1
|
Walch P, Broz P. Viral-bacterial co-infections screen in vitro reveals molecular processes affecting pathogen proliferation and host cell viability. Nat Commun 2024; 15:8595. [PMID: 39366977 PMCID: PMC11452664 DOI: 10.1038/s41467-024-52905-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
The broadening of accessible methodologies has enabled mechanistic insights into single-pathogen infections, yet the molecular mechanisms underlying co-infections remain largely elusive, despite their clinical frequency and relevance, generally exacerbating symptom severity and fatality. Here, we describe an unbiased in vitro screening of pairwise co-infections in a murine macrophage model, quantifying pathogen proliferation and host cell death in parallel over time. The screen revealed that the majority of interactions are antagonistic for both metrics, highlighting general patterns depending on the pathogen virulence strategy. We subsequently decipher two distinct molecular interaction points: Firstly, murine Adenovirus 3 modifies ASC-dependent inflammasome responses in murine macrophages, altering host cell death and cytokine production, thereby impacting secondary Salmonella infection. Secondly, murine Adenovirus 2 infection triggers upregulation of Mprip, a crucial mediator of phagocytosis, which in turn causes increased Yersinia uptake, specifically in virus pre-infected bone-marrow-derived macrophages. This work therefore encompasses both a first-of-its-kind systematic assessment of host-pathogen-pathogen interactions, and mechanistic insight into molecular mediators during co-infection.
Collapse
Affiliation(s)
- Philipp Walch
- University of Lausanne, Department of Immunobiology, Chemin des Boveresses 155, CH-1066, Epalinges, Switzerland
| | - Petr Broz
- University of Lausanne, Department of Immunobiology, Chemin des Boveresses 155, CH-1066, Epalinges, Switzerland.
| |
Collapse
|
2
|
da Fonseca FG, Serufo ÂV, Leão TL, Lourenço KL. Viral Infections and Their Ability to Modulate Endoplasmic Reticulum Stress Response Pathways. Viruses 2024; 16:1555. [PMID: 39459886 PMCID: PMC11512299 DOI: 10.3390/v16101555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024] Open
Abstract
In eukaryotic cells, the endoplasmic reticulum is particularly important in post-translational modification of proteins before they are released extracellularly or sent to another endomembrane system. The correct three-dimensional folding of most proteins occurs in the ER lumen, which has an oxidative environment that is essential for the formation of disulfide bridges, which are important in maintaining protein structure. The ER is a versatile organelle that ensures the correct structure of proteins and is essential in the synthesis of lipids and sterols, in addition to offering support in the maintenance of intracellular calcium. Consequently, the cells needed to respond to demands caused by physiological conditions and pathological disturbances in the organelle homeostasis, leading to proper functioning of the cell or even programmed cell death. Disturbances to the ER function trigger a response to the accumulation of unfolded or misfolded proteins, known as the unfolded protein response. Such disturbances include abiotic stress, pharmacological agents, and intracellular pathogens, such as viruses. When misfolded proteins accumulate in the ER, they can undergo ubiquitination and proteasomal degradation through components of the ER-associated degradation system. Once a prolonged activity of the UPR pathway occurs, indicating that homeostasis cannot be reestablished, components of this pathway induce cell death by apoptosis. Here, we discuss how viruses have evolved ways to counteract UPR responses to maximize replication. This evolutionary viral ability is important to understand cell pathology and should be taken into account when designing therapeutic interventions and vaccines.
Collapse
Affiliation(s)
- Flávio Guimarães da Fonseca
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil; (F.G.d.F.); (T.L.L.)
| | - Ângela Vieira Serufo
- CT Terapias Avançacadas e Inovadoras, CTERAPIAS, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | - Thiago Lima Leão
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil; (F.G.d.F.); (T.L.L.)
| | - Karine Lima Lourenço
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil; (F.G.d.F.); (T.L.L.)
| |
Collapse
|
3
|
Novikov DV, Vasilchikova EA, Vasilchikov PI. Prospects for the use of viral proteins for the construction of chimeric toxins. Arch Virol 2024; 169:208. [PMID: 39327316 DOI: 10.1007/s00705-024-06139-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/09/2024] [Indexed: 09/28/2024]
Abstract
One of the actively developing areas of drug development is the creation of chimeric toxins, recombinant bifunctional molecules designed to affect target cells selectively. The prevalent approach involves fusing bacterial and plant toxins with molecules that facilitate targeted delivery. However, the therapeutic use of such toxins often encounters challenges associated with negative side effects. Concurrently, viruses encode proteins possessing toxin-like properties, exerting multiple effects on the vital activity of cells. In contrast to bacterial and plant toxins, the impact of viral proteins is typically milder, presenting a significant advantage by potentially reducing the likelihood of side effects. This review delineates the characteristics of extensively studied viral proteins with toxic and immunomodulatory properties and explores the prospects of incorporating them into chimeric toxins.
Collapse
Affiliation(s)
- D V Novikov
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russia
| | - E A Vasilchikova
- National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - P I Vasilchikov
- National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.
| |
Collapse
|
4
|
Lee M, Cosic A, Tobler K, Aguilar C, Fraefel C, Eichwald C. Characterization of viroplasm-like structures by co-expression of NSP5 and NSP2 across rotavirus species A to J. J Virol 2024; 98:e0097524. [PMID: 39194242 PMCID: PMC11423710 DOI: 10.1128/jvi.00975-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024] Open
Abstract
Rotaviruses (RVs) are classified into nine species, A-D and F-J, with species A being the most studied. In rotavirus of species A (RVA), replication occurs in viroplasms, which are cytosolic globular inclusions composed of main building block proteins NSP5, NSP2, and VP2. The co-expression of NSP5 with either NSP2 or VP2 in uninfected cells leads to the formation of viroplasm-like structures (VLSs). Although morphologically identical to viroplasms, VLSs do not produce viral progeny but serve as excellent tools for studying complex viroplasms. A knowledge gap exists regarding non-RVA viroplasms due to the lack of specific antibodies and suitable cell culture systems. In this study, we explored the ability of NSP5 and NSP2 from non-RVA species to form VLSs. The co-expression of these two proteins led to globular VLSs in RV species A, B, D, F, G, and I, while RVC formed filamentous VLSs. The co-expression of NSP5 and NSP2 of RV species H and J did not result in VLS formation. Interestingly, NSP5 of all RV species self-oligomerizes, with the ordered C-terminal region, termed the tail, being necessary for self-oligomerization of RV species A-C and G-J. Except for NSP5 from RVJ, all NSP5 interacted with their cognate NSP2. We also found that interspecies VLS are formed between closely related RV species B with G and D with F. Additionally, VLS from RVH and RVJ formed when the tail of NSP5 RVH and RVJ was replaced by the tail of NSP5 from RVA and co-expressed with their respective NSP2. IMPORTANCE Rotaviruses (RVs) are classified into nine species, A-D and F-J, infecting mammals and birds. Due to the lack of research tools, all cumulative knowledge on RV replication is based on RV species A (RVA). The RV replication compartments are globular cytosolic structures named viroplasms, which have only been identified in RV species A. In this study, we examined the formation of viroplasm-like structures (VLSs) by the co-expression of NSP5 with NSP2 across RV species A to J. Globular VLSs formed for RV species A, B, D, F, G, and I, while RV species C formed filamentous structures. The RV species H and J did not form VLS with their cognates NSP5 and NSP2. Similar to RVA, NSP5 self-oligomerizes in all RV species, which is required for VLS formation. This study provides basic knowledge of the non-RVA replication mechanisms, which could help develop strategies to halt virus infection across RV species.
