix Jansen
- Heart Center Bonn, Department of Internal Medicine II (M.R.H., P.R.G., A.Z., X.X., S.T.N., A.S., V.T., S.Z., G.N., F.J.), University Hospital Bonn, Venusberg-Campus Germany
| |
Collapse
|
15
|
Zhou Y, Bréchard S. Neutrophil Extracellular Vesicles: A Delicate Balance between Pro-Inflammatory Responses and Anti-Inflammatory Therapies. Cells 2022; 11:cells11203318. [PMID: 36291183 PMCID: PMC9600967 DOI: 10.3390/cells11203318] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles (EVs) are released in the extracellular environment during cell activation or apoptosis. Working as signal transducers, EVs are important mediators of intercellular communication through the convoying of proteins, nucleic acids, lipids, and metabolites. Neutrophil extracellular vesicles (nEVs) contain molecules acting as key modulators of inflammation and immune responses. Due to their potential as therapeutic tools, studies about nEVs have been increasing in recent years. However, our knowledge about nEVs is still in its infancy. In this review, we summarize the current understanding of the role of nEVs in the framework of neutrophil inflammation functions and disease development. The therapeutic potential of nEVs as clinical treatment strategies is deeply discussed. Moreover, the promising research landscape of nEVs in the near future is also examined.
Collapse
|
16
|
Zhou X, Yu M, Ma L, Fu J, Guo J, Lei J, Fu Z, Fu Y, Zhang Q, Zhang CY, Chen X. In vivo self-assembled siRNA as a modality for combination therapy of ulcerative colitis. Nat Commun 2022; 13:5700. [PMID: 36171212 PMCID: PMC9519883 DOI: 10.1038/s41467-022-33436-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/12/2022] [Indexed: 11/08/2022] Open
Abstract
Given the complex nature of ulcerative colitis, combination therapy targeting multiple pathogenic genes and pathways of ulcerative colitis may be required. Unfortunately, current therapeutic strategies are usually based on independent chemical compounds or monoclonal antibodies, and the full potential of combination therapy has not yet been realized for the treatment of ulcerative colitis. Here, we develop a synthetic biology strategy that integrates the naturally existing circulating system of small extracellular vesicles with artificial genetic circuits to reprogram the liver of male mice to self-assemble multiple siRNAs into secretory small extracellular vesicles and facilitate in vivo delivery siRNAs through circulating small extracellular vesicles for the combination therapy of mouse models of ulcerative colitis. Particularly, repeated injection of the multi-targeted genetic circuit designed for simultaneous inhibition of TNF-α, B7-1 and integrin α4 rapidly relieves intestinal inflammation and exerts a synergistic therapeutic effect against ulcerative colitis through suppressing the pro-inflammatory cascade in colonic macrophages, inhibiting the costimulatory signal to T cells and blocking T cell homing to sites of inflammation. More importantly, we design an AAV-driven genetic circuit to induce substantial and lasting inhibition of TNF-α, B7-1 and integrin α4 through only a single injection. Overall, this study establishes a feasible combination therapeutic strategy for ulcerative colitis, which may offer an alternative to conventional biological therapies requiring two or more independent compounds or antibodies.
Collapse
Affiliation(s)
- Xinyan Zhou
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, 210023, Nanjing, Jiangsu, China
| | - Mengchao Yu
- Central Laboratories, Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, 266061, Qingdao, China
| | - Luzhen Ma
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, 210023, Nanjing, Jiangsu, China
| | - Jinyu Fu
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, 210023, Nanjing, Jiangsu, China
| | - Jingwei Guo
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, 210023, Nanjing, Jiangsu, China
| | - Jieqiong Lei
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, 210023, Nanjing, Jiangsu, China
| | - Zheng Fu
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, 210023, Nanjing, Jiangsu, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, Jiangsu, China
| | - Yong Fu
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, 210023, Nanjing, Jiangsu, China
| | - Qipeng Zhang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, 210023, Nanjing, Jiangsu, China.
| | - Chen-Yu Zhang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, 210023, Nanjing, Jiangsu, China.
- Research Unit of Extracellular RNA, Chinese Academy of Medical Sciences, Jiangsu, 210023, Nanjing, China.
- Institute of Artificial Intelligence Biomedicine, Nanjing University, Jiangsu, 210023, Nanjing, China.
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, 518055, Shenzhen, Guangdong, China.
| | - Xi Chen
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, 210023, Nanjing, Jiangsu, China.
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, Jiangsu, China.
- Institute of Artificial Intelligence Biomedicine, Nanjing University, Jiangsu, 210023, Nanjing, China.
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, 518055, Shenzhen, Guangdong, China.
| |
Collapse
|
17
|
Zou G, Ji Q, Geng Z, Du X, Jiang L, Liu T. miR-31-5p from placental and peripheral blood exosomes is a potential biomarker to diagnose preeclampsia. Hereditas 2022; 159:35. [PMID: 36123601 PMCID: PMC9484067 DOI: 10.1186/s41065-022-00250-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/06/2022] [Indexed: 11/21/2022] Open
Abstract
Background Preeclampsia, a multisystem disorder of unknown etiology, is one of the leading causes of maternal and perinatal morbidity and mortality. Identifying sensitive, noninvasive markers can aid its prevention and improve prognosis. microRNAs (miRs), which function as negative regulators of gene expression, are closely related to preeclampsia occurrence and development. Herein we investigated the relationship between the DLK1-Dio3 imprinted miR cluster derived from placental and peripheral blood exosomes of pregnant women with preeclampsia and routine clinical diagnostic indicators, and also determined its potential as a noninvasive diagnostic marker. Methods Exosomes were extracted from the placenta and peripheral blood of pregnant women with preeclampsia. Results qPCR data indicated that the expression level of miRs, such as miR-134, miR-31-5p, miR-655, miR-412, miR-539, miR-409, and miR-496, in pregnant women with preeclampsia was significantly lower than that in healthy controls; miR-31-5p expression was the most different. Gene ontology analysis predicted that genes negatively regulated by miR-31-5p were mainly enriched in cellular entity, cellular process, and binding; moreover, Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that genes were involved in gonadotropin-releasing hormone receptor pathway and other signaling pathways. Correlation analysis revealed that miR-31-5p was significantly negatively correlated with clinical indicators of preeclampsia, such as systolic and diastolic pressure, lactate dehydrogenase, and proteinuria. Conclusion We believe that exosome-derived miR-31-5p can serve as an effective and sensitive biomarker to determine the course of preeclampsia in pregnant women.
Collapse
Affiliation(s)
- Gang Zou
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Qingfang Ji
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Zixiang Geng
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiling Du
- School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Lingyan Jiang
- Department of Gynecology and Obstetrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 1279, Sanmen Road, Shanghai, 200434, China.
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 365 South Xiangyang Road, Shanghai, 200031, China.
| |
Collapse
|
18
|
Ibañez-Perez J, Díaz-Nuñez M, Clos-García M, Lainz L, Iglesias M, Díez-Zapirain M, Rabanal A, Bárcena L, González M, Lozano JJ, Marigorta UM, González E, Royo F, Aransay AM, Subiran N, Matorras R, Falcón-Pérez JM. microRNA-based signatures obtained from endometrial fluid identify implantative endometrium. Hum Reprod 2022; 37:2375-2391. [PMID: 36029522 PMCID: PMC9527456 DOI: 10.1093/humrep/deac184] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 08/02/2022] [Indexed: 12/12/2022] Open
Abstract
STUDY QUESTION Is it possible to use free and extracellular vesicle-associated microRNAs (miRNAs) from human endometrial fluid (EF) samples as non-invasive biomarkers for implantative endometrium? SUMMARY ANSWER The free and extracellular vesicle-associated miRNAs can be used to detect implantative endometrium in a non-invasive manner. WHAT IS KNOWN ALREADY miRNAs and extracellular vesicles (EVs) from EF have been described as mediators of the embryo–endometrium crosstalk. Therefore, the analysis of miRNA from this fluid could become a non-invasive technique for recognizing implantative endometrium. This analysis could potentially help improve the implantation rates in ART. STUDY DESIGN, SIZE, DURATION In this prospective study, we first optimized different protocols for EVs and miRNA analyses using the EF of a setup cohort (n = 72). Then, we examined differentially expressed miRNAs in the EF of women with successful embryo implantation (discovery cohort n = 15/validation cohort n = 30) in comparison with those for whom the implantation had failed (discovery cohort n = 15/validation cohort n = 30). Successful embryo implantation was considered when pregnancy was confirmed by vaginal ultrasound showing a gestational sac 4 weeks after embryo transfer (ET). PARTICIPANTS/MATERIALS, SETTING, METHODS The EF of the setup cohort was obtained before starting fertility treatment during the natural cycle, 16–21 days after the beginning of menstruation. For the discovery and validation cohorts, the EF was collected from women undergoing frozen ET on Day 5, and the samples were collected immediately before ET. In this study, we compared five different methods; two of them based on direct extraction of RNA and the other three with an EV enrichment step before the RNA extraction. Small RNA sequencing was performed to determine the most efficient method and find a predictive model differentiating between implantative and non-implantative endometrium. The models were confirmed using quantitative PCR in two sets of samples (discovery and validation cohorts) with different implantation outcomes. MAIN RESULTS AND THE ROLE OF CHANCE The protocols using EV enrichment detected more miRNAs than the methods based on direct RNA extraction. The two most efficient protocols (using polymer-based precipitation (PBP): PBP-M and PBP-N) were used to obtain two predictive models (based on three miRNAs) allowing us to distinguish between an implantative and non-implantative endometrium. The first Model 1 (PBP-M) (discovery: AUC = 0.93; P-value = 0.003; validation: AUC = 0.69; P-value = 0.019) used hsa-miR-200b-3p, hsa-miR-24-3p and hsa-miR-148b-3p. Model 2 (PBP-N) (discovery: AUC = 0.92; P-value = 0.0002; validation: AUC = 0.78; P-value = 0.0002) used hsa-miR-200b-3p, hsa-miR-24-3p and hsa-miR-99b-5p. Functional analysis of these miRNAs showed strong association with key implantation processes such as in utero embryonic development or transforming growth factor-beta signaling. LARGE SCALE DATA The FASTQ data are available in the GEO database (access number GSE178917). LIMITATIONS, REASONS FOR CAUTION One important factor to consider is the inherent variability among the women involved in the trial and among the transferred embryos. The embryos were pre-selected based on morphology, but neither genetic nor molecular studies were conducted, which would have improved the accuracy of our tests. In addition, a limitation in miRNA library construction is the low amount of input RNA. WIDER IMPLICATIONS OF THE FINDINGS We describe new non-invasive protocols to analyze miRNAs from small volumes of EF. These protocols could be implemented in clinical practice to assess the status of the endometrium before attempting ET. Such evaluation could help to avoid the loss of embryos transferred to a non-implantative endometrium. STUDY FUNDING/COMPETING INTEREST(S) J.I.-P. was supported by a predoctoral grant from the Basque Government (PRE_2017_0204). This study was partially funded by the Grant for Fertility Innovation (GFI, 2011) from Merck (Darmstadt, Germany). It was also supported by the Spanish Ministry of Economy and Competitiveness MINECO within the National Plan RTI2018-094969-B-I00, the European Union's Horizon 2020 research and innovation program (860303), the Severo Ochoa Centre of Excellence Innovative Research Grant (SEV-2016-0644) and the Instituto de Salud Carlos III (PI20/01131). The funding entities did not play any role in the study design, collection, analysis and interpretation of data, writing of the report or the decision to submit the article for publication. The authors declare no competing interests.
