1
|
Takai M, Yamamoto M, Yashiro N, Tamura M, Taniguchi A, Nagano S, Kusumoto Y, Tsujiuchi T. FFAR-mediated signaling drives migration of pancreatic cancer cells in hypoxic fibroblast co-cultures. Biochem Biophys Res Commun 2024; 727:150322. [PMID: 38945064 DOI: 10.1016/j.bbrc.2024.150322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
The tumor microenvironment (TME) comprises cancer and non-cancerous stromal cells, including fibroblasts. Free fatty acids (FFAs) regulate various biological responses by binding to G protein-coupled FFA receptors (FFARs). In this study, we examined the impact of FFAR1 and FFAR4 on the cell migration of pancreatic cancer PANC-1 cells co-cultured with 3T3 fibroblast cells under hypoxic conditions. PANC-1 cells cultured at 1 % O2 exhibited elevated FFAR1 expression and decreased FFAR4 expression compared to those at 21 % O2. Cell migration of PANC-1 cells was reduced under 1 % O2 conditions. FFAR1 knockdown enhanced PANC-1 cell migration, whereas FFAR4 knockdown inhibited it. Co-culture of PANC-1 cells with 3T3 cells at 1 % O2 significantly increased FFAR4 expression, while FFAR1 expression remained unchanged. To evaluate the effects of FFAR1 and FFAR4 on PANC-1 cell migration in co-culture with 3T3 cells, we conducted a wound healing assay using the Culture-Insert 2 Well. PANC-1 and 3T3 cells were individually seeded into the two wells and incubated at both 21 % and 1 % O2 for 13 h. The cell migration of PANC-1 cells co-cultured with 3T3 cells at 1 % O2 was notably higher compared to 21 % O2. TUG-770 reduced and TUG-891 enhanced the cell migration of PANC-1 cells co-cultured with 3T3 cells under both 21 % and 1 % O2 conditions. These findings suggest that FFAR1 and FFAR4 play important roles in regulating the cell migration of PANC-1 cells co-cultured with 3T3 cells under hypoxic conditions.
Collapse
Affiliation(s)
- Miwa Takai
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Mao Yamamoto
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Narumi Yashiro
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Moemi Tamura
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Anri Taniguchi
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Shion Nagano
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Yuka Kusumoto
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Toshifumi Tsujiuchi
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan.
| |
Collapse
|
2
|
Takai M, Yamamoto M, Yashiro N, Tsujiuchi T. Involvement of lysophosphatidic acid (LPA) receptor-mediated signaling in breast cancer cell functions by long-term tamoxifen treatment under hypoxic and estrogen-deprived conditions. Pathol Res Pract 2024; 260:155385. [PMID: 38875757 DOI: 10.1016/j.prp.2024.155385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/31/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Tamoxifen (TAM) is a selective estrogen receptor modulator and has anti-estrogenic activity. Breast cancer cells acquire drug resistance to TAM as a consequence of long-term treatment. Lysophosphatidic acid (LPA) receptor-mediated signaling contributes to the promotion of tumor progression. This study aimed to evaluate the role of LPA receptors in the modulation of biological functions by long-term TAM treatment in breast cancer MCF-7 cells under hypoxic and estrogen-deprived conditions. METHODS Long-term TAM treated (MCF-TAM) cells were generated from MCF-7 cells. Cells were cultured in estrogen-free medium at 1 % O2. LPA receptor expressions were measured by quantitative real-time RT-PCR analysis. Cell motile activity was investigated using Cell Culture Inserts. The CCK-8 kit was used to determine the cell proliferation rate. RESULTS LPAR1 and LPAR3 expressions were elevated in MCF-TAM cells. MCF-TAM cell motility was enhanced by culturing at 1 % O2, compared with MCF-7 cells. When cells were cultured in estrogen-deprived medium at 1 % O2, the cell proliferation rate of MCF-TAM cells was significantly higher than that of MCF-7 cells. CONCLUSION These results suggest that LPA receptor-mediated signaling plays an important role in the acquisition of malignant properties in long-term TAM treated MCF-7 cells under hypoxic and estrogen-deprived conditions.
Collapse
Affiliation(s)
- Miwa Takai
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502, Japan
| | - Mao Yamamoto
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502, Japan
| | - Narumi Yashiro
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502, Japan
| | - Toshifumi Tsujiuchi
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502, Japan.
| |
Collapse
|
3
|
Yashiro N, Takai M, Yamamoto M, Amano Y, Hara K, Tsujiuchi T. Effects of free fatty acid receptor (FFAR) signaling on the modulation of cancer cell functions under hypoxic conditions. Biochem Biophys Res Commun 2024; 699:149554. [PMID: 38280308 DOI: 10.1016/j.bbrc.2024.149554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
In the tumor environment, hypoxia promotes tumor progression, such as cancer cell growth, migration and chemoresistance. This study aimed to evaluate the roles of free fatty acid receptors (FFARs) in the regulation of cancer cell functions under hypoxic conditions, using fibrosarcoma HT1080 cells. HT1080 cells expressed FFAR1, FFAR2 and FFAR3 genes, but not FFAR4 gene. FFAR1, FFAR2 and FFAR3 expression levels in HT1080 cells cultured at 1 % O2 were elevated, compared with 21 % O2. The cell growth activities of HT1080 cells cultured at 21 % O2 were inhibited by acetic acid (AA) and propanoic acid (PA), but not 1 % O2. HT1080 cell motility was markedly reduced by culturing at 1 % O2. The cell growth and motility of HT1080 cells were enhanced by FFAR2 knockdown. The cell viability to cisplatin (CDDP) of HT1080 cells cultured at 1 % O2 was increased, compared with 21 % O2. FFAR2 knockdown suppressed the cell viability to CDDP of HT1080 cells. On the other hand, the cell motility and viability to CDDP of HT1080 cells cultured at 21 % O2 were suppressed by TUG-770. When HT1080 cells were cultured at 1 % O2, the cell motility and viability to CDDP were decreased, correlating with FFAR1 expression level. Moreover, FFAR1 knockdown increased the cell viability to CDDP of HT1080 cells cultured at 1 % O2. These results suggest that FFAR-mediated signaling plays an important role in the modulation of cellular functions of HT1080 cells under hypoxic conditions.