Collapse
Affiliation(s)
- Melissa Lee
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | - Ariana Cosic
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | - Kurt Tobler
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | - Claudio Aguilar
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | - Cornel Fraefel
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
5
|
Engevik KA, Scribano FJ, Gebert JT, Hyser JM. Purinergic Signaling Drives Multiple Aspects of Rotavirus Pathophysiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.592953. [PMID: 38765995 PMCID: PMC11100750 DOI: 10.1101/2024.05.07.592953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Rotavirus causes life-threatening diarrhea in children, resulting in ∼200,000 deaths/year. The current treatment during infection is Oral Rehydration Solution which successfully replenishes fluids but does not alleviate diarrhea volume or severity. As a result, there is an urgent need to better understand rotavirus pathophysiology and develop more effective pediatric therapeutics. Rotavirus primarily infects the tips of small intestinal villi, yet has far-reaching effects on cell types distant from infected cells. We recently identified that rotavirus infected cells release the purinergic signaling molecule ADP, which activates P2Y1 receptors on nearby uninfected cells in vitro . To elucidate the role of purinergic signaling via P2Y1 receptors during rotavirus infection in vivo , we used the mouse-like rotavirus strain D6/2 which generates a severe infection in mice. C57BL/6J mouse pups were given an oral gavage of D6/2 rotavirus and assessed over the course of 5-7 days. Beginning at day 1 post infection, infected pups were treated daily by oral gavage with saline or 4 mg/kg MRS2500, a selective P2Y1 antagonist. Mice were monitored for diarrhea severity, diarrhea incidence, and viral shedding. Neonatal mice were euthanized at days 3 and 5 post-infection and small intestine was collected to observe infection. MRS2500 treatment decreased the severity, prevalence, and incidence of rotavirus diarrhea. Viral stool shedding, assessed by qPCR for rotavirus gene levels, revealed that MRS2500 treated pups had significantly lower viral shedding starting at day 4 post infection compared to saline treated pups, which suggests P2Y1 signaling may enhance rotavirus replication. Finally, we found that inhibition of P2Y1 with MRS2500 limited transmitted rotavirus diarrhea to uninfected pups within a litter. Together, these results suggest that P2Y1 signaling is involved in the pathogenesis of a homologous murine rotavirus strain, making P2Y1 receptors a promising anti-diarrheal, anti-viral therapeutic target to reduce rotavirus disease burden.
Collapse
|
6
|
Vetter J, Lee M, Eichwald C. The Role of the Host Cytoskeleton in the Formation and Dynamics of Rotavirus Viroplasms. Viruses 2024; 16:668. [PMID: 38793550 PMCID: PMC11125917 DOI: 10.3390/v16050668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Rotavirus (RV) replicates within viroplasms, membraneless electron-dense globular cytosolic inclusions with liquid-liquid phase properties. In these structures occur the virus transcription, replication, and packaging of the virus genome in newly assembled double-layered particles. The viroplasms are composed of virus proteins (NSP2, NSP5, NSP4, VP1, VP2, VP3, and VP6), single- and double-stranded virus RNAs, and host components such as microtubules, perilipin-1, and chaperonins. The formation, coalescence, maintenance, and perinuclear localization of viroplasms rely on their association with the cytoskeleton. A stabilized microtubule network involving microtubules and kinesin Eg5 and dynein molecular motors is associated with NSP5, NSP2, and VP2, facilitating dynamic processes such as viroplasm coalescence and perinuclear localization. Key post-translation modifications, particularly phosphorylation events of RV proteins NSP5 and NSP2, play pivotal roles in orchestrating these interactions. Actin filaments also contribute, triggering the formation of the viroplasms through the association of soluble cytosolic VP4 with actin and the molecular motor myosin. This review explores the evolving understanding of RV replication, emphasizing the host requirements essential for viroplasm formation and highlighting their dynamic interplay within the host cell.
Collapse
Affiliation(s)
| | | | - Catherine Eichwald
- Institute of Virology, University of Zurich, 8057 Zurich, Switzerland; (J.V.); (M.L.)
| |
Collapse
|
7
|
Vetter J, Papa G, Tobler K, Rodriguez JM, Kley M, Myers M, Wiesendanger M, Schraner EM, Luque D, Burrone OR, Fraefel C, Eichwald C. The recruitment of TRiC chaperonin in rotavirus viroplasms correlates with virus replication. mBio 2024; 15:e0049924. [PMID: 38470055 PMCID: PMC11005421 DOI: 10.1128/mbio.00499-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
Rotavirus (RV) replication takes place in the viroplasms, cytosolic inclusions that allow the synthesis of virus genome segments and their encapsidation in the core shell, followed by the addition of the second layer of the virion. The viroplasms are composed of several viral proteins, including NSP5, which serves as the main building block. Microtubules, lipid droplets, and miRNA-7 are among the host components recruited in viroplasms. We investigated the interaction between RV proteins and host components of the viroplasms by performing a pull-down assay of lysates from RV-infected cells expressing NSP5-BiolD2. Subsequent tandem mass spectrometry identified all eight subunits of the tailless complex polypeptide I ring complex (TRiC), a cellular chaperonin responsible for folding at least 10% of the cytosolic proteins. Our confirmed findings reveal that TRiC is brought into viroplasms and wraps around newly formed double-layered particles. Chemical inhibition of TRiC and silencing of its subunits drastically reduced virus progeny production. Through direct RNA sequencing, we show that TRiC is critical for RV replication by controlling dsRNA genome segment synthesis, particularly negative-sense single-stranded RNA. Importantly, cryo-electron microscopy analysis shows that TRiC inhibition results in defective virus particles lacking genome segments and polymerase complex (VP1/VP3). Moreover, TRiC associates with VP2 and NSP5 but not with VP1. Also, VP2 is shown to be essential for recruiting TRiC in viroplasms and preserving their globular morphology. This study highlights the essential role of TRiC in viroplasm formation and in facilitating virion assembly during the RV life cycle. IMPORTANCE The replication of rotavirus takes place in cytosolic inclusions termed viroplasms. In these inclusions, the distinct 11 double-stranded RNA genome segments are co-packaged to complete a genome in newly generated virus particles. In this study, we show for the first time that the tailless complex polypeptide I ring complex (TRiC), a cellular chaperonin responsible for the folding of at least 10% of the cytosolic proteins, is a component of viroplasms and is required for the synthesis of the viral negative-sense single-stranded RNA. Specifically, TRiC associates with NSP5 and VP2, the cofactor involved in RNA replication. Our study adds a new component to the current model of rotavirus replication, where TRiC is recruited to viroplasms to assist replication.
