1
|
Hola V, Polanska H, Jandova T, Jaklová Dytrtová J, Weinerova J, Steffl M, Kramperova V, Dadova K, Durkalec-Michalski K, Bartos A. The Effect of Two Somatic-Based Practices Dance and Martial Arts on Irisin, BDNF Levels and Cognitive and Physical Fitness in Older Adults: A Randomized Control Trial. Clin Interv Aging 2024; 19:1829-1842. [PMID: 39525874 PMCID: PMC11550684 DOI: 10.2147/cia.s482479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Background Maintaining healthy brain function during ageing is of great importance, especially for the self-sufficiency of older adults. The main aim of this study was to determine the effects of dance and martial arts on exerkines Brain Derived Neurotrophic Factor (BDNF) and irisin blood serum levels. Methods This randomized controlled trial examined the effects of dance and martial arts on serum Brain-Derived Neurotrophic Factor (BDNF) and irisin levels, as well as cognitive function, mood, and physical measures in older adults. Seventy-seven independently living older adults (mean age 70.3±3.8 years) were randomized into three groups: dance (DG), martial arts (MaG), and control (CG), followed over 12 weeks. Generalized linear models were used to assess the interventions' effects. Results There was a significant increase in BDNF levels in both the DG (1.8 ± 4.9, p < 0.05) and MaG (3.5 ± 6.3, p < 0.05), while CG experienced a decrease (-4.9 ± 8.2, p < 0.05). Between-group effects were significant for BDNF, with DG and MaG showing higher levels than CG (p < 0.05). No significant changes in irisin levels were found. Cognitive performance, particularly attention and mental flexibility (measured by the Trail Making Test A and B), significantly improved in the DG compared to CG (p < 0.05). Additionally, participants in DG showed improved mood based on the Geriatric Depression Scale (p < 0.05) compared to CG. Anthropometric T-scores were significantly associated with changes in irisin levels (p < 0.05) after intervention. Conclusion The study found that dance and martial arts upregulated BDNF levels, with dance showing notable improvements in cognitive function and mood in older adults. Changes in anthropometric measures were linked to increased irisin levels. These findings suggest that both dance and martial arts may promote healthy brain function in aging populations. Trial Registration NCT05363228.
Collapse
Affiliation(s)
- Veronika Hola
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Hana Polanska
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Tereza Jandova
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | | | - Josefina Weinerova
- University Hospital Kralovske Vinohrady, Department of Neurology, Prague, Czech Republic
| | - Michal Steffl
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Veronika Kramperova
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Klara Dadova
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | | | - Ales Bartos
- University Hospital Kralovske Vinohrady, Department of Neurology, Prague, Czech Republic
- Third Faculty of Medicine, Charles University, Department of Neurology, Prague, Czech Republic
| |
Collapse
|
2
|
Madsen CA, Navarro ML, Elfving B, Kessing LV, Castrén E, Mikkelsen JD, Knudsen GM. The effect of antidepressant treatment on blood BDNF levels in depressed patients: A review and methodological recommendations for assessment of BDNF in blood. Eur Neuropsychopharmacol 2024; 87:35-55. [PMID: 39079257 DOI: 10.1016/j.euroneuro.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 09/11/2024]
Abstract
Major depressive disorder (MDD) is a highly prevalent psychiatric disorder and a leading cause of disability worldwide. Brain-derived neurotrophic factor (BDNF), a signaling protein responsible for promoting neuroplasticity, is highly expressed in the central nervous system but can also be found in the blood. Since impaired brain plasticity is considered a cornerstone in the pathophysiology of MDD, measurement of BDNF in blood has been proposed as a potential biomarker in MDD. The aim of our study is to systematically review the literature for the effects of antidepressant treatments on blood BDNF levels in MDD and the suitability of blood BDNF as a biomarker for depression severity and antidepressant response. We searched Pubmed® and Cochrane library up to March 2024 in a systematic manner using Medical Subject Headings (MeSH). The search resulted in a total of 42 papers, of which 30 were included in this systematic review. Generally, we found that patients with untreated MDD have a lower blood BDNF level than healthy controls. Antidepressant treatments increase blood BDNF levels, and more evidently after pharmacological than non-pharmacological treatment. Neither baseline nor change in the blood BDNF level correlates with depression severity or treatment outcome, which undermines its use as a biomarker in MDD. Our review also highlights the importance of considering factors influencing the accuracy and reproducibility of BDNF measurements. We summarize considerations to help obtain more robust blood BDNF values and compile a list of recommendations to help streamline assessment of blood BDNF levels in future studies.
Collapse
Affiliation(s)
- Clara A Madsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Miriam L Navarro
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | - Lars V Kessing
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Psychiatric Centre Copenhagen, Mental Health Services Capital Region, Copenhagen, Denmark
| | - Eero Castrén
- Neuroscience Center / HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jens D Mikkelsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Institute of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Ehrhardt M, Schreiber S, Duderstadt Y, Braun‐Dullaeus R, Borucki K, Brigadski T, Müller NG, Leßmann V, Müller P. Circadian rhythm of brain-derived neurotrophic factor in serum and plasma. Exp Physiol 2024; 109:1755-1767. [PMID: 39105714 PMCID: PMC11442779 DOI: 10.1113/ep091671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 07/05/2024] [Indexed: 08/07/2024]
Abstract
The neurotrophic growth factor brain-derived neurotrophic factor (BDNF) plays a crucial role in various neurodegenerative and psychiatric diseases, such as Alzheimer's disease, schizophrenia and depression. BDNF has been proposed as a potential biomarker for diagnosis, prognosis and monitoring therapy. Understanding the factors influencing BDNF levels and whether they follow a circadian rhythm is essential for interpreting fluctuations in BDNF measurements. We aimed to investigate the circadian rhythm of BDNF by collecting multiple peripheral venous blood samples from young, healthy male participants at 12 different time points over 24 h. In addition, vital parameters, cortisol and insulin like growth factor 1 (IGF1) were measured to explore potential regulatory mechanisms, interfering variables and their correlations with BDNF concentration. The findings revealed that plasma BDNF did not exhibit any significant fluctuations over 24 h, suggesting the absence of a circadian rhythm. However, serum BDNF levels decreased during sleep. Furthermore, serum BDNF showed a positive correlation with heart rate but a negative correlation with IGF1. No significant correlation was observed between cortisol and BDNF or IGF1. Although plasma BDNF suggests steady-state conditions, the decline of serum BDNF during the nocturnal period could be attributed to physical inactivity and associated with reduced haemodynamic blood flow (heart rate reduction during sleep). The type of sample collection (peripheral venous cannula vs. blood sampling using a butterfly system) does not significantly affect the measured BDNF levels. The sample collection during the day did not significantly affect BDNF analysis, emphasizing the importance of considering activity levels rather than timing when designing standardized protocols for BDNF assessments.
Collapse
Affiliation(s)
- Maren Ehrhardt
- Division of Cardiology and AngiologyUniversity Hospital MagdeburgMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
| | - Stefanie Schreiber
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C‐I‐R‐C)MagdeburgGermany
- Division of NeurologyUniversity Hospital MagdeburgMagdeburgGermany
- Department of Neurology, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
| | - Yves Duderstadt
- Division of Cardiology and AngiologyUniversity Hospital MagdeburgMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
- Institute of Sport ScienceOtto‐von‐Guericke UniversityMagdeburgGermany
| | | | - Katrin Borucki
- Institute of Clinical Chemistry and PathobiochemistryOtto‐von‐Guericke UniversityMagdeburgGermany
| | - Tanja Brigadski
- Institute of PhysiologyOtto‐von‐Guericke UniversityMagdeburgGermany
- Department of Informatics and Microsystems TechnologyUniversity of Applied Sciences KaiserslauternZweibrückenGermany
| | - Notger G. Müller
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
- Degenerative and Chronic Diseases, Faculty of Health Sciences BrandenburgUniversity of PotsdamPotsdamGermany
| | - Volkmar Leßmann
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C‐I‐R‐C)MagdeburgGermany
- Institute of PhysiologyOtto‐von‐Guericke UniversityMagdeburgGermany
- German Center for Mental Health (DZPG)MagdeburgGermany
- Center for Behavioural Brain Sciences (CBBS)MagdeburgGermany
| | - Patrick Müller
- Division of Cardiology and AngiologyUniversity Hospital MagdeburgMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C‐I‐R‐C)MagdeburgGermany
- German Center for Mental Health (DZPG)MagdeburgGermany
| |
Collapse
|
4
|
Khalil MH. Neurosustainability. Front Hum Neurosci 2024; 18:1436179. [PMID: 39268220 PMCID: PMC11390526 DOI: 10.3389/fnhum.2024.1436179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024] Open
Abstract
While the human brain has evolved extraordinary abilities to dominate nature, modern living has paradoxically trapped it in a contemporary "cage" that stifles neuroplasticity. Within this modern environment lurk unseen natural laws with power to sustain the human brain's adaptive capacities - if consciously orchestrated into the environments we design. For too long our contemporary environments have imposed an unyielding static state, while still neglecting the brain's constant adaptive nature as it evolves to dominate the natural world with increasing sophistication. The theory introduced in this article aims to go back in nature without having to go back in time, introducing and expounding Neurosustainability as a novel paradigm seeing beyond the contemporary confines to architect environments and brains in parallel. Its integrated neuro-evidenced framework proposes four enrichment scopes-spatial, natural, aesthetic, and social-each holding multifaceted attributes promising to sustain regions like the hippocampus, cortex and amygdala. Neurosustainability aims to liberate the quintessential essence of nature to sustain and enhance neuroplastic processes through a cycle that begins with design and extends through epigenetic changes. This paradigm shift aims to foster cognitive health and wellness by addressing issues like stress, depression, anxiety and cognitive decline common in the contemporary era thereby offering a path toward a more neurosustainable era aiming to nurture the evolution of the human brain now and beyond.
Collapse
Affiliation(s)
- Mohamed Hesham Khalil
- Department of Architecture, Faculty of Architecture and History of Art, School of Arts and Humanities, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Khalil MH. Environmental enrichment: a systematic review on the effect of a changing spatial complexity on hippocampal neurogenesis and plasticity in rodents, with considerations for translation to urban and built environments for humans. Front Neurosci 2024; 18:1368411. [PMID: 38919908 PMCID: PMC11196820 DOI: 10.3389/fnins.2024.1368411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Introduction Hippocampal neurogenesis is critical for improving learning, memory, and spatial navigation. Inhabiting and navigating spatial complexity is key to stimulating adult hippocampal neurogenesis (AHN) in rodents because they share similar hippocampal neuroplasticity characteristics with humans. AHN in humans has recently been found to persist until the tenth decade of life, but it declines with aging and is influenced by environmental enrichment. This systematic review investigated the impact of spatial complexity on neurogenesis and hippocampal plasticity in rodents, and discussed the translatability of these findings to human interventions. Methods Comprehensive searches were conducted on three databases in English: PubMed, Web of Science, and Scopus. All literature published until December 2023 was screened and assessed for eligibility. A total of 32 studies with original data were included, and the process is reported in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement and checklist. Results The studies evaluated various models of spatial complexity in rodents, including environmental enrichment, changes to in-cage elements, complex layouts, and navigational mazes featuring novelty and intermittent complexity. A regression equation was formulated to synthesize key factors influencing neurogenesis, such as duration, physical activity, frequency of changes, diversity of complexity, age, living space size, and temperature. Conclusion Findings underscore the cognitive benefits of spatial complexity interventions and inform future translational research from rodents to humans. Home-cage enrichment and models like the Hamlet complex maze and the Marlau cage offer insight into how architectural design and urban navigational complexity can impact neurogenesis in humans. In-space changing complexity, with and without physical activity, is effective for stimulating neurogenesis. While evidence on intermittent spatial complexity in humans is limited, data from the COVID-19 pandemic lockdowns provide preliminary evidence. Existing equations relating rodent and human ages may allow for the translation of enrichment protocol durations from rodents to humans.
Collapse
|
6
|
Adonina S, Bazhenova E, Bazovkina D. Effect of Short Photoperiod on Behavior and Brain Plasticity in Mice Differing in Predisposition to Catalepsy: The Role of BDNF and Serotonin System. Int J Mol Sci 2024; 25:2469. [PMID: 38473717 DOI: 10.3390/ijms25052469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Seasonal affective disorder is characterized by depression during fall/winter as a result of shorter daylight. Catalepsy is a syndrome of some grave mental diseases. Both the neurotransmitter serotonin (5-HT) and brain-derived neurotrophic factor (BDNF) are involved in the pathophysiological mechanisms underlying catalepsy and depressive disorders. The aim was to compare the response of behavior and brain plasticity to photoperiod alterations in catalepsy-resistant C57BL/6J and catalepsy-prone CBA/Lac male mice. Mice of both strains were exposed for six weeks to standard-day (14 h light/10 h darkness) or short-day (4 h light/20 h darkness) conditions. Short photoperiod increased depressive-like behavior in both strains. Only treated CBA/Lac mice demonstrated increased cataleptic immobility, decreased brain 5-HT level, and the expression of Tph2 gene encoding the key enzyme for 5-HT biosynthesis. Mice of both strains maintained under short-day conditions, compared to those under standard-day conditions, showed a region-specific decrease in the brain transcription of the Htr1a, Htr4, and Htr7 genes. After a short photoperiod exposure, the mRNA levels of the BDNF-related genes were reduced in CBA/Lac mice and were increased in the C57BL/6J mice. Thus, the predisposition to catalepsy considerably influences the photoperiodic changes in neuroplasticity, wherein both C57BL/6J and CBA/Lac mice can serve as a powerful tool for investigating the link between seasons and mood.
Collapse
Affiliation(s)
- Svetlana Adonina
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Lavrentieva 10, Novosibirsk 630090, Russia
| | - Ekaterina Bazhenova
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Lavrentieva 10, Novosibirsk 630090, Russia
| | - Darya Bazovkina
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Lavrentieva 10, Novosibirsk 630090, Russia
| |
Collapse
|
7
|
Manocchio F, Bravo FI, Helfer G, Muguerza B. Cherries with Different Geographical Origins Regulate Neuroprotection in a Photoperiod-Dependent Manner in F344 Rats. Antioxidants (Basel) 2024; 13:72. [PMID: 38247496 PMCID: PMC10812723 DOI: 10.3390/antiox13010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
The photoperiod is the main environmental cue that drives seasonal adaptive responses in reproduction, behavior, and metabolism in seasonal animals. Increasing evidence suggests that (poly)phenols contained in fruits can also modulate seasonal rhythms. (Poly)phenol-rich diets are associated with an improvement in cognitive function and neuroprotection due to their anti-inflammatory and antioxidative properties. However, it is unknown whether cherries affect neuroprotection in a photoperiod-dependent manner. To test this, F344 rats were exposed to L6 (6 h light/day), L12 (12 h light/day) and L18 (18 h light/day) photoperiods and fed a standard chow diet supplemented with either a control, lyophilized cherry 1 or cherry 2 with distinctive phenolic hallmarks. Physiological parameters (body weight, eating pattern index (EPI), testosterone, T4/T3) and hypothalamic key genes (Dio2, Dio3, Raldh1 and Ghrh) were strongly regulated by the photoperiod and/or fruit consumption. Importantly, we show for the first time that neurotrophs (Bdnf, Sod1 and Gpx1) in the hippocampus are also regulated by the photoperiod. Furthermore, the consumption of cherry 2, which was richer in total flavonols, but not cherry 1, which was richer in total anthocyanins and flavanols, enhanced neuroprotection in the hippocampus. Our results show that the seasonal consumption of cherry with a specific phenolic composition plays an important role in the hippocampal activation of neuroprotection in a photoperiod-dependent manner.