Collapse
Affiliation(s)
- Narumi Yashiro
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Miwa Takai
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Mao Yamamoto
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Yuka Amano
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Koki Hara
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Toshifumi Tsujiuchi
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan.
| |
Collapse
|
4
|
Takai M, Yashiro N, Hara K, Amano Y, Yamamoto M, Tsujiuchi T. Roles of lysophosphatidic acid (LPA) receptor-mediated signaling in cellular functions modulated by endothelial cells in pancreatic cancer cells under hypoxic conditions. Pathol Res Pract 2024; 255:155192. [PMID: 38367602 DOI: 10.1016/j.prp.2024.155192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/02/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND In the tumor environment, malignant characteristics of cancer cells are promoted by stromal cells under hypoxia. It is unknown whether lysophosphatidic acid (LPA) receptor-mediated signaling is involved in the regulation of cellular functions by endothelial cells in pancreatic cancer cells under hypoxic conditions. METHODS Pancreatic cancer (PANC-1) cells were co-cultured with endothelial (F2) cells and F2 cell supernatants at 21% and 1% O2. The Cell Culture Insert was used to assess the cell motile activity. The cell growth and viability to cisplatin (CDDP) were measured, using the Cell Counting Kit-8. RESULTS LPA receptor expression levels were changed in PANC-1 cells co-cultured with F2 cells at 21% and 1% O2. The cell motile activities of PANC-1 cells co-cultured with F2 cells at 21% and 1% O2 were markedly elevated, compared with PANC-1 cells alone. The cell viabilities to CDDP of PANC-1 cells co-cultured with F2 cell supernatants at 21% and 1% O2 were regulated by the activation of LPA receptors. CONCLUSION These results suggest that LPA receptor-mediated signaling plays an important role in the modulation of pancreatic cancer cell functions by endothelial cells under hypoxic conditions.
Collapse
Affiliation(s)
- Miwa Takai
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502, Japan
| | - Narumi Yashiro
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502, Japan
| | - Koki Hara
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502, Japan
| | - Yuka Amano
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502, Japan
| | - Mao Yamamoto
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502, Japan
| | - Toshifumi Tsujiuchi
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502, Japan.
| |
Collapse
|
5
|
Furuhashi T, Matsumoto Y, Ishii R, Sugasawa T, Ota S. Hypoxia and lactate influence VOC production in A549 lung cancer cells. Front Mol Biosci 2023; 10:1274298. [PMID: 37808517 PMCID: PMC10552298 DOI: 10.3389/fmolb.2023.1274298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction: Cancer cells emit characteristic volatile organic compounds (VOCs), which are potentially generated from ROS-based lipid peroxidation of polyunsaturated fatty acids. The metabolism of such VOCs and their regulation remain to be fully investigated. In fact, the enzymes involved in the synthesis of these VOCs have not been described yet. Methods: In this study, we firstly conducted in vitro enzyme assays and demonstrated that recombinant alcohol dehydrogenase (ADH) converted Trans 2-hexenal into Trans 2-hexenol. The latter has previously been reported as a cancer VOC. To study VOC metabolism, 14 different culture conditions were compared in view of Trans 2-hexenol production. Results and discussion: The data indicate that hypoxia and the addition of lactate positively influenced Trans 2-hexenol production in A549 cancer cells. The RNAseq data suggested certain gene expressions in the VOC pathway and in lactate signaling, parallel to VOC production. This implies that hypoxia and lactate signaling with a VOC production can be characteristic for cancer in vitro.
Collapse
Affiliation(s)
| | | | - Ryuga Ishii
- Anicom Specialty Medical Institute Inc., Tokyo, Japan
| | - Takehito Sugasawa
- Laboratory of Clinical Examination/Sports Medicine, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | | |
Collapse
|
6
|
Tanaka Y, Kadota S, Zhao J, Kobayashi H, Okano S, Izumi M, Honda Y, Ichimura H, Shiba N, Uemura T, Wada Y, Chuma S, Nakada T, Tohyama S, Fukuda K, Yamada M, Seto T, Kuwahara K, Shiba Y. Mature human induced pluripotent stem cell-derived cardiomyocytes promote angiogenesis through alpha-B crystallin. Stem Cell Res Ther 2023; 14:240. [PMID: 37679796 PMCID: PMC10486094 DOI: 10.1186/s13287-023-03468-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 08/22/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) can be used to treat heart diseases; however, the optimal maturity of hiPSC-CMs for effective regenerative medicine remains unclear. We aimed to investigate the benefits of long-term cultured mature hiPSC-CMs in injured rat hearts. METHODS Cardiomyocytes were differentiated from hiPSCs via monolayer culturing, and the cells were harvested on day 28 or 56 (D28-CMs or D56-CMs, respectively) after differentiation. We transplanted D28-CMs or D56-CMs into the hearts of rat myocardial infarction models and examined cell retention and engraftment via in vivo bioluminescence imaging and histological analysis. We performed transcriptomic sequencing analysis to elucidate the genetic profiles before and after hiPSC-CM transplantation. RESULTS Upregulated expression of mature sarcomere genes in vitro was observed in D56-CMs compared with D28-CMs. In vivo bioluminescence imaging studies revealed increased bioluminescence intensity of D56-CMs at 8 and 12 weeks post-transplantation. Histological and immunohistochemical analyses showed that D56-CMs promoted engraftment and maturation in the graft area at 12 weeks post-transplantation. Notably, D56-CMs consistently promoted microvessel formation in the graft area from 1 to 12 weeks post-transplantation. Transcriptomic sequencing analysis revealed that compared with the engrafted D28-CMs, the engrafted D56-CMs enriched genes related to blood vessel regulation at 12 weeks post-transplantation. As shown by transcriptomic and western blot analyses, the expression of a small heat shock protein, alpha-B crystallin (CRYAB), was significantly upregulated in D56-CMs compared with D28-CMs. Endothelial cell migration was inhibited by small interfering RNA-mediated knockdown of CRYAB when co-cultured with D56-CMs in vitro. Furthermore, CRYAB overexpression enhanced angiogenesis in the D28-CM grafts at 4 weeks post-transplantation. CONCLUSIONS Long-term cultured mature hiPSC-CMs promoted engraftment, maturation and angiogenesis post-transplantation in infarcted rat hearts. CRYAB, which was highly expressed in D56-CMs, was identified as an angiogenic factor from mature hiPSC-CMs. This study revealed the benefits of long-term culture, which may enhance the therapeutic potential of hiPSC-CMs.
Collapse
Affiliation(s)
- Yuki Tanaka
- Department of Regenerative Science and Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
- Division of Cardiovascular Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Shin Kadota
- Department of Regenerative Science and Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan.
- Institute for Biomedical Sciences, Shinshu University, Matsumoto, 390-8621, Japan.
| | - Jian Zhao
- Department of Regenerative Science and Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Hideki Kobayashi
- Department of Regenerative Science and Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
- Department of Cardiovascular Medicine, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Satomi Okano
- Department of Regenerative Science and Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
- Department of Physical Therapy, Faculty of Health Sciences, Iryo Sosei University, Iwaki, 970-8551, Japan
| | - Masaki Izumi
- Department of Regenerative Science and Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
- Division of Diabetes, Endocrinology and Metabolism, Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Yusuke Honda
- Department of Regenerative Science and Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Hajime Ichimura
- Department of Regenerative Science and Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
- Division of Cardiovascular Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Naoko Shiba
- Department of Regenerative Science and Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Takeshi Uemura
- Institute for Biomedical Sciences, Shinshu University, Matsumoto, 390-8621, Japan
- Division of Gene Research, Research Center for Advanced Science and Technology, Shinshu University, Matsumoto, 390-8621, Japan
| | - Yuko Wada
- Division of Cardiovascular Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Shinichiro Chuma
- Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Tsutomu Nakada
- Division of Instrumental Analysis, Research Center for Advanced Science and Technology, Shinshu University, Matsumoto, 390-8621, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Mitsuhiko Yamada
- Department of Molecular Pharmacology, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Tatsuichiro Seto
- Division of Cardiovascular Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Koichiro Kuwahara
- Institute for Biomedical Sciences, Shinshu University, Matsumoto, 390-8621, Japan
- Department of Cardiovascular Medicine, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Yuji Shiba
- Department of Regenerative Science and Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan.