Collapse
Affiliation(s)
- Jone Ibañez-Perez
- Human Reproduction Unit, Cruces University Hospital, University of the Basque Country (UPV/EHU), Barakaldo, Spain.,Innovation in Assisted Reproduction Group, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain.,Department of Obstetrics and Gynecology, University of the Basque Country (UPV/EHU), Leioa, Spain.,Exosomes Laboratory, CIC bioGUNE-BRTA, Derio, Spain
| | - María Díaz-Nuñez
- Human Reproduction Unit, Cruces University Hospital, University of the Basque Country (UPV/EHU), Barakaldo, Spain.,Innovation in Assisted Reproduction Group, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
| | - Marc Clos-García
- Novo Nordisk Foundation Center for Basic Metabolic Research (CBMR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lucía Lainz
- Human Reproduction Unit, Cruces University Hospital, University of the Basque Country (UPV/EHU), Barakaldo, Spain.,Innovation in Assisted Reproduction Group, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
| | - María Iglesias
- Human Reproduction Unit, Cruces University Hospital, University of the Basque Country (UPV/EHU), Barakaldo, Spain.,Innovation in Assisted Reproduction Group, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
| | - Miren Díez-Zapirain
- Human Reproduction Unit, Cruces University Hospital, University of the Basque Country (UPV/EHU), Barakaldo, Spain.,Innovation in Assisted Reproduction Group, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
| | - Aintzane Rabanal
- Human Reproduction Unit, Cruces University Hospital, University of the Basque Country (UPV/EHU), Barakaldo, Spain.,Innovation in Assisted Reproduction Group, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
| | - Laura Bárcena
- Genome Analysis Platform, CIC bioGUNE-BRTA, Derio, Spain
| | | | - Juan J Lozano
- Bioinformatics Platform, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Urko M Marigorta
- Integrative Genomics Lab, CIC bioGUNE-BRTA, Derio, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | | | - Félix Royo
- Exosomes Laboratory, CIC bioGUNE-BRTA, Derio, Spain.,Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas (CIBEReh), Madrid, Spain
| | - Ana M Aransay
- Genome Analysis Platform, CIC bioGUNE-BRTA, Derio, Spain.,Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas (CIBEReh), Madrid, Spain
| | - Nerea Subiran
- Innovation in Assisted Reproduction Group, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain.,Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Roberto Matorras
- Human Reproduction Unit, Cruces University Hospital, University of the Basque Country (UPV/EHU), Barakaldo, Spain.,Innovation in Assisted Reproduction Group, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain.,Department of Obstetrics and Gynecology, University of the Basque Country (UPV/EHU), Leioa, Spain.,Instituto Valenciano de Infertilidad (IVI) Bilbao/IVIRMA, Leioa, Spain
| | - Juan Manuel Falcón-Pérez
- Exosomes Laboratory, CIC bioGUNE-BRTA, Derio, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.,Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas (CIBEReh), Madrid, Spain.,Metabolomics Platform, CIC bioGUNE-BRTA, Derio, Spain
| |
Collapse
|
19
|
Malik J, Klammer M, Rolny V, Chan HLY, Piratvisuth T, Tanwandee T, Thongsawat S, Sukeepaisarnjaroen W, Esteban JI, Bes M, Köhler B, Swiatek-de Lange M. Comprehensive evaluation of microRNA as a biomarker for the diagnosis of hepatocellular carcinoma. World J Gastroenterol 2022; 28:3917-3933. [PMID: 36157551 PMCID: PMC9367234 DOI: 10.3748/wjg.v28.i29.3917] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/20/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. Current guidelines for HCC management recommend surveillance of high-risk patients every 6 mo using ultrasonography. Serum biomarkers, like alpha-fetoprotein (AFP), protein induced by vitamin K absence/antagonist-II (PIVKA-II) and lectin-reactive AFP, show suboptimal performance for detection of HCC, which is crucial for successful resection or treatment. Thus, there is a significant need for new biomarkers to aid early diagnosis of HCC. Studies have shown that the expression level of human microRNAs (miRNAs), a small, non-coding RNA species released into the blood, can serve as an early marker for various diseases, including HCC.
AIM To evaluate the diagnostic role of miRNAs in HCC as single markers, signatures or in combination with known protein biomarkers.
METHODS Our prospective, multicenter, case-control study recruited 660 participants (354 controls with chronic liver disease and 306 participants with HCC) and employed a strategy of initial screening by two independent methods, real-time quantitative PCR (n = 60) and next-generation sequencing (n = 100), to assess a large number of miRNAs. The results from the next-generation sequencing and real-time quantitative PCR screening approaches were then combined to select 26 miRNAs (including two putative novel miRNAs). Those miRNAs were analyzed for their diagnostic potential as single markers or in combination with other miRNAs or established protein biomarkers AFP and PIVKA-II via real-time quantitative PCR in training (n = 200) and validation cohorts (n = 300).
RESULTS We identified 26 miRNAs that differentiated chronic liver disease controls from (early) HCC via two independent discovery approaches. Three miRNAs, miR-21-5p (miR-21), miR-320a and miR-186-5p, were selected by both methods. In the training cohort, only miR-21, miR-320d and miR-423 could significantly distinguish (Q < 0.05) between the HCC and chronic liver disease control groups. In the multivariate setting, miR-21 with PIVKA-II was selected as the best combination, resulting in an area under the curve of 0.87 for diagnosis and area under the curve of 0.74 for early diagnosis of HCC. In the validation cohort, only miR-21 and miR-423 could be confirmed as potential HCC biomarkers. A combination of miRNAs did not perform better than any single miRNA. Improvement of PIVKA-II performance through combination with miRNAs could not be confirmed in the validation panel. Two putative miRs, put-miR-6 and put-miR-99, were tested in the training and validation panels, but their expression could only be detected in very few samples and at a low level (cycle threshold between 31.24 and 34.97).
CONCLUSION miRNAs alone or as a signature in combination with protein biomarkers AFP and PIVKA-II do not improve the diagnostic performance of the protein biomarkers.
Collapse
Affiliation(s)
| | | | | | - Henry Lik-Yuen Chan
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Teerha Piratvisuth
- NKC Institute of Gastroenterology and Hepatology, Songklanagarind Hospital, Hat Yai 90112, Thailand
| | - Tawesak Tanwandee
- Division of Gastroenterology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Satawat Thongsawat
- Department of Internal Medicine, Maharaj Nakorn Chiang Mai Hospital, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | | | - Marta Bes
- Transfusion Safety Laboratory, Banc de Sang i Teixits, Barcelona 08005, Spain
| | - Bruno Köhler
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg 69120, Germany
- Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg 69120, Germany
| | | |
Collapse
|
20
|
Zelli V, Compagnoni C, Capelli R, Corrente A, Di Vito Nolfi M, Zazzeroni F, Alesse E, Tessitore A. Role of exosomal microRNAs in cancer therapy and drug resistance mechanisms: focus on hepatocellular carcinoma. Front Oncol 2022; 12:940056. [PMID: 35912267 PMCID: PMC9334682 DOI: 10.3389/fonc.2022.940056] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/27/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), defined as intercellular messengers that carry their cargos between cells, are involved in several physiological and pathological processes. These small membranous vesicles are released by most cells and contain biological molecules, including nucleic acids, proteins and lipids, which can modulate signaling pathways of nearby or distant recipient cells. Exosomes, one the most characterized classes of EVs, include, among others, microRNAs (miRNAs), small non-coding RNAs able to regulate the expression of several genes at post-transcriptional level. In cancer, exosomal miRNAs have been shown to influence tumor behavior and reshape tumor microenvironment. Furthermore, their possible involvement in drug resistance mechanisms has become evident in recent years. Hepatocellular carcinoma (HCC) is the major type of liver cancer, accounting for 75-85% of all liver tumors. Although the improvement in HCC treatment approaches, low therapeutic efficacy in patients with intermediate-advanced HCC is mainly related to the development of tumor metastases, high risk of recurrence and drug resistance. Exosomes have been shown to be involved in pathogenesis and progression of HCC, as well as in drug resistance, by regulating processes such as cell proliferation, epithelial-mesenchymal transition and immune response. Herein, we summarize the current knowledge about the involvement of exosomal miRNAs in HCC therapy, highlighting their role as modulators of therapeutic response, particularly chemotherapy and immunotherapy, as well as possible therapeutic tools.