Collapse
Affiliation(s)
- Francesca Manocchio
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, C Marcel·lí Domingo s/n, 43007 Tarragona, Spain; (F.M.); (B.M.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Francisca Isabel Bravo
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, C Marcel·lí Domingo s/n, 43007 Tarragona, Spain; (F.M.); (B.M.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Gisela Helfer
- School of Chemistry and Biosciences, University of Bradford, Richmond Road, Bradford BD7 1DP, UK
| | - Begoña Muguerza
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, C Marcel·lí Domingo s/n, 43007 Tarragona, Spain; (F.M.); (B.M.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, 43007 Tarragona, Spain
| |
Collapse
|
8
|
Virtanen M, Törmälehto S, Partonen T, Elovainio M, Ruuhela R, Hakulinen C, Komulainen K, Airaksinen J, Väänänen A, Koskinen A, Sund R. Seasonal patterns of sickness absence due to diagnosed mental disorders: a nationwide 12-year register linkage study. Epidemiol Psychiatr Sci 2023; 32:e64. [PMID: 37941381 PMCID: PMC7615330 DOI: 10.1017/s2045796023000768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023] Open
Abstract
AIMS Although seasonality has been documented for mental disorders, it is unknown whether similar patterns can be observed in employee sickness absence from work due to a wide range of mental disorders with different severity level, and to what extent the rate of change in light exposure plays a role. To address these limitations, we used daily based sickness absence records to examine seasonal patterns in employee sickness absence due to mental disorders. METHODS We used nationwide diagnosis-specific psychiatric sickness absence claims data from 2006 to 2017 for adult individuals aged 16-67 (n = 636,543 sickness absence episodes) in Finland, a high-latitude country with a profound variation in daylength. The smoothed time-series of the ratio of observed and expected (O/E) daily counts of episodes were estimated, adjusted for variation in all-cause sickness absence rates during the year. RESULTS Unipolar depressive disorders peaked in October-November and dipped in July, with similar associations in all forms of depression. Also, anxiety and non-organic sleep disorders peaked in October-November. Anxiety disorders dipped in January-February and in July-August, while non-organic sleep disorders dipped in April-August. Manic episodes reached a peak from March to July and dipped in September-November and in January-February. Seasonality was not dependent on the severity of the depressive disorder. CONCLUSIONS These results suggest a seasonal variation in sickness absence due to common mental disorders and bipolar disorder, with high peaks in depressive, anxiety and sleep disorders towards the end of the year and a peak in manic episodes starting in spring. Rapid changes in light exposure may contribute to sickness absence due to bipolar disorder. The findings can help clinicians and workplaces prepare for seasonal variations in healthcare needs.
Collapse
Affiliation(s)
- M. Virtanen
- School of Educational Sciences and Psychology, University of Eastern Finland, Joensuu, Finland
- Division of Insurance Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - S. Törmälehto
- School of Educational Sciences and Psychology, University of Eastern Finland, Joensuu, Finland
| | - T. Partonen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - M. Elovainio
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
- Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - R. Ruuhela
- Weather and Climate Change Impact Research, Finnish Meteorological Institute, Helsinki, Finland
| | - C. Hakulinen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - K. Komulainen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - J. Airaksinen
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - A. Väänänen
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - A. Koskinen
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - R. Sund
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
9
|
Farcas A, Hindmarch C, Iftene F. BDNF gene Val66Met polymorphisms as a predictor for clinical presentation in schizophrenia - recent findings. Front Psychiatry 2023; 14:1234220. [PMID: 37886115 PMCID: PMC10598753 DOI: 10.3389/fpsyt.2023.1234220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Schizophrenia is a highly heritable, severe psychiatric disorder that involves dysfunctions in thinking, emotions, and behavior, with a profound impact on a person's ability to function normally in their daily life. Research efforts continue to focus on elucidating possible genetic underlying mechanisms of the disorder. Although the genetic loci identified to date to be significantly associated with schizophrenia risk do not represent disease-causing factors, each one of them could be seen as a possible incremental contributor. Considering the importance of finding new and more efficient pharmacological approaches to target the complex symptomatology of this disorder, in this scoping review, we are focusing on the most recent findings in studies aiming to elucidate the contribution of one of the genetic factors involved - the BDNF gene Val66Met polymorphisms. Here we performed a systematic search in Pubmed, Embase, and Web of Science databases with the search terms: (BDNF gene polymorphism) AND (schizophrenia) for articles published in the last 5 years. To be selected for this review, articles had to report on studies where genotyping for the BDNF Val66Met polymorphism was performed in participants diagnosed with schizophrenia (or schizophrenia spectrum disorders or first-episode psychosis). The search provided 35 results from Pubmed, 134 results from Embase, and 118 results from the Web of Science database. Twenty-two articles were selected to be included in this review, all reporting on studies where an implication of the BDNF Val66Met polymorphisms in the disorder's pathophysiology was sought to be elucidated. These studies looked at BDNF gene Val66Met polymorphism variants, their interactions with other genes of interest, and different facets of the illness. The Met/Met genotype was found to be associated with higher PANSS positive scores. Furthermore, Met/Met homozygous individuals appear to present with worse cognitive function and lower levels of serum BDNF. In the Val/Val genotype carriers, increased BDNF levels were found to correlate with weight gain under Risperidone treatment. However, due to heterogeneous results, the diversity in study populations and studies' small sample sizes, generalizations cannot be made. Our findings emphasize the need for further research dedicated to clarifying the role of gene polymorphisms in antipsychotic treatment to enhance specificity and efficacy in the treatment of schizophrenia.
Collapse
Affiliation(s)
- Adriana Farcas
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
- Providence Care Hospital, Kingston, ON, Canada
| | - Charles Hindmarch
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
- Department of Medicine, Queen’s University, Kingston, ON, Canada
- Queen’s Cardiopulmonary Unit, Translational Institute of Medicine, Queen’s University, Kingston, ON, Canada
| | - Felicia Iftene
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
- Providence Care Hospital, Kingston, ON, Canada
| |
Collapse
|
10
|
Kosanovic Rajacic B, Sagud M, Begic D, Nikolac Perkovic M, Dvojkovic A, Ganoci L, Pivac N. Plasma Brain-Derived Neurotrophic Factor Levels in First-Episode and Recurrent Major Depression and before and after Bright Light Therapy in Treatment-Resistant Depression. Biomolecules 2023; 13:1425. [PMID: 37759825 PMCID: PMC10526351 DOI: 10.3390/biom13091425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is implicated in the etiology and treatment response in major depressive disorder (MDD). However, peripheral BDNF concentrations have not been compared across different MDD stages. Bright light therapy (BLT) offers some potential in treatment-resistant depression (TRD), but its effects on BDNF levels are unknown. This study included a cross-sectional analysis of plasma BDNF concentration in females with TRD, unmedicated MDD patients, and healthy controls (HC), and measurements of longitudinal BLT effects on plasma BDNF levels in TRD patients. The present study included 55 drug-naïve, first-episode patients, 25 drug-free recurrent-episode MDD patients, 71 HC participants, and 54 TRD patients. Patients were rated by Hamilton Depression Rating Scale (HAMD)-17 and the Montgomery-Åsberg Depression Rating Scale (MADRS). Patients with TRD received BLT during 4 weeks. The total HAMD-17 and MADRS scores decreased following BLT. All patient groups had lower plasma BDNF than HC, but BDNF levels did not differ between first- and recurrent-episode BDNF patients and TRD patients before or after BLT. However, responders and remitters to BLT had higher post-treatment plasma BDNF concentrations than patients who did not achieve response or remission. The changes in plasma BDNF levels may be candidates for biomarkers of treatment response to BLT in TRD patients.
Collapse
Affiliation(s)
- Biljana Kosanovic Rajacic
- Department for Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (B.K.R.); (M.S.); (D.B.)
| | - Marina Sagud
- Department for Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (B.K.R.); (M.S.); (D.B.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Drazen Begic
- Department for Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (B.K.R.); (M.S.); (D.B.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Matea Nikolac Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia;
| | - Anja Dvojkovic
- University Psychiatric Hospital Vrapce, 10090 Zagreb, Croatia;
| | - Lana Ganoci
- Department of Laboratory Diagnostics, Division for Pharmacogenomics and Therapy Individualization, University Hospital Centre Zagreb, 10000 Zagreb, Croatia;
| | - Nela Pivac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia;
- University of Applied Sciences Hrvatsko Zagorje Krapina, 49000 Krapina, Croatia
| |
Collapse
|
11
|
Kosanovic Rajacic B, Sagud M, Pivac N, Begic D. Illuminating the way: the role of bright light therapy in the treatment of depression. Expert Rev Neurother 2023; 23:1157-1171. [PMID: 37882458 DOI: 10.1080/14737175.2023.2273396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
INTRODUCTION Despite the growing number of different therapeutic options, treatment of depression is still a challenge. A broader perspective reveals the benefits of bright light therapy (BLT). It stimulates intrinsically photosensitive retinal ganglion cells, which induces a complex cascade of events, including alterations in melatonergic, neurotrophic, GABAergic, glutamatergic, noradrenergic, serotonergic systems, and HPA axis, suggesting that BLT effects expand beyond the circadian pacemaker. AREAS COVERED In this review, the authors present and discuss recent data of BLT in major depressive disorder, non-seasonal depression, bipolar depression or depressive phase of bipolar disorder, and seasonal affective disorder, as well as in treatment-resistant depression (TRD). The authors further highlight BLT effects in various depressive disorders compared to placebo and report data from several studies suggesting a response to BLT in TRD. Also, the authors report data showing that BLT can be used both as a monotherapy or in combination with other pharmacological treatments. EXPERT OPINION BLT is an easy-to-use and low-budget therapy with good tolerability. Future studies should focus on clinical and biological predictors of response to BLT, on defining specific populations which may benefit from BLT and establishing treatment protocols regarding timing, frequency, and duration of BLT.
Collapse
Affiliation(s)
- Biljana Kosanovic Rajacic
- Department for Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Marina Sagud
- Department for Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
- School of Medicine University of Zagreb, Zagreb, Croatia
| | - Nela Pivac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
- University of Applied Sciences Hrvatsko Zagorje Krapina, Croatian Zagorje Polytechnic Krapina, Krapina, Croatia
| | - Drazen Begic
- Department for Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
- School of Medicine University of Zagreb, Zagreb, Croatia
| |
Collapse
|
12
|
Shahyad S, Kheirabadi GR, Jahromi GP, Massaly M. Brain-derived Neurotrophic Factor and High Sensitive C-reactive Protein in Bipolar Depression and Unipolar Depression: The Practical Usage as a Discriminatory Tool. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2023; 21:108-117. [PMID: 36700317 PMCID: PMC9889908 DOI: 10.9758/cpn.2023.21.1.108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/26/2021] [Accepted: 11/04/2021] [Indexed: 01/27/2023]
Abstract
Objective Brain-derived neurotrophic factor (BDNF) and high sensitive C-reactive protein (hs-CRP) have been reported to play roles in depression and bipolar disorder (BD). However, the probable discriminatory properties of these biologic markers are less investigated. We aimed to assess the serum BDNF and hs-CRP levels among Iranian patients with major depressive disorder (MDD) and BD during a depressive episode and investigate the optimum cut-off point for differential diagnosis of BD and MDD. Methods We recruited 30 patients with MDD, 30 with BD in depressive mood and 30 healthy comparators. Blood sample was taken from each participant to measure BDNF and hs-CRP levels. We also used receiver operating characteristic (ROC) curve analysis to find an optimal cut-off point for differentiating MDD from BD according to pre-defined variables. Results The mean age of total study population was 37.3 ± 5.0 years (males: 49%). BDNF was significantly lower in patients with BD, followed by MDD subjects and healthy controls 541.0 ± 601.0 pg/ml vs. 809.5 ± 433.3 pg/ml vs. 1,482.1 ± 519.8, respectively, p < 0.001). The area under curve of ROC curve analysis for BD versus MDD was 0.704 (95% confidence interval: 0.564-0.844, p = 0.007). We also found that the BDNF cut-off value of 504 could appropriately distinguished BD from MDD (sensitivity: 73%, specificity: 70%). No significant association were identified in terms of hs-CRP levels. Conclusion Patients suffering from BD had lowest BDNF levels compared to MDD or healthy adults and this biomarker could play a practical role differentiating MDD from BD. Several studies are required confirming our outcomes.
Collapse
Affiliation(s)
- Shima Shahyad
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran,Address for correspondence: Shima Shahyad Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Molla-sadra St, Tehran 1435916471, Iran, E-mail: , ORCID: https://orcid.org/0000-0002-5483-5367
| | - Gholam Reza Kheirabadi
- Behavioral Sciences Research Center, Department of Psychiatry, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gila Pirzad Jahromi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Muhammad Massaly
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Kosciuczuk U, Jakubow P, Czyzewska J, Knapp P, Rynkiewicz-Szczepanska E. Plasma Brain-Derived Neurotrophic Factor and Opioid Therapy: Results of Pilot Cross-Sectional Study. Clin Med Res 2022; 20:195-203. [PMID: 36581402 PMCID: PMC9799226 DOI: 10.3121/cmr.2022.1731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 08/05/2022] [Accepted: 09/26/2022] [Indexed: 12/31/2022]
Abstract
Objective: The neurotoxic effect of opioid has not been thoroughly described. No studies have been conducted to explain the effect of opioids in chronic non-cancer pain therapy on the neurotrophic factors level. Due to the ability to cross the blood-brain barrier, it seems the determination of serum Brain-derived neurotrophic factor (BDNF) concentration is a reliable presentation of the concentration in the central nervous system. The aim of the study was to explore the changes of plasma BDNF concentration during long-term opioid therapy.Methods: The study group included 28 patients with chronic low back pain treated with opioid therapy buprenorphine (n=10), tramadol (n=8), oxycodone (n=6), morphine (n=3), fentanyl (n=1). The control group included 11 patients. Measurements of plasma BDNF concentrations were performed, and information about opioid therapy were recorded (age, sex, opioid substance type, daily dose and the duration of opioid therapy). Data were analyzed using nonparametric tests.Results: The median BDNF level in the study group was significantly lower (2.73 ng/mL) than that in the control group (5.04 ng/mL, P<0.05). BDNF levels did not differ among groups based on the type of opioid substance used, but the lowest median value was observed for tramadol (2.62 ng/mL), and the highest median value was observed for buprenorphine (2.73 ng/mL). The widest minimum-maximum ranges of BDNF for oxycodone were noted, minimum 1.23 ng/mL and maximum 4.57 ng/mL, respectively. BDNF concentrations were correlated with age in the tramadol group and with the duration of opioid therapy in the buprenorphine group.Conclusion: Chronic opioid therapy for noncancer pain induces specific changes in the BDNF concentration. Tramadol and buprenorphine exerted an important effect on BDNF levels in the examined patients. The BDNF level depends on duration of opioid therapy with buprenorphine, and age in tramadol therapy.
Collapse
Affiliation(s)
- Ursula Kosciuczuk
- Department of Anaesthesiology and Intensive Therapy, Faculty of Medicine, Medical University of Bialystok, Poland
| | - Piotr Jakubow
- Department of Anaesthesiology and Intensive Therapy, Faculty of Medicine, Medical University of Bialystok, Poland
| | - Jolanta Czyzewska
- Department of Clinical Laboratory Diagnostics, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Poland
| | - Pawel Knapp
- Department of Gynecology and Gynecological Oncology, Faculty of Medicine, Medical University of Bialystok, Poland
| | - Ewa Rynkiewicz-Szczepanska
- Department of Anaesthesiology and Intensive Therapy, Faculty of Medicine, Medical University of Bialystok, Poland
| |
Collapse
|
14
|
Fu X, Liu Y, Baranova A, Zhang F. Deregulatory miRNA-BDNF Network Inferred from Dynamic Expression Changes in Schizophrenia. Brain Sci 2022; 12:brainsci12020167. [PMID: 35203931 PMCID: PMC8870107 DOI: 10.3390/brainsci12020167] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
(1) Background: Brain-derived neurotrophic factor (BDNF) is one of the promising risk genes for schizophrenia (SZ), a disease with prominent dysregulation of miRNA networks. Here, we present a study of miRNA-BDNF co-expression changes in peripheral blood of SZ patients. (2) Methods: The expression levels of the BDNF mRNA and three validated binding miRNAs—miR-124-3p, miR-132-3p, and miR-206—were quantified in the blood of 48 healthy controls and 32 SZ patients before and after 12 weeks of treatment. The co-expression patterns were evaluated in the three groups. (3) Results: The expression levels of BDNF were significantly downregulated in SZ patients compared to the controls. After the treatment, the expression levels of BDNF were upregulated, while the expression levels of the three miRNAs were downregulated. Co-expression analyses showed positive correlations of this network in the SZ patients, while weak negative correlations were observed in the healthy controls. After the 12-week treatment, the overall correlation between BDNF and the three miRNAs reached the levels comparable to the healthy controls. (4) Conclusions: Our findings suggest the involvement of the miRNA-BDNF network in the onset and treatment of SZ.