Collapse
Affiliation(s)
- Janine Vetter
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | - Guido Papa
- Molecular Immunology Lab, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Kurt Tobler
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | - Javier M. Rodriguez
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología/CSIC, Cantoblanco, Madrid, Spain
| | - Manuel Kley
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | - Michael Myers
- Proteomics Lab, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Mahesa Wiesendanger
- Institute of Virology, University of Zurich, Zurich, Switzerland
- Institute of Veterinary Anatomy, University of Zurich, Zurich, Switzerland
| | - Elisabeth M. Schraner
- Institute of Virology, University of Zurich, Zurich, Switzerland
- Institute of Veterinary Anatomy, University of Zurich, Zurich, Switzerland
| | - Daniel Luque
- School of Biomedical Sciences, The University of New South Wales, Sydney, New South Wales, Australia
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, New South Wales, Australia
| | - Oscar R. Burrone
- Molecular Immunology Lab, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Cornel Fraefel
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
8
|
Perry JL, Scribano FJ, Gebert JT, Engevik KA, Ellis JM, Hyser JM. Host IP 3R channels are dispensable for rotavirus Ca 2+ signaling but critical for intercellular Ca 2+ waves that prime uninfected cells for rapid virus spread. mBio 2024; 15:e0214523. [PMID: 38112482 PMCID: PMC10790754 DOI: 10.1128/mbio.02145-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/15/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE Many viruses exploit host Ca2+ signaling to facilitate their replication; however, little is known about how Ca2+ signals from different host and viral channels contribute to the overall dysregulation of Ca2+ signaling or promote virus replication. Using cells lacking IP3R, a host ER Ca2+ channel, we delineated intracellular Ca2+ signals within virus-infected cells and intercellular Ca2+ waves (ICWs), which increased Ca2+ signaling in neighboring, uninfected cells. In infected cells, IP3R was dispensable for rotavirus-induced Ca2+ signaling and replication, suggesting the rotavirus NSP4 viroporin supplies these signals. However, IP3R-mediated ICWs increase rotavirus replication kinetics and spread, indicating that the Ca2+ signals from the ICWs may prime nearby uninfected cells to better support virus replication upon eventual infection. This "pre-emptive priming" of uninfected cells by exploiting host intercellular pathways in the vicinity of virus-infected cells represents a novel mechanism for viral reprogramming of the host to gain a replication advantage.
Collapse
Affiliation(s)
- Jacob L. Perry
- Alkek Center for Metagenomic and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Francesca J. Scribano
- Alkek Center for Metagenomic and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - John T. Gebert
- Alkek Center for Metagenomic and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Kristen A. Engevik
- Alkek Center for Metagenomic and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Jenna M. Ellis
- Alkek Center for Metagenomic and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Joseph M. Hyser
- Alkek Center for Metagenomic and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
9
|
Perry JL, Scribano FJ, Gebert JT, Engevik KA, Ellis JM, Hyser JM. The Inositol Trisphosphate Receptor (IP 3 R) is Dispensable for Rotavirus-induced Ca 2+ Signaling and Replication but Critical for Paracrine Ca 2+ Signals that Prime Uninfected Cells for Rapid Virus Spread. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.09.552719. [PMID: 37609335 PMCID: PMC10441394 DOI: 10.1101/2023.08.09.552719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Rotavirus is a leading cause of viral gastroenteritis. A hallmark of rotavirus infection is an increase in cytosolic Ca 2+ caused by the nonstructural protein 4 (NSP4). NSP4 is a viral ion channel that releases Ca 2+ from the endoplasmic reticulum (ER) and the increase in Ca 2+ signaling is critical for rotavirus replication. In addition to NSP4 itself, host inositol 1,4,5- trisphosphate receptor (IP 3 R) ER Ca 2+ channels may contribute to rotavirus-induced Ca 2+ signaling and by extension, virus replication. Thus, we set out to determine the role of IP 3 R Ca 2+ signaling during rotavirus infection using IP 3 R-knockout MA104-GCaMP6s cells (MA104- GCaMP6s-IP 3 R-KO), generated by CRISPR/Cas9 genome editing. Live Ca 2+ imaging showed that IP 3 R-KO did not reduce Ca 2+ signaling in infected cells but eliminated rotavirus-induced intercellular Ca 2+ waves (ICWs) and therefore the increased Ca 2+ signaling in surrounding, uninfected cells. Further, MA104-GCaMP6s-IP 3 R-TKO cells showed similar rotavirus susceptibility, single-cycle replication, and viral protein expression as parental MA104- GCaMP6s cells. However, MA104-GCaMP6s-IP 3 R-TKO cells exhibited significantly smaller rotavirus plaques, decreased multi-round replication kinetics, and delayed virus spread, suggesting that rotavirus-induced ICW Ca 2+ signaling stimulates virus replication and spread. Inhibition of ICWs by blocking the P2Y1 receptor also resulted in decreased rotavirus plaque size. Conversely, exogenous expression of P2Y1 in LLC-MK2-GCaMP6s cells, which natively lack P2Y1 and rotavirus ICWs, rescued the generation of rotavirus-induced ICWs and enabled plaque formation. In conclusion, this study shows that NSP4 Ca 2+ signals fully support rotavirus replication in individual cells; however, IP 3 R is critical for rotavirus-induced ICWs and virus spread by priming Ca 2+ -dependent pathways in surrounding cells. Importance Many viruses exploit host Ca 2+ signaling to facilitate their replication; however, little is known about how distinct types of Ca 2+ signals contribute to the overall dysregulation of Ca 2+ signaling or promote virus replication. Using cells lacking IP 3 R, a host ER Ca 2+ channel, we could differentiate between intracellular Ca 2+ signals within virus-infected cells and intercellular Ca 2+ waves (ICWs), which increase Ca 2+ signaling in neighboring, uninfected cells. In infected cells, IP 3 R was dispensable for rotavirus-induced Ca 2+ signaling and replication, suggesting the rotavirus NSP4 viroporin supplies these signals. However, IP 3 R-mediated ICWs increase rotavirus replication kinetics and spread, indicating that the Ca 2+ signals from the ICWs may prime nearby uninfected cells to better support virus replication upon eventual infection. This "pre-emptive priming" of uninfected cells by exploiting host intercellular pathways in the vicinity of virus-infected cells represents a novel mechanism for viral reprogramming of the host to gain a replication advantage.
Collapse
|
10
|
Abstract
Rotavirus (RV) viroplasms are cytosolic inclusions where both virus genome replication and primary steps of virus progeny assembly take place. A stabilized microtubule cytoskeleton and lipid droplets are required for the viroplasm formation, which involves several virus proteins. The viral spike protein VP4 has not previously been shown to have a direct role in viroplasm formation. However, it is involved with virus-cell attachment, endocytic internalization, and virion morphogenesis. Moreover, VP4 interacts with actin cytoskeleton components, mainly in processes involving virus entrance and egress, and thereby may have an indirect role in viroplasm formation. In this study, we used reverse genetics to construct a recombinant RV, rRV/VP4-BAP, that contains a biotin acceptor peptide (BAP) in the K145-G150 loop of the VP4 lectin domain, permitting live monitoring. The recombinant virus was replication competent but showed a reduced fitness. We demonstrate that rRV/VP4-BAP infection, as opposed to rRV/wt infection, did not lead to a reorganized actin cytoskeleton as viroplasms formed were insensitive to drugs that depolymerize actin and inhibit myosin. Moreover, wild-type (wt) VP4, but not VP4-BAP, appeared to associate with actin filaments. Similarly, VP4 in coexpression with NSP5 and NSP2 induced a significant increase in the number of viroplasm-like structures. Interestingly, a small peptide mimicking loop K145-G150 rescued the phenotype of rRV/VP4-BAP by increasing its ability to form viroplasms and hence improve virus progeny formation. Collectively, these results provide a direct link between VP4 and the actin cytoskeleton to catalyze viroplasm assembly. IMPORTANCE The spike protein VP4 participates in diverse steps of the rotavirus (RV) life cycle, including virus-cell attachment, internalization, modulation of endocytosis, virion morphogenesis, and virus egress. Using reverse genetics, we constructed for the first time a recombinant RV, rRV/VP4-BAP, harboring a heterologous peptide in the lectin domain (loop K145-G150) of VP4. The rRV/VP4-BAP was replication competent but with reduced fitness due to a defect in the ability to reorganize the actin cytoskeleton, which affected the efficiency of viroplasm assembly. This defect was rescued by adding a permeable small-peptide mimicking the wild-type VP4 loop K145-G150. In addition to revealing a new role of VP4, our findings suggest that rRV harboring an engineered VP4 could be used as a new dual vaccination platform providing immunity against RV and additional heterologous antigens.
