1
|
Kim HY, Um SH, Sung Y, Shim MK, Yang S, Park J, Kim ES, Kim K, Kwon IC, Ryu JH. Epidermal growth factor (EGF)-based activatable probe for predicting therapeutic outcome of an EGF-based doxorubicin prodrug. J Control Release 2020; 328:222-236. [DOI: 10.1016/j.jconrel.2020.08.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 02/07/2023]
|
2
|
Contartese D, Salamanna F, Veronesi F, Fini M. Relevance of humanized three-dimensional tumor tissue models: a descriptive systematic literature review. Cell Mol Life Sci 2020; 77:3913-3944. [PMID: 32285137 PMCID: PMC11104864 DOI: 10.1007/s00018-020-03513-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 12/18/2022]
Abstract
Despite numerous advances in tumor screening, diagnosis, and treatment, to date, tumors remain one of the leading causes of death, principally due to metastasis and the physiological damage produced by tumor growth. Among the main limits related to the study of tumor physiology there is the complex and heterogeneity nature of its environment and the absence of relevant, simple and inexpensive models able to mimic the biological processes occurring in patients allowing the correct clinical translation of results. To enhance the understanding of the mechanisms of tumors and to develop and evaluate new therapeutic approaches the set-up of advanced and alternative models is mandatory. One of the more translational approaches seems to be the use of humanized three-dimensional (3D) tissue culture. This model allows to accurately mimic tumor morphology and biology, maintaining the native microenvironment without any manipulation. However, little is still known on the real clinical relevance of these models for the study of tumor mechanisms and for the screening of new therapy. The aim of this descriptive systematic literature review was to evaluate and summarize the current knowledge on human 3D tumor tissue culture models. We reviewed the strategies employed by researchers to set-up these systems, also considering the different approaches and culture conditions used. All these aspects greatly contribute to the existing knowledge on tumors, providing a specific link to clinical scenarios and making the humanized 3D tumor tissue models a more attractive tool both for researchers and clinicians.
Collapse
Affiliation(s)
- D Contartese
- Laboratory Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136, Bologna, Italy
| | - Francesca Salamanna
- Laboratory Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136, Bologna, Italy.
| | - F Veronesi
- Laboratory Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136, Bologna, Italy
| | - M Fini
- Laboratory Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136, Bologna, Italy
| |
Collapse
|
3
|
Fluksman A, Steinberg E, Orehov N, Shai E, Lahiani A, Katzhendler J, Marcinkiewicz C, Lazarovici P, Benny O. Integrin α 2β 1-Targeted Self-Assembled Nanocarriers for Tumor Bioimaging. ACS APPLIED BIO MATERIALS 2020; 3:6059-6070. [DOI: 10.1021/acsabm.0c00662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Arnon Fluksman
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| | - Eliana Steinberg
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| | - Natalie Orehov
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| | - Ela Shai
- Department of Hematology, Coagulation Unit, Hadassah−Hebrew University Medical Center, Jerusalem 91121, Israel
| | - Adi Lahiani
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| | - Jehoshua Katzhendler
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| | - Cezary Marcinkiewicz
- Department of Biology, Temple University College of Science and Technology, Philadelphia, Pennsylvania 19122, United States
| | - Philip Lazarovici
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| | - Ofra Benny
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| |
Collapse
|
4
|
Bürtin F, Mullins CS, Linnebacher M. Mouse models of colorectal cancer: Past, present and future perspectives. World J Gastroenterol 2020; 26:1394-1426. [PMID: 32308343 PMCID: PMC7152519 DOI: 10.3748/wjg.v26.i13.1394] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common diagnosed malignancy among both sexes in the United States as well as in the European Union. While the incidence and mortality rates in western, high developed countries are declining, reflecting the success of screening programs and improved treatment regimen, a rise of the overall global CRC burden can be observed due to lifestyle changes paralleling an increasing human development index. Despite a growing insight into the biology of CRC and many therapeutic improvements in the recent decades, preclinical in vivo models are still indispensable for the development of new treatment approaches. Since the development of carcinogen-induced rodent models for CRC more than 80 years ago, a plethora of animal models has