Collapse
Affiliation(s)
- Xiaoqian Fu
- Department of Clinical Psychology, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, China; (X.F.); (Y.L.)
| | - Yansong Liu
- Department of Clinical Psychology, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, China; (X.F.); (Y.L.)
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Manassas, VA 20110, USA;
- Research Centre for Medical Genetics, 115478 Moscow, Russia
| | - Fuquan Zhang
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
- Correspondence:
| |
Collapse
|
15
|
Mustieles V, Rodríguez-Carrillo A, Vela-Soria F, D'Cruz SC, David A, Smagulova F, Mundo-López A, Olivas-Martínez A, Reina-Pérez I, Olea N, Freire C, Arrebola JP, Fernández MF. BDNF as a potential mediator between childhood BPA exposure and behavioral function in adolescent boys from the INMA-Granada cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:150014. [PMID: 34788942 DOI: 10.1016/j.scitotenv.2021.150014] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 05/22/2023]
Abstract
BACKGROUND Bisphenol A (BPA) exposure has been linked to altered behavior in children. Within the European Human Biomonitoring Initiative (HBM4EU), an adverse outcome pathway (AOP) network was constructed supporting the mechanistic link between BPA exposure and brain-derived neurotrophic factor (BDNF). OBJECTIVE To test this toxicologically-based hypothesis in the prospective INMA-Granada birth cohort (Spain). METHODS BPA concentrations were quantified by LC-MS/MS in spot urine samples from boys aged 9-11 years, normalized by creatinine and log-2 transformed. At adolescence (15-17 years), blood and urine specimens were collected, and serum and urinary BDNF protein levels were measured using immunoassays. DNA methylation levels at 6 CpGs in Exon IV of the BDNF gene were also assessed in peripheral blood using bisulfite-pyrosequencing. Adolescent's behavior was parent-rated using the Child Behavior Checklist (CBCL/6-18) in 148 boys. Adjusted linear regression and mediation models were fit. RESULTS Childhood urinary BPA concentrations were longitudinally and positively associated with thought problems (β = 0.76; 95% CI: 0.02, 1.49) and somatic complaints (β = 0.80; 95% CI: -0.16, 1.75) at adolescence. BPA concentrations were positively associated with BDNF DNA methylation at CpG6 (β = 0.21; 95% CI: 0.06, 0.36) and mean CpG methylation (β = 0.10; 95% CI: 0.01, 0.18), but not with total serum or urinary BDNF protein levels. When independent variables were categorized in tertiles, positive dose-response associations were observed between BPA-thought problems (p-trend = 0.08), BPA-CpG6 (p-trend ≤ 0.01), and CpG6-thought problems (p-trend ≤ 0.01). A significant mediated effect by CpG6 DNA methylation was observed (β = 0.23; 95% CI: 0.01, 0.57), accounting for up to 34% of the BPA-thought problems association. CONCLUSIONS In line with toxicological studies, BPA exposure was longitudinally associated with increased BDNF DNA methylation, supporting the biological plausibility of BPA-behavior relationships previously described in the epidemiological literature. Given its novelty and preliminary nature, this effect biomarker approach should be replicated in larger birth cohorts.
Collapse
Affiliation(s)
- Vicente Mustieles
- University of Granada, Biomedical Research Center (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain.
| | | | | | - Shereen Cynthia D'Cruz
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Arthur David
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Fatima Smagulova
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | | | | | | | - Nicolás Olea
- University of Granada, Biomedical Research Center (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Carmen Freire
- University of Granada, Biomedical Research Center (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Juan P Arrebola
- Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain
| | - Mariana F Fernández
- University of Granada, Biomedical Research Center (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain.
| |
Collapse
|
16
|
Wu Y, Du X, Yang R, Yue Y, Peng R, Wu S, Wang H, Zhou Y, Fang X, Yuan N, Li R, Zhang J, Zou S, Zhao X, Lyu X, Li Z, Zhang X, Zhang X. Association Between Depressive Symptoms and Serum Brain-Derived Neurotrophic Factor Levels in Patients With First-Episode and Drug-Naïve Schizophrenia. Front Psychiatry 2022; 13:911384. [PMID: 35757201 PMCID: PMC9218218 DOI: 10.3389/fpsyt.2022.911384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Previous studies have revealed that brain-derived neurotrophic factor (BDNF) levels are inversely associated with the severity of depressive symptoms. In addition, serum BDNF levels tend to increase with improvement in depressive symptoms. There is also evidence that BDNF has a possible role in the pathophysiology of schizophrenia. Therefore, the purpose of this study was to determine whether BDNF levels correlated with depressive symptoms in patients with first-episode and drug-naïve (FEDN) schizophrenia. In this study, 90 patients with FEDN schizophrenia and 60 healthy controls were recruited. The Positive and Negative Syndrome Scale (PANSS) and the 17-item Hamilton Depression Scale (HAMD-17) were used to gage psychopathological and depressive symptoms, respectively. All participants had their BDNF levels measured using a sandwich enzyme-linked immunosorbent test. Serum BDNF levels were lower in patients with FEDN schizophrenia compared with healthy controls. Moreover, patients with depressive symptoms exhibited a higher PANSS total score and a higher general psychopathology score than those without depressive symptoms (p < 0.05). For patients with depressive symptoms, serum BDNF levels were higher than in those without depressive symptoms (p < 0.05). An association between BDNF levels and the positive subscore was also observed (p < 0.01). However, there was no significant association between BDNF levels and HAMD scores (p > 0.05). In conclusion, BDNF levels were shown to be higher in the serum of patients with FEDN schizophrenia with depressive symptoms than in those without. Additionally, low levels of serum BDNF may contribute to the positive symptoms of FEDN schizophrenia but not to depressive symptoms.
Collapse
Affiliation(s)
- Yuxuan Wu
- Suzhou Medical College of Soochow University, Suzhou, China.,Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Xiangdong Du
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Ruchang Yang
- Suzhou Medical College of Soochow University, Suzhou, China.,Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Yan Yue
- Suzhou Medical College of Soochow University, Suzhou, China.,Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Ruijie Peng
- Suzhou Medical College of Soochow University, Suzhou, China.,Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Siqi Wu
- School of Psychology and Mental Health, North China University of Science and Technology, Tangshan, China
| | - Haitao Wang
- School of Psychology and Mental Health, North China University of Science and Technology, Tangshan, China
| | - Yue Zhou
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China.,Xuzhou Medical University, Xuzhou, China
| | - Xiaojia Fang
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China.,Xuzhou Medical University, Xuzhou, China
| | - Nian Yuan
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Ronghua Li
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Jun Zhang
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Siyun Zou
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Xueli Zhao
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Xiaoli Lyu
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Zhe Li
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Xiaobin Zhang
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Xiangyang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Lopresti AL, Smith SJ, Majeed M, Drummond PD. Effects of an Oroxylum indicum Extract (Sabroxy ®) on Cognitive Function in Adults With Self-reported Mild Cognitive Impairment: A Randomized, Double-Blind, Placebo-Controlled Study. Front Aging Neurosci 2021; 13:728360. [PMID: 34531736 PMCID: PMC8438240 DOI: 10.3389/fnagi.2021.728360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/05/2021] [Indexed: 11/29/2022] Open
Abstract
Background: Oroxylum indicum has been used in traditional Ayurvedic medicine for the prevention and treatment of several diseases and may have neuroprotective effects. Purpose: Examine the effects of Oroxylum indicum on cognitive function in older adults with self-reported cognitive complaints. Study Design: Two-arm, parallel-group, 12-week, randomized, double-blind, placebo-controlled trial. Methods: Eighty-two volunteers received either 500 mg, twice daily of a standardized Oroxylum indicum extract or placebo. Outcome measures included several computer-based cognitive tasks, the Control, Autonomy, Self-Realization, and Pleasure scale (CASP-19), Cognitive Failures Questionnaire (CFQ), and the Montreal Cognitive Assessment (MoCA). Changes in the concentration of brain-derived neurotrophic factor (BDNF) were also examined. Results: Compared to the placebo, Oroxylum indicum was associated with greater improvements in episodic memory, and on several computer-based cognitive tasks such as immediate word recall and numeric working memory, and a faster rate of learning on the location learning task. However, there were no other significant differences in performance on the other assessed cognitive tests, the MoCA total score, or other self-report questionnaires. BDNF concentrations increased significantly in both groups, with no statistically-significant between-group differences. Oroxylum indicum was well tolerated except for an increased tendency for mild digestive complaints and headaches. Conclusion: The results of this first human trial on the cognitive-enhancing effects of Oroxylum indicum suggest that it is a promising herbal candidate for the improvement of cognitive function in older adults with self-reported cognitive complaints.
Collapse
Affiliation(s)
- Adrian L Lopresti
- Clinical Research Australia, Perth, WA, Australia.,College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Stephen J Smith
- Clinical Research Australia, Perth, WA, Australia.,College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Muhammed Majeed
- Sami-Sabinsa Group Limited, Peenya Industrial Area, Bangalore, India
| | - Peter D Drummond
- College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| |
Collapse
|
18
|
Murawska-Ciałowicz E, de Assis GG, Clemente FM, Feito Y, Stastny P, Zuwała-Jagiełło J, Bibrowicz B, Wolański P. Effect of four different forms of high intensity training on BDNF response to Wingate and Graded Exercise Test. Sci Rep 2021; 11:8599. [PMID: 33883635 PMCID: PMC8060323 DOI: 10.1038/s41598-021-88069-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
This study examined the effects of a nine-week intervention of four different high-intensity training modalities [high-intensity functional training (HIFT), high-intensity interval training (HIIT), high-intensity power training (HIPT), and high-intensity endurance training (HIET)] on the resting concentration of brain-derived neurotropic factor (BDNF). In addition, we evaluated the BDNF responses to Graded Exercise Test (GXT) and Wingate Anaerobic Test (WAnT) in men. Thirty-five healthy individuals with body mass index 25.55 ± 2.35 kg/m2 voluntarily participated in this study and were randomly assigned into four training groups. During nine-weeks they completed three exercise sessions per week for one-hour. BDNF was analyzed before and after a GXT and WAnT in two stages: (stage 0-before training and stage 9-after nine weeks of training). At stage 0, an increase in BDNF concentration was observed in HIFT (33%; p < 0.05), HIPT (36%; p < 0.05) and HIIT (38%; p < 0.05) after GXT. Even though HIET showed an increase in BDNF (10%) this was not statistically significant (p > 0.05). At stage 9, higher BDNF levels after GXT were seen only for the HIFT (30%; p < 0.05) and HIIT (18%; p < 0.05) groups. Reduction in BDNF levels were noted after the WAnT in stage 0 for HIFT (- 47%; p < 0.01), HIPT (- 49%; p < 0.001), HIET (- 18%; p < 0.05)], with no changes in the HIIT group (- 2%). At stage 9, BDNF was also reduced after WAnT, although these changes were lower compared to stage 0. The reduced level of BDNF was noted in the HIFT (- 28%; p < 0.05), and HIPT (- 19%;p < 0.05) groups. Additionally, all groups saw an improvement in VO2max (8%; p < 0.001), while BDNF was also correlated with lactate and minute ventilation and selected WAnT parameters. Our research has shown that resting values of BDNF after nine weeks of different forms of high-intensity training (HIT) have not changed or were reduced. Resting BDNF measured at 3th (before GXT at stage 9) and 6th day after long lasting HITs (before WAnT at stage 9) did not differed (before GXT), but in comparison to the resting value before WAnT at the baseline state, was lower in three groups. It appears that BDNF levels after one bout of exercise is depended on duration time, intensity and type of test/exercise.
Collapse
Affiliation(s)
| | - Gilmara Gomes de Assis
- Department of Molecular Biology, Gdansk University of Physical Education and Sport, Gdańsk, Poland
- Mossakowski Medical Research Centre, PAN, Warsaw, Poland
| | - Filipe Manuel Clemente
- Escola Superior Desporto E Lazer, Instituto Politécnico de Viana Do Castelo, Viana do Castelo, Portugal
- Instituto de Telecomunicações, Delegação da Covilhã, Covilhã, Portugal
| | - Yuri Feito
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, USA
| | - Petr Stastny
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | | | | | - Paweł Wolański
- Physiology and Biochemistry Department, University School of Physical Education, Wrocław, Poland
| |
Collapse
|
19
|
O'Gorman P, Strahan O, Ferguson D, Monaghan A, Kennedy M, Forde C, Melo AM, Doherty DG, O'Brien KK, McKiernan S, Kenny RA, Coen R, Doherty C, Bergin C, Gormley J, Norris S. Improvement in cognitive impairment following a 12-week aerobic exercise intervention in individuals with non-cirrhotic chronic hepatitis C. J Viral Hepat 2021; 28:637-650. [PMID: 33372320 DOI: 10.1111/jvh.13460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/02/2020] [Accepted: 11/09/2020] [Indexed: 12/09/2022]
Abstract
Cognitive impairment occurs in 30%-50% of patients with non-cirrhotic chronic hepatitis C virus (HCV) infection. Exercise is beneficial in preventing and treating cognitive impairment and cardiometabolic abnormalities in many chronic inflammatory diseases, but there are few studies investigating the impact of exercise in HCV infection. The study aimed to assess the effect of a 12-week aerobic exercise intervention on cognition and extrahepatic manifestations in individuals with HCV. In this nonrandomized controlled pilot study, individuals with HCV participated in a 12-week aerobic exercise intervention. Outcome measures included cognition (Montreal Cognitive Assessment [MOCA], Trail Making Test A & B [TMT-A; TMT-B], Digit Symbol Test [DST]), cardiorespiratory fitness (estimated V˙O2max ), physical activity (accelerometry), anthropometry, quality of life (depression; fatigue; sleep quality) and biochemical markers. Outcomes were assessed at baseline (T0), intervention completion (T1) and 12 weeks after intervention completion (T2). Thirty-one patients completed the study (exercise group n = 13, control group n = 18). In the exercise group, cognition improved at T1 in the TMT-A (31% mean improvement, p = 0.019), TMT-B (15% mean improvement, p = 0.012) time and MOCA (14% mean improvement, p ≤ 0.001). These improvements were not maintained at T2. Depression (p = 0.038), sleep quality (p = 0.002), fatigue (p = 0.037) and estimated V˙O2max (7.8 mL kg-1 min-1 [22%] mean increase, p = 0.004) also improved at T1. In conclusion, this study demonstrates the benefits of a 12-week aerobic exercise intervention in improving cognition, quality of life and cardiorespiratory fitness in individuals with HCV. Larger studies are needed to confirm these findings and strategies for continued exercise engagement in individuals with HCV are warranted for sustained benefits.