Collapse
|
11
|
Bruno C, Paparo L, Pisapia L, Romano A, Cortese M, Punzo E, Berni Canani R. Protective effects of the postbiotic deriving from cow's milk fermentation with L. paracasei CBA L74 against Rotavirus infection in human enterocytes. Sci Rep 2022; 12:6268. [PMID: 35428750 PMCID: PMC9012738 DOI: 10.1038/s41598-022-10083-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/11/2022] [Indexed: 01/17/2023] Open
Abstract
Rotavirus (RV) is the leading cause of acute gastroenteritis-associated mortality in early childhood. Emerging clinical evidence suggest the efficacy of the postbiotic approach based on cow's milk fermentation with the probiotic Lacticaseibacillus paracasei CBAL74 (FM-CBAL74) in preventing pediatric acute gastroenteritis, but the mechanisms of action are still poorly characterized. We evaluated the protective action of FM-CBAL74 in an in vitro model of RV infection in human enterocytes. The number of infected cells together with the relevant aspects of RV infection were assessed: epithelial barrier damage (tight-junction proteins and transepithelial electrical resistance evaluation), and inflammation (reactive oxygen species, pro-inflammatory cytokines IL-6, IL-8 and TNF-α, and mitogen-activated protein kinase pathway activation). Pre-incubation with FM-CBA L74 resulted in an inhibition of epithelial barrier damage and inflammation mediated by mitogen-activated protein kinase pathway activation induced by RV infection. Modulating several protective mechanisms, the postbiotic FM-CBAL74 exerted a preventive action against RV infection. This approach could be a disrupting nutritional strategy against one of the most common killers for the pediatric age.
Collapse
Affiliation(s)
- Cristina Bruno
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy.,ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Lorella Paparo
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy.,ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Laura Pisapia
- Institute of Genetics and Biophysics, CNR, Naples, Italy
| | - Alessia Romano
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Maddalena Cortese
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy.,ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Erika Punzo
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy.,ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy. .,ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy. .,European Laboratory for the Investigation of Food-Induced Diseases, University of Naples Federico II, Naples, Italy. .,Task Force for Microbiome Studies, University of Naples Federico II, Naples, Italy. .,Task Force for Nutraceuticals and Functional Foods, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
12
|
Patra U, Mukhopadhyay U, Mukherjee A, Dutta S, Chawla-Sarkar M. Treading a HOSTile path: Mapping the dynamic landscape of host cell-rotavirus interactions to explore novel host-directed curative dimensions. Virulence 2021; 12:1022-1062. [PMID: 33818275 PMCID: PMC8023246 DOI: 10.1080/21505594.2021.1903198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/20/2021] [Accepted: 03/10/2021] [Indexed: 12/27/2022] Open
Abstract
Viruses are intracellular pathogens and are dependent on host cellular resources to carry out their cycles of perpetuation. Obtaining an integrative view of host-virus interaction is of utmost importance to understand the complex and dynamic interplay between viral components and host machineries. Besides its obvious scholarly significance, a comprehensive host-virus interaction profile also provides a platform where from host determinants of pro-viral and antiviral importance can be identified and further be subjected to therapeutic intervention. Therefore, adjunct to conventional methods of prophylactic vaccination and virus-directed antivirals, this host-targeted antiviral approach holds promising therapeutic potential. In this review, we present a comprehensive landscape of host cellular reprogramming in response to infection with rotavirus (RV) which causes profuse watery diarrhea in neonates and infants. In addition, an emphasis is given on how host determinants are either usurped or subverted by RV in course of infection and how therapeutic manipulation of specific host factors can effectively modulate the RV life cycle.
Collapse
Affiliation(s)
- Upayan Patra
- Division of Virology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Urbi Mukhopadhyay
- Division of Virology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Arpita Mukherjee
- Division of Virology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Mamta Chawla-Sarkar
- Division of Virology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| |
Collapse
|
13
|
Chang-Graham AL, Perry JL, Engevik MA, Engevik KA, Scribano FJ, Gebert JT, Danhof HA, Nelson JC, Kellen JS, Strtak AC, Sastri NP, Estes MK, Britton RA, Versalovic J, Hyser JM. Rotavirus induces intercellular calcium waves through ADP signaling. Science 2020; 370:370/6519/eabc3621. [PMID: 33214249 PMCID: PMC7957961 DOI: 10.1126/science.abc3621] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/16/2020] [Indexed: 01/14/2023]
Abstract
Rotavirus causes severe diarrheal disease in children by broadly dysregulating intestinal homeostasis. However, the underlying mechanism(s) of rotavirus-induced dysregulation remains unclear. We found that rotavirus-infected cells produce paracrine signals that manifested as intercellular calcium waves (ICWs), observed in cell lines and human intestinal enteroids. Rotavirus ICWs were caused by the release of extracellular adenosine 5'-diphosphate (ADP) that activated P2Y1 purinergic receptors on neighboring cells. ICWs were blocked by P2Y1 antagonists or CRISPR-Cas9 knockout of the P2Y1 receptor. Blocking the ADP signal reduced rotavirus replication, inhibited rotavirus-induced serotonin release and fluid secretion, and reduced diarrhea severity in neonatal mice. Thus, rotavirus exploited paracrine purinergic signaling to generate ICWs that amplified the dysregulation of host cells and altered gastrointestinal physiology to cause diarrhea.
Collapse
Affiliation(s)
- Alexandra L. Chang-Graham
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA
| | - Jacob L. Perry
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA
| | - Melinda A. Engevik
- Department of Pathology and Immunology, Baylor College of Medicine, USA,Department of Pathology, Texas Children’s Hospital, USA
| | - Kristen A. Engevik
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA
| | - Francesca J. Scribano
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA
| | - J. Thomas Gebert
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA
| | - Heather A. Danhof
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA
| | - Joel C. Nelson
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA
| | - Joseph S. Kellen
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA
| | - Alicia C. Strtak
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA
| | - Narayan P. Sastri
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA,Department of Medicine, Gastroenterology and Hepatology, Baylor College of Medicine, USA
| | - Robert A. Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA
| | - James Versalovic
- Department of Pathology and Immunology, Baylor College of Medicine, USA,Department of Pathology, Texas Children’s Hospital, USA
| | - Joseph M. Hyser
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA,Corresponding author. Correspondence and requests for materials should be addressed to J.H.
| |
Collapse
|
14
|
Tian J, Du J, Han J, Bao X, Song X, Lu Z. Proteomics reveals the preliminary physiological states of the spotted seal (Phoca largha) pups. Sci Rep 2020; 10:18727. [PMID: 33127980 PMCID: PMC7599241 DOI: 10.1038/s41598-020-75759-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
Spotted seal (Phoca largha) is a critically endangered pinniped in China and South Korea. The conventional method to protect and maintain the P. largha population is to keep them captive in artificially controlled environments. However, little is known about the physiological differences between wild and captive P. largha. To generate a preliminary protein expression profile for P. largha, whole blood from wild and captive pups were subjected to a label-free comparative proteomic analysis. According to the results, 972 proteins were identified and predicted to perform functions related to various metabolic, immune, and cellular processes. Among the identified proteins, the expression level of 51 were significantly different between wild and captive P. large pups. These differentially expressed proteins were enriched in a wide range of cellular functions, including cytoskeleton, phagocytosis, proteolysis, the regulation of gene expression, and carbohydrate metabolism. The abundances of proteins involved in phagocytosis and ubiquitin-mediated proteolysis were significantly higher in the whole blood of wild P. largha pups than in captive individuals. In addition, heat shock protein 90-beta, were determined as the key protein associated with the differences in the wild and captive P. largha pups due to the most interactions of it with various differentially expressed proteins. Moreover, wild P. largha pups could be more nutritionally stressed and have more powerful immune capacities than captive pups. This study provides the first data on the protein composition of P. largha and provides useful information on the physiological characteristics for research in this species.