- Institute for Biomedical Sciences, Shinshu University, Matsumoto, 390-8621, Japan.
| |
Collapse
|
7
|
Takai M, Takamoto M, Amano Y, Yamamoto M, Hara K, Yashiro N, Tsujiuchi T. Induction of lysophosphatidic acid (LPA) receptor-mediated signaling regulates cell motility and survival to anticancer drugs in cancer cells treated with hydrogen peroxide. Adv Biol Regul 2023; 89:100978. [PMID: 37603941 DOI: 10.1016/j.jbior.2023.100978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/06/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023]
Abstract
Hydrogen peroxide (H2O2) is one of reactive oxygen species (ROS) and promotes malignant properties of cancer cells. Lysophosphatidic acid (LPA) signaling via LPA receptor (LPA1 to LPA6) regulates a variety of cellular functions, such as cell growth, migration and differentiation. This study aimed to evaluate the effects of LPA receptors on the cell motility and survival to anticancer drugs by H2O2 in colon cancer DLD-1 cells. To obtain H2O2 treated (DLD- H2O2) cells, cells were maintained in culture medium containing H2O2 (60 μM) for 2 months. LPAR2 and LPAR4 gene expressions were markedly elevated in DLD-H2O2 cells. The cell motility of DLD-H2O2 cells was significantly lower than that of DLD-1 cells. DLD-H2O2 cell motility was suppressed by LPA2 knockdown and stimulated by LPA4 knockdown. The cell survival rates to fluorouracil (5-FU), irinotecan (CPT-11) and oxaliplatin (L-OHP) of DLD-H2O2 cells were significantly higher than those of DLD-1 cells. The cell survival rate to 5-FU of DLD-H2O2 cells was decreased by LPA2 knockdown. Conversely, LPA4 knockdown enhanced the cell survival rate to 5-FU of DLD-H2O2 cells. In the tumor microenvironment, high levels of H2O2 production are observed under hypoxic conditions. The cell survival rate to 5-FU of DLD-H2O2 cells cultured at 1% O2 was significantly higher than that of DLD-1 cells cultured at 1% O2, correlating with LPAR2 gene expression. The present results suggest that the induction of LPA receptor-mediated signaling plays an important role in regulating cellular functions of DLD-1 cells treated with H2O2.
Collapse
Affiliation(s)
- Miwa Takai
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Miyu Takamoto
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Yuka Amano
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Mao Yamamoto
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Koki Hara
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Narumi Yashiro
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Toshifumi Tsujiuchi
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan.
| |
Collapse
|
8
|
Takai M, Okuda A, Amano Y, Yashiro N, Hara K, Yamamoto M, Tsujiuchi T. Effects of LPA receptor-mediated signaling on the modulation of cellular functions of pancreatic cancer cells cultured in fibroblast supernatants under hypoxic conditions. J Bioenerg Biomembr 2023:10.1007/s10863-023-09969-4. [PMID: 37219648 DOI: 10.1007/s10863-023-09969-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023]
Abstract
The tumor microenvironment (TME) consists of various cell types, including fibroblasts. The TME plays a central role in the promotion of tumor progression. In the present study, we investigated whether lysophosphatidic acid (LPA) receptor-mediated signaling regulates cellular functions by the TME of pancreatic cancer PANC-1 cells. To obtain fibroblast 3T3 cell supernatants, 3T3 cells were cultured in 5% charcoal stripped FCS-DMEM for 48 h. LPAR2 and LPAR3 expression levels were elevated in PANC-1 cells cultured in 3T3 cell supernatants. While PANC-1 cell motility was decreased by 3T3 cell supernatants, the cell survival to cisplatin (CDDP) of PANC-1 cells was markedly enhanced. Moreover, the cell survival to CDDP of PANC-1 cells cultured in 3T3 cell supernatants was increased by GRI-977,143 (LPA2 agonist) and (2 S)-OMPT (LPA3 agonist). Since hypoxia is caused by the restriction of adequate vascular networks to deliver oxygen into solid tumors, PANC-1 cells were cultured in 3T3 cell supernatants at 1% O2 conditions. The cell survival to CDDP of PANC-1 cells cultured in 3T3 cell supernatants at 1% O2 was significantly elevated, correlating with LPAR2 and LPAR3 expressions. These results suggest that LPA signaling via LPA2 and LPA3 is involved in the promotion of malignant properties by the TME in PANC-1 cells.
Collapse
Affiliation(s)
- Miwa Takai
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, 577-8502, Osaka, Japan
| | - Aya Okuda
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, 577-8502, Osaka, Japan
| | - Yuka Amano
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, 577-8502, Osaka, Japan
| | - Narumi Yashiro
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, 577-8502, Osaka, Japan
| | - Koki Hara
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, 577-8502, Osaka, Japan
| | - Mao Yamamoto
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, 577-8502, Osaka, Japan
| | - Toshifumi Tsujiuchi
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, 577-8502, Osaka, Japan.
| |
Collapse
|
9
|
Putman R, Ricciardi AS, Carufe KEW, Quijano E, Bahal R, Glazer PM, Saltzman WM. Nanoparticle-mediated genome editing in single-cell embryos via peptide nucleic acids. Bioeng Transl Med 2023; 8:e10458. [PMID: 37206203 PMCID: PMC10189434 DOI: 10.1002/btm2.10458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
Through preimplantation genetic diagnosis, genetic diseases can be detected during the early stages of embryogenesis, but effective treatments for many of these disorders are lacking. Gene editing could allow for correction of the underlying mutation during embryogenesis to prevent disease pathogenesis or even provide a cure. Here, we demonstrate that administration of peptide nucleic acids and single-stranded donor DNA oligonucleotides encapsulated in poly(lactic-co-glycolic acid) (PLGA) nanoparticles to single-cell embryos allows for editing of an eGFP-beta globin fusion transgene. Blastocysts from treated embryos exhibit high levels of editing (~94%), normal physiological development, normal morphology, and no detected off-target genomic effects. Treated embryos reimplanted to surrogate moms show normal growth without gross developmental abnormalities and with no identified off-target effects. Mice from reimplanted embryos consistently show editing, characterized by mosaicism across multiple organs with some organ biopsies showing up to 100% editing. This proof-of-concept work demonstrates for the first time the use of peptide nucleic acid (PNA)/DNA nanoparticles as a means to achieve embryonic gene editing.