Collapse
Affiliation(s)
- Philip O'Gorman
- Discipline of Physiotherapy, Trinity College, The University of Dublin, Dublin, Ireland
| | - Orla Strahan
- School of Psychology, Trinity College, The University of Dublin, Dublin, Ireland
| | - Damien Ferguson
- Academic Unit of Neurology, Trinity College, The University of Dublin, Dublin, Ireland.,Department of Neurology, St James's Hospital, Dublin, Ireland
| | - Ann Monaghan
- Discipline of Physiotherapy, Trinity College, The University of Dublin, Dublin, Ireland
| | - Megan Kennedy
- Discipline of Physiotherapy, Trinity College, The University of Dublin, Dublin, Ireland
| | - Cuisle Forde
- Discipline of Physiotherapy, Trinity College, The University of Dublin, Dublin, Ireland
| | - Ashanty M Melo
- Discipline of Immunology, Trinity College, The University of Dublin, Dublin, Ireland
| | - Derek G Doherty
- Discipline of Immunology, Trinity College, The University of Dublin, Dublin, Ireland
| | - Kelly K O'Brien
- Department of Physical Therapy, University of Toronto, Toronto, ON, Canada.,Institute of Health Policy, Management and Evaluation (IHPME), University of Toronto, Toronto, ON, Canada.,Rehabilitation Sciences Institute (RSI), University of Toronto, Toronto, ON, Canada
| | - Susan McKiernan
- Department of Clinical Medicine, Trinity College, The University of Dublin, Dublin, Ireland.,Department of Hepatology, St James's Hospital, Dublin, Ireland
| | - Rose Anne Kenny
- The Irish Longitudinal Study on Ageing (TILDA), Trinity College, The University of Dublin, Dublin, Ireland.,Mercer's Institute for Successful Ageing, St James's Hospital, Dublin, Ireland
| | - Robert Coen
- Mercer's Institute for Successful Ageing, St James's Hospital, Dublin, Ireland
| | - Colin Doherty
- Academic Unit of Neurology, Trinity College, The University of Dublin, Dublin, Ireland.,Department of Neurology, St James's Hospital, Dublin, Ireland.,FutureNeuro Centre for Rare and Chronic Diseases, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Colm Bergin
- Department of Clinical Medicine, Trinity College, The University of Dublin, Dublin, Ireland.,Department of Genito-Urinary Medicine and Infectious Diseases, St James's Hospital, Dublin, Ireland
| | - John Gormley
- Discipline of Physiotherapy, Trinity College, The University of Dublin, Dublin, Ireland
| | - Suzanne Norris
- Department of Clinical Medicine, Trinity College, The University of Dublin, Dublin, Ireland.,Department of Hepatology, St James's Hospital, Dublin, Ireland
| |
Collapse
|
20
|
Arosio B, Guerini FR, Voshaar RCO, Aprahamian I. Blood Brain-Derived Neurotrophic Factor (BDNF) and Major Depression: Do We Have a Translational Perspective? Front Behav Neurosci 2021; 15:626906. [PMID: 33643008 PMCID: PMC7906965 DOI: 10.3389/fnbeh.2021.626906] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/14/2021] [Indexed: 12/17/2022] Open
Abstract
Major depressive disorder (MDD) affects millions of people worldwide and is a leading cause of disability. Several theories have been proposed to explain its pathological mechanisms, and the “neurotrophin hypothesis of depression” involves one of the most relevant pathways. Brain-derived neurotrophic factor (BDNF) is an important neurotrophin, and it has been extensively investigated in both experimental models and clinical studies of MDD. Robust empirical findings have indicated an association between increased BDNF gene expression and peripheral concentration with improved neuronal plasticity and neurogenesis. Additionally, several studies have indicated the blunt expression of BDNF in carriers of the Val66Met gene polymorphism and lower blood BDNF (serum or plasma) levels in depressed individuals. Clinical trials have yielded mixed results with different treatment options, peripheral blood BDNF measurement techniques, and time of observation. Previous meta-analyses of MDD treatment have indicated that antidepressants and electroconvulsive therapy showed higher levels of blood BDNF after treatment but not with physical exercise, psychotherapy, or direct current stimulation. Moreover, the rapid-acting antidepressant ketamine has presented an early increase in blood BDNF concentration. Although evidence has pointed to increased levels of BDNF after antidepressant therapy, several factors, such as heterogeneous results, low sample size, publication bias, and different BDNF measurements (serum or plasma), pose a challenge in the interpretation of the relation between peripheral blood BDNF and MDD. These potential gaps in the literature have not been properly addressed in previous narrative reviews. In this review, current evidence regarding BDNF function, genetics and epigenetics, expression, and results from clinical trials is summarized, putting the literature into a translational perspective on MDD. In general, blood BDNF cannot be recommended for use as a biomarker in clinical practice. Moreover, future studies should expand the evidence with larger samples, use the serum or serum: whole blood concentration of BDNF as a more accurate measure of peripheral BDNF, and compare its change upon different treatment modalities of MDD.
Collapse
Affiliation(s)
- Beatrice Arosio
- Geriatric Unit, Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | | | - Richard C Oude Voshaar
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Ivan Aprahamian
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Group of Investigation on Multimorbidity and Mental Health in Aging (GIMMA), Geriatrics Division, Internal Medicine Department, Faculty of Medicine of Jundiaí, Jundiaí, Brazil
| |
Collapse
|
21
|
Working memory moderates the relation between the brain-derived neurotropic factor (BDNF) and psychotherapy outcome for depression. J Psychiatr Res 2020; 130:424-432. [PMID: 32891918 DOI: 10.1016/j.jpsychires.2020.07.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Insight into patient characteristics that predict response to treatment for major depressive disorder (MDD) may help to personalize treatment and improve outcomes. One mechanism that has been linked to the success of treatment for MDD is brain-derived neurotropic factor (BDNF). BDNF is implicated in learning and memory and may play a role in the effects of psychotherapy that involves changing cognitions and behaviors. In addition, only in individuals with low BDNF, low working memory capacity has been associated with increased symptoms of depression. However, the role of BDNF and working memory capacity in psychotherapy outcome is unclear. The aim of this study was to investigate the role of BDNF and its interaction with working memory capacity in psychotherapy outcomes for MDD. METHOD Adult patients with MDD were randomized to weekly or twice weekly sessions of cognitive behavioral therapy or interpersonal psychotherapy. BDNF Val66Met polymorphism (rs6265) (n = 138) was defined and serum BDNF was quantified before (n = 138) and after psychotherapy (n = 82). RESULTS Baseline serum BDNF and the Val66Met polymorphism were not associated with outcome and associations did not differ between treatment conditions. Working memory capacity significantly moderated the relation between baseline serum BDNF and outcome: high serum BDNF at baseline was related to less depressive symptoms following psychotherapy in the presence of high working memory capacity, but not low working memory capacity. DISCUSSION These findings, if replicated, might indicate that while BDNF may not be related to psychotherapy outcomes in general, they may play a role in the presence of specific learning processes such as working memory capacity.
Collapse
|
22
|
O'Callaghan A, Harvey M, Houghton D, Gray WK, Weston KL, Oates LL, Romano B, Walker RW. Comparing the influence of exercise intensity on brain-derived neurotrophic factor serum levels in people with Parkinson's disease: a pilot study. Aging Clin Exp Res 2020; 32:1731-1738. [PMID: 31606860 DOI: 10.1007/s40520-019-01353-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/10/2019] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Endogenous brain-derived neurotrophic factor (BDNF) is thought to be protective against the neurodegeneration seen in Parkinson's disease (PD), and is thought to increase during exercise. This has been proposed as a possible mechanism by which exercise improves outcomes for people with PD. We conducted a pilot study to investigate the role of exercise intensity on BDNF levels in people with PD. METHODS Participants of early- to mid-stage disease were recruited from a single PD service in north-east England, UK into two separate studies of exercise in PD, one involving moderate-intensity continuous training (MICT) and one involving high-intensity interval training (HIIT), both had control groups. In both the interventions, participants exercise three times per week for 12 weeks. Blood samples were taken for BDNF analysis at the start and end of the first session and the start and end of the final session, with corresponding samples taken in controls. RESULTS Data were available for 27 participants (13 intervention, 14 control) in the MICT intervention and 17 (9 intervention, 8 control) in the HIIT intervention. BDNF level did not rise significantly from the start to end of individual sessions. Across the 12 week period, they rose significantly in the HIIT intervention group, but not in controls or the MICT intervention group. CONCLUSIONS High-intensity interval training appears to have a greater impact on BDNF than MICT. Future work should directly compare exercise modalities and investigate the impact of BDNF levels on disease progression and quality of life.
Collapse
Affiliation(s)
- Ailish O'Callaghan
- Northumbria Healthcare NHS Foundation Trust, North Tyneside General Hospital, Rake Lane, North Shields, Tyne and Wear, NE29 8NH, UK
- North Cumbria University Hospitals NHS Trust, Cumberland Infirmary, Carlisle, UK
| | - Marguerite Harvey
- Northumbria Healthcare NHS Foundation Trust, North Tyneside General Hospital, Rake Lane, North Shields, Tyne and Wear, NE29 8NH, UK
| | - David Houghton
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - William K Gray
- Northumbria Healthcare NHS Foundation Trust, North Tyneside General Hospital, Rake Lane, North Shields, Tyne and Wear, NE29 8NH, UK.
| | - Kathryn L Weston
- School of Health and Social Care, Teesside University, Middlesbrough, UK
| | - Lloyd L Oates
- Northumbria Healthcare NHS Foundation Trust, North Tyneside General Hospital, Rake Lane, North Shields, Tyne and Wear, NE29 8NH, UK
| | | | - Richard W Walker
- Northumbria Healthcare NHS Foundation Trust, North Tyneside General Hospital, Rake Lane, North Shields, Tyne and Wear, NE29 8NH, UK
- Institute of Health and Society, Newcastle University, Newcastle-upon-Tyne, UK
| |
Collapse
|
23
|
Walsh EI, Smith L, Northey J, Rattray B, Cherbuin N. Towards an understanding of the physical activity-BDNF-cognition triumvirate: A review of associations and dosage. Ageing Res Rev 2020; 60:101044. [PMID: 32171785 DOI: 10.1016/j.arr.2020.101044] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/06/2020] [Accepted: 03/10/2020] [Indexed: 12/17/2022]
Abstract
Physical activity has received substantial research attention due to its beneficial impact on cognition in ageing, particularly via the action of brain-derived neurotrophic factor (BDNF). It is well established that physical activity can elevate circulating levels of BDNF, and that BDNF has neurotrophic, neuroprotective and cognitively beneficial properties. Yet, practical implementation of this knowledge is limited by a lack of clarity on context and dose-effect. Against a shifting backdrop of gradually diminishing physical and cognitive capacity in normal ageing, the type, intensity, and duration of physical activity required to elicit elevations in BDNF, and more importantly, the magnitude of BDNF elevation required for detectable neuroprotection remains poorly characterised. The purpose of this review is to provide an overview of the association between physical activity, BDNF, and cognition, with a focus on clarifying the magnitude of these effects in the context of normative ageing. We discuss the implications of the available evidence for the design of physical activity interventions intended to promote healthy cognitive ageing.
Collapse
|
24
|
Nirwan M, Halder K, Saha M, Pathak A, Balakrishnan R, Ganju L. Improvement in resilience and stress-related blood markers following ten months yoga practice in Antarctica. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2020; 18:201-207. [PMID: 32554833 DOI: 10.1515/jcim-2019-0240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/20/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Wintering is associated with distress to humans who work in the isolated and confined environment of Antarctica and yoga has been proved helpful for coping with stress. Therefore, a study was conducted on 14 winter expedition members of Indian Scientific Antarctic Expedition (2016) to find out the effects of yoga on stress-related markers. METHODS Participants were divided into yoga, and control (non-yoga) groups. The yoga group practiced yoga for 10 months (from January to October 2016) daily in the morning for an hour. The Resilience test questionnaire was administrated at baseline and endpoint of the study. Blood samples were collected during the study at different intervals for the estimation of 8-hydroxydeoxyguanosine (8-OHdG), brain-derived neurotrophic factor (BDNF), serotonin and cortisol using ELISA. RESULTS A trend of improvement was observed in the resilience test score in the yoga group. From January to October, 8-OHdG serum values in the yoga group declined by 55.9% from 1010.0 ± 67.8 pg/mL to 445.6 ± 60.5 pg/mL (Mean ± SD); in the control group, the decline was 49.9% from 1060.4 ± 54.6 pg/mL to 531.1 ± 81.8 pg/mL. In serotonin serum levels in the yoga group, there was a 3.1% increase from 6.4 ± 1.6 ng/mL to 6.6 ± 0.4 ng/mL while no increase was noticed in the control group. Cortisol values in the yoga group decreased by 19.9% from 321.0 ± 189.6 ng/mL to 257.1 ± 133.8 ng/mL; in the control group it increased by 2.8% from 241.2 ± 51.8 ng/mL to 247.8 ± 90.9 ng/mL. CONCLUSIONS It could be concluded from the present study that following 10 months yoga practice may be useful for better resilience and management of stress-related blood markers for the polar sojourners.
Collapse
Affiliation(s)
- Mohit Nirwan
- Defence Institute of Physiology & Allied Sciences (DIPAS) Defence R & D Organization Timarpur, Delhi, India
| | - Kaushik Halder
- Defence Institute of Physiology & Allied Sciences (DIPAS) Defence R & D Organization Timarpur, Delhi, India
| | - Mantu Saha
- Defence Institute of Physiology & Allied Sciences (DIPAS) Defence R & D Organization Timarpur, Delhi-110054, India
| | - Anjana Pathak
- Defence Institute of Physiology & Allied Sciences (DIPAS) Defence R & D Organization Timarpur, Delhi, India
| | | | - Lilly Ganju
- Defence Institute of Physiology & Allied Sciences (DIPAS) Defence R & D Organization Timarpur, Delhi, India
| |
Collapse
|
25
|
Majrashi NA, Ahearn TS, Waiter GD. Brainstem volume mediates seasonal variation in depressive symptoms: A cross sectional study in the UK Biobank cohort. Sci Rep 2020; 10:3592. [PMID: 32108162 PMCID: PMC7046735 DOI: 10.1038/s41598-020-60620-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/10/2020] [Indexed: 11/18/2022] Open
Abstract
Seasonal differences in mood and depressive symptoms affect a large percentage of the general population, with seasonal affective disorder (SAD) representing the most common presentation. SAD affects up to 3% of the world’s population, and it tends to be more predominant in females than males. The brainstem has been shown to be affected by photoperiodic changes, and that longer photoperiods are associated with higher neuronal density and decreased depressive-like behaviours. We predict that longer photoperiod days are associated with larger brainstem volumes and lower depressive scores, and that brainstem volume mediates the seasonality of depressive symptoms. Participants (N = 9289, 51.8% females and 48.1% males) ranging in age from 44 to 79 years were scanned by MRI at a single location. Photoperiod was found to be negatively correlated with low mood and anhedonia in females while photoperiod was found to be positively correlated with brainstem volumes. In females, whole brainstem, pons and medulla volumes individually mediated the relationship between photoperiod and both anhedonia and low mood, while midbrain volume mediated the relationship between photoperiod and anhedonia. No mediation effects were seen in males. Our study extends the understanding of the neurobiological factors that contribute to the pathophysiology of seasonal mood variations.