Collapse
Affiliation(s)
- Jiashen Tian
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, 50 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Jing Du
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, 50 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Jiabo Han
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, 50 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Xiangbo Bao
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, 50 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Xinran Song
- Dalian Sun Asia Tourism Holding Co., Ltd., 608-6-8 Zhongshan Road, Shahekou District, Dalian, 116023, China
| | - Zhichuang Lu
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, 50 Heishijiao Street, Shahekou District, Dalian, 116023, China.
| |
Collapse
|
15
|
Thomas G, Frederick E, Hausburg M, Goldberg L, Hoke M, Roshon M, Mains C, Bar-Or D. The novel immunomodulatory biologic LMWF5A for pharmacological attenuation of the "cytokine storm" in COVID-19 patients: a hypothesis. Patient Saf Surg 2020; 14:21. [PMID: 32431755 PMCID: PMC7220573 DOI: 10.1186/s13037-020-00248-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/06/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND A common complication of viral pulmonary infections, such as in the ongoing COVID-19 pandemic, is a phenomenon described as a "cytokine storm". While poorly defined, this hyperinflammatory response results in diffuse alveolar damage. The low molecular weight fraction of commercial human serum albumin (LMWF5A), a novel biologic in development for osteoarthritis, demonstrates beneficial in vitro immunomodulatory effects complimentary to addressing inflammation, thus, we hypothesize that LMWF5A could improve the clinical outcomes of COVID-19 by attenuating hyperinflammation and the potential development of a cytokine storm. PRESENTATION OF THE HYPOTHESIS A variety of human in vitro immune models indicate that LMWF5A reduces the production of pro-inflammatory cytokines implicated in cytokine storm associated with COVID-19. Furthermore, evidence suggests LMWF5A also promotes the production of mediators required for resolving inflammation and enhances the barrier function of endothelial cultures. TESTING THE HYPOTHESIS A randomized controlled trial, to evaluate the safety and efficacy of nebulized LMWF5A in adults with Acute Respiratory Distress Syndrome (ARDS) secondary to COVID-19 infection, was developed and is currently under review by the Food and Drug Administration. IMPLICATIONS OF HYPOTHESIS If successful, this therapy may attenuate the cytokine storm observed in these patients and potentially reduce mortality, increase ventilation free days, improve oxygenation parameters and consequently lessen the burden on patients and the intensive care unit. CONCLUSIONS In conclusion, in vitro findings suggest that the immunomodulatory effects of LMWF5A make it a viable candidate for treating cytokine storm and restoring homeostasis to the immune response in COVID-19.
Collapse
Affiliation(s)
- Gregory Thomas
- Ampio Pharmaceuticals, Inc, 373 Inverness Pkwy #200, Englewood, CO 80112 USA
| | - Elizabeth Frederick
- Ampio Pharmaceuticals, Inc, 373 Inverness Pkwy #200, Englewood, CO 80112 USA
| | - Melissa Hausburg
- Trauma Research Department, Swedish Medical Center, 501 E. Hampden, Englewood, CO 80113 USA
- Trauma Research Department, St. Anthony Hospital, 11600 W 2nd Pl, Lakewood, CO 80228 USA
- Trauma Research Department, Medical City Plano, 3901 W 15th St, Plano, TX 75075 USA
- Trauma Research Department, Penrose Hospital, 2222 N Nevada Ave, Colorado Springs, CO 80907 USA
- Trauma Research Department, Research Medical Center, 2316 E Meyer Blvd, Kansas City, MO 64132 USA
- Trauma Research Department, Wesley Medical Center, 550 N Hillside St, Wichita, KS 67214 USA
| | - Laura Goldberg
- Ampio Pharmaceuticals, Inc, 373 Inverness Pkwy #200, Englewood, CO 80112 USA
| | - Marshall Hoke
- Ampio Pharmaceuticals, Inc, 373 Inverness Pkwy #200, Englewood, CO 80112 USA
| | - Michael Roshon
- Emergency Department, Penrose Hospital, Colorado Springs, Colorado USA
| | | | - David Bar-Or
- Trauma Research Department, Swedish Medical Center, 501 E. Hampden, Englewood, CO 80113 USA
- Trauma Research Department, St. Anthony Hospital, 11600 W 2nd Pl, Lakewood, CO 80228 USA
- Trauma Research Department, Medical City Plano, 3901 W 15th St, Plano, TX 75075 USA
- Trauma Research Department, Penrose Hospital, 2222 N Nevada Ave, Colorado Springs, CO 80907 USA
- Trauma Research Department, Research Medical Center, 2316 E Meyer Blvd, Kansas City, MO 64132 USA
- Trauma Research Department, Wesley Medical Center, 550 N Hillside St, Wichita, KS 67214 USA
- Department of Molecular Biology, Rocky Vista University, 8401 S Chambers Rd, Parker, CO 80134 USA
- Swedish Medical Center, 501 E. Hampden Ave. Rm 4-454, Englewood, CO 80013 USA
| |
Collapse
|
16
|
Rotavirus Calcium Dysregulation Manifests as Dynamic Calcium Signaling in the Cytoplasm and Endoplasmic Reticulum. Sci Rep 2019; 9:10822. [PMID: 31346185 PMCID: PMC6658527 DOI: 10.1038/s41598-019-46856-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/04/2019] [Indexed: 02/08/2023] Open
Abstract
Like many viruses, rotavirus (RV) dysregulates calcium homeostasis by elevating cytosolic calcium ([Ca2+]cyt) and decreasing endoplasmic reticulum (ER) stores. While an overall, monophasic increase in [Ca2+]cyt during RV infection has been shown, the nature of the RV-induced aberrant calcium signals and how they manifest over time at the single-cell level have not been characterized. Thus, we generated cell lines and human intestinal enteroids (HIEs) stably expressing cytosolic and/or ER-targeted genetically-encoded calcium indicators to characterize calcium signaling throughout RV infection by time-lapse imaging. We found that RV induces highly dynamic [Ca2+]cyt signaling that manifest as hundreds of discrete [Ca2+]cyt spikes, which increase during peak infection. Knockdown of nonstructural protein 4 (NSP4) attenuates the [Ca2+]cyt spikes, consistent with its role in dysregulating calcium homeostasis. RV-induced [Ca2+]cyt spikes were primarily from ER calcium release and were attenuated by inhibiting the store-operated calcium entry (SOCE) channel Orai1. RV-infected HIEs also exhibited prominent [Ca2+]cyt spikes that were attenuated by inhibiting SOCE, underlining the relevance of these [Ca2+]cyt spikes to gastrointestinal physiology and role of SOCE in RV pathophysiology. Thus, our discovery that RV increases [Ca2+]cyt by dynamic calcium signaling, establishes a new, paradigm-shifting understanding of the spatial and temporal complexity of virus-induced calcium signaling.