Collapse
Affiliation(s)
- Veronica Zelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
- Center for Molecular Diagnostics and Advanced Therapies, University of L’Aquila, L’Aquila, Italy
| | - Chiara Compagnoni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Roberta Capelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Alessandra Corrente
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Mauro Di Vito Nolfi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Edoardo Alesse
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Alessandra Tessitore
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
- Center for Molecular Diagnostics and Advanced Therapies, University of L’Aquila, L’Aquila, Italy
- *Correspondence: Alessandra Tessitore,
| |
Collapse
|
21
|
Subudhi PD, Bihari C, Sarin SK, Baweja S. Emerging Role of Edible Exosomes-Like Nanoparticles (ELNs) as Hepatoprotective Agents. Nanotheranostics 2022; 6:365-375. [PMID: 35795340 PMCID: PMC9254361 DOI: 10.7150/ntno.70999] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/24/2022] [Indexed: 11/07/2022] Open
Abstract
Liver diseases are responsible for over 2 million deaths each year and the number is rapidly increasing. There is a strong link between edibles, gut microbiota, liver fat and the liver damage. There are very limited therapeutic options for treatment specifically for Alcoholic liver disease (ALD) and Non-Alcoholic liver disease (NAFLD). Recently, identified Edible Exosomes-like nanoparticles (ELNs) are plant derived membrane bound particles, released by microvesicular bodies for cellular communication and regulate immune responses against many pathogens. Many studies have identified their role as hepatoprotective agent as they carry bioactive material as cargoes which are transferred to recipient cells and affect various biological functions in liver. They are also known to carry specific miRNA, which increases the copy number of beneficial bacteria and the production of lactic acid metabolites in gut and hence restrains from liver injury through portal vein. Few in-vitro studies also have been reported about the anti-inflammatory, anti-oxidant and detoxification properties of ELNs which again protects the liver. The properties such as small size, biocompatibility, stability, low toxicity and non-immunogenicity make ELNs as a better therapeutic option. But, till now, studies on the effect of ELNs as therapeutics are still at its infancy yet promising. Here we discuss about the isolation, characterization, their role in maintaining the gut microbiome and liver homeostasis. Also, we give an outline about the latest advances in ELNs modifications, its biological effects, limitations and we propose the future prospective of ELNs as therapeutics.
Collapse
Affiliation(s)
- P Debishree Subudhi
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, Delhi, India
| | - Chhagan Bihari
- Department of Pathology, Institute of Liver and Biliary Sciences, Delhi, India
| | - Shiv Kumar Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, Delhi, India
| | - Sukriti Baweja
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, Delhi, India
| |
Collapse
|
22
|
Exosome Carrier Effects; Resistance to Digestion in Phagolysosomes May Assist Transfers to Targeted Cells; II Transfers of miRNAs Are Better Analyzed via Systems Approach as They Do Not Fit Conventional Reductionist Stoichiometric Concepts. Int J Mol Sci 2022; 23:ijms23116192. [PMID: 35682875 PMCID: PMC9181154 DOI: 10.3390/ijms23116192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
Carrier effects of extracellular vesicles (EV) like exosomes refer to properties of the vesicles that contribute to the transferred biologic effects of their contents to targeted cells. This can pertain to ingested small amounts of xenogeneic plant miRNAs and oral administration of immunosuppressive exosomes. The exosomes contribute carrier effects on transfers of miRNAs by contributing both to the delivery and the subsequent functional intracellular outcomes. This is in contrast to current quantitative canonical rules that dictate just the minimum copies of a miRNA for functional effects, and thus successful transfers, independent of the EV carrier effects. Thus, we argue here that transfers by non-canonical minute quantities of miRNAs must consider the EV carrier effects of functional low levels of exosome transferred miRNA that may not fit conventional reductionist stoichiometric concepts. Accordingly, we have examined traditional stoichiometry vs. systems biology that may be more appropriate for delivered exosome functional responses. Exosome carrier properties discussed include; their required surface activating interactions with targeted cells, potential alternate targets beyond mRNAs, like reaching a threshold, three dimensional aspects of the RNAs, added EV kinetic dynamic aspects making transfers four dimensional, and unique intracellular release from EV that resist intracellular digestion in phagolysosomes. Together these EV carrier considerations might allow systems analysis. This can then result in a more appropriate understanding of transferred exosome carrier-assisted functional transfers. A plea is made that the miRNA expert community, in collaboration with exosome experts, perform new experiments on molecular and quantitative miRNA functional effects in systems that include EVs, like variation in EV type and surface constituents, delivery, dose and time to hopefully create more appropriate and truly current canonical concepts of the consequent miRNA functional transfers by EVs like exosomes.
Collapse
|
23
|
Navarro-Manzano E, Luengo-Gil G, González-Conejero R, García-Garre E, García-Martínez E, García-Torralba E, Chaves-Benito A, Vicente V, Ayala de la Peña F. Prognostic and Predictive Effects of Tumor and Plasma miR-200c-3p in Locally Advanced and Metastatic Breast Cancer. Cancers (Basel) 2022; 14:cancers14102390. [PMID: 35625994 PMCID: PMC9139340 DOI: 10.3390/cancers14102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
While the role of miR-200c in cancer progression has been established, its expression and prognostic role in breast cancer is not completely understood. The predictive role of miR-200c in response to chemotherapy has also been suggested by some studies, but only limited clinical evidence is available. The purpose of this study was to investigate miR-200c-3p in the plasma and primary tumor of BC patients. The study design included two cohorts involving women with locally advanced (LABC) and metastatic breast cancer. Tumor and plasma samples were obtained before and after treatment. We found that miR-200c-3p was significantly higher in the plasma of BC patients compared with the controls. No correlation of age with plasma miR-200c-3p was found for controls or for BC patients. MiR-200c-3p tumor expression was also associated with poor overall survival in LABC patients treated with neoadjuvant chemotherapy, independently of pathological complete response or clinical stage. Our findings suggest that plasmatic miR-200c-3p levels could be useful for BC staging, while the tumor expression of miR-200c-3p might provide further prognostic information beyond residual disease in BC treated with neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Esther Navarro-Manzano
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, 30008 Murcia, Spain; (E.N.-M.); (G.L.-G.); (R.G.-C.); (E.G.-G.); (E.G.-M.); (E.G.-T.); (V.V.)
- Centro Regional de Hemodonación, 30003 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria, IMIB, 30120 Murcia, Spain
- Department of Medicine, Medical School, University of Murcia, 30001 Murcia, Spain;
| | - Ginés Luengo-Gil
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, 30008 Murcia, Spain; (E.N.-M.); (G.L.-G.); (R.G.-C.); (E.G.-G.); (E.G.-M.); (E.G.-T.); (V.V.)
- Centro Regional de Hemodonación, 30003 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria, IMIB, 30120 Murcia, Spain
- Department of Medicine, Medical School, University of Murcia, 30001 Murcia, Spain;
| | - Rocío González-Conejero
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, 30008 Murcia, Spain; (E.N.-M.); (G.L.-G.); (R.G.-C.); (E.G.-G.); (E.G.-M.); (E.G.-T.); (V.V.)
- Centro Regional de Hemodonación, 30003 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria, IMIB, 30120 Murcia, Spain
- Department of Medicine, Medical School, University of Murcia, 30001 Murcia, Spain;
| | - Elisa García-Garre
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, 30008 Murcia, Spain; (E.N.-M.); (G.L.-G.); (R.G.-C.); (E.G.-G.); (E.G.-M.); (E.G.-T.); (V.V.)
- Instituto Murciano de Investigación Biosanitaria, IMIB, 30120 Murcia, Spain
| | - Elena García-Martínez
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, 30008 Murcia, Spain; (E.N.-M.); (G.L.-G.); (R.G.-C.); (E.G.-G.); (E.G.-M.); (E.G.-T.); (V.V.)
- Instituto Murciano de Investigación Biosanitaria, IMIB, 30120 Murcia, Spain
- Medical School, Universidad Católica San Antonio, 30107 Murcia, Spain
| | - Esmeralda García-Torralba
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, 30008 Murcia, Spain; (E.N.-M.); (G.L.-G.); (R.G.-C.); (E.G.-G.); (E.G.-M.); (E.G.-T.); (V.V.)
- Instituto Murciano de Investigación Biosanitaria, IMIB, 30120 Murcia, Spain
| | - Asunción Chaves-Benito
- Department of Medicine, Medical School, University of Murcia, 30001 Murcia, Spain;
- Department of Pathology, Hospital Universitario Morales Meseguer, 30008 Murcia, Spain
| | - Vicente Vicente
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, 30008 Murcia, Spain; (E.N.-M.); (G.L.-G.); (R.G.-C.); (E.G.-G.); (E.G.-M.); (E.G.-T.); (V.V.)
- Centro Regional de Hemodonación, 30003 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria, IMIB, 30120 Murcia, Spain
- Department of Medicine, Medical School, University of Murcia, 30001 Murcia, Spain;
| | - Francisco Ayala de la Peña
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, 30008 Murcia, Spain; (E.N.-M.); (G.L.-G.); (R.G.-C.); (E.G.-G.); (E.G.-M.); (E.G.-T.); (V.V.)