been established to study colon cancer biology. Despite tenuous invasiveness and metastatic behavior, these models are useful for chemoprevention studies and to evaluate colitis-related carcinogenesis. Genetically engineered mouse models (GEMM) mirror the pathogenesis of sporadic as well as inherited CRC depending on the specific molecular pathways activated or inhibited. Although the vast majority of CRC GEMM lack invasiveness, metastasis and tumor heterogeneity, they still have proven useful for examination of the tumor microenvironment as well as systemic immune responses; thus, supporting development of new therapeutic avenues. Induction of metastatic disease by orthotopic injection of CRC cell lines is possible, but the so generated models lack genetic diversity and the number of suited cell lines is very limited. Patient-derived xenografts, in contrast, maintain the pathological and molecular characteristics of the individual patient’s CRC after subcutaneous implantation into immunodeficient mice and are therefore most reliable for preclinical drug development – even in comparison to GEMM or cell line-based analyses. However, subcutaneous patient-derived xenograft models are less suitable for studying most aspects of the tumor microenvironment and anti-tumoral immune responses. The authors review the distinct mouse models of CRC with an emphasis on their clinical relevance and shed light on the latest developments in the field of preclinical CRC models.
Collapse
Affiliation(s)
- Florian Bürtin
- Department of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, University of Rostock, Rostock 18057, Germany
| | - Christina S Mullins
- Department of Thoracic Surgery, University Medical Center Rostock, University of Rostock, Rostock 18057, Germany
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Department of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, Rostock 18057, Germany
| |
Collapse
|
5
|
Oliveira RC, Abrantes AM, Tralhão JG, Botelho MF. The role of mouse models in colorectal cancer research-The need and the importance of the orthotopic models. Animal Model Exp Med 2020; 3:1-8. [PMID: 32318654 PMCID: PMC7167241 DOI: 10.1002/ame2.12102] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/06/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer is a worldwide health burden, with high incidence and mortality, especially in the advanced stages of the disease. Preclinical models are very important and valuable to discover and validate early and specific biomarkers as well as new therapeutic targets. In order to accomplish that, the animal models must replicate the clinical evolution of the disease in all of its phases. In this article, we review the existent mouse models, with their strengths and weaknesses in the replication of human cancer disease progression, with major focus on orthotopic models.
Collapse
Affiliation(s)
- Rui C. Oliveira
- Biophysics UnitFaculty of MedicineUniversity of CoimbraCoimbraPortugal
- Pathology DepartmentUniversity Hospital (CHUC)CoimbraPortugal
| | - Ana Margarida Abrantes
- Biophysics UnitFaculty of MedicineUniversity of CoimbraCoimbraPortugal
- Centre of Investigation on Environment, Genetics and Oncobiology (CIMAGO)CoimbraPortugal
| | - José Guilherme Tralhão
- Biophysics UnitFaculty of MedicineUniversity of CoimbraCoimbraPortugal
- Centre of Investigation on Environment, Genetics and Oncobiology (CIMAGO)CoimbraPortugal
- Surgery A DepartmentFaculty of MedicineUniversity Hospital (CHUC)CoimbraPortugal
| | - Maria Filomena Botelho
- Biophysics UnitFaculty of MedicineUniversity of CoimbraCoimbraPortugal
- Centre of Investigation on Environment, Genetics and Oncobiology (CIMAGO)CoimbraPortugal
| |
Collapse
|
6
|
Lazarovici P, Marcinkiewicz C, Lelkes PI. Cell-Based Adhesion Assays for Isolation of Snake Venom's Integrin Antagonists. Methods Mol Biol 2020; 2068:205-223. [PMID: 31576530 DOI: 10.1007/978-1-4939-9845-6_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Snake venoms could lead to the development of new drugs to treat a range of life-threatening conditions like cardiovascular diseases. Most snake venoms contain a large variety of lethal toxins as well as anti-adhesive proteins such as disintegrins, which have evolved from the harmless compounds ADAMs (proteins with a disintegrin and a metalloprotease domain) and C-type lectin proteins which disturb connective tissue and cell-matrix interaction. These anti-adhesive proteins target and block integrin receptors and disrupt normal biological processes in snakes' prey such as connective tissue physiology and blood clotting. This chapter provides the experimental details of a practical, cell-based adhesion protocol to help identify and isolate disintegrins and C-type lectin proteins from snake venoms, important tools in integrin research and lead compounds for drug discovery.