Collapse
Affiliation(s)
- Naif A Majrashi
- Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, UK.,Diagnostic Radiology Department, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Trevor S Ahearn
- Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, UK.,Medical Physics, NHS Grampian, Aberdeen, UK
| | - Gordon D Waiter
- Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
26
|
Chen L, Li XS, Zheng GE, Xie GJ, Cheng Y. Peripheral blood BDNF-TrkB signaling in first-episode, drug-free patients with major depressive disorder and schizophrenia. Neurosci Lett 2019; 714:134618. [PMID: 31711978 DOI: 10.1016/j.neulet.2019.134618] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) has been implicated in the pathogenesis of psychiatric disorders, and studies have shown BDNF aberrations in major psychiatric diseases including schizophrenia (SCZ) and major depressive disorder (MDD). However, data from clinical studies were inconsistent. In this study, we recruited 34 patients with MDD, 77 patients with SCZ and 65 healthy control (HC) subjects to clarify the circulating BDNF levels in MDD and SCZ patients, and to assess whether serum BDNF levels were associated with the disease severity. Our results showed that serum BDNF levels were significantly decreased in the patients with SCZ (Mean difference = -4.517, 95%CI of difference = -7.854 to -1.180, p < 0.01) and MDD (Mean difference = -5.699, 95%CI of difference = -9.892 to -1.506, p < 0.01) when compared with HC subjects. Sub-group analyses suggested that BDNF levels were significantly reduced in the female SCZ (Mean difference = -5.700, 95%CI of difference = -10.21 to -1.189, p < 0.01) and MDD (Mean difference = -5.840, 95%CI of difference = -10.66 to -1.019, p < 0.05) patients, but not in male patients. Further analyses indicated that serum BDNF levels were not correlated with disease severity of MDD and SCZ. In addition, the transcriptional expression of TrkB was significantly down-regulated in the blood of MDD patients, but not in SCZ patients. However, there was no significant correlation between BDNF concentrations and TrkB mRNA levels. Taken together, our results revealed differential changes of BDNF-TrkB signaling in MDD and SCZ patients, therefore contributed to a better understanding of MDD and SCZ pathophysiology.
Collapse
Affiliation(s)
- Lei Chen
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Xue-Song Li
- The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Guang-En Zheng
- The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Guo-Jun Xie
- The Third People's Hospital of Foshan, Foshan, Guangdong, China.
| | - Yong Cheng
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China.
| |
Collapse
|
27
|
Vogel SWN, Ten Have ML, Bijlenga D, de Graaf R, Beekman ATF, Kooij JJS. Seasonal Variations in the Severity of ADHD Symptoms in the Dutch General Population. J Atten Disord 2019; 23:924-930. [PMID: 27199240 DOI: 10.1177/1087054716649663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE This is the first study to examine self-reported seasonal differences in the severity of ADHD symptoms in adults from the general population. METHOD Data were analyzed from N = 5,303 respondents participating in the second wave of the Netherlands Mental Health Survey and Incidence Study-2, a population-based study on mental health. ADHD symptoms were assessed using the Adult ADHD Self-Report Scale Screener. As indicators of the severity of ADHD symptoms, the total ADHD symptom score and inattention and hyperactivity subscale scores were examined. RESULTS Compared with participants who were assessed in autumn, total ADHD and inattention subscale scores were significantly higher among participants who were assessed in spring or summer; the hyperactivity subscale score was significantly higher in spring. CONCLUSION We found seasonal variations in the severity of ADHD symptoms, which was highest in those assessed in spring and summer. Researchers should be aware of this in the diagnostic process.
Collapse
Affiliation(s)
- Suzan W N Vogel
- 1 PsyQ, Expertise Center Adult ADHD, The Hague, The Netherlands
| | - Margreet L Ten Have
- 2 Netherlands Institute of Mental Health and Addiction (Trimbos Institute), Utrecht, The Netherlands
| | - Denise Bijlenga
- 1 PsyQ, Expertise Center Adult ADHD, The Hague, The Netherlands
| | - Ron de Graaf
- 2 Netherlands Institute of Mental Health and Addiction (Trimbos Institute), Utrecht, The Netherlands
| | | | - J J Sandra Kooij
- 1 PsyQ, Expertise Center Adult ADHD, The Hague, The Netherlands.,3 VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
28
|
He HY, Tian JL, Deng YQ, Xiong X, Xu Y, Liao YM, Fang J, Feng X, Ye X, Li CQ. Association of brain-derived neurotrophic factor levels and depressive symptoms in young adults with acne vulgaris. BMC Psychiatry 2019; 19:193. [PMID: 31234814 PMCID: PMC6591989 DOI: 10.1186/s12888-019-2182-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 06/13/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) is one of the proteins that contributes to the survival, growth, maintenance of neurons, and plays important roles in the pathophysiology of depression. It has been reported that depression is closely associated with the pathogenesis of acne vulgaris disease. But, there is no report of serum BDNF levels in patients with acne vulgaris. The study aimed to determine the potential association between BDNF and depressive symptoms in young adults with acne vulgaris. METHODS In this analytical cross-sectional study, the serum BDNF levels were measured in peripheral blood samples of 20 consecutive acne vulgaris patients with depression and 98 consecutive acne vulgaris patients without depression and also compared it with a 59 healthy control group by using a ELISA. The potential correlation between the BDNF levels, interleukin-6 (IL-6), tumour necrosis factor-alpha (TNF-α), and depressive symptoms such as nine-item patient health questionnaire (PHQ-9) and Athens insomnia scale (AIS) were evaluated with multivariate logistic regression analysis. RESULTS Our results showed that levels of BDNF expression were lower in consecutive acne vulgaris patients when compared with healthy control (P < 0.05). There was a negative correlation between levels of BDNF and the PHQ-9 scores (r = - 0.486, P < 0.001). Furthermore, acne vulgaris patients with depression showed lower serum BDNF levels (10.96 ± 2.12 ng/ml) compared with acne vulgaris patients without depression (13.85 ± 2.47 ng/ml), as well as with healthy control (14.35 ± 2.70 ng/mg; both P < 0.05). No difference was found in serum BDNF levels between healthy control and acne vulgaris patients without depressive symptoms (z = 0.964, P > 0.05). Similarly, the overall area under the curve of receiver operating characteristic was 0.82, indicating the highly conserving of serum BDNF levels as an biomarker for screening of depression in young adults with acne vulgaris (72% sensitivity and 85% specificity). CONCLUSION Serum BDNF levels were decreased and negatively associated with depressive symptoms in young Chinese adults with acne vulgaris.
Collapse
Affiliation(s)
- Hong-yi He
- grid.488387.8Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000 People’s Republic of China
| | - Jin-lan Tian
- grid.488387.8Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000 People’s Republic of China
| | - Yong-qiong Deng
- grid.488387.8Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000 People’s Republic of China
| | - Xia Xiong
- grid.488387.8Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000 People’s Republic of China
| | - Yang Xu
- grid.488387.8Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000 People’s Republic of China
| | - Yong-mei Liao
- grid.488387.8Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000 People’s Republic of China
| | - Jing Fang
- grid.488387.8Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000 People’s Republic of China
| | - Xia Feng
- grid.488387.8Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000 People’s Republic of China
| | - Xin Ye
- grid.488387.8Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000 People’s Republic of China
| | - Chang-qiang Li
- grid.488387.8Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000 People’s Republic of China
| |
Collapse
|
29
|
Association between the novel seizure quality index for the outcome prediction in electroconvulsive therapy and brain-derived neurotrophic factor serum levels. Neurosci Lett 2019; 704:164-168. [DOI: 10.1016/j.neulet.2019.04.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/29/2019] [Accepted: 04/08/2019] [Indexed: 01/09/2023]
|
30
|
Bauer M, Glenn T, Alda M, Andreassen OA, Angelopoulos E, Ardau R, Ayhan Y, Baethge C, Bauer R, Baune BT, Becerra-Palars C, Bellivier F, Belmaker RH, Berk M, Bersudsky Y, Bicakci Ş, Birabwa-Oketcho H, Bjella TD, Cabrera J, Wo Cheung EY, Del Zompo M, Dodd S, Donix M, Etain B, Fagiolini A, Fountoulakis KN, Frye MA, Gonzalez-Pinto A, Gottlieb JF, Grof P, Harima H, Henry C, Isometsä ET, Janno S, Kapczinski F, Kardell M, Khaldi S, Kliwicki S, König B, Kot TL, Krogh R, Kunz M, Lafer B, Landén M, Larsen ER, Lewitzka U, Licht RW, Lopez-Jaramillo C, MacQueen G, Manchia M, Marsh W, Martinez-Cengotitabengoa M, Melle I, Meza-Urzúa F, Ming MY, Monteith S, Morken G, Mosca E, Mozzhegorov AA, Munoz R, Mythri SV, Nacef F, Nadella RK, Nery FG, Nielsen RE, O'Donovan C, Omrani A, Osher Y, Sørensen HØ, Ouali U, Ruiz YP, Pilhatsch M, Pinna M, da Ponte FDR, Quiroz D, Ramesar R, Rasgon N, Reddy MS, Reif A, Ritter P, Rybakowski JK, Sagduyu K, Raghuraman BS, Scippa ÂM, Severus E, Simhandl C, Stackhouse PW, Stein DJ, Strejilevich S, Subramaniam M, Sulaiman AH, Suominen K, Tagata H, Tatebayashi Y, Tondo L, Torrent C, Vaaler AE, Vares E, Veeh J, Vieta E, Viswanath B, Yoldi-Negrete M, Zetin M, Zgueb Y, Whybrow PC. Association between solar insolation and a history of suicide attempts in bipolar I disorder. J Psychiatr Res 2019; 113:1-9. [PMID: 30878786 DOI: 10.1016/j.jpsychires.2019.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/05/2019] [Accepted: 03/01/2019] [Indexed: 12/28/2022]
Abstract
In many international studies, rates of completed suicide and suicide attempts have a seasonal pattern that peaks in spring or summer. This exploratory study investigated the association between solar insolation and a history of suicide attempt in patients with bipolar I disorder. Solar insolation is the amount of electromagnetic energy from the Sun striking a surface area on Earth. Data were collected previously from 5536 patients with bipolar I disorder at 50 collection sites in 32 countries at a wide range of latitudes in both hemispheres. Suicide related data were available for 3365 patients from 310 onset locations in 51 countries. 1047 (31.1%) had a history of suicide attempt. There was a significant inverse association between a history of suicide attempt and the ratio of mean winter solar insolation/mean summer solar insolation. This ratio is smallest near the poles where the winter insolation is very small compared to the summer insolation. This ratio is largest near the equator where there is relatively little variation in the insolation over the year. Other variables in the model that were positively associated with suicide attempt were being female, a history of alcohol or substance abuse, and being in a younger birth cohort. Living in a country with a state-sponsored religion decreased the association. (All estimated coefficients p < 0.01). In summary, living in locations with large changes in solar insolation between winter and summer may be associated with increased suicide attempts in patients with bipolar disorder. Further investigation of the impacts of solar insolation on the course of bipolar disorder is needed.
Collapse
Affiliation(s)
- Michael Bauer
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Tasha Glenn
- ChronoRecord Association, Fullerton, CA, USA
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Ole A Andreassen
- NORMENT - K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Elias Angelopoulos
- Department of Psychiatry, National and Capodistrian University of Athens, Medical School, Eginition Hospital, Athens, Greece
| | - Raffaella Ardau
- Section of Neurosciences and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Sardinia, Italy
| | - Yavuz Ayhan
- Department of Psychiatry, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Christopher Baethge
- Department of Psychiatry and Psychotherapy, University of Cologne Medical School, Cologne, Germany
| | - Rita Bauer
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Bernhard T Baune
- Department of Psychiatry, School of Medicine, University of Adelaide, Adelaide, Australia
| | | | - Frank Bellivier
- Psychiatry and Addiction Medicine. Assistance Publique - Hôpitaux de Paris, INSERM UMR-S1144, Denis Diderot University, René Descartes University, FondaMental Foundation, Paris, France
| | - Robert H Belmaker
- Department of Psychiatry, Faculty of Health Sciences, Beer Sheva Mental Health Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Geelong, Victoria, Australia; Department of Psychiatry, Orygen, the National Centre for Excellence in Youth Mental Health, the Centre for Youth Mental Health and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Yuly Bersudsky
- Department of Psychiatry, Faculty of Health Sciences, Beer Sheva Mental Health Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | | | - Thomas D Bjella
- NORMENT - K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jorge Cabrera
- Mood Disorders Clinic, Dr. Jose Horwitz Psychiatric Institute, Santiago de Chile, Chile
| | - Eric Y Wo Cheung
- Department of General Adult Psychiatry, Castle Peak Hospital, Hong Kong
| | - Maria Del Zompo
- Section of Neurosciences and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Sardinia, Italy
| | - Seetal Dodd
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Geelong, Victoria, Australia; Department of Psychiatry, University of Melbourne, Parkville, Victoria, Australia
| | - Markus Donix
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Bruno Etain
- Psychiatry and Addiction Medicine. Assistance Publique - Hôpitaux de Paris, INSERM UMR-S1144, Denis Diderot University, René Descartes University, FondaMental Foundation, Paris, France
| | - Andrea Fagiolini
- Department of Molecular Medicine and Department of Mental Health (DAI), University of Siena and University of Siena Medical Center (AOUS), Siena, Italy
| | - Kostas N Fountoulakis
- Division of Neurosciences, 3rd Department of Psychiatry, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Mark A Frye
- Department of Psychiatry & Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, MN, USA
| | - Ana Gonzalez-Pinto
- Department of Psychiatry, University Hospital of Alava, University of the Basque Country, CIBERSAM, Vitoria, Spain
| | - John F Gottlieb
- Department of Psychiatry, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Paul Grof
- Mood Disorders Center of Ottawa, University of Toronto, Toronto, ON, Canada
| | - Hirohiko Harima
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya, Tokyo, Japan
| | - Chantal Henry
- AP-HP, Hopitaux Universitaires Henri Mondor and INSERM U955 (IMRB) and Université Paris Est and Institut Pasteur, Unité Perception et Mémoire, Paris, France
| | - Erkki T Isometsä
- Department of Psychiatry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; National Institute for Health and Welfare, Helsinki, Finland
| | - Sven Janno
- Department of Psychiatry, University of Tartu, Tartu, Estonia
| | - Flávio Kapczinski
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mathias Kardell
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Sebastian Kliwicki
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Barbara König
- BIPOLAR Zentrum Wiener Neustadt, Wiener Neustadt, Austria
| | - Timur L Kot
- Khanty-Mansiysk Clinical Psychoneurological Hospital, Khanty-Mansiysk, Russia
| | - Rikke Krogh
- Department of Affective Disorders, Q, Mood Disorders Research Unit, Aarhus University Hospital, Aarhus, Denmark
| | - Mauricio Kunz
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Beny Lafer
- Bipolar Disorder Research Program, Department of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Mikael Landén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg and Mölndal, Sweden; Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Erik R Larsen
- Department of Affective Disorders, Q, Mood Disorders Research Unit, Aarhus University Hospital, Aarhus, Denmark
| | - Ute Lewitzka
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Rasmus W Licht
- Unit for Psychiatric Research, Aalborg University Hospital, Psychiatry, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Carlos Lopez-Jaramillo
- Mood Disorders Program, Hospital Universitario San Vicente Fundación, Research Group in Psychiatry, Department of Psychiatry, Faculty of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Glenda MacQueen
- Department of Psychiatry, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mirko Manchia
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada; Section of Psychiatry, Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Wendy Marsh
- Department of Psychiatry, University of Massachusetts, Worcester, MA, USA
| | | | - Ingrid Melle
- NORMENT - K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Fátima Meza-Urzúa
- National Institute of Psychiatry '"Ramón de la Fuente Muñiz", Mexico City, Mexico
| | - Mok Yee Ming
- Department of General Psychiatry, Mood Disorders Unit, Institute of Mental Health, Singapore City, Singapore
| | - Scott Monteith
- Michigan State University College of Human Medicine, Traverse City Campus, Traverse City, MI, USA
| | - Gunnar Morken
- Department of Mental Health, Norwegian University of Science and Technology - NTNU, Trondheim, Norway; Department of Psychiatry, St Olavs' University Hospital, Trondheim, Norway
| | - Enrica Mosca
- Section of Neurosciences and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Sardinia, Italy
| | | | - Rodrigo Munoz
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | | | - Fethi Nacef
- Razi Hospital, Faculty of Medicine, University of Tunis-El Manar, Tunis, Tunisia
| | | | - Fabiano G Nery
- Bipolar Disorder Research Program, Department of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - René E Nielsen
- Unit for Psychiatric Research, Aalborg University Hospital, Psychiatry, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Claire O'Donovan
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Adel Omrani
- Tunisian Bipolar Forum, Érable Médical Cabinet 324, Lac 2, Tunis, Tunisia
| | - Yamima Osher
- Department of Psychiatry, Faculty of Health Sciences, Beer Sheva Mental Health Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | - Uta Ouali
- Razi Hospital, Faculty of Medicine, University of Tunis-El Manar, Tunis, Tunisia
| | | | - Maximilian Pilhatsch
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Marco Pinna
- Lucio Bini Mood Disorder Center, Cagliari, Italy
| | - Francisco D R da Ponte
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Danilo Quiroz
- Deparment of Psychiatry, Diego Portales University, Santiago de Chile, Chile
| | - Raj Ramesar
- UCT/MRC Human Genetics Research Unit, Division of Human Genetics, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Natalie Rasgon
- Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Palo Alto, CA, USA
| | - M S Reddy
- Asha Bipolar Clinic, Asha Hospital, Hyderabad, Telangana, India
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Philipp Ritter
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Janusz K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Kemal Sagduyu
- Department of Psychiatry, University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
| | | | - Ângela M Scippa
- Department of Neuroscience and Mental Health, Federal University of Bahia, Salvador, Brazil
| | - Emanuel Severus
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Paul W Stackhouse
- Science Directorate/Climate Science Branch, NASA Langley Research Center, Hampton, VA, USA
| | - Dan J Stein
- Department of Psychiatry, MRC Unit on Risk & Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Sergio Strejilevich
- Bipolar Disorder Program, Neuroscience Institute, Favaloro University, Buenos Aires, Argentina
| | | | - Ahmad Hatim Sulaiman
- Department of Psychological Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kirsi Suominen
- Department of Social Services and Health Care, Psychiatry, City of Helsinki, Finland
| | - Hiromi Tagata
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya, Tokyo, Japan
| | - Yoshitaka Tatebayashi
- Schizophrenia & Affective Disorders Research Project, Tokyo Metropolitan Institute of Medical Science, Seatagaya, Tokyo, Japan
| | - Leonardo Tondo
- McLean Hospital-Harvard Medical School, Boston, MA, USA; Mood Disorder Lucio Bini Centers, Cagliari e Roma, Italy
| | - Carla Torrent
- Clinical Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - Arne E Vaaler
- Department of Mental Health, Norwegian University of Science and Technology - NTNU, Trondheim, Norway; Department of Psychiatry, St Olavs' University Hospital, Trondheim, Norway
| | - Edgar Vares
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Julia Veeh
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Eduard Vieta
- Clinical Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | | | - Maria Yoldi-Negrete
- Consejo Nacional de Ciencia y Tecnología - Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Mark Zetin
- Department of Psychology, Chapman University, Orange, CA, USA
| | - Yosra Zgueb
- Razi Hospital, Faculty of Medicine, University of Tunis-El Manar, Tunis, Tunisia
| | - Peter C Whybrow
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
31
|
Brain-derived neurotrophic factor as a possible predictor of electroconvulsive therapy outcome. Transl Psychiatry 2019; 9:155. [PMID: 31127089 PMCID: PMC6534549 DOI: 10.1038/s41398-019-0491-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/18/2019] [Accepted: 04/29/2019] [Indexed: 12/20/2022] Open
Abstract
While brain-derived neurotrophic factor (BDNF) has been shown to predict response to pharmacotherapy in depression, studies in electroconvulsive therapy (ECT) are small and report conflicting results. This study assesses the association between pre-treatment BDNF levels and ECT outcome in severe late-life unipolar depression (LLD). The potential of BDNF as a clinical predictor of ECT outcome was subsequently evaluated. Characteristics associated with low and high BDNF subgroups were determined as well. Ninety-four patients diagnosed with LDD referred for ECT were included. Fasting serum BDNF levels were determined before ECT. Remission and response, measured with the Montgomery-Åsberg Depression Rating Scale, were the outcomes. The association between BDNF and ECT outcome was analysed with logistic regression and Cox regression. The clinical usefulness of BDNF was evaluated using the receiver operating characteristic (ROC) curve. Associations between clinical characteristics and low versus high BDNF levels were examined with T tests, chi-squared tests and Mann-Whitney tests. The odds of remission decreased with 33% for every five units increase of BDNF levels (OR 0.67, 95% confidence interval 0.47-0.96; p = 0.03); however, neither the association with time to remission nor the associations with response nor the adjusted models were significant. The area under the ROC (0.66) implied a poor accuracy of BDNF as a clinical test. Clinical characteristics associated with BDNF were inclusion site, physical comorbidities and duration of the index episode. To conclude, although there is an association between pre-treatment BDNF levels and ECT outcome, BDNF cannot be considered an eligible biomarker for ECT outcome in clinical practice.
