1
|
Wang Y, Gao S, Cao F, Yang H, Lei F, Hou S. Ocular immune-related diseases: molecular mechanisms and therapy. MedComm (Beijing) 2024; 5:e70021. [PMID: 39611043 PMCID: PMC11604294 DOI: 10.1002/mco2.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/05/2024] [Accepted: 10/31/2024] [Indexed: 11/30/2024] Open
Abstract
Ocular immune-related diseases, represent a spectrum of conditions driven by immune system dysregulation, include but not limit to uveitis, diabetic retinopathy, age-related macular degeneration, Graves' ophthalmopathy, etc. The molecular and cellular mechanisms underlying these diseases are typically dysfunctioned immune responses targeting ocular tissues, resulting in inflammation and tissue damage. Recent advances have further elucidated the pivotal role of different immune responses in the development, progression, as well as management of various ocular immune diseases. However, there is currently a relative lack of connection between the cellular mechanisms and treatments of several immune-related ocular diseases. In this review, we discuss recent findings related to the immunopathogenesis of above-mentioned diseases. In particular, we summarize the different types of immune cells, inflammatory mediators, and associated signaling pathways that are involved in the pathophysiology of above-mentioned ophthalmopathies. Furthermore, we also discuss the future directions of utilizing anti-inflammatory regime in the management of these diseases. This will facilitate a better understanding of the pathogenesis of immune-related ocular diseases and provide new insights for future treatment approaches.
Collapse
Affiliation(s)
- Yakun Wang
- The First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical UniversityBeijingChina
| | - Shangze Gao
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical UniversityBeijingChina
| | - Fan Cao
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical UniversityBeijingChina
| | - Hui Yang
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical UniversityBeijingChina
| | - Fengyang Lei
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical UniversityBeijingChina
| | - Shengping Hou
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical UniversityBeijingChina
| |
Collapse
|
2
|
Wang D, Ling J, Tan R, Wang H, Qu Y, Li X, Lin J, Zhang Q, Hu Q, Liu Z, Lu Z, Lin Y, Sun L, Wang D, Zhou M, Shi Z, Gao W, Ye H, Lin X. CD169 + classical monocyte as an important participant in Graves' ophthalmopathy through CXCL12-CXCR4 axis. iScience 2024; 27:109213. [PMID: 38439953 PMCID: PMC10910260 DOI: 10.1016/j.isci.2024.109213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/11/2023] [Accepted: 02/07/2024] [Indexed: 03/06/2024] Open
Abstract
Patients with Graves' disease (GD) can develop Graves' ophthalmopathy (GO), but the underlying pathological mechanisms driving this development remain unclear. In our study, which included patients with GD and GO, we utilized single-cell RNA sequencing (scRNA-seq) and multiplatform analyses to investigate CD169+ classical monocytes, which secrete proinflammatory cytokines and are expanded through activated interferon signaling. We found that CD169+ clas_mono was clinically significant in predicting GO progression and prognosis, and differentiated into CD169+ macrophages that promote inflammation, adipogenesis, and fibrosis. Our murine model of early-stage GO showed that CD169+ classical monocytes accumulated in orbital tissue via the Cxcl12-Cxcr4 axis. Further studies are needed to investigate whether targeting circulating monocytes and the Cxcl12-Cxcr4 axis could alleviate GO progression.