Collapse
|
17
|
The actin cytoskeleton is important for rotavirus internalization and RNA genome replication. Virus Res 2019; 263:27-33. [PMID: 30639190 PMCID: PMC7173133 DOI: 10.1016/j.virusres.2019.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/13/2018] [Accepted: 01/08/2019] [Indexed: 02/06/2023]
Abstract
Different stages of the rotavirus lifecycle depend on the dynamics of the actin cytoskeleton. Alpha-actinin, Diaph, and the GTPase Cdc42 are important for virus entry. The GTPAse Rac1 is required for maximal viral RNA synthesis.
Numerous host factors are required for the efficient replication of rotavirus, including the activation and inactivation of several cell signaling pathways. One of the cellular structures that are reorganized during rotavirus infection is the actin cytoskeleton. In this work, we report that the dynamics of the actin microfilaments are important at different stages of the virus life cycle, specifically, during virus internalization and viral RNA synthesis at 6 h post-infection. Our results show that the actin-binding proteins alpha-actinin 4 and Diaph, as well as the Rho-family small GTPase Cdc42 are necessary for an efficient virus entry, while GTPase Rac1 is required for maximal viral RNA synthesis.
Collapse
|
18
|
Rotavirus-Induced Early Activation of the RhoA/ROCK/MLC Signaling Pathway Mediates the Disruption of Tight Junctions in Polarized MDCK Cells. Sci Rep 2018; 8:13931. [PMID: 30224682 PMCID: PMC6141481 DOI: 10.1038/s41598-018-32352-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 09/06/2018] [Indexed: 02/02/2023] Open
Abstract
Intestinal epithelial tight junctions (TJ) are a major barrier restricting the entry of various harmful factors including pathogens; however, they also represent an important entry portal for pathogens. Although the rotavirus-induced early disruption of TJ integrity and targeting of TJ proteins as coreceptors are well-defined, the precise molecular mechanisms involved remain unknown. In the present study, infection of polarized MDCK cells with the species A rotavirus (RVA) strains human DS-1 and bovine NCDV induced a redistribution of TJ proteins into the cytoplasm, a reversible decrease in transepithelial resistance, and an increase in paracellular permeability. RhoA/ROCK/MLC signaling was identified as activated at an early stage of infection, while inhibition of this pathway prevented the rotavirus-induced early disruption of TJ integrity and alteration of TJ protein distribution. Activation of pMYPT, PKC, or MLCK, which are known to participate in TJ dissociation, was not observed in MDCK cells infected with either rotavirus strain. Our data demonstrated that binding of RVA virions or cogent VP8* proteins to cellular receptors activates RhoA/ROCK/MLC signaling, which alters TJ protein distribution and disrupts TJ integrity via contraction of the perijunctional actomyosin ring, facilitating virion access to coreceptors and entry into cells.
Collapse
|
19
|
Wang W, Chen M, Gao Y, Song X, Zheng H, Zhang K, Zhang B, Chen D. P2Y6 regulates cytoskeleton reorganization and cell migration of C2C12 myoblasts via ROCK pathway. J Cell Biochem 2017; 119:1889-1898. [PMID: 28815725 DOI: 10.1002/jcb.26350] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 08/11/2017] [Indexed: 12/11/2022]
Abstract
Migration of skeletal muscle precursor cells is required for limb muscle development and skeletal muscle repair. This study aimed to examine the role of P2Y6 receptor in C2C12 myoblasts migration. C2C12 myoblasts were treated with P2Y6 agonist UDP, P2Y6 antagonist MRS2578, Ca2+ channel blocker BTP2, or ROCK inhibitor GSK269962 or Y27632, and the migration ability of C2C12 cells was assessed by wound healing assay. The cellular Ca2+ content was analyzed with fluo-4 probe and the activation of ROCK (phosphorlyation of LIMK and cofilin) was assayed by western blot. The cytoskeleton was labeled with Actin-Tracker Green and Tubulin-Tracker-Red. Silencing P2Y6 expression in C2C12 myoblasts reduced intracellular Ca2+ content and cell motility. Whereas UDP increased cellular Ca2+ content, actin filaments, and cell migration, MRS2578 had the opposite effects. The effects of UDP were abrogated by BTP2 and GSK269962 (and Y27632). Disruption of P2Y6 signaling pathway caused C2C12 myoblasts to have an elongated morphology. These results demonstrated that P2Y6 signaled through Ca2+ influx and RhoA/ROCK to reorganize cytoskeleton and promote migration in myoblasts.
Collapse
Affiliation(s)
- Wei Wang
- Department of Otorhinolaryngology and Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Mengjie Chen
- Department of Otorhinolaryngology and Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yingna Gao
- Department of Otorhinolaryngology and Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xianmin Song
- Department of Otorhinolaryngology and Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Hongliang Zheng
- Department of Otorhinolaryngology and Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Kaiyong Zhang
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Bimeng Zhang
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Donghui Chen
- Department of Otorhinolaryngology and Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
20
|
Xiong X, Hu Y, Liu C, Li X. Rotavirus NSP4 86-175 interacts with H9c2(2-1) cells in vitro, elevates intracellular Ca 2+ levels and can become cytotoxic: a possible mechanism for extra-intestinal pathogenesis. Virus Genes 2016; 53:179-189. [PMID: 28000081 DOI: 10.1007/s11262-016-1419-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/07/2016] [Indexed: 12/23/2022]
Abstract
Rotavirus (RV) is the predominant cause of infantile gastroenteritis with multiple pathogenic factors, among which enterotoxin NSP4 is the most significant factor. NSP4 has been shown to induce elevation of the intracellular calcium concentration, alteration of the cytoskeleton organization, and cytopathic effect among other processes. However, increasing evidence suggests that RVs can escape from the gastrointestinal tract and invade other organs and tissues to cause extra-intestinal diseases. In this study, we investigated whether NSP4 has a pathogenic effect on extra-intestinal cells and examined possible molecular mechanisms in vitro. Our results showed that NSP486-175 has important functions in increasing intracellular Ca2+ concentration, altering actin cytoskeleton organization and inducing cellular damage in H9c2(2-1) cells. Blockade of the integrin α2 receptor using a specific antibody attenuated the increase of intracellular Ca2+ concentration and alleviated the observed cytopathic effects, suggesting that integrin α2 may be a receptor for NSP486-175. Collectively, these results indicate that extracellular NSP486-175 can induce elevation of the intracellular Ca2+ concentration, cause cytotoxic changes, and disrupt the actin cytoskeleton in H9c2(2-1) cells, which may constitute a possible mechanism for RV extra-intestinal pathogenesis.