Collapse
Affiliation(s)
- Philip Lazarovici
- Faculty of Medicine, School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Cezary Marcinkiewicz
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, USA
| | - Peter I Lelkes
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, USA
| |
Collapse
|
7
|
Miyamoto Y, Muguruma N, Fujimoto S, Okada Y, Kida Y, Nakamura F, Tanaka K, Nakagawa T, Kitamura S, Okamoto K, Miyamoto H, Sato Y, Takayama T. Epidermal growth factor receptor-targeted molecular imaging of colorectal tumors: Detection and treatment evaluation of tumors in animal models. Cancer Sci 2019; 110:1921-1930. [PMID: 30973663 PMCID: PMC6549923 DOI: 10.1111/cas.14020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
To overcome the problem of overlooking colorectal tumors, a new and highly sensitive modality of colonoscopy is needed. Moreover, it is also important to establish a new modality to evaluate viable tumor volume in primary lesions of colorectal cancer (CRC) during chemotherapy. Therefore, we carried out molecular imaging of colorectal tumors targeting epidermal growth factor receptor (EGFR), which is highly expressed on tumor cells, for evaluating chemotherapeutic efficacy and for endoscopic detection of colorectal adenomas. We first attempted to image five CRC cell lines with various levels of EGFR expression using an Alexa Fluor-labeled anti-EGFR monoclonal antibody (AF-EGFR-Ab). A strong fluorescence signal was observed in the cells depending on the level of EGFR expression. When nude mice xenografted with LIM1215 CRC cells, which highly express EGFR, were i.v. injected with AF-EGFR-Ab, a strong fluorescence signal appeared in the tumor with a high signal to noise ratio, peaking at 48 hours after injection and then gradually decreasing, as shown using an IVIS Spectrum system. When the xenografted mice were treated with 5-fluorouracil, fluorescence intensity in the tumor decreased in proportion to the viable tumor cell volume. Moreover, when the colorectum of azoxymethane-treated rats was observed using a thin fluorescent endoscope with AF-EGFR-Ab, all 10 small colorectal adenomas (≤3 mm) were detected with a clear fluorescence signal. These preliminary results of animal experiments suggest that EGFR-targeted fluorescent molecular imaging may be useful for quantitatively evaluating cell viability in CRC during chemotherapy, and also for detecting small adenomas using a fluorescent endoscope.