Collapse
Affiliation(s)
- Dongliang Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jie Ling
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - RongQiang Tan
- The First People’s Hospital of Zhaoqing, Zhaoqing 526000, China
| | - Huishi Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yixin Qu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xingyi Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jinshan Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Qikai Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Qiuling Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhong Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhaojing Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yuheng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Li Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Dingqiao Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Ming Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhuoxing Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Wuyou Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Huijing Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xianchai Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
3
|
Ferreira LB, Williams KA, Best G, Haydinger CD, Smith JR. Inflammatory cytokines as mediators of retinal endothelial barrier dysfunction in non-infectious uveitis. Clin Transl Immunology 2023; 12:e1479. [PMID: 38090668 PMCID: PMC10714664 DOI: 10.1002/cti2.1479] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/22/2023] [Accepted: 11/21/2023] [Indexed: 06/30/2024] Open
Abstract
Characterised by intraocular inflammation, non-infectious uveitis includes a large group of autoimmune and autoinflammatory diseases that either involve the eye alone or have both ocular and systemic manifestations. When non-infectious uveitis involves the posterior segment of the eye, specifically the retina, there is substantial risk of vision loss, often linked to breakdown of the inner blood-retinal barrier. This barrier is formed by non-fenestrated retinal vascular endothelial cells, reinforced by supporting cells that include pericytes, Müller cells and astrocytes. Across the published literature, a group of inflammatory cytokines stand out as prominent mediators of intraocular inflammation, with effects on the retinal endothelium that may contribute to breakdown of the inner blood-retinal barrier, namely tumour necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-8, IL-17 and chemokine C-C motif ligand (CCL)2. This article reviews the function of each cytokine and discusses the evidence for their involvement in retinal endothelial barrier dysfunction in non-infectious uveitis, including basic laboratory investigations, studies of ocular fluids collected from patients with non-infectious uveitis, and results of clinical treatment trials. The review also outlines gaps in knowledge in this area. Understanding the disease processes at a molecular level can suggest treatment alternatives that are directed against appropriate biological targets to protect the posterior segment of eye and preserve vision in non-infectious uveitis.
Collapse
Affiliation(s)
| | - Keryn A Williams
- Flinders University College of Medicine and Public HealthAdelaideSAAustralia
| | - Giles Best
- Flinders University College of Medicine and Public HealthAdelaideSAAustralia
| | - Cameron D Haydinger
- Flinders University College of Medicine and Public HealthAdelaideSAAustralia
| | - Justine R Smith
- Flinders University College of Medicine and Public HealthAdelaideSAAustralia
| |
Collapse
|
4
|
Zhang M, Zhang X. T cells in ocular autoimmune uveitis: Pathways and therapeutic approaches. Int Immunopharmacol 2023; 114:109565. [PMID: 36535124 DOI: 10.1016/j.intimp.2022.109565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Autoimmune uveitis is a non-infectious intraocular condition that affects the uveal tract of the eye and threatens vision if not treated properly. Increasing evidence suggests that activated CD4+ T cells are associated with progressive and permanent destruction of photoreceptors in ocular autoimmune diseases. As such, the purpose of this review is to offer an overview of the role of CD4+ T cells in autoimmune uveitis as well as a justification for the current development and assessment of innovative autoimmune uveitis medications targeting CD4+ T cells. With an emphasis on T helper (Th)17, Th1, and Th2 cells, follicular helper CD4+ T cells, and regulatory T cells, this review presents a summary of recent research related to the pathways and signaling that encourage CD4+ T cells to develop into specialized effector cells. We also describe immunotherapeutic approaches based on CD4+ T cell subsets and their potential as therapeutic agents for autoimmune disorders.
Collapse
Affiliation(s)
- Mi Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.