Collapse
Affiliation(s)
- Xiaoshun Xiong
- Department of Clinical Laboratory, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, People's Republic of China
| | - Yinyin Hu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, People's Republic of China
| | - Caixia Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, People's Republic of China
| | - Xiangyang Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, People's Republic of China.
| |
Collapse
|
21
|
Yuan J, Zhang X, Shi H, Chen J, Han X, Wei P, Feng L. The interaction of Rotavirus A pig/China/NMTL/2008/G9P[23] VP6 with cellular beta-actin is required for optimal RV replication and infectivity. Vet Microbiol 2016; 197:111-121. [PMID: 27938672 DOI: 10.1016/j.vetmic.2016.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 10/22/2016] [Accepted: 11/09/2016] [Indexed: 11/16/2022]
Abstract
VP6 forms the intermediate layer of the rotavirus (RV) capsid, and it plays important roles after RV penetration and uncoating. These functions rely on its ability to interact with host cell proteins. To gain further insights into the role of VP6 in porcine RV (PoRV) infection, a glutathione S-transferase pull-down assay was utilized to find unknown cellular factors that interact with VP6. In this study, beta-actin, tropomyosin 1, and 40S ribosomal protein S16 were identified as interaction partners of VP6 by mass spectrometry and co-immunoprecipitation. The interaction with beta-actin was further studied. By immunoelectron microscopy, we observed VP6 proteins that labeled with colloidal gold localized on the actin microfilaments at the early stage of PoRV infection, we also found VP6 distributed in the ribosome, mitochondria, endoplasmic reticulum and nucleus in the infected cells. Actin binding protein spin-down assays verified PoRV double-layered particles (DLPs) bound to F-actin in vitro, but didn't have actin polymerization enhancement activity. After a small interfering RNA (siACTB) was used to knock down beta-actin expression, PoRV VP6 expression and the infection rates of newly synthesized virions releasing into culture supernatants decreased dramatically. Our results confirm and extend previous reports indicating that the interaction between PoRV VP6 and beta-actin plays vital roles in the PoRV lifecycle.
Collapse
Affiliation(s)
- Jing Yuan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xin Zhang
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hongyan Shi
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jianfei Chen
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xiao Han
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Ping Wei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Li Feng
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| |
Collapse
|
22
|
Abstract
Eukaryotic cells have evolved a myriad of ion channels, transporters, and pumps to maintain and regulate transmembrane ion gradients. As intracellular parasites, viruses also have evolved ion channel proteins, called viroporins, which disrupt normal ionic homeostasis to promote viral replication and pathogenesis. The first viral ion channel (influenza M2 protein) was confirmed only 23 years ago, and since then studies on M2 and many other viroporins have shown they serve critical functions in virus entry, replication, morphogenesis, and immune evasion. As new candidate viroporins and viroporin-mediated functions are being discovered, we review the experimental criteria for viroporin identification and characterization to facilitate consistency within this field of research. Then we review recent studies on how the few Ca(2+)-conducting viroporins exploit host signaling pathways, including store-operated Ca(2+) entry, autophagy, and inflammasome activation. These viroporin-induced aberrant Ca(2+) signals cause pathophysiological changes resulting in diarrhea, vomiting, and proinflammatory diseases, making both the viroporin and host Ca(2+) signaling pathways potential therapeutic targets for antiviral drugs.
Collapse
Affiliation(s)
- Joseph M Hyser
- Alkek Center for Metagenomic and Microbiome Research.,Department of Molecular Virology and Microbiology, and
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, and.,Department of Medicine, Baylor College of Medicine, Houston, Texas 77030-3411;
| |
Collapse
|
23
|
Graf1 Controls the Growth of Human Parainfluenza Virus Type 2 through Inactivation of RhoA Signaling. J Virol 2016; 90:9394-405. [PMID: 27512058 DOI: 10.1128/jvi.01471-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 08/01/2016] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Rho GTPases are involved in a variety of cellular activities and are regulated by guanine nucleotide exchange factors and GTPase-activating proteins (GAPs). We found that the activation of Rho GTPases by lysophosphatidic acid promotes the growth of human parainfluenza virus type 2 (hPIV-2). Furthermore, hPIV-2 infection causes activation of RhoA, a Rho GTPase. We hypothesized that Graf1 (also known as ARHGAP26), a GAP, regulates hPIV-2 growth by controlling RhoA signaling. Immunofluorescence analysis showed that hPIV-2 infection altered Graf1 localization from a homogenous distribution within the cytoplasm to granules. Graf1 colocalized with hPIV-2 P, NP, and L proteins. Graf1 interacts with P and V proteins via their N-terminal common region, and the C-terminal Src homology 3 domain-containing region of Graf1 is important for these interactions. In HEK293 cells constitutively expressing Graf1, hPIV-2 growth was inhibited, and RhoA activation was not observed during hPIV-2 infection. In contrast, Graf1 knockdown restored hPIV-2 growth and RhoA activation. Overexpression of hPIV-2 P and V proteins enhanced hPIV-2-induced RhoA activation. These results collectively suggested that hPIV-2 P and V proteins enhanced hPIV-2 growth by binding to Graf1 and that Graf1 inhibits hPIV-2 growth through RhoA inactivation. IMPORTANCE Robust growth of hPIV-2 requires Rho activation. hPIV-2 infection causes RhoA activation, which is suppressed by Graf1. Graf1 colocalizes with viral RNP (vRNP) in hPIV-2-infected cells. We found that Graf1 interacts with hPIV-2 P and V proteins. We also identified regions in these proteins which are important for this interaction. hPIV-2 P and V proteins enhanced the hPIV-2 growth via binding to Graf1, while Graf1 inhibited hPIV-2 growth through RhoA inactivation.
Collapse
|
24
|
Abstract
Rotavirus (RV) has been shown to infect and stimulate secretion of serotonin from human enterochromaffin (EC) cells and to infect EC cells in the small intestine of mice. It remains to identify which intracellularly expressed viral protein(s) is responsible for this novel property and to further establish the clinical role of serotonin in RV infection. First, we found that siRNA specifically silencing NSP4 (siRNANSP4) significantly attenuated secretion of serotonin from Rhesus rotavirus (RRV) infected EC tumor cells compared to siRNAVP4, siRNAVP6 and siRNAVP7. Second, intracellular calcium mobilization and diarrhoeal capacity from virulent and avirulent porcine viruses correlated with the capacity to release serotonin from EC tumor cells. Third, following administration of serotonin, all (10/10) infants, but no (0/8) adult mice, responded with diarrhoea. Finally, blocking of serotonin receptors using Ondansetron significantly attenuated murine RV (strain EDIM) diarrhoea in infant mice (2.9 vs 4.5 days). Ondansetron-treated mice (n = 11) had significantly (p < 0.05) less diarrhoea, lower diarrhoea severity score and lower total diarrhoea output as compared to mock-treated mice (n = 9). Similarly, Ondansetron-treated mice had better weight gain than mock-treated animals (p < 0.05). A most surprising finding was that the serotonin receptor antagonist significantly (p < 0.05) also attenuated total viral shedding. In summary, we show that intracellularly expressed NSP4 stimulates release of serotonin from human EC tumor cells and that serotonin participates in RV diarrhoea, which can be attenuated by Ondansetron.