Collapse
|
32
|
Hericium erinaceus Improves Mood and Sleep Disorders in Patients Affected by Overweight or Obesity: Could Circulating Pro-BDNF and BDNF Be Potential Biomarkers? EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:7861297. [PMID: 31118969 PMCID: PMC6500611 DOI: 10.1155/2019/7861297] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/02/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022]
Abstract
Epidemiological data indicate that subjects affected by obesity have an increased risk of developing mood disorders. The relationship between obesity and mood disorders is bidirectional. We assessed whether a Hericium erinaceus treatment improved depression, anxiety, sleep, and binge eating disorders after 8 weeks of supplementation in subjects affected by overweight or obesity under a low calorie diet regimen. Looking for a possible clinical biomarker, we assessed the serum balance between brain-derived neurotrophic factor (BDNF) and its precursor pro-BDNF before and after H. erinaceus supplementation. Seventy-seven volunteers affected by overweight or obesity were recruited at the offices of the Department of Preventive Medicine, Luigi Devoto Clinic of Work, Obesity Centre, at the IRCCS Foundation Policlinico Hospital of Milan (Italy). Patients were recruited only if they had a mood and/or sleep disorder and/or were binge eating as evaluated through self-assessment questionnaires. We used two different enzyme-linked immunosorbent assays kits to discriminate circulating levels of pro-BDNF and BDNF. Eight weeks of oral H. erinaceus supplementation decreased depression, anxiety, and sleep disorders. H. erinaceus supplementation improved mood disorders of a depressive-anxious nature and the quality of the nocturnal rest. H. erinaceus increased circulating pro-BDNF levels without any significant change in BDNF circulating levels.
Collapse
|
33
|
Chiou YJ, Huang TL. Brain-derived neurotrophic factor (BDNF) and bipolar disorder. Psychiatry Res 2019; 274:395-399. [PMID: 30852433 DOI: 10.1016/j.psychres.2019.02.051] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 01/07/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is deemed to be associated with the psychopathology of bipolar I disorder (BD). However, studies focusing on accuracy of BDNF levels to differentiate these patients from healthy controls (HCs) are scarce. Over a discrete twelve-year period, we investigated serum BDNF levels in patients with BD and compared them to age-, sex- and body mass index (BMI)-matched HCs. There were lower serum BDNF levels in 83 samples with BD than in 222 HCs samples (5.7 ± 4.2 ng/ml vs. 12.2 ± 7.5 ng/ml, F = 46.784). Pearson's correlation test showed significant positive correlations between Young Mania Rating Scale scores and the BDNF levels among 61 manic patients (γ = 0.339). The receiver operating characteristic curve analysis showed BDNF levels demonstrated a moderate accuracy of being able to differentiate BD patients from HCs (AUC = 0.801). The most adequate cut-off points of the BDNF level were 6.74 ng/ml (sensitivity = 82.0%, specificity = 63.9%). Our results support that BDNF demonstrated moderate accuracy to distinguish BD patients from HCs. In the future, greater samples would be required to prove these results.
Collapse
Affiliation(s)
- Yu-Jie Chiou
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tiao-Lai Huang
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
34
|
Chiou YJ, Huang TL. Accuracy of brain-derived neurotrophic factor levels for differentiating between Taiwanese patients with major depressive disorder or schizophrenia and healthy controls. PLoS One 2019; 14:e0212373. [PMID: 30794585 PMCID: PMC6386307 DOI: 10.1371/journal.pone.0212373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/31/2019] [Indexed: 01/09/2023] Open
Abstract
Objectives Brain-derived neurotrophic factor (BDNF) has been associated with the psychopathology of both major depressive disorder (MDD) and schizophrenia (SZ). However, studies focusing on the accuracy of BDNF levels to differentiate between these patients and healthy controls (HCs) have been rare. Methods Over a discrete ten-year period, we investigated serum BDNF levels in patients with MDD or SZ and compared them to HCs. Results We found serum BDNF levels in 224 samples with SZ to be lower than those in 390 HCs samples (p = 0.007), but not lower than those in the 273 samples with MDD. Male MDD patients tended to have lower BDNF levels compared to male HCs (p = 0.083). The receiver operating characteristic curve analysis demonstrated that BDNF levels were moderately accurate in differentiating male MDD patients and female patients with SZ from HCs (AUC = 0.652 and 0.623, respectively). The most adequate cut-off points for BDNF level were 5.11 ng/ml (sensitivity = 81.1%, specificity = 48.5%) and 5.88 ng/ml (sensitivity = 74.1%, specificity = 57.4%), respectively. Conclusions Our results support that BDNF demonstrated moderate accuracy in distinguishing male patients with MDD and female patients with SZ from HCs. In the future, greater samples would be required to further confirm these results.
Collapse
Affiliation(s)
- Yu-Jie Chiou
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tiao-Lai Huang
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- * E-mail:
| |
Collapse
|
35
|
Deflesselle E, Colle R, Rigal L, David DJ, Vievard A, Martin S, Becquemont L, Verstuyft C, Corruble E. The TRKB rs2289656 genetic polymorphism is associated with acute suicide attempts in depressed patients: A transversal case control study. PLoS One 2018; 13:e0205648. [PMID: 30308049 PMCID: PMC6181406 DOI: 10.1371/journal.pone.0205648] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/29/2018] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Suicide Attempts (SA) are the main complications of Major Depressive Episodes (MDE) and are difficult to predict. Suicide is associated with the expression of Receptor Tyrosin-Kinase B (TRKB), the receptor of the Brain Derived Neurotrophic Factor (BDNF) involved in MDE. However, the impact of its genetic polymorphisms as predictive factors of SA should be clarified. Our main aim is to assess the association of 8 TRKB genetic polymorphisms and SA in depressed patients. MATERIAL AND METHODS In 624 patients currently experiencing an MDE in the context of Major Depressive Disorder (MDD) (METADAP study), we assessed the association between 8 TRKB genetic polymorphisms (rs1778933, rs1187352, rs2289658, rs2289657, rs2289656, rs3824519, rs56142442 and rs1439050) and acute (previous month) or past (older than one month) SA. Bonferroni corrections and multivariate analysis adjusted for age, sex, level of education, marital status, Hamilton Depression Rating Scale score and previous MDE were used. RESULTS The rs2289656 was associated with acute SA (CC = 28.5%, CT = 15.0% and TT = 11.5%, p = 0.0008). However, the other SNPs were not. Patients with the CC genotype had a higher rate of acute SA (28.5%) as compared to T carriers (14.6%) (adjusted OR = 2.2, CI95% [1.4; 3.5], p<0.0001). CONCLUSION The TRKB rs2289656 CC genotype is associated with a 2.2 fold higher risk of acute SA in depressed patients. If this result could be confirmed, this TRKB SNP may be assessed to contribute to the prediction of SA in depressed patients.
Collapse
Affiliation(s)
- Eric Deflesselle
- INSERM UMR_S1178, Equipe “Dépression et Antidépresseurs”, Faculté de Médecine, CESP, Université Paris-Sud, Le Kremlin Bicêtre, France
- Département de Médecine Générale, Université Paris-Sud, Faculté de Médecine, Le Kremlin Bicêtre, France
| | - Romain Colle
- INSERM UMR_S1178, Equipe “Dépression et Antidépresseurs”, Faculté de Médecine, CESP, Université Paris-Sud, Le Kremlin Bicêtre, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | - Laurent Rigal
- Département de Médecine Générale, Université Paris-Sud, Faculté de Médecine, Le Kremlin Bicêtre, France
| | - Denis J. David
- INSERM UMR-S1178, Université Paris-Sud, Faculté de Pharmacie, CESP, Université Paris-Saclay, Chatenay-Malabry, France
| | - Albane Vievard
- INSERM UMR_S1178, Equipe “Dépression et Antidépresseurs”, Faculté de Médecine, CESP, Université Paris-Sud, Le Kremlin Bicêtre, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | - Séverine Martin
- INSERM UMR_S1178, Equipe “Dépression et Antidépresseurs”, Faculté de Médecine, CESP, Université Paris-Sud, Le Kremlin Bicêtre, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | - Laurent Becquemont
- INSERM UMR_S1178, Equipe “Dépression et Antidépresseurs”, Faculté de Médecine, CESP, Université Paris-Sud, Le Kremlin Bicêtre, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | - Céline Verstuyft
- INSERM UMR_S1178, Equipe “Dépression et Antidépresseurs”, Faculté de Médecine, CESP, Université Paris-Sud, Le Kremlin Bicêtre, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
- Centre de Ressources Biologiques Paris Sud, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - Emmanuelle Corruble
- INSERM UMR_S1178, Equipe “Dépression et Antidépresseurs”, Faculté de Médecine, CESP, Université Paris-Sud, Le Kremlin Bicêtre, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| |
Collapse
|
36
|
Kagawa S, Mihara K, Suzuki T, Nagai G, Nakamura A, Nemoto K, Kondo T. Both Serum Brain-Derived Neurotrophic Factor and Interleukin-6 Levels Are Not Associated with Therapeutic Response to Lamotrigine Augmentation Therapy in Treatment-Resistant Depressive Disorder. Neuropsychobiology 2018; 75:145-150. [PMID: 29332095 DOI: 10.1159/000484665] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/24/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Serum levels of brain-derived neurotrophic factor (BDNF) and interleukin-6 (IL-6) were prospectively monitored in relation with therapeutic response to lamotrigine augmentation therapy in 46 (15 males and 31 females) inpatients with treatment-resistant depressive disorder during an 8-week treatment with lamotrigine using an open-study design. METHODS The subjects were 46 depressed patients who had already shown insufficient response to at least 3 psychotropics including antidepressants, mood stabilizers, and atypical antipsychotics. The diagnoses were major depressive disorder (n = 19), bipolar I disorder (n = 6), and bipolar II disorder (n = 22). The final doses of lamotrigine were 100 mg/day for 26 subjects who were not taking valproate and 75 mg/day for 20 subjects taking valproate, respectively. Depressive symptoms were evaluated by the Montgomery-Åsberg Depression Rating Scale (MADRS) before and after the 8-week treatment. Blood sampling was performed before the start of lamotrigine treatment and at week 8. Serum BDNF and IL-6 levels were measured using quantitative sandwich enzyme immunoassays. RESULTS No significant changes in serum BDNF or IL-6 levels during the 8-week lamotrigine treatment were observed in the total of subjects, responders or nonresponders. There was no significant correlation between the changes in serum BDNF or IL-6 levels and the percent improvement in MADRS scores in the overall subjects. CONCLUSION The present study suggests that the acute effect of lamotrigine augmentation therapy for a major depressive episode is not related to either BDNF or IL-6, at least in patients with treatment-resistant depressive disorder.