| |
Collapse
|
5
|
Thurau S, Deuter CME, Heiligenhaus A, Pleyer U, Van Calster J, Barisani-Asenbauer T, Obermayr F, Sperl S, Seda-Zehetner R, Wildner G. A new small molecule DHODH-inhibitor [KIO-100 (PP-001)] targeting activated T cells for intraocular treatment of uveitis — A phase I clinical trial. Front Med (Lausanne) 2022; 9:1023224. [PMID: 36325389 PMCID: PMC9621317 DOI: 10.3389/fmed.2022.1023224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Uveitis is a T cell-mediated, intraocular inflammatory disease and one of the main causes of blindness in industrialized countries. There is a high unmet need for new immunomodulatory, steroid-sparing therapies, since only ciclosporin A and a single TNF-α-blocker are approved for non-infectious uveitis. A new small molecule inhibitor of dihydroorotate dehydrogenase (DHODH), an enzyme pivotal for de novo synthesis of pyrimidines, has a high potency for suppressing T and B cells and has already proven highly effective for treating uveitis in experimental rat models. Systemic and intraocular application of KIO-100 (PP-001) (previously called PP-001, now KIO-100) could efficiently suppress rat uveitis in a preventive as well as therapeutic mode. Here we describe the outcome of the first clinical phase 1 trial comparing three different doses of a single intraocular injection of KIO-100 (PP-001) in patients with non-infectious posterior segment uveitis. No toxic side effects on intraocular tissues or other adverse events were observed, while intraocular inflammation decreased, and visual acuity significantly improved. Macular edema, a sight-threatening complication in uveitis, showed regression 2 weeks after intraocular KIO-100 (PP-001) injection in some patients, indicating that this novel small molecule has a high potential as a new intraocular therapy for uveitis.
Collapse
Affiliation(s)
- Stephan Thurau
- Department of Ophthalmology, University Hospital, LMU München, München, Germany
| | | | - Arnd Heiligenhaus
- Department of Ophthalmology, St.-Franziskus-Hospital, Münster, Germany
| | - Uwe Pleyer
- Department of Ophthalmology, Charité — Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | - Franz Obermayr
- Panoptes Pharma GmbH, Vienna, now Kiora Pharmaceuticals Inc., Vienna, Austria
- Epics Therapeutics, Gosselies, Belgium
| | - Stefan Sperl
- Panoptes Pharma GmbH, Vienna, now Kiora Pharmaceuticals Inc., Vienna, Austria
| | | | - Gerhild Wildner
- Department of Ophthalmology, University Hospital, LMU München, München, Germany
- *Correspondence: Gerhild Wildner,
| |
Collapse
|
6
|
Gehrke M, Diedrichs-Möhring M, Bogedein J, Büning H, Michalakis S, Wildner G. Immunogenicity of Novel AAV Capsids for Retinal Gene Therapy. Cells 2022; 11:cells11121881. [PMID: 35741009 PMCID: PMC9221425 DOI: 10.3390/cells11121881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 11/16/2022] Open
Abstract
Objectives: AAV vectors are widely used in gene therapy, but the prevalence of neutralizing antibodies raised against AAV serotypes in the course of a natural infection, as well as innate and adaptive immune responses induced upon vector administration, is still considered an important limitation. In ocular gene therapy, vectors applied subretinally bear the risk of retinal detachment or vascular leakage. Therefore, new AAV vectors that are suitable for intravitreal administration for photoreceptor transduction were developed. Methods: Here, we compared human immune responses from donors with suspected previous AAV2 infections to the new vectors AAV2.GL and AAV2.NN—two capsid peptide display variants with an enhanced tropism for photoreceptors—with the parental serotype AAV2 (AAV2 WT). We investigated total and neutralizing antibodies, adaptive and innate cellular immunogenicity determined by immunofluorescence staining and flow cytometry, and cytokine secretion analyzed with multiplex beads. Results: While we did not observe obvious differences in overall antibody binding, variants—particularly AAV2.GL—were less sensitive to neutralizing antibodies than the AAV2 WT. The novel variants did not differ from AAV2 WT in cellular immune responses and cytokine production in vitro. Conclusion: Due to their enhanced retinal tropism, which allows for dose reduction, the new vector variants are likely to be less immunogenic for gene therapy than the parental AAV2 vector.
Collapse
Affiliation(s)
- Miranda Gehrke
- Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstr. 8, 80336 Munich, Germany; (M.G.); (M.D.-M.); (J.B.)
| | - Maria Diedrichs-Möhring
- Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstr. 8, 80336 Munich, Germany; (M.G.); (M.D.-M.); (J.B.)
| | - Jacqueline Bogedein
- Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstr. 8, 80336 Munich, Germany; (M.G.); (M.D.-M.); (J.B.)