Collapse
Affiliation(s)
- Rachael Putman
- Department of Biomedical EngineeringYale UniversityNew HavenConnecticutUSA
- Department of Therapeutic RadiologyYale UniversityNew HavenConnecticutUSA
- Duke University School of MedicineDurhamNorth CarolinaUSA
| | - Adele S. Ricciardi
- Department of Biomedical EngineeringYale UniversityNew HavenConnecticutUSA
- Department of Therapeutic RadiologyYale UniversityNew HavenConnecticutUSA
- Department of SurgeryUniversity of Pennsylvania Health SystemsPhiladelphiaPennsylvaniaUSA
| | - Kelly E. W. Carufe
- Department of Therapeutic RadiologyYale UniversityNew HavenConnecticutUSA
- Department of GeneticsYale UniversityNew HavenConnecticutUSA
| | - Elias Quijano
- Department of Biomedical EngineeringYale UniversityNew HavenConnecticutUSA
- Department of GeneticsYale UniversityNew HavenConnecticutUSA
| | - Raman Bahal
- Department of Therapeutic RadiologyYale UniversityNew HavenConnecticutUSA
- Department of Pharmaceutical SciencesUniversity of ConnecticutStorrsConnecticutUSA
| | - Peter M. Glazer
- Department of Therapeutic RadiologyYale UniversityNew HavenConnecticutUSA
- Department of GeneticsYale UniversityNew HavenConnecticutUSA
| | - W. Mark Saltzman
- Department of Biomedical EngineeringYale UniversityNew HavenConnecticutUSA
- Department of Cellular & Molecular PhysiologyYale UniversityNew HavenConnecticutUSA
- Department of Chemical & Environmental EngineeringYale UniversityNew HavenConnecticutUSA
| |
Collapse
|
10
|
Takai M, Takauchi M, Kuribayashi M, Tsujiuchi T. LPA receptor-mediated signaling regulates cell motility and survival to anticancer drug of pancreatic cancer cells under glucose-deprived and hypoxic conditions. Biochem Biophys Res Commun 2023; 661:21-27. [PMID: 37084489 DOI: 10.1016/j.bbrc.2023.04.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
In tumor microenvironment, cancer cells can adapt to low conditions of nutrients and oxygen. Lysophosphatidic acid (LPA) receptor-mediated signaling is involved in the promotion of malignant properties in cancer cells. In the present study, to examine the roles of LPA receptors in the regulation of cell motility and survival to cisplatin (CDDP) of pancreatic cancer PANC-1 cells under glucose-deprived and hypoxic conditions, cells were cultured in 4500 mg/L high glucose (HG)-DMEM, 500 mg/L middle glucose (MG)-DMEM and 100 mg/L low glucose (LG)-DMEM at 21% and 1% O2. The expression levels of LPAR1 and LPAR2 genes in cells cultured in MG-DMEM and LG-DMEM were significantly elevated, compared with HG-DMEM cells. The cell motility and survival rate to CDDP of cells cultured in MG-DMEM and LG-DMEM were significantly lower than those of cells cultured in HG-DMEM. The cell survival to CDDP was enhanced by LPA1 knockdown and suppressed by LPA2 knockdown. Under hypoxic conditions (1% O2), LPAR1, LPAR2 and LPAR3 expressions were markedly higher in cells cultured in MG-DMEM and LG-DMEM than in cells cultured in HG-DMEM. The cell survival rates to CDDP of cells cultured in MG-DMEM and LG-DMEM were elevated in comparison with HG-DMEM. The cell survival to CDDP was reduced by LPA3 knockdown. These results suggest that LPA receptor-mediated signaling is involved in the regulation of malignant properties of PANC-1 cells under glucose-deprived and hypoxic conditions.
Collapse
Affiliation(s)
- Miwa Takai
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Minori Takauchi
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Mako Kuribayashi
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Toshifumi Tsujiuchi
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan.
| |
Collapse
|
11
|
Nascimento-Filho CHV, Glinos AT, Jang Y, Goloni-Bertollo EM, Castilho RM, Squarize CH. From Tissue Physoxia to Cancer Hypoxia, Cost-Effective Methods to Study Tissue-Specific O 2 Levels in Cellular Biology. Int J Mol Sci 2022; 23:ijms23105633. [PMID: 35628446 PMCID: PMC9144419 DOI: 10.3390/ijms23105633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 12/10/2022] Open
Abstract
The human body is endowed with an extraordinary ability to maintain different oxygen levels in various tissues and organs. The maintenance of physiological levels of oxygen is known as physoxia. The development of hypoxic conditions plays an important role in the biology of several pathologies, including cancer. In vitro studies using normal and neoplastic cells require that culture conditions be carried out under appropriate oxygen levels, either physoxic or hypoxic conditions. Such requirements are difficult to widely implement in laboratory practice, mainly due to the high costs of specialized equipment. In this work, we present and characterize a cost-effective method to culture cells under a range of oxygen levels using deoxidizing pouches. Our results show that physoxic and hypoxic levels using deoxidizing absorbers can be achieved either by implementing a gradual change in oxygen levels or by a regimen of acute depletion of oxygen. This approach triggers the activation of an epithelial-mesenchymal transition in cancer cells while stimulating the expression of HIF-1α. Culturing cancer cells with deoxidizing agent pouches revealed PI3K oncogenic pathway exacerbations compared to tumor cells growing under atmospheric levels of oxygen. Similar to the PI3K signaling disturbance, we also observed augmented oxidative stress and superoxide levels and increased cell cycle arrest. Most interestingly, the culture of cancer cells under hypoxia resulted in the accumulation of cancer stem cells in a time-dependent manner. Overall, we present an attractive, cost-effective method of culturing cells under appropriate physoxic or hypoxic conditions that is easily implementable in any wet laboratory equipped with cell culture tools.
Collapse
Affiliation(s)
- Carlos H. V. Nascimento-Filho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA; (C.H.V.N.-F.); (A.T.G.); (Y.J.); (C.H.S.)
| | - Alexandra T. Glinos
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA; (C.H.V.N.-F.); (A.T.G.); (Y.J.); (C.H.S.)
| | - Yeejin Jang
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA; (C.H.V.N.-F.); (A.T.G.); (Y.J.); (C.H.S.)
| | - Eny M. Goloni-Bertollo
- Genetics and Molecular Biology Research Unit (UPGEM), Department of Molecular Biology, School of Medicine of São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil;
| | - Rogerio M. Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA; (C.H.V.N.-F.); (A.T.G.); (Y.J.); (C.H.S.)
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109-0944, USA
- Correspondence:
| | - Cristiane H. Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA; (C.H.V.N.-F.); (A.T.G.); (Y.J.); (C.H.S.)