- Instituto Murciano de Investigación Biosanitaria, IMIB, 30120 Murcia, Spain
- Department of Medicine, Medical School, University of Murcia, 30001 Murcia, Spain;
- Correspondence: ; Tel.: +34-968360900
| |
Collapse
|
24
|
Xie S, Zhang Q, Jiang L. Current Knowledge on Exosome Biogenesis, Cargo-Sorting Mechanism and Therapeutic Implications. MEMBRANES 2022; 12:498. [PMID: 35629824 PMCID: PMC9144303 DOI: 10.3390/membranes12050498] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023]
Abstract
Extracellular vesicles (EVs) are nanoscale membrane vesicles released by donor cells that can be taken up by recipient cells. The study of EVs has the potential to identify unknown cellular and molecular mechanisms in intercellular communication and disease. Exosomes, with an average diameter of ≈100 nanometers, are a subset of EVs. Different molecular families have been shown to be involved in the formation of exosomes and subsequent secretion of exosomes, which largely leads to the complexity of the form, structure and function of exosomes. In addition, because of their low immunogenicity and ability to transfer a variety of bioactive components to recipient cells, exosomes are regarded as effective drug delivery systems. This review summarizes the known mechanisms of exosomes biogenesis, cargo loading, exosomes release and bioengineering, which is of great importance for further exploration into the clinical applications of EVs.
Collapse
Affiliation(s)
- Shenmin Xie
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding & Reproduction, Ministry of Agriculture, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China; (S.X.); (Q.Z.)
| | - Qin Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding & Reproduction, Ministry of Agriculture, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China; (S.X.); (Q.Z.)
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
| | - Li Jiang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding & Reproduction, Ministry of Agriculture, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China; (S.X.); (Q.Z.)
| |
Collapse
|
25
|
Compagnoni C, Zelli V, Bianchi A, Di Marco A, Capelli R, Vecchiotti D, Brandolini L, Cimini AM, Zazzeroni F, Allegretti M, Alesse E, Tessitore A. MicroRNAs Expression in Response to rhNGF in Epithelial Corneal Cells: Focus on Neurotrophin Signaling Pathway. Int J Mol Sci 2022; 23:ijms23073597. [PMID: 35408969 PMCID: PMC8998691 DOI: 10.3390/ijms23073597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
PURPOSE Nerve growth factor efficacy was demonstrated for corneal lesions treatment, and recombinant human NGF (rhNGF) was approved for neurotrophic keratitis therapy. However, NGF-induced molecular responses in cornea are still largely unknown. We analyzed microRNAs expression in human epithelial corneal cells after time-dependent rhNGF treatment. METHODS Nearly 700 microRNAs were analyzed by qRT-PCR. MicroRNAs showing significant expression differences were examined by DIANA-miRpath v.3.0 to identify target genes and pathways. Immunoblots were performed to preliminarily assess the strength of the in silico results. RESULTS Twenty-one microRNAs (miR-26a-1-3p, miR-30d-3p, miR-27b-5p, miR-146a-5p, miR-362-5p, mir-550a-5p, mir-34a-3p, mir-1227-3p, mir-27a-5p, mir-222-5p, mir-151a-5p, miR-449a, let7c-5p, miR-337-5p, mir-29b-3p, miR-200b-3p, miR-141-3p, miR-671-3p, miR-324-5p, mir-411-3p, and mir-425-3p) were significantly regulated in response to rhNGF. In silico analysis evidenced interesting target genes and pathways, including that of neurotrophin, when analyzed in depth. Almost 80 unique target genes (e.g., PI3K, AKT, MAPK, KRAS, BRAF, RhoA, Cdc42, Rac1, Bax, Bcl2, FasL) were identified as being among those most involved in neurotrophin signaling and in controlling cell proliferation, growth, and apoptosis. AKT and RhoA immunoblots demonstrated congruence with microRNA expression, providing preliminary validation of in silico data. CONCLUSIONS MicroRNA levels in response to rhNGF were for the first time analyzed in corneal cells. Novel insights about microRNAs, target genes, pathways modulation, and possible biological responses were provided. Importantly, given the putative role of microRNAs as biomarkers or therapeutic targets, our results make available data which might be potentially exploitable for clinical applications.
Collapse
Affiliation(s)
- Chiara Compagnoni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (C.C.); (V.Z.); (R.C.); (D.V.); (F.Z.); (E.A.)
| | - Veronica Zelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (C.C.); (V.Z.); (R.C.); (D.V.); (F.Z.); (E.A.)
- Center for Molecular Diagnostics and Advanced Therapies, University of L’Aquila, Via Petrini, 67100 L’Aquila, Italy
| | - Andrea Bianchi
- Department of Information Engineering, Computer Science and Mathematics, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (A.B.); (A.D.M.)
| | - Antinisca Di Marco
- Department of Information Engineering, Computer Science and Mathematics, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (A.B.); (A.D.M.)
| | - Roberta Capelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (C.C.); (V.Z.); (R.C.); (D.V.); (F.Z.); (E.A.)
| | - Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (C.C.); (V.Z.); (R.C.); (D.V.); (F.Z.); (E.A.)
- Center for Molecular Diagnostics and Advanced Therapies, University of L’Aquila, Via Petrini, 67100 L’Aquila, Italy
| | - Laura Brandolini
- Dompé Farmaceutici Spa, via Campo di Pile, 1, 67100 L’Aquila, Italy; (L.B.); (M.A.)
| | - Anna Maria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, P.zza S. Tommasi, 67100 L’Aquila, Italy;
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (C.C.); (V.Z.); (R.C.); (D.V.); (F.Z.); (E.A.)
| | - Marcello Allegretti
- Dompé Farmaceutici Spa, via Campo di Pile, 1, 67100 L’Aquila, Italy; (L.B.); (M.A.)
| | - Edoardo Alesse
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (C.C.); (V.Z.); (R.C.); (D.V.); (F.Z.); (E.A.)
| | - Alessandra Tessitore
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (C.C.); (V.Z.); (R.C.); (D.V.); (F.Z.); (E.A.)
- Center for Molecular Diagnostics and Advanced Therapies, University of L’Aquila, Via Petrini, 67100 L’Aquila, Italy
- Correspondence: ; Tel.: +39-086-243-3518; Fax: +39-0862433131
| |
Collapse
|
26
|
Alyami NM. MicroRNAs Role in Breast Cancer: Theranostic Application in Saudi Arabia. Front Oncol 2021; 11:717759. [PMID: 34760689 PMCID: PMC8573223 DOI: 10.3389/fonc.2021.717759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/30/2021] [Indexed: 11/23/2022] Open
Abstract
Breast cancer is an aggressive silent disease, representing 11.7% of the diagnosed cancer worldwide, and it is also a leading cause of death in Saudi Arabia. Consequently, microRNAs have emerged recently as potential biomarkers to diagnose and monitor such cases at the molecular level, which tends to be problematic during diagnosis. MicroRNAs are highly conserved non- coding oligonucleotide RNA. Over the last two decades, studies have determined the functional significance of these small RNAs and their impact on cellular development and the interaction between microRNAs and messenger RNAs, which affect numerous molecular pathways and physiological functions. Moreover, many disorders, including breast cancer, are associated with the dysregulation of microRNA. Sparingly, many microRNAs can suppress cancer cell proliferation, apoptosis, angiogenesis, invasion, metastasis, and vice versa. Remarkably, microRNAs can be harvested from patients’ biofluids to predict disease progression that considered a non-invasive method. Nevertheless, MicroRNAs are currently utilized as anti- cancer therapies combined with other drug therapies or even as a single agents’ treatment. Therefore, this review will focus on microRNAs’ role in breast cancer as an indicator of disease progression. In addition, this review summarizes the current knowledge of drug sensitivity and methods in detecting microRNA and their application to improve patient care and identifies the current gaps in this field.
Collapse
Affiliation(s)
- Nouf M Alyami
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
27
|
Sriram H, Khanka T, Kedia S, Tyagi P, Ghogale S, Deshpande N, Chatterjee G, Rajpal S, Patkar NV, Subramanian PG, Gujral S, Hasan S, Tembhare PR. Improved protocol for plasma microRNA extraction and comparison of commercial kits. Biochem Med (Zagreb) 2021; 31:030705. [PMID: 34658646 PMCID: PMC8495618 DOI: 10.11613/bm.2021.030705] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/14/2021] [Indexed: 02/06/2023] Open
Abstract
Introduction MicroRNAs are small, non-coding RNA molecules that are becoming popular biomarkers in several diseases. However, their low abundance in serum/plasma poses a challenge in exploiting their potential in clinics. Several commercial kits are available for rapid isolation of microRNA from plasma. However, reports guiding the selection of appropriate kits to study downstream assays are scarce. Hence, we compared four commercial kits to evaluate microRNA-extraction from plasma and provided a modified protocol that further improved the superior kit's performance. Materials and methods We compared four kits (miRNeasy Serum/Plasma, miRNeasy Mini Kit from Qiagen; RNA-isolation, and Absolutely-RNA MicroRNA Kit from Agilent technologies) for quality and quantity of microRNA isolated, extraction efficiency, and cost-effectiveness. Bioanalyzer-based Agilent Small RNA kit was used to evaluate quality and quantity of microRNA. Extraction efficiency was evaluated by detection of four endogenous control microRNA using real-time-PCR. Further, we modified the manufacturer's protocol for miRNeasy Serum/Plasma kit to improve yield. Results miRNeasy Serum/Plasma kit outperformed the other three kits in microRNA-quality (P < 0.005) and yielded maximum microRNA-quantity. Recovery of endogenous control microRNA i.e. hsa-miR-24-3p, hsa-miR-191-5p, hsa-miR-423-5p and hsa-miR-484 was higher as well. Modification with the inclusion of a double elution step enhanced yield of microRNA extracted with miRNeasy Serum/Plasma kit significantly (P < 0.001). Conclusion We demonstrated that miRNeasy Serum/Plasma kit outperforms other kits and can be reliably used with a limited plasma quantity. We have provided a modified microRNA-extraction protocol with improved microRNA output for downstream analyses.