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Correspondence: (H.B.); (S.M.); (G.W.); Tel.: +49-89-2180-77325 (S.M.); +49-89-44005-3888 (G.W.); Fax: +49-89-44005-3045 (S.M. & G.W.)
| | - Stylianos Michalakis
- Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstr. 8, 80336 Munich, Germany; (M.G.); (M.D.-M.); (J.B.)
- Correspondence: (H.B.); (S.M.); (G.W.); Tel.: +49-89-2180-77325 (S.M.); +49-89-44005-3888 (G.W.); Fax: +49-89-44005-3045 (S.M. & G.W.)
| | - Gerhild Wildner
- Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstr. 8, 80336 Munich, Germany; (M.G.); (M.D.-M.); (J.B.)
- Correspondence: (H.B.); (S.M.); (G.W.); Tel.: +49-89-2180-77325 (S.M.); +49-89-44005-3888 (G.W.); Fax: +49-89-44005-3045 (S.M. & G.W.)
| |
Collapse
|
7
|
Chen YH, Lightman S, Calder VL. CD4 + T-Cell Plasticity in Non-Infectious Retinal Inflammatory Disease. Int J Mol Sci 2021; 22:9584. [PMID: 34502490 PMCID: PMC8431487 DOI: 10.3390/ijms22179584] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 01/14/2023] Open
Abstract
Non-infectious uveitis (NIU) is a potentially sight-threatening disease. Effector CD4+ T cells, especially interferon-γ-(IFNγ) producing Th1 cells and interleukin-17-(IL-17) producing Th17 cells, are the major immunopathogenic cells, as demonstrated by adoptive transfer of disease in a model of experimental autoimmune uveitis (EAU). CD4+FoxP3+CD25+ regulatory T cells (Tregs) were known to suppress function of effector CD4+ T cells and contribute to resolution of disease. It has been recently reported that some CD4+ T-cell subsets demonstrate shared phenotypes with another CD4+ T-cell subset, offering the potential for dual function. For example, Th17/Th1 (co-expressing IFNγ and IL-17) cells and Th17/Treg (co-expressing IL-17 and FoxP3) cells have been identified in NIU and EAU. In this review, we have investigated the evidence as to whether these 'plastic CD4+ T cells' are functionally active in uveitis. We conclude that Th17/Th1 cells are generated locally, are resistant to the immunosuppressive effects of steroids, and contribute to early development of EAU. Th17/Treg cells produce IL-17, not IL-10, and act similar to Th17 cells. These cells were considered pathogenic in uveitis. Future studies are needed to better clarify their function, and in the future, these cell subsets may in need to be taken into consideration for designing treatment strategies for disease.
Collapse
Affiliation(s)
- Yi-Hsing Chen
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK; (Y.-H.C.); (S.L.)
- Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Sue Lightman
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK; (Y.-H.C.); (S.L.)
| | - Virginia L. Calder
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK; (Y.-H.C.); (S.L.)
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| |
Collapse
|
8
|
Jiang G, Yun J, Kaplan HJ, Zhao Y, Sun D, Shao H. Vaccination with circulating exosomes in autoimmune uveitis prevents recurrent intraocular inflammation. Clin Exp Ophthalmol 2021; 49:1069-1077. [PMID: 34455666 DOI: 10.1111/ceo.13990] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/02/2021] [Accepted: 08/23/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Exosomes participate in intercellular communication and act as important molecular vehicles in the regulation of numerous physiological and pathological processes, including autoimmune development. The role of circulating exosomes in the development of autoimmune uveitis is unknown. In this study, using the rat model of experimental autoimmune uveitis, which has clinical and histological features of pan uveitis in man, we evaluated the immunoregulatory function of circulating exosomes. METHODS Experimental autoimmune uveitis was induced in Lewis rats either immunised with interphotoreceptor retinoid-binding protein R16 peptides or injected with activated R16-specific T cells. The disease incidence and severity were examined by indirect fundoscopy and flow cytometry. Circulating exosomes were isolated from peripheral blood of naïve and Day 14 R16 immunised Lewis rats. The effect of exosomes on specific T cells was evaluated by R16-specific T cell proliferation, cytokine production and recurrent uveitis induction. RESULTS Circulating exosomes derived from active immunised uveitis rats selectively inhibited immune responses of R16-specific T cells in vitro. Vaccination of naïve rats with these exosomes reduced the incidence of recurrent uveitis in an antigen-specific manner. Antigen-specific uveitogenic T cells reduced IFN-γ production and increased IL-10 after vaccination. CONCLUSIONS Circulating exosomes in autoimmune uveitis have the potential to be a novel treatment for recurrent autoimmune uveitis.