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109-0944, USA
| |
Collapse
|
12
|
Okazaki S, Boku S, Watanabe Y, Otsuka I, Horai T, Morikawa R, Kimura A, Shimmyo N, Tanifuji T, Someya T, Hishimoto A. Polymorphisms in the hypoxia inducible factor binding site of the macrophage migration inhibitory factor gene promoter in schizophrenia. PLoS One 2022; 17:e0265738. [PMID: 35324982 PMCID: PMC8946738 DOI: 10.1371/journal.pone.0265738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/07/2022] [Indexed: 12/04/2022] Open
Abstract
Background Macrophage migration inhibitory factor (MIF) is a multifunctional cytokine that promotes neurogenesis and neuroprotection. MIF is predominantly expressed in astrocytes in the brain. The serum MIF level and microsatellites/single nucleotide polymorphisms (SNPs) in the MIF gene promoter region are known to be associated with schizophrenia (SCZ). Interestingly, previous studies reported that hypoxia, an environmental risk factor for SCZ, induced MIF expression through binding of the hypoxia inducible factor (HIF)-1 to the hypoxia response element (HRE) in the MIF promoter. Methods We investigated the involvement of MIF in SCZ while focusing on the HIF pathway. First, we conducted an association study of the SNP rs17004038 (C>A) in the HRE of the MIF promoter between 1758 patients with SCZ and 1507 controls. Next, we investigated the effect of hypoxia on MIF expression in primary cultured astrocytes derived from neonatal mice forebrain. Results SNP rs17004038 was significantly associated with SCZ (p = 0.0424, odds ratio = 1.445), indicating that this SNP in the HRE of the MIF promoter was a genetic risk factor for SCZ. Hypoxia induced MIF mRNA expression and MIF protein production and increased HIF-1 binding to the MIF promoter, while the activity of the MIF promoter was suppressed by mutations in the HRE and by deletion of the HRE in astrocytes. Conclusion These results suggest that SNP rs17004038 in the HRE of the MIF promoter was significantly associated with SCZ and may be involved in the pathophysiology of SCZ via suppression of hypoxia and HIF pathway-induced MIF expression.
Collapse
Affiliation(s)
- Satoshi Okazaki
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shuken Boku
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Neuropsychiatry, Kumamoto University Faculty of Life Sciences, Kumamoto, Japan
- * E-mail:
| | - Yuichiro Watanabe
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ikuo Otsuka
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tadasu Horai
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryo Morikawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Atsushi Kimura
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naofumi Shimmyo
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takaki Tanifuji
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akitoyo Hishimoto
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Psychiatry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
13
|
Kikuchi Y, Wakayama S, Ito D, Ooga M, Wakayama T. Optimised CO2-containing medium for in vitro culture and transportation of mouse preimplantation embryos without CO2 incubator. PLoS One 2021; 16:e0260645. [PMID: 34941870 PMCID: PMC8699615 DOI: 10.1371/journal.pone.0260645] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/14/2021] [Indexed: 11/19/2022] Open
Abstract
Conventional in vitro culture and manipulation of mouse embryos require a CO2 incubator, which not only increases the cost of performing experiments but also hampers the transport of embryos to the other laboratories. In this study, we established and tested a new CO2 incubator-free embryo culture system and transported embryos using this system. Using an Anaero pouch, which is a CO2 gas-generating agent, to increase the CO2 partial pressure of CZB medium to 4%–5%, 2-cell embryos were cultured to the blastocyst stage in a sealed tube without a CO2 incubator at 37°C. Further, the developmental rate to blastocyst and full-term development after embryo transfer were comparable with those of usual culture method using a CO2 incubator (blastocyst rate: 97% versus 95%, respectively; offspring rate: 30% versus 35%, respectively). Furthermore, using a thermal bottle, embryos were reliably cultured using this system for up to 2 days at room temperature, and live offspring were obtained from embryos transported in this simple and very low-cost manner without reducing the offspring rate (thermal bottle: 26.2% versus CO2 incubator: 34.3%). This study demonstrates that CO2 incubators are not essential for embryo culture and transportation and that this system provides a useful, low-cost alternative for mouse embryo culture and manipulation.
Collapse
Affiliation(s)
- Yasuyuki Kikuchi
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu, Japan
| | - Sayaka Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Kofu, Japan
| | - Daiyu Ito
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu, Japan
| | - Masatoshi Ooga
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu, Japan
| | - Teruhiko Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Kofu, Japan
- * E-mail:
| |
Collapse
|
14
|
Maruyama K, Kidoya H, Takemura N, Sugisawa E, Takeuchi O, Kondo T, Eid MMA, Tanaka H, Martino MM, Takakura N, Takayama Y, Akira S, Vandenbon A, Kumagai Y. Zinc Finger Protein St18 Protects against Septic Death by Inhibiting VEGF-A from Macrophages. Cell Rep 2021; 32:107906. [PMID: 32668247 DOI: 10.1016/j.celrep.2020.107906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 04/22/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022] Open
Abstract
Zinc finger protein St18 was initially reported as candidate tumor suppressor gene, and also suggested that fibroblast St18 positively regulates NF-κB activation. Despite the pleiotropic functions of St18, little is known about its roles in macrophages. Here, we report that myeloid St18 is a potent inhibitor of VEGF-A. Mice lacking St18 in myeloid lineages exhibit increased retinal vasculature with enhanced serum VEGF-A concentrations. Despite the normal activation of NF-κB target genes, these mice are highly susceptible to LPS-induced shock, polymicrobial sepsis, and experimental colitis, accompanied by enhanced vascular and intestinal leakage. Pharmacological inhibition of VEGF signaling rescued the high mortality rate of myeloid-specific St18-deficient mice in response to inflammation. Mechanistically, St18 directly binds to Sp1 and attenuates its activity, leading to the suppression of Sp1 target gene VEGF-A. Using mouse genetic and pharmacological models, we reveal myeloid St18 as a critical septic death protector.
Collapse
Affiliation(s)
- Kenta Maruyama
- WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan; Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Aichi 444-8787, Japan.