Collapse
Affiliation(s)
- Yoshihiko Miyamoto
- Department of Gastroenterology and Oncology, University of Tokushima Faculty of Medicine Graduate School of Medical Sciences, Tokushima, Japan
| | - Naoki Muguruma
- Department of Gastroenterology and Oncology, University of Tokushima Faculty of Medicine Graduate School of Medical Sciences, Tokushima, Japan
| | - Shota Fujimoto
- Department of Gastroenterology and Oncology, University of Tokushima Faculty of Medicine Graduate School of Medical Sciences, Tokushima, Japan
| | - Yasuyuki Okada
- Department of Gastroenterology and Oncology, University of Tokushima Faculty of Medicine Graduate School of Medical Sciences, Tokushima, Japan
| | - Yoshifumi Kida
- Department of Gastroenterology and Oncology, University of Tokushima Faculty of Medicine Graduate School of Medical Sciences, Tokushima, Japan
| | - Fumika Nakamura
- Department of Gastroenterology and Oncology, University of Tokushima Faculty of Medicine Graduate School of Medical Sciences, Tokushima, Japan
| | - Kumiko Tanaka
- Department of Gastroenterology and Oncology, University of Tokushima Faculty of Medicine Graduate School of Medical Sciences, Tokushima, Japan
| | - Tadahiko Nakagawa
- Department of Health and Nutrition, University of Shimane Faculty of Nursing, Izumo, Japan
| | - Shinji Kitamura
- Department of Gastroenterology and Oncology, University of Tokushima Faculty of Medicine Graduate School of Medical Sciences, Tokushima, Japan
| | - Koichi Okamoto
- Department of Gastroenterology and Oncology, University of Tokushima Faculty of Medicine Graduate School of Medical Sciences, Tokushima, Japan
| | - Hiroshi Miyamoto
- Department of Gastroenterology and Oncology, University of Tokushima Faculty of Medicine Graduate School of Medical Sciences, Tokushima, Japan
| | - Yasushi Sato
- Department of Community Medicine for Gastroenterology and Oncology, Tokushima University Graduate School, Tokushima, Japan
| | - Tetsuji Takayama
- Department of Gastroenterology and Oncology, University of Tokushima Faculty of Medicine Graduate School of Medical Sciences, Tokushima, Japan
| |
Collapse
|
8
|
Marelli G, Avigni R, Allavena P, Garlanda C, Mantovani A, Doni A, Erreni M. Optical in vivo imaging detection of preclinical models of gut tumors through the expression of integrin αVβ3. Oncotarget 2018; 9:31380-31396. [PMID: 30140377 PMCID: PMC6101137 DOI: 10.18632/oncotarget.25826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 07/12/2018] [Indexed: 12/22/2022] Open
Abstract
Optical imaging and Fluorescent Molecular Tomography (FMT) are becoming increasingly important for the study of different preclinical models of cancer, providing a non-invasive method for the evaluation of tumor progression in a relatively simple and fast way. Intestinal tumors, in particular colorectal cancer (CRC), represent a major cause of cancer-related death in Western countries: despite the presence of a number of preclinical models of intestinal carcinogenesis, there is a paucity of information about the possibility to detect intestinal tumors using fluorescent probes and optical in vivo imaging. Herein, we identify the detection of integrin αvβ3 by FMT and optical imaging as an effective approach to assess the occurrence and progression of intestinal carcinogenesis in genetic and chemically-induced mouse models. For this purpose, a commercially available probe (IntegriSense), recognizing integrin αvβ3, was injected in APC+/min mice bearing small intestinal adenomas or CRC: FMT analysis allowed a specific tumor detection, further confirmed by subsequent ex vivo imaging or conventional histology. In addition, IntegriSense detection by FMT allowed the longitudinal monitoring of tumor growth. Taken together, our data indicate the possibility to use integrin αvβ3 for the visualization of intestinal tumors in preclinical models.