Collapse
Affiliation(s)
- Guomin Jiang
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, Kentucky, USA
| | - Juan Yun
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, Kentucky, USA
| | - Henry J Kaplan
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, Kentucky, USA.,Department of Ophthalmology, St. Louis University School of Medicine, St. Louis, Missouri, USA
| | - Yuan Zhao
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, Texas, USA
| | - Deming Sun
- Doheny Eye Institute and Department. Ophthalmology, David Geffen School of Medicine/UCLA, Los Angeles, California, USA
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
9
|
Huang JCC, Schleisman M, Choi D, Mitchell C, Watson L, Asquith M, Rosenbaum JT. Preliminary Report on Interleukin-22, GM-CSF, and IL-17F in the Pathogenesis of Acute Anterior Uveitis. Ocul Immunol Inflamm 2021; 29:558-565. [PMID: 31763950 PMCID: PMC7246145 DOI: 10.1080/09273948.2019.1686156] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/19/2019] [Accepted: 10/24/2019] [Indexed: 01/17/2023]
Abstract
Purpose:Anterior uveitis is the most common anatomic subset of uveitis. We developed a novel multi-parametric flow cytometry panel to identify immune dysregulation signatures in HLA B27-associated acute anterior uveitis (AAU) and axial spondyloarthritis (AxSpA).Methods: We used fluorescence activated cell sorting to characterize T cell cytokine expression in stimulated T cell subsets from patients with AAU (n = 4) compared to healthy controls (n = 14) or subjects with AxSpA (n = 6).Results: Positive findings among subjects with AAU included a statistically significant increase in stimulated granulocyte-macrophage colony stimulating factor (GM-CSF), IL-17, and IL-22 synthesized by CD8 cells, a trend for stimulated ILC (innate lymphoid cells)-3 cells to synthesize more IL-22 (p = .07), and stimulated MAIT (mucosa associated innate lymphoid cells)-like cells that express the T cell receptor V alpha 7.2 to express IL-17A, IL-17F, and IL-22 in a greater percentage of cells relative to controls. IL-17F, GM- CSF, and IL-22 represent potentially novel targets in AAU.Conclusion: Our report is arguably the first to implicate IL-17F or ILC-3 and MAIT cells in the pathogenesis of AAU.Abbreviations AAU: acute anterior uveitis; AxSpA: axial spondyloarthritis; BASDAI: Bath ankylosing spondylitis disease activity index; CCR: chemokine receptor; DMSO: dimethylsulfoxide; EULAR:European League Against Rheumatism; FACS: fluorescence activated cell sorter; FBS: fetal bovine serum; FSC: orward light scatter; GM-CSF: granulocyte-macrophage colony stimulating factor; HC: healthy control; ILC: innate lymphoid cell; KIR: killer immunoglobulin receptor; MAIT: mucosal associated immune T cell; ND: not detected; NK: natural killer cell; OHSU-Oregon Health & Science University; PBMC: peripheral blood mononuclear cell; SSC: side light scatter; TCR: T cell receptor.