| | - Hiroyasu Kidoya
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Naoki Takemura
- Department of Mucosal Immunology, School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Erika Sugisawa
- WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Osamu Takeuchi
- Laboratory of Infection and Prevention, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Takeshi Kondo
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8636, Japan
| | | | - Hiroki Tanaka
- WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Mikaël M Martino
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Yasunori Takayama
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Aichi 444-8787, Japan; Department of Physiological Sciences, Graduate University for Advanced Studies, Aichi 444-8787, Japan
| | - Shizuo Akira
- WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Alexis Vandenbon
- Laboratory of Infection and Prevention, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Yutaro Kumagai
- Biotechnology Research Institute for Drug Discovery, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
15
|
Liu J, Wang Z, Gao Z, Zhang H, Gu J, Zhao X, Wei Q, Ma B. Sealed culture system for supporting mouse preimplantation embryo development in vitro. Reprod Fertil Dev 2021; 32:879-884. [PMID: 32448404 DOI: 10.1071/rd19086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 12/24/2019] [Indexed: 11/23/2022] Open
Abstract
This study investigated the possibility of a sealed culture system in polymerase chain reaction (PCR) tubes to maintain embryo development. The embryo density that could support the development of 2-cell stage mouse embryos to the hatching stage was determined. At an embryo density of 1:2 (100 embryos cultured in 200μL CZB medium that had been pretreated with a reference gas containing 5% O2), the developmental rate was higher and fewer embryos exhibited reactive oxygen species- or hypoxia-induced injury compared with other sealed culture groups. Expression of growth factors (insulin-like growth factor (IGF) 1, IGF2, epidermal growth factor and transforming growth factor-α) and their receptors was evaluated, with similar expression patterns seen for embryos in sealed culture (5% O2, embryo density of 1:2) compared with the control group (embryos cultured in microdrops and placed in a 37°C, 5% CO2 water-jacketed incubator; P>0.05). After transfer of blastocysts generated by the sealed culture into recipients, there were no obvious differences in the rate of normal live pups births between the sealed culture and control groups (P>0.05). Thus, the sealed embryo culture system in PCR tubes is feasible for use in situations which cannot use a traditional incubator, such as in space and during the transport of embryos.
Collapse
Affiliation(s)
- Jie Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; and Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Zhao Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; and Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Zhen Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; and Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Hui Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; and Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Jianfeng Gu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; and Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Xiaoe Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; and Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Qiang Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; and Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Baohua Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; and Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; and Corresponding author:
| |
Collapse
|
16
|
Nascimento-Filho CHV, Webber LP, Borgato GB, Goloni-Bertollo EM, Squarize CH, Castilho RM. Hypoxic niches are endowed with a protumorigenic mechanism that supersedes the protective function of PTEN. FASEB J 2019; 33:13435-13449. [PMID: 31560860 DOI: 10.1096/fj.201900722r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide and is characterized by a fast-paced growth. Like other solid tumors, the HNSCC growth rate results in the development of hypoxic regions identified by the expression of hypoxia-inducible factor 1α (HIF-1α). Interestingly, clinical data have shown that pharmacological induction of intratumoral hypoxia caused an unexpected rise in tumor metastasis and the accumulation of cancer stem cells (CSCs). However, little is known on the molecular circuitries involved in the presence of intratumoral hypoxia and the augmented population of CSCs. Here we explore the impact of hypoxia on the behavior of HNSCC and define that the controlling function of phosphatase and tensin homolog (PTEN) over HIF-1α expression and CSC accumulation are de-regulated during hypoxic events. Our findings indicate that hypoxic niches are poised to accumulate CSCs in a molecular process driven by the loss of PTEN activity. Furthermore, our data suggest that targeted therapies aiming at the PTEN/PI3K signaling may constitute an effective strategy to counteract the development of intratumoral hypoxia and the accumulation of CSCs.-Nascimento-Filho, C. H. V., Webber, L. P., Borgato, G. B., Goloni-Bertollo, E. M., Squarize, C. H., Castilho, R. M. Hypoxic niches are endowed with a protumorigenic mechanism that supersedes the protective function of PTEN.
Collapse
Affiliation(s)
- Carlos H V Nascimento-Filho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA.,Genetics and Molecular Biology Research Unit, Department of Molecular Biology, School of Medicine of São José do Rio Preto, São Paulo, Brazil
| | - Liana P Webber
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA.,Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Gabriell B Borgato
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA.,Department of Oral Biology, School of Dentistry, State University of Campinas, Piracicaba, São Paulo, Brazil
| | - Eny M Goloni-Bertollo
- Genetics and Molecular Biology Research Unit, Department of Molecular Biology, School of Medicine of São José do Rio Preto, São Paulo, Brazil
| | - Cristiane H Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA.,University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| | - Rogerio M Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA.,University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| |
Collapse
|
17
|
Shirasawa H, Ono N, Kumazawa Y, Sato W, Sato N, Ihara M, Yaegashi N, Terada Y. Oocyte collection and in vitro maturation after train transportation of human follicular fluid aspirated from resected non-stimulated ovaries of patients with endometrial adenocarcinoma. Reprod Med Biol 2019; 18:180-189. [PMID: 30996682 PMCID: PMC6452027 DOI: 10.1002/rmb2.12265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/20/2018] [Accepted: 12/23/2018] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Immature human oocytes from resected ovaries can be used for research and fertility preservation, though it is unknown whether it is feasible to transport oocytes for these purposes. This study examined in vitro maturation (IVM) outcomes after the transportation of human follicular fluid (HFF) containing oocytes. METHODS Fourteen patients with endometrial adenocarcinoma were enrolled. Oocytes obtained from the resected ovaries of seven patients were transported with HFF by railway (transportation group). Samples of HFF from the other seven patients were not transported, and IVM was performed promptly (non-transportation group). The results of oocyte retrieval and IVM were compared. RESULTS The average ages in the transportation and non-transportation groups were 40.1 ± 2.0 and 39.6 ± 1.8 years, respectively, and the average numbers of collected oocytes were 8.1 ± 8.4 and 5.1 ± 5.1, respectively. There was a significant negative correlation between the number of collected oocytes and age. The proportions of oocytes that reached meiosis II (maturation rate) after IVM were 38.6% and 69.2% in the transportation and non-transportation groups, respectively (P = 0.013). CONCLUSION In this preliminary study, the usefulness of the transportation of HFF was limited. Further studies on maintaining oocyte normality during transportation are necessary for becoming the effective method for research and clinical use.
Collapse
Affiliation(s)
- Hiromitsu Shirasawa
- Department of Obstetrics and GynecologyAkita University Graduate School of MedicineAkitaJapan
| | - Natsuki Ono
- Department of Obstetrics and GynecologyAkita University Graduate School of MedicineAkitaJapan
| | - Yukiyo Kumazawa
- Department of Obstetrics and GynecologyAkita University Graduate School of MedicineAkitaJapan
| | - Wataru Sato
- Department of Obstetrics and GynecologyAkita University Graduate School of MedicineAkitaJapan
| | - Naoki Sato
- Department of Obstetrics and GynecologyAkita University Graduate School of MedicineAkitaJapan
| | - Motomasa Ihara
- Department of Obstetrics and GynecologyTohoku University Graduate School of MedicineSendaiJapan
| | - Nobuo Yaegashi
- Department of Obstetrics and GynecologyTohoku University Graduate School of MedicineSendaiJapan
| | - Yukihiro Terada
- Department of Obstetrics and GynecologyAkita University Graduate School of MedicineAkitaJapan
| |
Collapse
|
18
|
Nishikawa K, Itoi F, Nagahara M, Jose M, Matsunaga A, Ueda J, Iwamoto T. The normality of sperm in an infertile man with ring chromosome 15: a case report. J Assist Reprod Genet 2018; 35:251-256. [PMID: 29063501 PMCID: PMC5845033 DOI: 10.1007/s10815-017-1061-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/05/2017] [Indexed: 10/18/2022] Open
Abstract
PURPOSE The purpose of this report is to analyze the chromosome status and fertilization capability of sperm obtained from an infertile male patient with ring chromosome 15. METHODS This was a case report at a private in vitro fertilization clinic. A man diagnosed with severe oligozoospermia carrying ring chromosome 15. To evaluate the chromosome status and fertilization capability, sperm from a patient carrying ring chromosome 15 were injected into enucleated mouse oocytes. RESULTS The karyotypes of motile sperm from a patient carrying ring chromosome 15 were normal, and ring chromosome 15 was not observed in the chromosome spread samples of 1PN. In addition, these motile sperm retained the fertilization capability. However, the fertilization rates decreased (85.2, 76.2, and 64.3%, respectively) along with the decline of the aspect ratio of the sperm head (≥ 1.50, 1.30-1.49, and < 1.30, respectively). CONCLUSIONS The karyotypes were normal without ring chromosome 15, and motile sperm with a high aspect ratio showed adequate potential for fertilization.