Collapse
Affiliation(s)
- Giulia Marelli
- IRCCS Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Current address: Center for Molecular Oncology, Bart Cancer Institute, Queen Mary University of London, London, UK
| | - Roberta Avigni
- IRCCS Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Paola Allavena
- IRCCS Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Humanitas University, Rozzano, Milan, Italy
| | - Cecilia Garlanda
- IRCCS Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Humanitas University, Rozzano, Milan, Italy
| | - Alberto Mantovani
- IRCCS Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Humanitas University, Rozzano, Milan, Italy.,The William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Andrea Doni
- IRCCS Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Marco Erreni
- IRCCS Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| |
Collapse
|
9
|
Honndorf VS, Wiehr S, Rolle AM, Schmitt J, Kreft L, Quintanilla-Martinez L, Kohlhofer U, Reischl G, Maurer A, Boldt K, Schwarz M, Schmidt H, Pichler BJ. Preclinical evaluation of the anti-tumor effects of the natural isoflavone genistein in two xenograft mouse models monitored by [18F]FDG, [18F]FLT, and [64Cu]NODAGA-cetuximab small animal PET. Oncotarget 2017; 7:28247-61. [PMID: 27070087 PMCID: PMC5053724 DOI: 10.18632/oncotarget.8625] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/28/2016] [Indexed: 12/11/2022] Open
Abstract
The natural phytoestrogen genistein is known as protein kinase inhibitor and tumor suppressor in various types of cancers. We studied its antitumor effect in two different xenograft models using positron emission tomography (PET) in vivo combined with ex vivo histology and nuclear magnetic resonance (NMR) metabolic fingerprinting.
Collapse
Affiliation(s)
- Valerie S Honndorf
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tuebingen, Germany
| | - Stefan Wiehr
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tuebingen, Germany
| | - Anna-Maria Rolle
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tuebingen, Germany
| | - Julia Schmitt
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tuebingen, Germany
| | - Luisa Kreft
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tuebingen, Germany
| | | | - Ursula Kohlhofer
- Institute of Pathology, University Hospital, Eberhard Karls University, Tuebingen, Germany
| | - Gerald Reischl
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tuebingen, Germany
| | - Andreas Maurer
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tuebingen, Germany
| | - Karsten Boldt
- Medical Proteome Center, Institute for Ophthalmic Research, Eberhard Karls University, Tuebingen, Germany
| | - Michael Schwarz
- Institute of Experimental and Clinical Pharmacology and Toxicology, Department of Toxicology, Eberhard Karls University, Tuebingen, Germany
| | - Holger Schmidt
- Department of Radiology, Diagnostic and Interventional Radiology, Eberhard Karls University, Tuebingen, Germany
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tuebingen, Germany
| |
Collapse
|
10
|
Polyak B, Medved M, Lazareva N, Steele L, Patel T, Rai A, Rotenberg MY, Wasko K, Kohut AR, Sensenig R, Friedman G. Magnetic Nanoparticle-Mediated Targeting of Cell Therapy Reduces In-Stent Stenosis in Injured Arteries. ACS NANO 2016; 10:9559-9569. [PMID: 27622988 DOI: 10.1021/acsnano.6b04912] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Although drug-eluting stents have dramatically reduced the recurrence of restenosis after vascular interventions, the nonselective antiproliferative drugs released from these devices significantly delay reendothelialization and vascular healing, increasing the risk of short- and long-term stent failure. Efficient repopulation of endothelial cells in the vessel wall following injury may limit complications, such as thrombosis, neoatherosclerosis, and restenosis, through reconstitution of a luminal barrier and cellular secretion of paracrine factors. We assessed the potential of magnetically mediated delivery of endothelial cells (ECs) to inhibit in-stent stenosis induced by mechanical injury in a rat carotid artery stent angioplasty model. ECs loaded with biodegradable superparamagnetic nanoparticles (MNPs) were administered at the distal end of the stented artery and localized to the stent using a brief exposure to a uniform magnetic field. After two months, magnetic localization of ECs demonstrated significant protection from stenosis at the distal part of the stent in the cell therapy group compared to both the proximal part of stent in the cell therapy group and the control (stented, nontreated) group: 1.7-fold (p < 0.001) less reduction in lumen diameter as measured by B-mode and color Doppler ultrasound, 2.3-fold (p < 0.001) less reduction in the ratios of peak systolic velocities as measured by pulsed wave Doppler ultrasound, and 2.1-fold (p < 0.001) attenuation of stenosis as determined through end point morphometric analysis. The study thus demonstrates that magnetically assisted delivery of ECs is a promising strategy for prevention of vessel lumen narrowing after stent angioplasty procedure.