Collapse
Affiliation(s)
- Shoko Kagawa
- Department of Neuropsychiatry, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Kazuo Mihara
- Department of Neuropsychiatry, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Takeshi Suzuki
- Department of Hospital Pharmacy, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Goyo Nagai
- Department of Neuropsychiatry, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Akifumi Nakamura
- Department of Neuropsychiatry, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Kenji Nemoto
- Department of Neuropsychiatry, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Tsuyoshi Kondo
- Department of Neuropsychiatry, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
37
|
Froud A, Murphy J, Cribb L, Ng CH, Sarris J. The relationship between dietary quality, serum brain-derived neurotrophic factor (BDNF) level, and the Val66met polymorphism in predicting depression. Nutr Neurosci 2017; 22:513-521. [DOI: 10.1080/1028415x.2017.1415281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Amy Froud
- ARCADIA Mental Health Research Group, Professorial Unit, The Melbourne Clinic, Department of Psychiatry, University of Melbourne, 2 Salisbury St, Melbourne 3121, Australia
| | - Jenifer Murphy
- ARCADIA Mental Health Research Group, Professorial Unit, The Melbourne Clinic, Department of Psychiatry, University of Melbourne, 2 Salisbury St, Melbourne 3121, Australia
| | - Lachlan Cribb
- ARCADIA Mental Health Research Group, Professorial Unit, The Melbourne Clinic, Department of Psychiatry, University of Melbourne, 2 Salisbury St, Melbourne 3121, Australia
| | - Chee H. Ng
- ARCADIA Mental Health Research Group, Professorial Unit, The Melbourne Clinic, Department of Psychiatry, University of Melbourne, 2 Salisbury St, Melbourne 3121, Australia
| | - Jerome Sarris
- ARCADIA Mental Health Research Group, Professorial Unit, The Melbourne Clinic, Department of Psychiatry, University of Melbourne, 2 Salisbury St, Melbourne 3121, Australia
- NICM, School of Science and Health, Western Sydney University, Australia
| |
Collapse
|
38
|
Yang SY, Baek JH, Cho Y, Cho EY, Choi Y, Kim Y, Park T, Hong KS. Effects of genetic variants of ST8SIA2 and NCAM1 genes on seasonal mood changes and circadian preference in the general population. Chronobiol Int 2017; 35:405-415. [PMID: 29215920 DOI: 10.1080/07420528.2017.1410827] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
ST8SIA2 and NCAM1 are functionally related genes forming polysialic acid (PSA) - neural cell adhesion molecule (NCAM) complex in suprachiasmatic nucleus (SCN), the regulating site of circadian biological rhythm. In this study, the relationship of ST8SIA2 and NCAM1 with circadian and seasonal rhythms of human behavior was explored. Subjects were 261 healthy Korean adults who were free of any history of clinically significant psychiatric symptoms. The phenotypes were circadian preference and seasonal change of mood and behavior (seasonality) measured by the Composite Scale of Morningness and the Seasonal Pattern Assessment Questionnaire, respectively. Thirty-four single nucleotide polymorphisms (SNPs) across the ST8SIA2 region and 15 SNPs of NCAM1 were analyzed. A nominally significant association with seasonality and circadian preference was observed in 21 variants of both genes. After corrections for multiple testing, associations of 8 SNPs of ST8SIA2 and 2 SNPs of NCAM1 with seasonality remained significant. Some of these SNPs were also associated with psychiatric disorders in previous studies. This study demonstrated a meaningful and/or suggestive evidence of association between behavioral phenotypes reflecting human biological rhythm and two interplaying genes involved in the plasticity of SCN's neuronal network.
Collapse
Affiliation(s)
- So Yung Yang
- a Department of Psychiatry , Sungkyunkwan University School of Medicine, Samsung Medical Center , Seoul , Korea
| | - Ji Hyun Baek
- a Department of Psychiatry , Sungkyunkwan University School of Medicine, Samsung Medical Center , Seoul , Korea
| | - Youngah Cho
- b Department of Psychiatry , Seoul National University Bundang Hospital , Kyunggi-Do , Korea
| | - Eun-Young Cho
- c Center for Clinical Research , Samsung Biomedical Research Institute , Seoul , Korea
| | - Yujin Choi
- c Center for Clinical Research , Samsung Biomedical Research Institute , Seoul , Korea
| | - Yongkang Kim
- d Department of Statistics , Seoul National University , Seoul , Korea
| | - Taesung Park
- d Department of Statistics , Seoul National University , Seoul , Korea
| | - Kyung Sue Hong
- a Department of Psychiatry , Sungkyunkwan University School of Medicine, Samsung Medical Center , Seoul , Korea.,c Center for Clinical Research , Samsung Biomedical Research Institute , Seoul , Korea
| |
Collapse
|
39
|
Vinnik T, Kirby M, Bairachnaya M, Koman I, Tarkina T, Sadykova G, Abildinova G, Batpenova G, Pinhasov A. Seasonality and BDNF polymorphism influences depression outcome in patients with atopic dermatitis and psoriasis. World J Biol Psychiatry 2017; 18:604-614. [PMID: 27409526 DOI: 10.1080/15622975.2016.1212171] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES To examine the effect of seasonality and rs6265 genotype on depression outcome and brain-derived neurotrophic factor (BDNF) level with dermatitis patients from onset through remission. METHODS Atopic dermatitis (AD, 56) and psoriasis (PS, 33) patients and healthy controls (HC, 49) were recruited over the 2014 calendar year. Patients were subdivided by immunoglobulin E (IgE) sensitivity (AD only), season and rs6265 genotype. Assessments were performed at onset and week 10 (Hamilton Depression Rating Scale [HAM-D], SCORAD/PASI, IgE, BDNF). Patients received standard corticosteroid and antihistamine interventions. RESULTS All patients responded to corticosteroid treatment. Seasonally differential outcomes were observed in all groups. HAM-D was elevated at onset and improved over 10 weeks: AD cohort 1 (autumn/winter, AD-1) patients improved and AD cohort 2 (spring/summer, AD-2) patients remained elevated. BDNF levels were elevated in AD and seasonal differential: AD-2 declined at 10 weeks, whereas AD-1 remained high (intrinsic AD) or elevated further (extrinsic AD). PS cohort 2 declined to below control at 10 weeks. AD Val/Val had persistently elevated HAM-D and AD Val/Met were either normal (AD-1) or persistently elevated (AD-2). CONCLUSIONS Findings presented here suggest a strong influence of seasonality on depression outcome and BDNF expression in AD and PS and likely reflect separate patient populations which differentially respond to environment-based stressors.
Collapse
Affiliation(s)
- Tatyana Vinnik
- a Department of Dermatovenereology , Astana Medical University , Astana , Kazakhstan
| | - Michael Kirby
- b Department of Molecular Biology , Ariel University , Ariel , Israel
| | | | - Igor Koman
- b Department of Molecular Biology , Ariel University , Ariel , Israel
| | - Tatyana Tarkina
- a Department of Dermatovenereology , Astana Medical University , Astana , Kazakhstan
| | - Gulnaz Sadykova
- a Department of Dermatovenereology , Astana Medical University , Astana , Kazakhstan
| | - Gulshara Abildinova
- c National Research Centre of Maternal and Child Health , Astana , Kazakhstan
| | - Gulnara Batpenova
- a Department of Dermatovenereology , Astana Medical University , Astana , Kazakhstan
| | - Albert Pinhasov
- b Department of Molecular Biology , Ariel University , Ariel , Israel
| |
Collapse
|
40
|
van den Ameele S, Coppens V, Schuermans J, De Boer P, Timmers M, Fransen E, Sabbe B, Morrens M. Neurotrophic and inflammatory markers in bipolar disorder: A prospective study. Psychoneuroendocrinology 2017; 84:143-150. [PMID: 28711724 DOI: 10.1016/j.psyneuen.2017.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/26/2017] [Accepted: 07/04/2017] [Indexed: 01/09/2023]
Abstract
Altered neurotrophic signaling is thought to impair neuroplasticity in bipolar disorder (BD). Brain-derived neurotrophic factor (BDNF) is proposed as a neurotrophic marker in BD. However, the current evidence for its use in monitoring disease activity and illness progression is conflicting and an exploration of additional neurotrophic markers is needed. This prospective case-control study investigated mood-specific changes in potential neurotrophic markers and their association to inflammatory activity. Patients with BD were included during an acute mood episode, either depressive (n=35) or (hypo)manic (n=32). Fifty-nine patients (88%) and 29 healthy controls (97%) completed the study. Peripheral blood levels of BDNF, vascular endothelial growth factor A (VEGF), soluble fms-like tyrosine kinase-1 (sFlt-1) and tumor necrosis factor alpha (TNF-α) were measured at baseline and after 2 months. Biomarker levels in patients were compared to controls and correlated to HDRS-17 and YMRS total scores and the PANSS positive subscale scores. Linear mixed model analysis revealed no significant differences in neurotrophic markers between patients and controls. We found significantly increased TNF-α levels in patients and a subsequent normalization during euthymia. None of the biomarkers strongly correlated to mood symptom severity. Despite standardized methodological practices, BDNF and VEGF levels had a wide distribution range. We need a better understanding of methodological aspects influencing the analysis of neurotrophic factors to improve future research on markers for mood state monitoring and illness progression in BD.
Collapse
Affiliation(s)
- Seline van den Ameele
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Department of Biomedical Sciences, University of Antwerp, Belgium; University Psychiatric Hospital Duffel, VZW Emmaüs, Duffel, Belgium.
| | - Violette Coppens
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Department of Biomedical Sciences, University of Antwerp, Belgium; University Psychiatric Hospital Duffel, VZW Emmaüs, Duffel, Belgium
| | - Jeroen Schuermans
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Department of Biomedical Sciences, University of Antwerp, Belgium; University Psychiatric Hospital Duffel, VZW Emmaüs, Duffel, Belgium
| | - Peter De Boer
- Experimental Medicine Neuroscience, Janssen Pharmaceutica N.V., Beerse, Belgium
| | - Maarten Timmers
- Janssen Research and Development, a division of Janssen Pharmaceutica N.V., Beerse, Belgium; Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Belgium
| | - Erik Fransen
- StatUa - Center for Statistics, University of Antwerp, Belgium
| | - Bernard Sabbe
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Department of Biomedical Sciences, University of Antwerp, Belgium; University Psychiatric Hospital Duffel, VZW Emmaüs, Duffel, Belgium
| | - Manuel Morrens
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Department of Biomedical Sciences, University of Antwerp, Belgium; University Psychiatric Hospital Duffel, VZW Emmaüs, Duffel, Belgium
| |
Collapse
|
41
|
Abstract
The brain-derive neurotrophic factor (BDNF) may play an important role in the course of depression. We aimed to study the associations between peripheral whole blood BDNF levels in healthy individuals with and without a family history of depression. BDNF levels were significantly increased in healthy individuals with (n = 76), compared with healthy individuals without (n = 39) a family history of depression and persisted after adjustment for age and gender differences. Higher BDNF levels were associated with increasing age and seasonality. A family history of depression may contribute to an elevation of peripheral BDNF levels in healthy individuals.
Collapse
|
42
|
Lisicki M, D'Ostilio K, Erpicum M, Schoenen J, Magis D. Sunlight irradiance and habituation of visual evoked potentials in migraine: The environment makes its mark. Cephalalgia 2017; 38:1351-1360. [PMID: 28856911 DOI: 10.1177/0333102417730128] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background Migraine is a complex multifactorial disease that arises from the interaction between a genetic predisposition and an enabling environment. Habituation is considered as a fundamental adaptive behaviour of the nervous system that is often impaired in migraine populations. Given that migraineurs are hypersensitive to light, and that light deprivation is able to induce functional changes in the visual cortex recognizable through visual evoked potentials habituation testing, we hypothesized that regional sunlight irradiance levels could influence the results of visual evoked potentials habituation studies performed in different locations worldwide. Methods We searched the literature for visual evoked potentials habituation studies comparing healthy volunteers and episodic migraine patients and correlated their results with levels of local solar radiation. Results After reviewing the literature, 26 studies involving 1291 participants matched our inclusion criteria. Deficient visual evoked potentials habituation in episodic migraine patients was reported in 19 studies. Mean yearly sunlight irradiance was significantly higher in locations of studies reporting deficient habituation. Correlation analyses suggested that visual evoked potentials habituation decreases with increasing sunlight irradiance in migraine without aura patients. Conclusion Results from this hypothesis generating analysis suggest that variations in sunlight irradiance may induce adaptive modifications in visual processing systems that could be reflected in visual evoked potentials habituation, and thus partially account for the difference in results between studies performed in geographically distant centers. Other causal factors such as genetic differences could also play a role, and therefore well-designed prospective trials are warranted.
Collapse
Affiliation(s)
- Marco Lisicki
- 1 Headache Research Unit, University Department of Neurology CHR, Citadelle Hospital, Liege, Belgium
| | - Kevin D'Ostilio
- 1 Headache Research Unit, University Department of Neurology CHR, Citadelle Hospital, Liege, Belgium
| | - Michel Erpicum
- 2 Climatology and Topoclimatology Laboratory, Faculty of Sciences, Liège University, Liège, Belgium
| | - Jean Schoenen
- 1 Headache Research Unit, University Department of Neurology CHR, Citadelle Hospital, Liege, Belgium
| | - Delphine Magis
- 1 Headache Research Unit, University Department of Neurology CHR, Citadelle Hospital, Liege, Belgium
| |
Collapse
|
43
|
Illness severity and biomarkers in depression: Using a unidimensional rating scale to examine BDNF. Compr Psychiatry 2017; 75:46-52. [PMID: 28301802 DOI: 10.1016/j.comppsych.2017.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Numerous studies have reported reduced peripheral brain-derived neurotrophic factor (BDNF) in major depression (MD). However, most of these studies used multidimensional depression rating scales, and failed to identify a relationship between BDNF levels and depression severity. Unidimensional scales are a more valid measure of syndrome severity. In these scales, items are ordered in increasing severity, so that as scores increase, syndrome severity increases; thus, each item adds unique information, and items can be totaled to a meaningful sum. The current study used the HAM-D6, a unidimensional measure of depression, to examine if it could identify a correlation between serum BDNF and depression severity. METHODS Serum BDNF levels and symptom severity were assessed in 163 depressed patients, including those with both unipolar (84.0%) and bipolar (16.0%) depression. The evaluation of depression severity included the total HAM-D17 and 3 subscales, including the HAM-D6. RESULTS On average, patients presented moderate to severe depression (HAM-D17=21.2±5.5). Overall BDNF levels were 60.4±22.6ng/mL. The correlation between serum BDNF and depression severity was modest and not different when assessed by the HAM-D6 subscale or the HAM-D17 as a whole (z=0.951; p=0.341), despite being statistically significant for the HAM-D6 (r=-0.185; p=0.019; 95% CI: -0.335 to -0.033), but not for the entire HAM-D17 (r=-0.127; p=0.108; 95% CI: -0.272 to 0.027). CONCLUSION We could not identify a strong relationship between serum BDNF levels and depression severity using the HAM-D6. This is in concordance with results of previous studies that reported no correlation between these variables, and indicates that the properties of the clinical measures used cannot explain the results these studies.
Collapse
|
44
|
Zhou C, Zhong J, Zou B, Fang L, Chen J, Deng X, Zhang L, Zhao X, Qu Z, Lei Y, Lei T. Meta-analyses of comparative efficacy of antidepressant medications on peripheral BDNF concentration in patients with depression. PLoS One 2017; 12:e0172270. [PMID: 28241064 PMCID: PMC5328267 DOI: 10.1371/journal.pone.0172270] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 02/02/2017] [Indexed: 01/08/2023] Open
Abstract
Background Brain derived neurotrophic factor (BDNF) is one of the most important regulatory proteins in the pathophysiology of major depressive disorder (MDD). Increasing numbers of studies have reported the relationship between serum/plasma BDNF and antidepressants (ADs). However, the potential effects of several classes of antidepressants on BDNF concentrations are not well known. Hence, our meta-analyses aims to review the effects of differential antidepressant drugs on peripheral BDNF levels in MDD and make some recommendations for future research. Methods Electronic databases including PubMed, EMBASE, the Cochrane Library, Web of Science, and PsycINFO were searched from 1980 to June 2016. The change in BDNF levels were compared between baseline and post-antidepressants treatment by use of the standardized mean difference (SMD) with 95% confidence intervals (CIs). All statistical tests were two-sided. Results We identified 20 eligible trials of antidepressants treatments for BDNF in MDD. The overall effect size for all drug classes showed that BDNF levels were elevated following a course of antidepressants use. For between-study heterogeneity by stratification analyses, we detect that length of treatment and blood samples are significant effect modifiers for BDNF levels during antidepressants treatment. While both SSRIs and SNRIs could increase the BDNF levels after a period of antidepressant medication treatment, sertraline was superior to other three drugs (venlafaxine, paroxetine or escitalopram) in the early increase of BDNF concentrations with SMD 0.53(95% CI = 0.13–0.93; P = 0.009). Conclusions There is some evidence that treatment of antidepressants appears to be effective in the increase of peripheral BDNF levels. More robust evidence indicates that different types of antidepressants appear to induce differential effects on the BDNF levels. Since sertraline makes a particular effect on BDNF concentration within a short amount of time, there is potential value in exploring its relationship with BDNF and its pharmacological mechanism concerning peripheral blood BDNF. Further confirmatory trials are required for both observations.