Collapse
Affiliation(s)
- Kazuyo Nishikawa
- Department of Infertility, Green Bell Clinic, Kitamachi 2-160, Toyota, Aichi, 471-0027, Japan
- Department of Infertility, Royal Bell Clinic, Midori-ku, Nagoya, Aichi, 458-0801, Japan
| | - Fumiaki Itoi
- Department of Infertility, Green Bell Clinic, Kitamachi 2-160, Toyota, Aichi, 471-0027, Japan.
| | - Miki Nagahara
- Center for Education in Laboratory Animal Research, Chubu University, Kasugai, Aichi, 487-8501, Japan
| | - Mami Jose
- Center for Education in Laboratory Animal Research, Chubu University, Kasugai, Aichi, 487-8501, Japan
| | - Ayumi Matsunaga
- Center for Education in Laboratory Animal Research, Chubu University, Kasugai, Aichi, 487-8501, Japan
| | - Jun Ueda
- Center for Education in Laboratory Animal Research, Chubu University, Kasugai, Aichi, 487-8501, Japan.
- Center for Advanced Research and Education, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan.
| | - Takashi Iwamoto
- Center for Education in Laboratory Animal Research, Chubu University, Kasugai, Aichi, 487-8501, Japan
| |
Collapse
|
19
|
Tanabe Y, Kuwayama H, Wakayama S, Nagatomo H, Ooga M, Kamimura S, Kishigami S, Wakayama T. Production of cloned mice using oocytes derived from ICR-outbred strain. Reproduction 2017; 154:859-866. [PMID: 28971892 DOI: 10.1530/rep-17-0372] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/26/2017] [Accepted: 09/29/2017] [Indexed: 01/08/2023]
Abstract
Recently, it has become possible to generate cloned mice using a somatic cell nucleus derived from not only F1 strains but also inbred strains. However, to date, all cloned mice have been generated using F1 mouse oocytes as the recipient cytoplasm. Here, we attempted to generate cloned mice from oocytes derived from the ICR-outbred mouse strain. Cumulus cell nuclei derived from BDF1 and ICR mouse strains were injected into enucleated oocytes of both strains to create four groups. Subsequently, the quality and developmental potential of the cloned embryos were examined. ICR oocytes were more susceptible to damage associated with nuclear injection than BDF1 oocytes, but their activation rate and several epigenetic markers of reconstructed cloned oocytes/embryos were similar to those of BDF1 oocytes. When cloned embryos were cultured for up to 4 days, those derived from ICR oocytes demonstrated a significantly decreased rate of development to the blastocyst stage, irrespective of the nuclear donor mouse strain. However, when cloned embryos derived from ICR oocytes were transferred to female recipients at the two-cell stage, healthy cloned offspring were obtained at a success rate similar to that using BDF1 oocytes. The ICR mouse strain is very popular for biological research and less expensive to establish than most other strains. Thus, the results of this study should promote the study of nuclear reprogramming not only by reducing the cost of experiments but also by allowing us to study the effect of oocyte cytoplasm by comparing it between strains.
Collapse
Affiliation(s)
- Yoshiaki Tanabe
- Faculty of Life and Environmental SciencesUniversity of Yamanashi, Yamanashi, Japan
| | - Hiroki Kuwayama
- Faculty of Life and Environmental SciencesUniversity of Yamanashi, Yamanashi, Japan
| | - Sayaka Wakayama
- Advanced Biotechnology CenterUniversity of Yamanashi, Yamanashi, Japan
| | | | - Masatoshi Ooga
- Faculty of Life and Environmental SciencesUniversity of Yamanashi, Yamanashi, Japan
| | - Satoshi Kamimura
- Faculty of Life and Environmental SciencesUniversity of Yamanashi, Yamanashi, Japan
| | - Satoshi Kishigami
- Faculty of Life and Environmental SciencesUniversity of Yamanashi, Yamanashi, Japan.,Advanced Biotechnology CenterUniversity of Yamanashi, Yamanashi, Japan
| | - Teruhiko Wakayama
- Faculty of Life and Environmental SciencesUniversity of Yamanashi, Yamanashi, Japan .,Advanced Biotechnology CenterUniversity of Yamanashi, Yamanashi, Japan
| |
Collapse
|
20
|
Pogorelov AG, Smirnov AA, Pogorelova VN. Hypoxia during mammalian preimplantation development: Extreme circumstance vs. typical environment. Russ J Dev Biol 2016. [DOI: 10.1134/s1062360416020077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Tokoro M, Fukunaga N, Yamanaka K, Itoi F, Terashita Y, Kamada Y, Wakayama S, Asada Y, Wakayama T. A Simple Method for Transportation of Mouse Embryos Using Microtubes and a Warm Box. PLoS One 2015; 10:e0138854. [PMID: 26393931 PMCID: PMC4579141 DOI: 10.1371/journal.pone.0138854] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/06/2015] [Indexed: 12/04/2022] Open
Abstract
Generally, transportation of preimplantation embryos without freezing requires incubators that can maintain an optimal culture environment with a suitable gas phase, temperature, and humidity. Such incubators are expensive to transport. We reported previously that normal offspring were obtained when the gas phase and temperature could be maintained during transportation. However, that system used plastic dishes for embryo culture and is unsuitable for long-distance transport of live embryos. Here, we developed a simple low-cost embryo transportation system. Instead of plastic dishes, several types of microtubes—usually used for molecular analysis—were tested for embryo culture. When they were washed and attached to a gas-permeable film, the rate of embryo development from the 1-cell to blastocyst stage was more than 90%. The quality of these blastocysts and the rate of full-term development after embryo transfer to recipient female mice were similar to those of a dish-cultured control group. Next, we developed a small warm box powered by a battery instead of mains power, which could maintain an optimal temperature for embryo development during transport. When 1-cell embryos derived from BDF1, C57BL/6, C3H/He and ICR mouse strains were transported by a parcel-delivery service over 3 days using microtubes and the box, they developed to blastocysts with rates similar to controls. After the embryos had been transferred into recipient female mice, healthy offspring were obtained without any losses except for the C3H/He strain. Thus, transport of mouse embryos is possible using this very simple method, which might prove useful in the field of reproductive medicine.