Collapse
Affiliation(s)
- Boris Polyak
- Department of Surgery, Drexel University College of Medicine , Philadelphia, Pennsylvania 19102, United States
- Department of Pharmacology and Physiology, Drexel University College of Medicine , Philadelphia, Pennsylvania 19102, United States
| | - Mikhail Medved
- Department of Surgery, Drexel University College of Medicine , Philadelphia, Pennsylvania 19102, United States
| | - Nina Lazareva
- Department of Surgery, Drexel University College of Medicine , Philadelphia, Pennsylvania 19102, United States
| | - Lindsay Steele
- Department of Surgery, Drexel University College of Medicine , Philadelphia, Pennsylvania 19102, United States
- Molecular Cell Biology and Genetics (MCBG) Program, Drexel University College of Medicine , Philadelphia, Pennsylvania 19102, United States
| | - Tirth Patel
- Department of Surgery, Drexel University College of Medicine , Philadelphia, Pennsylvania 19102, United States
| | - Ahmad Rai
- Department of Surgery, Drexel University College of Medicine , Philadelphia, Pennsylvania 19102, United States
| | - Menahem Y Rotenberg
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev , Beer-Sheva 84105, Israel
| | - Kimberly Wasko
- Department of Surgery, Drexel University College of Medicine , Philadelphia, Pennsylvania 19102, United States
| | - Andrew R Kohut
- Department of Medicine, Division of Cardiology, Drexel University College of Medicine , Philadelphia, Pennsylvania 19102, United States
| | - Richard Sensenig
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Gary Friedman
- Department of Surgery, Drexel University College of Medicine , Philadelphia, Pennsylvania 19102, United States
- Department of Electrical and Computer Engineering, Drexel University , Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
11
|
Cohen G, Natsheh H, Sunny Y, Bawiec CR, Touitou E, Lerman MA, Lazarovici P, Lewin PA. Enhanced therapeutic anti-inflammatory effect of betamethasone on topical administration with low-frequency, low-intensity (20 kHz, 100 mW/cm(2)) ultrasound exposure on carrageenan-induced arthritis in a mouse model. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:2449-57. [PMID: 26003010 PMCID: PMC4563862 DOI: 10.1016/j.ultrasmedbio.2015.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/04/2015] [Accepted: 04/21/2015] [Indexed: 05/27/2023]
Abstract
The purpose of this work was to investigate whether low-frequency, low-intensity (20 kHz, <100 mW/cm(2), spatial-peak, temporal-peak intensity) ultrasound, delivered with a lightweight (<100 g), tether-free, fully wearable, battery-powered applicator, is capable of reducing inflammation in a mouse model of rheumatoid arthritis. The therapeutic, acute, anti-inflammatory effect was estimated from the relative swelling induced in mice hindlimb paws. In an independent, indirect approach, the inflammation was bio-imaged by measuring glycolytic activity with near-infrared labeled 2-deoxyglucose. The outcome of the experiments indicated that the combination of ultrasound exposure and topical application of 0.1% (w/w) betamethasone gel resulted in statistically significantly (p < 0.05) enhanced anti-inflammatory activity in comparison with drug or ultrasound treatment alone. The present study underscores the potential benefits of low-frequency, low-intensity ultrasound-assisted drug delivery. However, the proof of concept presented indicates the need for additional experiments to systematically evaluate and optimize the potential of, and the conditions for, tolerable low-frequency, low-intensity ultrasound-promoted non-invasive drug delivery.