Collapse
Affiliation(s)
- Jerry Chien-Chieh Huang
- Department of Ophthalmology, Oregon Health & Science University (OHSU)
- Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung, Taiwan 2. Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | | | - Dongseok Choi
- OHSU-PSU School of Public Health, Oregon Health & Science University and Graduate School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Claire Mitchell
- Department of Ophthalmology, Oregon Health & Science University (OHSU)
| | - Lindsey Watson
- Department of Ophthalmology, Oregon Health & Science University (OHSU)
| | - Mark Asquith
- Department of Medicine, OHSU (Dr. Asquith is deceased)
| | - James T. Rosenbaum
- Departments of Ophthalmology, Medicine, and Cell Biology, OHSU
- Legacy Devers Eye Institute, Portland, Oregon
| |
Collapse
|
10
|
Frank K, Abeynaike S, Nikzad R, Patel RR, Roberts AJ, Roberto M, Paust S. Alcohol dependence promotes systemic IFN-γ and IL-17 responses in mice. PLoS One 2020; 15:e0239246. [PMID: 33347446 PMCID: PMC7751976 DOI: 10.1371/journal.pone.0239246] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
Alcohol use disorder (AUD) is a chronic relapsing disorder characterized by an impaired ability to stop or control alcohol use despite adverse social, occupational, or health consequences. AUD is associated with a variety of physiological changes and is a substantial risk factor for numerous diseases. We aimed to characterize systemic alterations in immune responses using a well-established mouse model of chronic intermittent alcohol exposure to induce alcohol dependence. We exposed mice to chronic intermittent ethanol vapor for 4 weeks and analyzed the expression of cytokines IFN-γ, IL-4, IL-10, IL-12 and IL-17 by different immune cells in the blood, spleen and liver of alcohol dependent and non-dependent control mice through multiparametric flow cytometry. We found increases in IFN-γ and IL-17 expression in a cell type- and organ-specific manner. Often, B cells and neutrophils were primary contributors to increased IFN-γ and IL-17 levels while other cell types played a secondary role. We conclude that chronic alcohol exposure promotes systemic pro-inflammatory IFN-γ and IL-17 responses in mice. These responses are likely important in the development of alcohol-related diseases, but further characterization is necessary to understand the initiation and effects of systemic inflammatory responses to chronic alcohol exposure.
Collapse
Affiliation(s)
- Kayla Frank
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Shawn Abeynaike
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Rana Nikzad
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Reesha R. Patel
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Amanda J. Roberts
- Animal Models Core, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Silke Paust
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States of America
- * E-mail:
| |
Collapse
|
11
|
Chen YH, Eskandarpour M, Gondrand A, Zhang X, Gu R, Galatowicz G, Lightman SL, Calder VL. Functionally distinct IFN-γ + IL-17A + Th cells in experimental autoimmune uveitis: T-cell heterogeneity, migration, and steroid response. Eur J Immunol 2020; 50:1941-1951. [PMID: 32652562 DOI: 10.1002/eji.202048616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/11/2020] [Accepted: 07/10/2020] [Indexed: 01/03/2023]
Abstract
Immunopathogenic roles for both Th1 (CD4+ IFN-γ+ ) and Th17 (CD4+ IL-17A+ ) cells have been demonstrated in experimental autoimmune uveitis (EAU). However, the role for Th17/Th1 (CD4+ T cells co-expressing IFN-γ and IL-17A) cells in EAU is not yet understood. Using interphotoreceptor retinoid-binding protein peptide-induced EAU in mice, we found increased levels of Th17/Th1 cells in EAU retinae (mean 9.6 ± 4.2%) and draining LNs (mean 8.4 ± 3.9%; p = 0.01) relative to controls. Topical dexamethasone treatment effectively reduced EAU severity and decreased retinal Th1 cells (p = 0.01), but had no impact on retinal Th17/Th1 or Th17 cells compared to saline controls. Using in vitro migration assays with mouse CNS endothelium, we demonstrated that Th17/Th1 cells were significantly increased within the migrated population relative to controls (mean 15.6 ± 9.5% vs. 1.9 ± 1.5%; p = 0.01). Chemokine receptor profiles of Th17/Th1 cells (CXCR3 and CCR6) did not change throughout the transendothelial migration process and were unaffected by dexamethasone treatment. These findings support a role for Th17/Th1 cells in EAU and their resistance to steroid inhibition suggests the importance of targeting both Th17 and Th17/Th1 cells for improving therapy.