Collapse
Affiliation(s)
- Harshini Sriram
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Kharghar, Navi Mumbai, India
| | - Twinkle Khanka
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Kharghar, Navi Mumbai, India
| | - Shweta Kedia
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Kharghar, Navi Mumbai, India
| | - Priyanka Tyagi
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Kharghar, Navi Mumbai, India
| | - Sitaram Ghogale
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Kharghar, Navi Mumbai, India
| | - Nilesh Deshpande
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Kharghar, Navi Mumbai, India
| | - Gaurav Chatterjee
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Kharghar, Navi Mumbai, India
| | - Sweta Rajpal
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Kharghar, Navi Mumbai, India
| | - Nikhil V Patkar
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Kharghar, Navi Mumbai, India
| | - Papagudi G Subramanian
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Kharghar, Navi Mumbai, India
| | - Sumeet Gujral
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Kharghar, Navi Mumbai, India
| | - Syed Hasan
- Hasan Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Kharghar, Navi Mumbai, India
| | - Prashant R Tembhare
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Kharghar, Navi Mumbai, India
| |
Collapse
|
28
|
Rajool Dezfuly A, Safaee A, Salehi H. Therapeutic effects of mesenchymal stem cells-derived extracellular vesicles' miRNAs on retinal regeneration: a review. Stem Cell Res Ther 2021; 12:530. [PMID: 34620234 PMCID: PMC8499475 DOI: 10.1186/s13287-021-02588-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs), which consist of microvesicles and exosomes, are secreted from all cells to transform vital information in the form of lipids, proteins, mRNAs and small RNAs such as microRNAs (miRNAs). Many studies demonstrated that EVs' miRNAs have effects on target cells. Numerous people suffer from the blindness caused by retinal degenerations. The death of retinal neurons is irreversible and creates permanent damage to the retina. In the absence of acceptable cures for retinal degenerative diseases, stem cells and their paracrine agents including EVs have become a promising therapeutic approach. Several studies showed that the therapeutic effects of stem cells are due to the miRNAs of their EVs. Considering the effects of microRNAs in retinal cells development and function and studies which provide the possible roles of mesenchymal stem cells-derived EVs miRNA content on retinal diseases, we focused on the similarities between these two groups of miRNAs that could be helpful for promoting new therapeutic techniques for retinal degenerative diseases.
Collapse
Affiliation(s)
- Ali Rajool Dezfuly
- Department of Anatomical and Molecular Biology Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azadeh Safaee
- Department of Anatomical and Molecular Biology Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Salehi
- Department of Anatomical and Molecular Biology Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
29
|
Izadirad M, Huang Z, Jafari F, Hamidieh AA, Gharehbaghian A, Li YD, Jafari L, Chen ZS. Extracellular Vesicles in Acute Leukemia: A Mesmerizing Journey With a Focus on Transferred microRNAs. Front Cell Dev Biol 2021; 9:766371. [PMID: 34692712 PMCID: PMC8527035 DOI: 10.3389/fcell.2021.766371] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Despite their small size, the membrane-bound particles named extracellular vesicles (EVs) seem to play an enormous role in the pathogenesis of acute leukemia. From oncogenic hematopoietic stem cells (HSCs) to become leukemic cells to alter the architecture of bone marrow (BM) microenvironment, EVs are critical components of leukemia development. As a carrier of essential molecules, especially a group of small non-coding RNAs known as miRNA, recently, EVs have attracted tremendous attention as a prognostic factor. Given the importance of miRNAs in the early stages of leukemogenesis and also their critical parts in the development of drug-resistant phenotype, it seems that the importance of EVs in the development of leukemia is more than what is expected. To be familiar with the clinical value of leukemia-derived EVs, this review aimed to briefly shed light on the biology of EVs and to discuss the role of EV-derived miRNAs in the development of acute myeloid leukemia and acute lymphoblastic leukemia. By elaborating the advances and challenges concerning the isolation of EVs, we discuss whether EVs could have a prognostic value in the clinical setting for leukemia.
Collapse
Affiliation(s)
- Mehrdad Izadirad
- Department of Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zoufang Huang
- Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Farideh Jafari
- Department of Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Gharehbaghian
- Department of Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yi-Dong Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Queens, NY, United States
| | - Leila Jafari
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Queens, NY, United States
- Institute for Biotechnology, St. John’s University, Queens, NY, United States
| |
Collapse
|
30
|
Nappi L, Nichols C, Kollmannsberger C. Narrative review of developing new biomarkers for decision making in advanced testis cancer. Transl Androl Urol 2021; 10:4075-4084. [PMID: 34804849 PMCID: PMC8575592 DOI: 10.21037/tau-20-1246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/30/2020] [Indexed: 12/03/2022] Open
Abstract
Management of testicular germ cell tumor (GCT) patients is based on clinical determinants, mainly CT scan and serum tumor markers (alpha-fetoprotein, beta subunit of HCG and LDH). Treatment decisions are usually straightforward for patients with clear evidence of metastatic disease, confirmed either by imaging tests or by unequivocal elevated tumor markers. However, there are several clinical scenarios where the assessment of metastatic disease is complicated by the limited specificity of the current imaging tests and serum tumor markers. These include patients with clinical stage IIA GCT with negative tumor markers and patients with post-chemotherapy residual disease where, in absence of clear indicators of GCT, decision making and patient treatment allocation become challenging. Therefore, more accurate biomarkers are critical to reduce the risk of under-or over-treatment and to always deliver the most optimal therapy. The objectives of this narrative review are to review the available publications about micro-RNAs in GCT s and their potential clinical applications. Two clusters of micro-RNAs, miR-371a-3p and miR-302/367, specifically expressed by both seminoma and non-seminoma GCT and easily detectable in the peripheral blood, have demonstrated to be promising in this endeavor. Large prospective trials are ongoing to define the operating characteristics of these biomarkers and their clinical utility to improve GCT patient management and reduce the error rate deriving from clinical uncertainty, therefore reducing the risk of sub-optimal treatments.
Collapse
Affiliation(s)
- Lucia Nappi
- Division of Medical Oncology, British Columbia Cancer - Vancouver Cancer Centre, Vancouver, BC, Canada
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | | | - Christian Kollmannsberger
- Division of Medical Oncology, British Columbia Cancer - Vancouver Cancer Centre, Vancouver, BC, Canada
| |
Collapse
|
31
|
Zelli V, Compagnoni C, Capelli R, Corrente A, Cornice J, Vecchiotti D, Di Padova M, Zazzeroni F, Alesse E, Tessitore A. Emerging Role of isomiRs in Cancer: State of the Art and Recent Advances. Genes (Basel) 2021; 12:genes12091447. [PMID: 34573429 PMCID: PMC8469436 DOI: 10.3390/genes12091447] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
The advent of Next Generation Sequencing technologies brought with it the discovery of several microRNA (miRNA) variants of heterogeneous lengths and/or sequences. Initially ascribed to sequencing errors/artifacts, these isoforms, named isomiRs, are now considered non-canonical variants that originate from physiological processes affecting the canonical miRNA biogenesis. To date, accurate IsomiRs abundance, biological activity, and functions are not completely understood; however, the study of isomiR biology is an area of great interest due to their high frequency in the human miRNome, their putative functions in cooperating with the canonical miRNAs, and potential for exhibiting novel functional roles. The discovery of isomiRs highlighted the complexity of the small RNA transcriptional landscape in several diseases, including cancer. In this field, the study of isomiRs could provide further insights into the miRNA biology and its implication in oncogenesis, possibly providing putative new cancer diagnostic, prognostic, and predictive biomarkers as well. In this review, a comprehensive overview of the state of research on isomiRs in different cancer types, including the most common tumors such as breast cancer, colorectal cancer, melanoma, and prostate cancer, as well as in the less frequent tumors, as for example brain tumors and hematological malignancies, will be summarized and discussed.
Collapse
Affiliation(s)
- Veronica Zelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
- Center for Molecular Diagnostics and Advanced Therapies, University of L’Aquila, Via Petrini, 67100 L’Aquila, Italy
| | - Chiara Compagnoni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
| | - Roberta Capelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
| | - Alessandra Corrente
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
| | - Jessica Cornice
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
| | - Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
| | - Monica Di Padova
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
| | - Edoardo Alesse
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
| | - Alessandra Tessitore
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
- Center for Molecular Diagnostics and Advanced Therapies, University of L’Aquila, Via Petrini, 67100 L’Aquila, Italy
- Correspondence: ; Tel.: +39-0862433518; Fax: +39-0862433131
| |
Collapse
|
32
|
Smit-McBride Z, Morse LS. MicroRNA and diabetic retinopathy-biomarkers and novel therapeutics. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1280. [PMID: 34532417 PMCID: PMC8421969 DOI: 10.21037/atm-20-5189] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/14/2021] [Indexed: 01/10/2023]
Abstract
Diabetic retinopathy (DR) accounts for ~80% of legal blindness in persons aged 20-74 years and is associated with enormous social and health burdens. Current therapies are invasive, non-curative, and in-effective in 15-25% of DR patients. This review outlines the potential utility of microRNAs (miRNAs) as biomarkers and potential therapy for diabetic retinopathy. miRNAs are small noncoding forms of RNA that may play a role in the pathogenesis of DR by altering the level of expression of genes via single nucleotide polymorphism and regulatory loops. A majority of miRNAs are intracellular and specific intracellular microRNAs have been associated with cellular changes associated with DR. Some microRNAs are extracellular and called circulatory microRNAs. Circulatory miRNAs have been found to be differentially expressed in serum and bodily fluid in patients with diabetes mellitus (DM) with and without retinopathy. Some miRNAs have been associated with the severity of DR, and future studies may reveal whether circulatory miRNAs could serve as novel reliable biomarkers to detect or predict retinopathy progression. Therapeutic strategies can be developed utilizing the natural miRNA/long noncoding RNA (lncRNA) regulatory loops. miRNAs and lncRNAs are two major families of the non-protein-coding transcripts. They are regulatory molecules for fundamental cellular processes via a variety of mechanisms, and their expression and function are tightly regulated. The recent evidence indicates a cross-talk between miRNAs and lncRNAs. Therefore, dysregulation of miRNAs and lncRNAs is critical to human disease pathogenesis, such as diabetic retinopathy. miRNAs are long-distance communicators and reprogramming agents, and they embody an entirely novel paradigm in cellular and tissue signaling and interaction. By targeting specific miRNAs, whole pathways implicated in the pathogenesis of DR may potentially be altered. Understanding the endogenous roles of miRNAs in the pathogenesis of diabetic retinopathy could lead to novel diagnostic and therapeutic approaches to managing this frequently blinding retinal condition.