Collapse
Affiliation(s)
- Mikiko Tokoro
- Asada Institute for Reproductive Medicine, Asada Ladies Clinic Medical Corporation, Kasugai, Aichi, Japan
- * E-mail: (MT); (TW)
| | - Noritaka Fukunaga
- Asada Institute for Reproductive Medicine, Asada Ladies Clinic Medical Corporation, Kasugai, Aichi, Japan
| | - Kaori Yamanaka
- Laboratory for Mouse Genetic Engineering, Quantitative Biology Center RIKEN, Suita, Osaka, Japan
| | - Fumiaki Itoi
- Asada Institute for Reproductive Medicine, Asada Ladies Clinic Medical Corporation, Kasugai, Aichi, Japan
| | - Yukari Terashita
- Kanazawa University School of Medicine, Kanazawa, Ishikawa, Japan
| | - Yuko Kamada
- Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Yamanashi, Japan
| | - Sayaka Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Kofu, Yamanashi, Japan
| | - Yoshimasa Asada
- Asada Institute for Reproductive Medicine, Asada Ladies Clinic Medical Corporation, Kasugai, Aichi, Japan
| | - Teruhiko Wakayama
- Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Yamanashi, Japan
- Advanced Biotechnology Center, University of Yamanashi, Kofu, Yamanashi, Japan
- * E-mail: (MT); (TW)
| |
Collapse
|
22
|
Nakagawa Y, Negishi Y, Shimizu M, Takahashi M, Ichikawa M, Takahashi H. Effects of extracellular pH and hypoxia on the function and development of antigen-specific cytotoxic T lymphocytes. Immunol Lett 2015. [PMID: 26209187 DOI: 10.1016/j.imlet.2015.07.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The major effector cells for cellular adaptive immunity are CD8(+) cytotoxic T lymphocytes (CTLs), which can recognize and kill virus-infected cells and tumor cells. Although CTLs exhibit strong cytolytic activity against target cells in vitro, a number of studies have demonstrated that their function is often impaired within tumors. Nevertheless, CTLs can regain their cytotoxic ability after escaping from the tumor environment, suggesting that the milieu created by tumors may affect the function of CTLs. As for the tumor environment, the patho-physiological situation present in vivo has been shown to differ from in vitro experimental conditions. In particular, low pH and hypoxia are the most important microenvironmental factors within growing tumors. In the present study, to determine the effect of these factors on CTL function in vivo, we examined the cytolytic activity of CTLs against their targets using murine CTL lines and the induction of these cells from memory cells under low pH or hypoxic conditions using antigen-primed spleen cells. The results indicated that both cytotoxic activity and the induction of functional CTLs were markedly inhibited under low pH. In contrast, in hypoxic conditions, although cytotoxic activity was almost unchanged, the induction of CTLs in vitro showed a slight enhancement, which was completely abrogated in low pH conditions. Therefore, antigen-specific CTL functions may be more vulnerable to low pH than to the oxygen concentration in vivo. The findings shown here provide new therapeutic approaches for controlling tumor growth by retaining CTL cytotoxicity through the maintenance of higher pH conditions.
Collapse
Affiliation(s)
- Yohko Nakagawa
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo 113-8602, Japan.
| | - Yasuyuki Negishi
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Masumi Shimizu
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Megumi Takahashi
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Masao Ichikawa
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Hidemi Takahashi
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo 113-8602, Japan
| |
Collapse
|
23
|
Ito A, Aoyama T, Yoshizawa M, Nagai M, Tajino J, Yamaguchi S, Iijima H, Zhang X, Kuroki H. The effects of short-term hypoxia on human mesenchymal stem cell proliferation, viability and p16(INK4A) mRNA expression: Investigation using a simple hypoxic culture system with a deoxidizing agent. J Stem Cells Regen Med 2015. [PMID: 26195892 PMCID: PMC4498321 DOI: 10.46582/jsrm.1101005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A hypoxic environment is thought to be important for the maintenance of stemness and suppressing cell senescence, in stem cells. Therefore, a hypoxic condition is induced during cell expansion and/or induction of intended differentiation. However, the induction of these conditions requires a specially equipped hypoxia chamber and expensive gas mixtures, which are expensive and space-consuming. Owing to these restrictions, appropriate hypoxic conditions cannot be provided during cell transportation, which is increasingly required for regenerative medicine. Hence, a simple and economical culture system is required. The purpose of this study was to investigate the effects of short-term hypoxic conditions on human mesenchymal stem cell (MSC) proliferation, viability, and senescence, utilizing the CulturePal system (CulturePal-Zero and CulturePal-Five), a novel and simple hypoxic culture system with a built-in deoxidizing agent. The O2 concentration in the CulturePal-Zero was observed to reduce to <0.1% within 1 h, and to 5% within 24h in the CulturePal-Five system. Cell proliferation under these hypoxic conditions showed a sharp increase at 5% O2 concentration, and no noticeable cell death was observed even at severe hypoxic conditions (<0.1% O2) up to 72h. The p16INK4A (cell senescence marker) mRNA expression was retained under hypoxic conditions up to 72h, but it was up-regulated under normoxic conditions. Interestingly, the p16INK4A expression altered proportionately to the O2 concentration. These results indicated that the short-term hypoxic condition, at an approximate O2 concentration of 5%, would be suitable for promoting cell proliferation and repressing cell senescence, without aggravating the MSC viability. Therefore, the CulturePal systems may be suitable for providing an appropriate hypoxic condition in stem cell research and transportation.
Collapse
Affiliation(s)
- Akira Ito
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan ; Japan Society for the Promotion of Science, Tokyo, Japan
| | - Tomoki Aoyama
- Department of Development and Rehabilitation of Motor Function, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Makoto Yoshizawa
- R&D center, Information & Advanced Materials Company, MITSUBISHI GAS CHEMICAL COMPANY, INC., Tokyo, Japan
| | - Momoko Nagai
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Junichi Tajino
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shoki Yamaguchi
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan ; Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hirotaka Iijima
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Xiangkai Zhang
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Kuroki
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
24
|
Swain JE. Decisions for the IVF laboratory: comparative analysis of embryo culture incubators. Reprod Biomed Online 2014; 28:535-47. [DOI: 10.1016/j.rbmo.2014.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 12/21/2013] [Accepted: 01/07/2014] [Indexed: 10/25/2022]
|
25
|
Effect of Hsp27 on early embryonic development in the mouse. Reprod Biomed Online 2013; 26:491-9. [DOI: 10.1016/j.rbmo.2013.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 01/06/2013] [Accepted: 01/08/2013] [Indexed: 11/18/2022]
|