Collapse
Affiliation(s)
- Yi-Hsing Chen
- UCL Institute of Ophthalmology, University College London, London, UK.,Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | | | - Aurelia Gondrand
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Xiaozhe Zhang
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Renyang Gu
- UCL Institute of Ophthalmology, University College London, London, UK
| | | | - Sue L Lightman
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital, London, UK
| | - Virginia L Calder
- UCL Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
12
|
Network pharmacology-based identification of the key mechanism of Qinghuo Rougan Formula acting on uveitis. Biomed Pharmacother 2019; 120:109381. [DOI: 10.1016/j.biopha.2019.109381] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 08/17/2019] [Accepted: 08/22/2019] [Indexed: 12/16/2022] Open
|
13
|
Abstract
Autoimmune uveitis is a sight-threatening, rare disease, potentially leading to blindness. Uveitis is a synonym for intraocular inflammation, presenting as various clinical phenotypes with different underlying immune responses in patients, whereas different animal models usually represent one certain clinical and immunological type of uveitis due to genetic uniformity and the method of disease induction. T cells recognizing intraocular antigens initiate the disease, recruiting inflammatory cells (granulocytes, monocytes/macrophages) to the eyes, which cause the damage of the tissue. The treatment of uveitis so far aims at downregulation of inflammation to protect the ocular tissues from damage, and at immunosuppression to stop fueling T cell reactivity. Uveitis is usually prevented by specific mechanisms of the ocular immune privilege and the blood-eye-barriers, but once the disease is induced, mechanisms of the immune privilege as well as a variety of novel regulatory features including new Treg cell populations and suppressive cytokines are induced to downregulate the ocular inflammation and T cell responses and to avoid relapses and chronicity. Here we describe mechanisms of regulation observed in experimental animal models as well as detected in studies with peripheral lymphocytes from patients.
Collapse
|
14
|
Pepple KL, Wilson L, Van Gelder RN, Kovaleva M, Ubah OC, Steven J, Barelle CJ, Porter A. Uveitis Therapy With Shark Variable Novel Antigen Receptor Domains Targeting Tumor Necrosis Factor Alpha or Inducible T-Cell Costimulatory Ligand. Transl Vis Sci Technol 2019; 8:11. [PMID: 31588375 PMCID: PMC6753974 DOI: 10.1167/tvst.8.5.11] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 07/15/2019] [Indexed: 12/29/2022] Open
Abstract
PURPOSE We assess the efficacy of two next-generation biologic therapies in treating experimental autoimmune uveitis. METHODS Variable binding domains from shark immunoglobulin novel antigen receptors (VNARs) were fused with a mouse IgG2a constant domain (Fc) to generate VNAR-Fc molecules with binding specificity to tumor necrosis factor alpha (TNFα) or inducible T-cell costimulatory ligand (ICOSL). Treatment with VNAR-Fc fusion proteins was compared to treatment with dexamethasone or vehicle in the Lewis rat model of experimental autoimmune uveitis (EAU). Inflammation control was determined by comparing OCT clinical and histologic scores, and aqueous humor protein concentration. The concentration of 27 inflammatory cytokines in the aqueous humor was measured using a multiplex enzyme-linked immunosorbent assay platform. RESULTS Administration of S17-Fc significantly decreased clinical, histologic, and aqueous protein levels when compared to vehicle treatment. Inflammation scores and aqueous protein levels in A5-Fc-treated animals were decreased compared to vehicle treatment, but not significantly. The concentration of vascular endothelial growth factor (VEGF), regulated on activation, normal T cell expressed and secreted (RANTES), macrophage inflammatory protein 1 alpha (MIP-1α), interleukin (IL)-1β, LPS-induced CXC chemokine (LIX), monocyte chemoattractant protein-1 (MCP-1), and interferon (IFN)-γ were significantly decreased in the eyes of animals treated with dexamethasone. VNAR treatment demonstrated a trend towards decreased cytokine concentrations, but only VEGF and RANTES were significantly decreased by S17-Fc. CONCLUSIONS Treatment with the anti-TNFα VNAR S17-Fc ameliorates EAU as effectively as treatment with corticosteroids. TRANSLATIONAL RELEVANCE VNAR-Fc molecules are a next-generation therapeutic biologic that overcome the limitations of classical biologic monoclonal antibodies, such as complex structure, large size, and limited tissue penetration. This is a novel drug modality that could result in the development of new therapy options for patients with noninfectious uveitis.