Collapse
Affiliation(s)
- Zeljka Smit-McBride
- Department of Ophthalmology & Vision Science, Vitreoretinal Research Laboratory, School of Medicine, University of California Davis, Davis, California, USA
| | - Lawrence S Morse
- Department of Ophthalmology & Vision Science, Vitreoretinal Research Laboratory, School of Medicine, University of California Davis, Davis, California, USA
| |
Collapse
|
33
|
Isaac R, Reis FCG, Ying W, Olefsky JM. Exosomes as mediators of intercellular crosstalk in metabolism. Cell Metab 2021; 33:1744-1762. [PMID: 34496230 PMCID: PMC8428804 DOI: 10.1016/j.cmet.2021.08.006] [Citation(s) in RCA: 385] [Impact Index Per Article: 96.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/07/2021] [Accepted: 08/11/2021] [Indexed: 02/08/2023]
Abstract
Exosomes are nanoparticles secreted by all cell types and are a large component of the broader class of nanoparticles termed extracellular vesicles (EVs). Once secreted, exosomes gain access to the interstitial space and ultimately the circulation, where they exert local paracrine or distal systemic effects. Because of this, exosomes are important components of an intercellular and intraorgan communication system capable of carrying biologic signals from one cell type or tissue to another. The exosomal cargo consists of proteins, lipids, miRNAs, and other RNA species, and many of the biologic effects of exosomes have been attributed to miRNAs. Exosomal miRNAs have also been used as disease biomarkers. The field of exosome biology and metabolism is rapidly expanding, with new discoveries and reports appearing on a regular basis, and it is possible that potential therapeutic approaches for the use of exosomes or miRNAs in metabolic diseases will be initiated in the near future.
Collapse
Affiliation(s)
- Roi Isaac
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Felipe Castellani Gomes Reis
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Wei Ying
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Jerrold M Olefsky
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, San Diego, CA, USA.
| |
Collapse
|
34
|
Semina EV, Rysenkova KD, Troyanovskiy KE, Shmakova AA, Rubina KA. MicroRNAs in Cancer: From Gene Expression Regulation to the Metastatic Niche Reprogramming. BIOCHEMISTRY (MOSCOW) 2021; 86:785-799. [PMID: 34284705 DOI: 10.1134/s0006297921070014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
By 2003, the Human Genome project had been completed; however, it turned out that 97% of genome sequences did not encode proteins. The explanation came later when it was found the untranslated DNA contain sequences for short microRNAs (miRNAs) and long noncoding RNAs that did not produce any mRNAs or tRNAs, but instead were involved in the regulation of gene expression. Initially identified in the cytoplasm, miRNAs have been found in all cell compartments, where their functions are not limited to the degradation of target mRNAs. miRNAs that are secreted into the extracellular space as components of exosomes or as complexes with proteins, participate in morphogenesis, regeneration, oncogenesis, metastasis, and chemoresistance of tumor cells. miRNAs play a dual role in oncogenesis: on one hand, they act as oncogene suppressors; on the other hand, they function as oncogenes themselves and inactivate oncosuppressors, stimulate tumor neoangiogenesis, and mediate immunosuppressive processes in the tumors, The review presents current concepts of the miRNA biogenesis and their functions in the cytoplasm and nucleus with special focus on the noncanonical mechanisms of gene regulation by miRNAs and involvement of miRNAs in oncogenesis, as well as the authors' opinion on the role of miRNAs in metastasis and formation of the premetastatic niche.
Collapse
Affiliation(s)
- Ekaterina V Semina
- National Cardiology Research Center, Ministry of Health of the Russian Federation, Moscow, 121552, Russia. .,Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia
| | - Karina D Rysenkova
- National Cardiology Research Center, Ministry of Health of the Russian Federation, Moscow, 121552, Russia.,Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia
| | | | - Anna A Shmakova
- National Cardiology Research Center, Ministry of Health of the Russian Federation, Moscow, 121552, Russia
| | - Kseniya A Rubina
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia
| |
Collapse
|
35
|
MicroRNA Sequences Modulated by Beta Cell Lipid Metabolism: Implications for Type 2 Diabetes Mellitus. BIOLOGY 2021; 10:biology10060534. [PMID: 34203703 PMCID: PMC8232095 DOI: 10.3390/biology10060534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/23/2022]
Abstract
Alterations in lipid metabolism within beta cells and islets contributes to dysfunction and apoptosis of beta cells, leading to loss of insulin secretion and the onset of type 2 diabetes. Over the last decade, there has been an explosion of interest in understanding the landscape of gene expression which influences beta cell function, including the importance of small non-coding microRNA sequences in this context. This review sought to identify the microRNA sequences regulated by metabolic challenges in beta cells and islets, their targets, highlight their function and assess their possible relevance as biomarkers of disease progression in diabetic individuals. Predictive analysis was used to explore networks of genes targeted by these microRNA sequences, which may offer new therapeutic strategies to protect beta cell function and delay the onset of type 2 diabetes.
Collapse
|
36
|
Bryzgunova O, Konoshenko M, Zaporozhchenko I, Yakovlev A, Laktionov P. Isolation of Cell-Free miRNA from Biological Fluids: Influencing Factors and Methods. Diagnostics (Basel) 2021; 11:865. [PMID: 34064927 PMCID: PMC8151063 DOI: 10.3390/diagnostics11050865] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
A vast wealth of recent research has seen attempts of using microRNA (miRNA) found in biological fluids in clinical research and medicine. One of the reasons behind this trend is the apparent their high stability of cell-free miRNA conferred by small size and packaging in supramolecular complexes. However, researchers in both basic and clinical settings often face the problem of selecting adequate methods to extract appropriate quality miRNA preparations for use in specific downstream analysis pipelines. This review outlines the variety of different methods of miRNA isolation from biofluids and examines the key determinants of their efficiency, including, but not limited to, the structural properties of miRNA and factors defining their stability in the extracellular environment.
Collapse
Affiliation(s)
- Olga Bryzgunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (A.Y.); (P.L.)
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, 630055 Novosibirsk, Russia
| | - Maria Konoshenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (A.Y.); (P.L.)
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, 630055 Novosibirsk, Russia
| | - Ivan Zaporozhchenko
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark;
| | - Alexey Yakovlev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (A.Y.); (P.L.)
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, 630055 Novosibirsk, Russia
| | - Pavel Laktionov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (A.Y.); (P.L.)
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, 630055 Novosibirsk, Russia
| |
Collapse
|
37
|
Qiu Y, Li P, Zhang Z, Wu M. Insights Into Exosomal Non-Coding RNAs Sorting Mechanism and Clinical Application. Front Oncol 2021; 11:664904. [PMID: 33987099 PMCID: PMC8111219 DOI: 10.3389/fonc.2021.664904] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are natural nanoscale bilayer phospholipid vesicles that can be secreted by almost all types of cells and are detected in almost all types of body fluids. Exosomes are effective mediators of cell–cell signaling communication because of their ability to carry and transfer a variety of bioactive molecules, including non-coding RNAs. Non-coding RNAs have also been found to exert strong effects on a variety of biological processes, including tumorigenesis. Many researchers have established that exosomes encapsulate bioactive non-coding RNAs that alter the biological phenotype of specific target cells in an autocrine or a paracrine manner. However, the mechanism by which the producer cells package non-coding RNAs into exosomes is not well understood. This review focuses on the current research on exosomal non-coding RNAs, including the biogenesis of exosomes, the possible mechanism of sorting non-coding RNAs, their biological functions, and their potential for clinical application in the future.
Collapse
Affiliation(s)
- Yi Qiu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Peiyao Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, China National Health Commission Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, China
| | - Zuping Zhang
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Minghua Wu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| |
Collapse
|
38
|
Sahu S, Routray S. Assessing the analytical efficacy of TEX in diagnosing oral cancer using a systematic review approach. J Oral Pathol Med 2021; 50:123-128. [PMID: 33184963 DOI: 10.1111/jop.13126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022]
Abstract
The 5-year survival rates in OSCC depend on the stage at diagnosis. Patients have better survival and favourable outcomes if detected early, as compared to those diagnosed in advanced stages. Apart from biopsy and mucosal scraping examinations, exosomes from saliva and blood are emerging as an accessible source for diagnosis and providing additional information about the tumour's characteristics. Hence, the study of tumour-derived exosomal (TEX) biomarkers obtained from a liquid biopsy is emerging as a promising diagnostic tool. In this systematic review, our effort is to assess the role of TEX as a biomarker.