Collapse
Affiliation(s)
- Gadi Cohen
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hiba Natsheh
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Youhan Sunny
- School of Biomedical Engineering, Sciences and Heath Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Christopher R Bawiec
- School of Biomedical Engineering, Sciences and Heath Systems, Drexel University, Philadelphia, Pennsylvania, USA.
| | - Elka Touitou
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Melissa A Lerman
- Division of Rheumatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Philip Lazarovici
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Peter A Lewin
- School of Biomedical Engineering, Sciences and Heath Systems, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
EGFR Overexpressed in Colonic Neoplasia Can be Detected on Wide-Field Endoscopic Imaging. Clin Transl Gastroenterol 2015; 6:e101. [PMID: 26181290 PMCID: PMC4816258 DOI: 10.1038/ctg.2015.28] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/22/2015] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Colorectal cancer initially lies dormant as dysplasia, a premalignant state that provides an opportunity for early cancer detection. Dysplasia can be flat in morphology, focal in size, and patchy in distribution, and thus it appears "invisible" on conventional wide-field endoscopy. AIMS We aim to develop and validate a peptide that is specific for epidermal growth factor receptor (EGFR), a cell surface target that is overexpressed in colonic adenomas and is readily accessible for imaging. METHODS We expressed and purified the extracellular domain of EGFR for use with phage display to identify a peptide QRHKPRE that binds to domain 2 of this target. A near-infrared fluorescence endoscope was used to perform in vivo imaging to validate specific peptide binding to spontaneous colonic adenomas in a mouse model with topical administration. We also validated specific peptide binding to human colonic adenomas on immunohistochemistry and immunofluorescence. RESULTS After labeling with Cy5.5, we validated specific peptide binding to EGFR on knockdown and competition studies. Peptide binding to cells occurred within 2.46 min and had an affinity of 50 nm. No downstream signaling was observed. We measured a target-to-background ratio of 4.0±1.7 and 2.7±0.7, for polyps and flat lesions, respectively. On immunofluorescence of human colonic specimens, greater intensity from peptide binding to dysplasia than normal was found with a 19.4-fold difference. CONCLUSIONS We have selected and validated a peptide that can be used as a specific contrast agent to identify colonic adenomas that overexpress EGFR in vivo on fluorescence endoscopy.
Collapse
|
13
|
Cohen G, Ettinger K, Lecht S, Lelkes PI, Lazarovici P. Transcriptional Down-regulation of Epidermal Growth Factor (EGF) Receptors by Nerve Growth Factor (NGF) in PC12 Cells. J Mol Neurosci 2014; 54:574-85. [DOI: 10.1007/s12031-014-0388-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/22/2014] [Indexed: 12/14/2022]
|
14
|
Arien-Zakay H, Gincberg G, Nagler A, Cohen G, Liraz-Zaltsman S, Trembovler V, Alexandrovich AG, Matok I, Galski H, Elchalal U, Lelkes PI, Lazarovici P, Shohami E. Neurotherapeutic effect of cord blood derived CD45+ hematopoietic cells in mice after traumatic brain injury. J Neurotrauma 2014; 31:1405-16. [PMID: 24640955 DOI: 10.1089/neu.2013.3270] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Treatment of traumatic brain injury (TBI) is still an unmet need. Cell therapy by human umbilical cord blood (HUCB) has shown promising results in animal models of TBI and is under evaluation in clinical trials. HUCB contains different cell populations but to date, only mesenchymal stem cells have been evaluated for therapy of TBI. Here we present the neurotherapeutic effect, as evaluated by neurological score, using a single dose of HUCB-derived mononuclear cells (MNCs) upon intravenous (IV) administration one day post-trauma in a mouse model of closed head injury (CHI). Delayed (eight days post-trauma) intracerebroventricular administration of MNCs showed improved neurobehavioral deficits thereby extending the therapeutic window for treating TBI. Further, we demonstrated for the first time that HUCB-derived pan-hematopoietic CD45 positive (CD45(+)) cells, isolated by magnetic sorting and characterized by expression of CD45 and CD11b markers (96-99%), improved the neurobehavioral deficits upon IV administration, which persisted for 35 days. The therapeutic effect was in a direct correlation to a reduction in the lesion volume and decreased by pre-treatment of the cells with anti-human-CD45 antibody. At the site of brain injury, 1.5-2 h after transplantation, HUCB-derived cells were identified by near infrared scanning and immunohistochemistry using anti-human-CD45 and anti-human-nuclei antibodies. Nerve growth factor and vascular endothelial growth factor levels were differentially expressed in both ipsilateral and contralateral brain hemispheres, thirty-five days after CHI, measured by enzyme-linked immunosorbent assay. These findings indicate the neurotherapeutic potential of HUCB-derived CD45(+) cell population in a mouse model of TBI and propose their use in the clinical setting of human TBI.