Collapse
|
25
|
|
26
|
Abstract
UNLABELLED Rotavirus (RV) nonstructural protein 4 (NSP4) is a virulence factor that disrupts cellular Ca(2+) homeostasis and plays multiple roles regulating RV replication and the pathophysiology of RV-induced diarrhea. Although its native oligomeric state is unclear, crystallographic studies of the coiled-coil domain (CCD) of NSP4 from two different strains suggest that it functions as a tetramer or a pentamer. While the CCD of simian strain SA11 NSP4 forms a tetramer that binds Ca(2+) at its core, the CCD of human strain ST3 forms a pentamer lacking the bound Ca(2+) despite the residues (E120 and Q123) that coordinate Ca(2+) binding being conserved. In these previous studies, while the tetramer crystallized at neutral pH, the pentamer crystallized at low pH, suggesting that preference for a particular oligomeric state is pH dependent and that pH could influence Ca(2+) binding. Here, we sought to examine if the CCD of NSP4 from a single RV strain can exist in two oligomeric states regulated by Ca(2+) or pH. Biochemical, biophysical, and crystallographic studies show that while the CCD of SA11 NSP4 exhibits high-affinity binding to Ca(2+) at neutral pH and forms a tetramer, it does not bind Ca(2+) at low pH and forms a pentamer, and the transition from tetramer to pentamer is reversible with pH. Mutational analysis shows that Ca(2+) binding is necessary for the tetramer formation, as an E120A mutant forms a pentamer. We propose that the structural plasticity of NSP4 regulated by pH and Ca(2+) may form a basis for its pleiotropic functions during RV replication. IMPORTANCE The nonstructural protein NSP4 of rotavirus is a multifunctional protein that plays an important role in virus replication, morphogenesis, and pathogenesis. Previous crystallography studies of the coiled-coil domain (CCD) of NSP4 from two different rotavirus strains showed two distinct oligomeric states, a Ca(2+)-bound tetrameric state and a Ca(2+)-free pentameric state. Whether NSP4 CCD from the same strain can exist in different oligomeric states and what factors might regulate its oligomeric preferences are not known. This study used a combination of biochemical, biophysical, and crystallography techniques and found that the NSP4 CCD can undergo a reversible transition from a Ca(2+)-bound tetramer to a Ca(2+)-free pentamer in response to changes in pH. From these studies, we hypothesize that this remarkable structural adaptability of the CCD forms a basis for the pleiotropic functional properties of NSP4.
Collapse
|
27
|
Van den Broeke C, Jacob T, Favoreel HW. Rho'ing in and out of cells: viral interactions with Rho GTPase signaling. Small GTPases 2014; 5:e28318. [PMID: 24691164 DOI: 10.4161/sgtp.28318] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rho GTPases are key regulators of actin and microtubule dynamics and organization. Increasing evidence shows that many viruses have evolved diverse interactions with Rho GTPase signaling and manipulate them for their own benefit. In this review, we discuss how Rho GTPase signaling interferes with many steps in the viral replication cycle, especially entry, replication, and spread. Seen the diversity between viruses, it is not surprising that there is considerable variability in viral interactions with Rho GTPase signaling. However, several largely common effects on Rho GTPases and actin architecture and microtubule dynamics have been reported. For some of these processes, the molecular signaling and biological consequences are well documented while for others we just begin to understand them. A better knowledge and identification of common threads in the different viral interactions with Rho GTPase signaling and their ultimate consequences for virus and host may pave the way toward the development of new antiviral drugs that may target different viruses.
Collapse
Affiliation(s)
- Céline Van den Broeke
- Department of Virology, Parasitology, and Immunology; Faculty of Veterinary Medicine; Ghent University; Ghent, Belgium
| | - Thary Jacob
- Department of Virology, Parasitology, and Immunology; Faculty of Veterinary Medicine; Ghent University; Ghent, Belgium
| | - Herman W Favoreel
- Department of Virology, Parasitology, and Immunology; Faculty of Veterinary Medicine; Ghent University; Ghent, Belgium
| |
Collapse
|
28
|
Genome-wide RNAi screen reveals a role for the ESCRT complex in rotavirus cell entry. Proc Natl Acad Sci U S A 2013; 110:10270-5. [PMID: 23733942 DOI: 10.1073/pnas.1304932110] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Rotavirus (RV) is the major cause of childhood gastroenteritis worldwide. This study presents a functional genome-scale analysis of cellular proteins and pathways relevant for RV infection using RNAi. Among the 522 proteins selected in the screen for their ability to affect viral infectivity, an enriched group that participates in endocytic processes was identified. Within these proteins, subunits of the vacuolar ATPase, small GTPases, actinin 4, and, of special interest, components of the endosomal sorting complex required for transport (ESCRT) machinery were found. Here we provide evidence for a role of the ESCRT complex in the entry of simian and human RV strains in both monkey and human epithelial cells. In addition, the ESCRT-associated ATPase VPS4A and phospholipid lysobisphosphatidic acid, both crucial for the formation of intralumenal vesicles in multivesicular bodies, were also found to be required for cell entry. Interestingly, it seems that regardless of the molecules that rhesus RV and human RV strains use for cell-surface attachment and the distinct endocytic pathway used, all these viruses converge in early endosomes and use multivesicular bodies for cell entry. Furthermore, the small GTPases RHOA and CDC42, which regulate different types of clathrin-independent endocytosis, as well as early endosomal antigen 1 (EEA1), were found to be involved in this process. This work reports the direct involvement of the ESCRT machinery in the life cycle of a nonenveloped virus and highlights the complex mechanism that these viruses use to enter cells. It also illustrates the efficiency of high-throughput RNAi screenings as genetic tools for comprehensively studying the interaction between viruses and their host cells.
Collapse
|
29
|
Differing effects of herpes simplex virus 1 and pseudorabies virus infections on centrosomal function. J Virol 2013; 87:7102-12. [PMID: 23596303 DOI: 10.1128/jvi.00764-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Efficient intracellular transport of the capsid of alphaherpesviruses, such as herpes simplex virus 1 (HSV-1), is known to be dependent upon the microtubule (MT) network. Typically, the MT network radiates from an MT-organizing center (MTOC), which is, in most cases, the centrosome. During herpesvirus egress, it has been assumed that capsids travel first from the nucleus to the centrosome and then from the centrosome to the site of envelopment. Here we report that the centrosome is no longer a primary MTOC in HSV-1-infected cells, but it retains this function in cells infected by another alphaherpesvirus, pseudorabies virus (PrV). As a result, MTs formed at late times after infection with PrV grow from a major, centralized MTOC, while those formed after HSV-1 infection arise from dispersed locations in the cytoplasm, indicating the presence of alternative and minor MTOCs. Thus, loss of the principal MT nucleating center in cells following HSV-1 infection raises questions about the mechanism of HSV-1 capsid egress. It is possible that, rather than passing via the centrosome, capsids may travel directly to the site of envelopment after exiting the nucleus. We suggest that, in HSV-1-infected cells, the disruption of centrosomal functions triggers reorganization of the MT network to favor noncentrosomal MTs and promote efficient viral spread.
Collapse
|
30
|
Brice A, Moseley GW. Viral interactions with microtubules: orchestrators of host cell biology? Future Virol 2013. [DOI: 10.2217/fvl.12.137] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Viral interaction with the microtubule (MT) cytoskeleton is critical to infection by many viruses. Most data regarding virus–MT interaction indicate key roles in the subcellular transport of virions/viral genomic material to sites of replication, assembly and egress. However, the MT cytoskeleton orchestrates diverse processes in addition to subcellular cargo transport, including regulation of signaling pathways, cell survival and mitosis, suggesting that viruses, expert manipulators of the host cell, may use the virus–MT interface to control multiple aspects of cell biology. Several lines of evidence support this idea, indicating that specific viral proteins can modify MT dynamics and/or structure and regulate processes such as apoptosis and innate immune signaling through MT-dependent mechanisms. Here, the authors review general aspects of virus–MT interactions, with emphasis on viral mechanisms that modify MT dynamics and functions to affect processes beyond virion transport. The emerging importance of discrete viral protein–MT interactions in pathogenic processes indicates that these interfaces may represent new targets for future therapeutics and vaccine development.
Collapse
Affiliation(s)
- Aaron Brice
- Viral Immune Evasion & Pathogenicity Laboratory, Department of Biochemistry & Molecular Biology, Monash University, Victoria 3800, Australia
| | - Gregory W Moseley
- Viral Immune Evasion & Pathogenicity Laboratory, Department of Biochemistry & Molecular Biology, Monash University, Victoria 3800, Australia.
| |
Collapse
|