Collapse
Affiliation(s)
- Suchanda Sahu
- Department of Biochemistry, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Samapika Routray
- Department of Dentistry, All India Institute of Medical Sciences, Bhubaneswar, India
| |
Collapse
|
39
|
Chettimada S, Lorenz DR, Misra V, Wolinsky SM, Gabuzda D. Small RNA sequencing of extracellular vesicles identifies circulating miRNAs related to inflammation and oxidative stress in HIV patients. BMC Immunol 2020; 21:57. [PMID: 33176710 PMCID: PMC7656686 DOI: 10.1186/s12865-020-00386-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/26/2020] [Indexed: 12/27/2022] Open
Abstract
Background Extracellular vesicles (EVs) are nano-sized particles secreted by most cells. EVs carry nucleic acids that hold promise as potential biomarkers in various diseases. Human immunodeficiency virus type 1 (HIV) infects CD4+ T cells and induces immune dysfunction, inflammation, and EV secretion, but little is known about EV small RNA cargo in relation to immune dysregulation in HIV-infected individuals. Here, we characterize small RNA carried by circulating EVs in HIV-positive subjects on antiretroviral therapy (ART) relative to uninfected controls by next-generation RNA sequencing. Results Plasma EVs isolated from HIV-positive and HIV-negative subjects in test (n = 24) and validation (n = 16) cohorts were characterized by electron microscopy, nanoparticle tracking analysis, and immunoblotting for exosome markers. EVs were more abundant in plasma from HIV-positive compared to HIV-negative subjects. Small RNA sequencing of plasma EVs in the test cohort identified diverse small RNA species including miRNA, piRNA, snRNA, snoRNA, tRNA, and rRNA, with miRNA being the most abundant. A total of 351 different miRNAs were detected in plasma EVs, with the top 50 miRNAs accounting for 90% of all miRNA reads. miR-26a-5p was the most abundant miRNA, followed by miR-21-5p and miR-148-3p. qRT-PCR analysis showed that six miRNAs (miR-10a-5p, − 21-5p, −27b-3p, − 122-5p, −146a-5p, − 423-5p) were significantly increased in plasma EVs from HIV-positive compared to HIV-negative subjects in the validation cohort. Furthermore, miR-21-5p, −27b-3p, −146a-5p, and − 423-5p correlated positively with metabolite markers of oxidative stress and negatively with anti-inflammatory polyunsaturated fatty acids. Over-representation and pathway enrichment analyses of miRNAs and their target genes predicted functional association with oxidative stress responses, interferon gamma signaling, Toll-like receptor signaling, TGF beta signaling, and Notch signaling. Conclusions HIV-positive individuals on ART have increased abundance of circulating EVs carrying diverse small RNAs, with miRNAs being the most abundant. Several miRNAs associated with inflammation and oxidative stress are increased in circulating EVs of HIV-positive individuals, representing potential biomarkers of targetable pathways that contribute to disease pathogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-020-00386-5.
Collapse
Affiliation(s)
- Sukrutha Chettimada
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David R Lorenz
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Vikas Misra
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Steven M Wolinsky
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Dana Gabuzda
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Department of Neurology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
40
|
Analysis of RNA yield in extracellular vesicles isolated by membrane affinity column and differential ultracentrifugation. PLoS One 2020; 15:e0238545. [PMID: 33156858 PMCID: PMC7647092 DOI: 10.1371/journal.pone.0238545] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EV) have attracted much attention as potential biomarkers due to their protein, RNA and other nucleic acid content. The most common method used for EV isolation is differential ultracentrifugation (DU), however given the DU technical difficulties, other more practical methods have surged, such as membrane-affinity column commercial kits. Here, we assessed one commercial kit in terms of EV recovery and EV-derived RNA yield and compared it with a DU protocol. Our data shows that the commercial kit preparation results in a lower count of EV-like structures and a reduced expression of EV markers when compared to DU samples. Thus, apparently suggesting that the commercial kit had a lower EV yield. However, these findings did not reflect on RNA yield, which was greater with the commercial kit, even after an enzymatic treatment with proteinase K and RNAse A. We conclude that the kit has a higher EV-derived RNA yield in comparison to our DU protocol, suggesting that it may be the method of choice for RNA sequencing purposes.
Collapse
|
41
|
Chong ZX, Yeap SK, Ho WY. Roles of circulating microRNA(s) in human breast cancer. Arch Biochem Biophys 2020; 695:108583. [DOI: 10.1016/j.abb.2020.108583] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022]
|
42
|
Govindarajan M, Wohlmuth C, Waas M, Bernardini MQ, Kislinger T. High-throughput approaches for precision medicine in high-grade serous ovarian cancer. J Hematol Oncol 2020; 13:134. [PMID: 33036656 PMCID: PMC7547483 DOI: 10.1186/s13045-020-00971-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023] Open
Abstract
High-grade serous carcinoma (HGSC) is the most prevalent and aggressive subtype of ovarian cancer. The large degree of clinical heterogeneity within HGSC has justified deviations from the traditional one-size-fits-all clinical management approach. However, the majority of HGSC patients still relapse with chemo-resistant cancer and eventually succumb to their disease, evidence that further work is needed to improve patient outcomes. Advancements in high-throughput technologies have enabled novel insights into biological complexity, offering a large potential for informing precision medicine efforts. Here, we review the current landscape of clinical management for HGSC and highlight applications of high-throughput biological approaches for molecular subtyping and the discovery of putative blood-based biomarkers and novel therapeutic targets. Additionally, we present recent improvements in model systems and discuss how their intersection with high-throughput platforms and technological advancements is positioned to accelerate the realization of precision medicine in HGSC.
Collapse
Affiliation(s)
| | - Christoph Wohlmuth
- Division of Gynecologic Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Obstetrics and Gynecology, Paracelsus Medical University, Salzburg, Austria
| | - Matthew Waas
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Marcus Q Bernardini
- Division of Gynecologic Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Canada.
| | - Thomas Kislinger
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.
| |
Collapse
|
43
|
Abstract
Small RNAs (sRNAs), including microRNAs (miRNAs), are noncoding RNA (ncRNA) molecules involved in gene regulation. sRNAs play important roles in development; however, their significance in nutritional control and as metabolic modulators is still emerging. The mechanisms by which diet impacts metabolic genes through miRNAs remain an important area of inquiry. Recent work has established how miRNAs are transported in body fluids often within exosomes, which are small cell-derived vesicles that function in intercellular communication. The abundance of other recently identified ncRNAs and new insights regarding ncRNAs as dietary bioactive compounds could remodel our understanding about how foods impact gene expression. Although controversial, some groups have shown that dietary RNAs from plants and animals (i.e., milk) are functional in consumers. In the future, regulating sRNAs either directly through dietary delivery or indirectly by altered expression of endogenous sRNA may be part of nutritional interventions for regulating metabolism.
Collapse
Affiliation(s)
- Elizabeth M McNeill
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa 50011, USA
| | - Kendal D Hirschi
- Departments of Pediatrics and Human and Molecular Genetics, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030, USA;
| |
Collapse
|
44
|
Hosen MR, Goody PR, Zietzer A, Nickenig G, Jansen F. MicroRNAs As Master Regulators of Atherosclerosis: From Pathogenesis to Novel Therapeutic Options. Antioxid Redox Signal 2020; 33:621-644. [PMID: 32408755 DOI: 10.1089/ars.2020.8107] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Cardiovascular disease (CVD) remains the major cause of morbidity and mortality worldwide. Accumulating evidence indicates that atherosclerosis and its sequelae, coronary artery disease, contribute to the majority of cardiovascular deaths. Atherosclerosis is a chronic inflammatory disease of the arteries in which atherosclerotic plaques form within the vessel wall. Epidemiological studies have identified various risk factors for atherosclerosis, such as diabetes, hyperlipidemia, smoking, genetic predisposition, and sedentary lifestyle. Recent Advances: Through the advancement of genetic manipulation techniques and their use in cardiovascular biology, it was shown that small RNAs, especially microRNAs (miRNAs), are dynamic regulators of disease pathogenesis. They are considered to be central during the regulation of gene expression through numerous mechanisms and provide a means to develop biomarkers and therapeutic tools for the diagnosis and therapy of atherosclerosis. Circulating miRNAs encapsulated within membrane-surrounded vesicles, which originate from diverse subcellular compartments, are now emerging as novel regulators of intercellular communication. The miRNAs, in both freely circulating and vesicle-bound forms, represent a valuable tool for diagnosing and monitoring CVD, recently termed as "liquid biopsy." Critical Issues: However, despite the recent advancements in miRNA-based diagnostics and therapeutics, understanding how miRNAs can regulate atherosclerosis is still crucial to achieving an effective intervention and reducing the disease burden. Future Directions: We provide a landscape of the current developmental progression of RNA therapeutics as a holistic approach for treating CVD in different animal models and clinical trials. Future interrogations are warranted for the development of miRNA-based therapeutics to overcome challenges for the treatment of the disease.
Collapse
Affiliation(s)
- Mohammed Rabiul Hosen
- Department of Internal Medicine II, Molecular Cardiology, Heart Center Bonn, Rheinische Friedrich-Wilhelms University Bonn, Bonn, Germany
| | - Philip Roger Goody
- Department of Internal Medicine II, Molecular Cardiology, Heart Center Bonn, Rheinische Friedrich-Wilhelms University Bonn, Bonn, Germany
| | - Andreas Zietzer
- Department of Internal Medicine II, Molecular Cardiology, Heart Center Bonn, Rheinische Friedrich-Wilhelms University Bonn, Bonn, Germany
| | - Georg Nickenig
- Department of Internal Medicine II, Molecular Cardiology, Heart Center Bonn, Rheinische Friedrich-Wilhelms University Bonn, Bonn, Germany
| | - Felix Jansen
- Department of Internal Medicine II, Molecular Cardiology, Heart Center Bonn, Rheinische Friedrich-Wilhelms University Bonn, Bonn, Germany
| |
Collapse
|
45
|
Liang H, Jiao Z, Rong W, Qu S, Liao Z, Sun X, Wei Y, Zhao Q, Wang J, Liu Y, Chen X, Wang T, Zhang CY, Zen K. 3'-Terminal 2'-O-methylation of lung cancer miR-21-5p enhances its stability and association with Argonaute 2. Nucleic Acids Res 2020; 48:7027-7040. [PMID: 32542340 PMCID: PMC7367198 DOI: 10.1093/nar/gkaa504] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 12/21/2022] Open
Abstract
Methylation of miRNAs at the 2'-hydroxyl group on the ribose at 3'-end (2'-O-methylation, 2'Ome) is critical for miRNA function in plants and Drosophila. Whether this methylation phenomenon exists for mammalian miRNA remains unknown. Through LC-MS/MS analysis, we discover that majority of miR-21-5p isolated from human non-small cell lung cancer (NSCLC) tissue possesses 3'-terminal 2'Ome. Predominant 3'-terminal 2'Ome of miR-21-5p in cancer tissue is confirmed by qRT-PCR and northern blot after oxidation/β-elimination procedure. Cancerous and the paired non-cancerous lung tissue miRNAs display different pattern of 3'-terminal 2'Ome. We further identify HENMT1 as the methyltransferase responsible for 3'-terminal 2'Ome of mammalian miRNAs. Compared to non-methylated miR-21-5p, methylated miR-21-5p is more resistant to digestion by 3'→5' exoribonuclease polyribonucleotide nucleotidyltransferase 1 (PNPT1) and has higher affinity to Argonaute-2, which may contribute to its higher stability and stronger inhibition on programmed cell death protein 4 (PDCD4) translation, respectively. Our findings reveal HENMT1-mediated 3'-terminal 2'Ome of mammalian miRNAs and highlight its role in enhancing miRNA's stability and function.