Collapse
Affiliation(s)
- Hadar Arien-Zakay
- 1 School of Pharmacy Institute for Drug Research, The Hebrew University of Jerusalem , Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Cohen G, Lecht S, Oron-Herman M, Momic T, Nissan A, Lazarovici P. Near infrared optical visualization of epidermal growth factor receptors levels in COLO205 colorectal cell line, orthotopic tumor in mice and human biopsies. Int J Mol Sci 2013; 14:14669-88. [PMID: 23857061 PMCID: PMC3742266 DOI: 10.3390/ijms140714669] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 07/05/2013] [Indexed: 01/05/2023] Open
Abstract
In this study, we present the applicability of imaging epidermal growth factor (EGF) receptor levels in preclinical models of COLO205 carcinoma cells in vitro, mice with orthotopic tumors and ex vivo colorectal tumor biopsies, using EGF-labeled with IRDye800CW (EGF-NIR). The near infrared (NIR) bio-imaging of COLO205 cultures indicated specific and selective binding, reflecting EGF receptors levels. In vivo imaging of tumors in mice showed that the highest signal/background ratio between tumor and adjacent tissue was achieved 48 hours post-injection. Dissected colorectal cancer tissues from different patients demonstrated ex vivo specific imaging using the NIR bio-imaging platform of the heterogeneous distributed EGF receptors. Moreover, in the adjacent gastrointestinal tissue of the same patients, which by Western blotting was demonstrated as EGF receptor negative, no labeling with EGF-NIR probe was detected. Present results support the concept of tumor imaging by measuring EGF receptor levels using EGF-NIR probe. This platform is advantageous for EGF receptor bio-imaging of the NCI-60 recommended panel of tumor cell lines including 6-9 colorectal cell lines, since it avoids radioactive probes and is appropriate for use in the clinical setting using NIR technologies in a real-time manner.
Collapse
Affiliation(s)
- Gadi Cohen
- School of Pharmacy, Institute for Drug Research, Faculty of Medicine, the Hebrew University of Jerusalem, Jerusalem 91120, Israel; E-Mails: (G.C.); (S.L.); (T.M.)
| | - Shimon Lecht
- School of Pharmacy, Institute for Drug Research, Faculty of Medicine, the Hebrew University of Jerusalem, Jerusalem 91120, Israel; E-Mails: (G.C.); (S.L.); (T.M.)
| | - Mor Oron-Herman
- Advanced Technology Center, the Chaim Sheba Medical Center, Tel-Hashomer 52621, Israel; E-Mail:
| | - Tatjana Momic
- School of Pharmacy, Institute for Drug Research, Faculty of Medicine, the Hebrew University of Jerusalem, Jerusalem 91120, Israel; E-Mails: (G.C.); (S.L.); (T.M.)
| | - Aviram Nissan
- Department of Surgery, Hadassah-Hebrew University Medical Center, Jerusalem 24035, Israel; E-Mail:
| | - Philip Lazarovici
- School of Pharmacy, Institute for Drug Research, Faculty of Medicine, the Hebrew University of Jerusalem, Jerusalem 91120, Israel; E-Mails: (G.C.); (S.L.); (T.M.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +972-2-675-8729; Fax: +972-2-675-7490
| |
Collapse
|