Collapse
Affiliation(s)
- Chanjuan Zhou
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Jiaju Zhong
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Bin Zou
- College of Computer and Information Science, Southwest University, Chongqing, China
| | - Liang Fang
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Jianjun Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Xiao Deng
- Children’s Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Lin Zhang
- College of Computer and Information Science, Southwest University, Chongqing, China
| | - Xiang Zhao
- College of Computer and Information Science, Southwest University, Chongqing, China
| | - Zehui Qu
- College of Computer and Information Science, Southwest University, Chongqing, China
| | - Yang Lei
- Department of neurology, University-town hospital of Chongqing Medical University, Chongqing, China
- * E-mail: (TL); (YL)
| | - Ting Lei
- Department of Physics, University of Fribourg, Fribourg, Switzerland
- * E-mail: (TL); (YL)
| |
Collapse
|
45
|
The human BDNF gene: peripheral gene expression and protein levels as biomarkers for psychiatric disorders. Transl Psychiatry 2016; 6:e958. [PMID: 27874848 PMCID: PMC5314126 DOI: 10.1038/tp.2016.214] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/09/2016] [Accepted: 09/12/2016] [Indexed: 12/17/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) regulates the survival and growth of neurons, and influences synaptic efficiency and plasticity. The human BDNF gene consists of 11 exons, and distinct BDNF transcripts are produced through the use of alternative promoters and splicing events. The majority of the BDNF transcripts can be detected not only in the brain but also in the blood cells, although no study has yet investigated the differential expression of BDNF transcripts at the peripheral level. This review provides a description of the human BDNF gene structure as well as a summary of clinical and preclinical evidence supporting the role of BDNF in the pathogenesis of psychiatric disorders. We will discuss several mechanisms as possibly underlying BDNF modulation, including epigenetic mechanisms. We will also discuss the potential use of peripheral BDNF as a biomarker for psychiatric disorders, focusing on the factors that can influence BDNF gene expression and protein levels. Within this context, we have also characterized, for we believe the first time, the expression of BDNF transcripts in the blood, with the aim to provide novel insights into the molecular mechanisms and signaling that may regulate peripheral BDNF gene expression levels.
Collapse
|
46
|
Generaal E, Milaneschi Y, Jansen R, Elzinga BM, Dekker J, Penninx BWJH. The brain-derived neurotrophic factor pathway, life stress, and chronic multi-site musculoskeletal pain. Mol Pain 2016; 12:12/0/1744806916646783. [PMID: 27145806 PMCID: PMC4955993 DOI: 10.1177/1744806916646783] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/04/2016] [Indexed: 01/09/2023] Open
Abstract
Introduction Brain-derived neurotrophic factor (BDNF) disturbances and life stress, both independently and in interaction, have been hypothesized to induce chronic pain. We examined whether (a) the BDNF pathway (val66met genotype, gene expression, and serum levels), (b) early and recent life stress, and (c) their interaction are associated with the presence and severity of chronic multi-site musculoskeletal pain. Methods Cross-sectional data are from 1646 subjects of the Netherlands Study of Depression and Anxiety. The presence and severity of chronic multi-site musculoskeletal pain were determined using the Chronic Pain Grade (CPG) questionnaire. The BDNF val66met polymorphism, BDNF gene expression, and BDNF serum levels were measured. Early life stress before the age of 16 was assessed by calculating a childhood trauma index using the Childhood Trauma Interview. Recent life stress was assessed as the number of recent adverse life events using the List of Threatening Events Questionnaire. Results Compared to val66val, BDNF met carriers more often had chronic pain, whereas no differences were found for BDNF gene expression and serum levels. Higher levels of early and recent stress were both associated with the presence and severity of chronic pain (p < 0.001). No interaction effect was found for the BDNF pathway with life stress in the associations with chronic pain presence and severity. Conclusions This study suggests that the BDNF gene marks vulnerability for chronic pain. Although life stress did not alter the impact of BDNF on chronic pain, it seems an independent factor in the onset and persistence of chronic pain.
Collapse
Affiliation(s)
- Ellen Generaal
- Department of Psychiatry and EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Yuri Milaneschi
- Department of Psychiatry and EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Rick Jansen
- Department of Psychiatry and EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Bernet M Elzinga
- Institute of Psychology, Leiden University, Leiden, The Netherlands Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Joost Dekker
- Department of Psychiatry and EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands Department of Rehabilitation Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Brenda W J H Penninx
- Department of Psychiatry and EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
47
|
Fanaei H, Khayat S, Kasaeian A, Javadimehr M. Effect of curcumin on serum brain-derived neurotrophic factor levels in women with premenstrual syndrome: A randomized, double-blind, placebo-controlled trial. Neuropeptides 2016; 56:25-31. [PMID: 26608718 DOI: 10.1016/j.npep.2015.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 11/10/2015] [Accepted: 11/10/2015] [Indexed: 12/21/2022]
Abstract
Premenstrual syndrome (PMS) is a variety of physical, mental, and behavioral symptoms that start during the late luteal phase of the menstrual cycle, and the symptoms disappear after the onset of menses. Serum brain-derived neurotrophic factor (BDNF) levels during luteal phase in women associated with PMS have more alterations than women not suffering from PMS. In this regard, altered luteal BDNF levels in women with PMS might play a role in a set of psychological and somatic symptoms of the PMS. Studies of last decade revealed neuroprotective effects of curcumin and its ability to increase BDNF levels. In the present study, we evaluated the effect of curcumin on serum BDNF level and PMS symptoms severity in women with PMS. Present study is a Randomized, Double-Blinded, Placebo-Controlled Clinical Trial. Curcumin treatment was given for three successive menstrual cycles and each cycle ran 10 days. After having identified persons with PMS, participants were randomly allocated into placebo (n=35) and curcumin (n=35) groups. Each sample in placebo and curcumin groups received two capsules daily for seven days before menstruation and for three days after menstruation for three successive menstrual cycles. Participants noted the severity of the symptoms mentioned in the daily record questionnaire. Self-report was used to determine menstrual cycle phase of participants. At the fourth day of each menstrual cycle venous blood samples were collected for BDNF measurement by ELISA method. Before intervention, BDNF levels and mean scores of PMS symptoms (mood, behavioral and physical symptoms) between two groups showed no significant differences. But in curcumin group first, second and third cycles after interventions BDNF levels were significantly higher and mean scores of PMS symptoms were significantly less than placebo group. Based on our results part of these beneficial effects of curcumin may be mediated through enhancing serum BDNF levels in women with PMS.
Collapse
Affiliation(s)
- Hamed Fanaei
- Pregnancy Health Research Center, Zahedan University of Medical Sciences, Zahedan, Iran; Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Samira Khayat
- Department of Midwifery and Reproductive Health, School of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Reproductive Health, School of Nursing and Midwifery, Tehran University of Medical Sciences, Tehran, Iran.
| | - Amir Kasaeian
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran; Non-communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mani Javadimehr
- School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
48
|
Meyer C, Muto V, Jaspar M, Kussé C, Lambot E, Chellappa SL, Degueldre C, Balteau E, Luxen A, Middleton B, Archer SN, Collette F, Dijk DJ, Phillips C, Maquet P, Vandewalle G. Seasonality in human cognitive brain responses. Proc Natl Acad Sci U S A 2016; 113:3066-71. [PMID: 26858432 PMCID: PMC4801294 DOI: 10.1073/pnas.1518129113] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Daily variations in the environment have shaped life on Earth, with circadian cycles identified in most living organisms. Likewise, seasons correspond to annual environmental fluctuations to which organisms have adapted. However, little is known about seasonal variations in human brain physiology. We investigated annual rhythms of brain activity in a cross-sectional study of healthy young participants. They were maintained in an environment free of seasonal cues for 4.5 d, after which brain responses were assessed using functional magnetic resonance imaging (fMRI) while they performed two different cognitive tasks. Brain responses to both tasks varied significantly across seasons, but the phase of these annual rhythms was strikingly different, speaking for a complex impact of season on human brain function. For the sustained attention task, the maximum and minimum responses were located around summer and winter solstices, respectively, whereas for the working memory task, maximum and minimum responses were observed around autumn and spring equinoxes. These findings reveal previously unappreciated process-specific seasonality in human cognitive brain function that could contribute to intraindividual cognitive changes at specific times of year and changes in affective control in vulnerable populations.
Collapse
Affiliation(s)
- Christelle Meyer
- GIGA-Research-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000 Liège, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), 4000 Liège, Belgium
| | - Vincenzo Muto
- GIGA-Research-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000 Liège, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), 4000 Liège, Belgium; Department of Psychology: Cognition and Behavior, University of Liège, 4000 Liège, Belgium
| | - Mathieu Jaspar
- GIGA-Research-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000 Liège, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), 4000 Liège, Belgium; Department of Psychology: Cognition and Behavior, University of Liège, 4000 Liège, Belgium
| | - Caroline Kussé
- GIGA-Research-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000 Liège, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), 4000 Liège, Belgium
| | - Erik Lambot
- GIGA-Research-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000 Liège, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), 4000 Liège, Belgium
| | - Sarah L Chellappa
- GIGA-Research-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000 Liège, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), 4000 Liège, Belgium
| | - Christian Degueldre
- GIGA-Research-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000 Liège, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), 4000 Liège, Belgium
| | - Evelyne Balteau
- GIGA-Research-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000 Liège, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), 4000 Liège, Belgium
| | - André Luxen
- GIGA-Research-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000 Liège, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), 4000 Liège, Belgium
| | - Benita Middleton
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, GU2 7XP Guildford, United Kingdom
| | - Simon N Archer
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, GU2 7XP Guildford, United Kingdom
| | - Fabienne Collette
- GIGA-Research-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000 Liège, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), 4000 Liège, Belgium; Department of Psychology: Cognition and Behavior, University of Liège, 4000 Liège, Belgium
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, GU2 7XP Guildford, United Kingdom
| | - Christophe Phillips
- GIGA-Research-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000 Liège, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), 4000 Liège, Belgium; Department of Electrical Engineering and Computer Science, University of Liège, 4000 Liège, Belgium
| | - Pierre Maquet
- GIGA-Research-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000 Liège, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), 4000 Liège, Belgium; Department of Neurology, Centre Hospitalier Universitaire de Liège, 4000 Liège, Belgium
| | - Gilles Vandewalle
- GIGA-Research-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000 Liège, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), 4000 Liège, Belgium;
| |
Collapse
|
49
|
Polyakova M, Schroeter ML, Elzinga BM, Holiga S, Schoenknecht P, de Kloet ER, Molendijk ML. Brain-Derived Neurotrophic Factor and Antidepressive Effect of Electroconvulsive Therapy: Systematic Review and Meta-Analyses of the Preclinical and Clinical Literature. PLoS One 2015; 10:e0141564. [PMID: 26529101 PMCID: PMC4631320 DOI: 10.1371/journal.pone.0141564] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 10/10/2015] [Indexed: 12/21/2022] Open
Abstract
Emerging data suggest that Electro-Convulsive Treatment (ECT) may reduce depressive symptoms by increasing the expression of Brain-Derived Neurotrophic Factor (BDNF). Yet, conflicting findings have been reported. For this reason we performed a systematic review and meta-analysis of the preclinical and clinical literature on the association between ECT treatment (ECS in animals) and changes in BDNF concentrations and their effect on behavior. In addition, regional brain expression of BDNF in mouse and human brains were compared using Allen Brain Atlas. ECS, over sham, increased BDNF mRNA and protein in animal brain (effect size [Hedge’s g]: 0.38―0.54; 258 effect-size estimates, N = 4,284) but not in serum (g = 0.06, 95% CI = -0.05―0.17). In humans, plasma but not serum BDNF increased following ECT (g = 0.72 vs. g = 0.14; 23 effect sizes, n = 281). The gradient of the BDNF increment in animal brains corresponded to the gradient of the BDNF gene expression according to the Allen brain atlas. Effect-size estimates were larger following more ECT sessions in animals (r = 0.37, P < .0001) and in humans (r = 0.55; P = 0.05). There were some indications that the increase in BDNF expression was associated with behavioral changes in rodents, but not in humans. We conclude that ECS in rodents and ECT in humans increase BDNF concentrations but this is not consistently associated with changes in behavior.
Collapse
Affiliation(s)
- M. Polyakova
- Max Planck Institute for Human Cognitive and Brain Sciences & Clinic for Cognitive Neurology, University Hospital, Leipzig, Germany
- University Hospital Leipzig, Department of Psychiatry and Psychotherapy, Leipzig, Germany
- * E-mail: (MP);
| | - M. L. Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences & Clinic for Cognitive Neurology, University Hospital, Leipzig, Germany
| | - B. M. Elzinga
- Institute of Psychology, Leiden University and Leiden Institute for Brain and Cognition, Leiden University Medical Center, Leiden, The Netherlands
| | - S. Holiga
- Max Planck Institute for Human Cognitive and Brain Sciences & Clinic for Cognitive Neurology, University Hospital, Leipzig, Germany
| | - P. Schoenknecht
- University Hospital Leipzig, Department of Psychiatry and Psychotherapy, Leipzig, Germany
| | - E. R. de Kloet
- Division of Medical Pharmacology, Division of Endocrinology, and Leiden Academic Center for Drug Research, Leiden University Medical Center, Leiden, The Netherlands
| | - M. L. Molendijk
- Institute of Psychology, Leiden University and Leiden Institute for Brain and Cognition, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail: (MP);
| |
Collapse
|
50
|
Dominiak M, Swiecicki L, Rybakowski J. Psychiatric hospitalizations for affective disorders in Warsaw, Poland: Effect of season and intensity of sunlight. Psychiatry Res 2015; 229:287-94. [PMID: 26189339 DOI: 10.1016/j.psychres.2015.07.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 07/03/2015] [Accepted: 07/04/2015] [Indexed: 12/21/2022]
Abstract
The purpose of this study was to assess any associations between the number of hospitalizations for affective disorders, seasons of the year and the intensity of sunlight in Poland, a country with a very changeable climate and significant seasonal fluctuations. We analyzed 2837 admissions with affective disorders hospitalized in the Institute of Psychiatry and Neurology in Warsaw, between 2002 and 2010 (mania, n=380, mixed episode, n=131, bipolar depression, n=736, recurrent depression, n=681, single depressive episode, n=909). For each diagnostic group admission time series were created and categorized into subgroups according to sex and age, and these were analyzed by means of the Autoregressive Integrated Moving Average (ARIMA) method. Regression models and correlations were used to assess the influence of the intensity of sunlight on the number of hospitalizations. Most mania admissions were noted in spring/summer months and in midwinter, mixed episode-late spring and winter, and depression (bipolar, recurrent and single depressive episode)-spring and autumn months. The association between frequency of admissions and monthly hours of sunshine was observed in some age and sex subgroups of patients with bipolar disorder and single depressive episode. The results support the seasonality of admissions of patients with affective disorders.
Collapse
Affiliation(s)
- Monika Dominiak
- Institute of Psychiatry and Neurology, ul. Sobieskiego 9, 02-957 Warsaw, Poland.
| | - Lukasz Swiecicki
- Institute of Psychiatry and Neurology, ul. Sobieskiego 9, 02-957 Warsaw, Poland
| | - Janusz Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, ul. Szpitalna 27/33, 60-572 Poznan, Poland
| |
Collapse
|