Collapse
Affiliation(s)
- Hongwei Liang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210093, China
| | - Zichen Jiao
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Weiwei Rong
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210093, China
| | - Shuang Qu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210093, China
| | - Zhicong Liao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210093, China
| | - Xinlei Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210093, China
| | - Yao Wei
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210093, China
| | - Quan Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210093, China
| | - Jun Wang
- Department of Emergency Medicine, Nanjing Drum Tower Hospital, Medical School, Nanjing University, 210008 Nanjing, China
| | - Yuan Liu
- Center for Inflammation, Immunity and Infectious Diseases, Georgia State University, Atlanta, GA 30032, USA
| | - Xi Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210093, China
| | - Tao Wang
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chen-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210093, China
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210093, China
| |
Collapse
|
46
|
Lightbody RJ, Taylor JMW, Dempsie Y, Graham A. MicroRNA sequences modulating inflammation and lipid accumulation in macrophage “foam” cells: Implications for atherosclerosis. World J Cardiol 2020; 12:303-333. [PMID: 32843934 PMCID: PMC7415235 DOI: 10.4330/wjc.v12.i7.303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
Accumulation of macrophage “foam” cells, laden with cholesterol and cholesteryl ester, within the intima of large arteries, is a hallmark of early “fatty streak” lesions which can progress to complex, multicellular atheromatous plaques, involving lipoproteins from the bloodstream and cells of the innate and adaptive immune response. Sterol accumulation triggers induction of genes encoding proteins mediating the atheroprotective cholesterol efflux pathway. Within the arterial intima, however, this mechanism is overwhelmed, leading to distinct changes in macrophage phenotype and inflammatory status. Over the last decade marked gains have been made in understanding of the epigenetic landscape which influence macrophage function, and in particular the importance of small non-coding micro-RNA (miRNA) sequences in this context. This review identifies some of the miRNA sequences which play a key role in regulating “foam” cell formation and atherogenesis, highlighting sequences involved in cholesterol accumulation, those influencing inflammation in sterol-loaded cells, and novel sequences and pathways which may offer new strategies to influence macrophage function within atherosclerotic lesions.
Collapse
Affiliation(s)
- Richard James Lightbody
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Janice Marie Walsh Taylor
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Yvonne Dempsie
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Annette Graham
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| |
Collapse
|
47
|
Liu X, Zhang Y, Jiang P, Cai J, Fu Q, Li X, Li Z. Ultrasonic cardiogram and MiRNA-21 analysis of cardiac dysfunction in patients with cardiac arrest following cardiopulmonary resuscitation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 190:105284. [PMID: 32018074 DOI: 10.1016/j.cmpb.2019.105284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/08/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
PURPOSE To explore correlations between the serum level of miRNA-21 expression and cardiac dysfunction severity after cardiopulmonary resuscitation (CPR) using ultrasonic cardiogram. METHODS Thirty-nine patients with cardiopulmonary arrest receiving successful CPR and forty-one healthy participants were recruited in the study. Reverse Transcription-Polymerase Chain Reaction (RT-PCR) and immunochemiluminometric assays was used to examine the serum miRNA-21 level and the concentration of cardiac troponins T and I, respectively. Indices of Electrocardiogram (ECG) and cardiac dysfunction measured by ultrasound of patients in the case group were used to assess cardiac function after CPR. Furthermore, the correlation between the serum level of miRNA-21 expression and severity of cardiac dysfunction was analyzed by Spearman correlation analysis. RESULTS As compared to the control group, the serum level of miRNA-21 expression, as well as cardiac troponin T and I levels in the case group were significantly higher (p = 0.000). The miRNA-21 expression level in the patients at IV grade of cardiac function were substantially higher than patients at III grade (p = 0.015). There was no significant difference in level of cardiac troponins T and I between patients at III grade and patients at IV grade (p > 0.05). Further, Spearman correlation analysis revealed that the level of miRNA-21 expression was negatively correlated with cardiac function index in the ultrasound imaging: E peak, E/A value, LVEF and LVEDD (r = 0.617, 0.535, 0.612, 0.573, P = 0.012, 0.009, 0.008, 0.011), but was positively correlated with the level of cardiac troponins T and I (r = 0.546,0.582, P = 0.006,0.007) and the severity of cardiac dysfunction (r = 0.859, p < 0.05). CONCLUSION The level of miRNA-21 is higher after CPR is closely related to the severity of cardiac dysfunction that is measured by ultrasound, suggesting that it may serve as a potential biomarker.
Collapse
Affiliation(s)
- Xing Liu
- Department of Emergency. Shenzhen Longhua District Center Hospital, Shenzhen, Guangdong 518110, PR China
| | - Yongguang Zhang
- Department of Medicine, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510000, PR China
| | - Peng Jiang
- Department of Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, PR China
| | - Jiachen Cai
- Department of Medicine, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510000, PR China
| | - Qiuhong Fu
- Department of Emergency. Shenzhen Longhua District Center Hospital, Shenzhen, Guangdong 518110, PR China
| | - Xiaolei Li
- Department of Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, PR China
| | - Zhou Li
- Department of Medicine, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510000, PR China.
| |
Collapse
|
48
|
Panshin DD, Kondratov KA. The Efficiency of Immunoprecipitation of microRNA/Ago2 Complexes from Human Blood Plasma Is Protocol Dependent. Mol Biol 2020. [DOI: 10.1134/s0026893320010112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Groot M, Lee H. Sorting Mechanisms for MicroRNAs into Extracellular Vesicles and Their Associated Diseases. Cells 2020; 9:cells9041044. [PMID: 32331346 PMCID: PMC7226101 DOI: 10.3390/cells9041044] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022] Open
Abstract
Extracellular vesicles (EV) are secretory membranous elements used by cells to transport proteins, lipids, mRNAs, and microRNAs (miRNAs). While their existence has been known for many years, only recently has research begun to identify their function in intercellular communication and gene regulation. Importantly, cells have the ability to selectively sort miRNA into EVs for secretion to nearby or distant targets. These mechanisms broadly include RNA-binding proteins such as hnRNPA2B1 and Argonaute-2, but also membranous proteins involved in EV biogenesis such as Caveolin-1 and Neural Sphingomyelinase 2. Moreover, certain disease states have also identified dysregulated EV-miRNA content, shedding light on the potential role of selective sorting in pathogenesis. These pathologies include chronic lung disease, immune response, neuroinflammation, diabetes mellitus, cancer, and heart disease. In this review, we will overview the mechanisms whereby cells selectively sort miRNA into EVs and also outline disease states where EV-miRNAs become dysregulated.
Collapse
Affiliation(s)
- Michael Groot
- Department of Medicine, Boston University Medical Campus, Boston, MA 02118, USA;
| | - Heedoo Lee
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, Korea
- Correspondence: ; Tel.: +82-55-213-3452
| |
Collapse
|
50
|
Bottani M, Banfi G, Lombardi G. The Clinical Potential of Circulating miRNAs as Biomarkers: Present and Future Applications for Diagnosis and Prognosis of Age-Associated Bone Diseases. Biomolecules 2020; 10:E589. [PMID: 32290369 PMCID: PMC7226497 DOI: 10.3390/biom10040589] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis, related fracture/fragility, and osteoarthritis are age-related pathologies that, over recent years, have seen increasing incidence and prevalence due to population ageing. The diagnostic approaches to these pathologies suffer from limited sensitivity and specificity, also in monitoring the disease progression or treatment. For this reason, new biomarkers are desirable for improving the management of osteoporosis and osteoarthritis patients. The non-coding RNAs, called miRNAs, are key post-transcriptional factors in bone homeostasis, and promising circulating biomarkers for pathological conditions in which to perform a biopsy can be problematic. In fact, miRNAs can easily be detected in biological fluids (i.e., blood, serum, plasma) using methods with elevated sensitivity and specificity (RT-qPCR, microarray, and NGS). However, the analytical phases required for miRNAs' evaluation still present some practical issues that limit their use in clinical practice. This review reveals miRNAs' potential as circulating biomarkers for evaluating predisposition, diagnosis, and prognosis of osteoporosis (postmenopausal or idiopathic), bone fracture/fragility, and osteoarthritis, with a focus on pre-analytical, analytical, and post-analytical protocols used for their validation and thus on their clinical applicability. These evidences may support the definition of early diagnostic tools based on circulating miRNAs for bone diseases and osteoarthritis as well as for monitoring the effects of specific treatments.
Collapse
Affiliation(s)
- Michela Bottani
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161 Milano, Italy; (M.B.); (G.B.)
| | - Giuseppe Banfi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161 Milano, Italy; (M.B.); (G.B.)
- Vita-Salute San Raffaele University, 20132 Milano, Italy
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161 Milano, Italy; (M.B.); (G.B.)
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Królowej Jadwigi 27/39, 61-871 Poznań, Poland
| |
Collapse
|