Collapse
Affiliation(s)
- Kathryn L. Pepple
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Leslie Wilson
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Russell N. Van Gelder
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
- Department of Biological Structure, University of Washington, Seattle, WA, USA
- Department of Pathology, University of Washington, Seattle, WA, USA
| | | | | | | | | | - Andrew Porter
- Elasmogen Ltd, Aberdeen, UK
- Department of Molecular and Cell Biology, Institute of Medical Sciences, University of Aberdeen, UK
| |
Collapse
|
15
|
Fu Q, Man X, Wang X, Song N, Li Y, Xue J, Sun Y, Lin W. CD83 + CCR7 + NK cells induced by interleukin 18 by dendritic cells promote experimental autoimmune uveitis. J Cell Mol Med 2019; 23:1827-1839. [PMID: 30548211 PMCID: PMC6378215 DOI: 10.1111/jcmm.14081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 11/01/2018] [Accepted: 11/16/2018] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cells have been reported to play a pathological role in autoimmune uveitis. However, the mechanisms regarding NK cells in uveitis and factors that affect NK-cell activation in this condition remain unclear. Here, we report that the number of CD3- NK1.1+ CD83+ CCR7+ cells is increased in the inflamed eyes within a mouse model of experimental autoimmune uveitis (EAU), and these cells express elevated levels of NKG2D, CD69 and IFN-γ. Adoptively transferring CD83+ CCR7+ NK cells aggravates EAU symptoms and increases the number of CD4+ IFN-γ+ T cells and dendritic cells (DCs) within the eye. These CD83+ CCR7+ NK cells then promote the maturation of DCs and IFN-γ expression within T cells as demonstrated in vitro. Furthermore, IL-18, as primarily secreted by DCs in the eyes, is detected to induce CD83+ CCR7+ NK cells. In EAU mice, anti-IL-18R antibody treatment also decreases retinal tissue damage, as well as the number of infiltrating CD83+ CCR7+ NK cells, T cells and DCs in the inflamed eyes and spleens of EAU mice. These results suggest that CD83+ CCR7+ NK cells, as induced by IL-18 that primarily secreted by DCs, play a critical pathological role in EAU. Anti-IL-18R antibody might serve as a potential therapeutic agent for uveitis through its capacity to inhibit CD83+ CCR7+ NK cells infiltration.
Collapse
Affiliation(s)
- Qiang Fu
- Department of ImmunologyBinzhou Medical UniversityYantaiChina
| | - Xuejing Man
- Department of OphthalmologyYuhuangding HospitalYantaiChina
| | - Xin Wang
- Department of Clinical LaboratoryQilu Hospital of Shandong UniversityJinanChina
| | - Nannan Song
- Institute of Basic medicineShandong Academy of medical SciencesJinanChina
| | - Yuanbin Li
- Department of OphthalmologyYuhuangding HospitalYantaiChina
| | - Jiangnan Xue
- Department of ImmunologyBinzhou Medical UniversityYantaiChina
| | - Yufei Sun
- Department of ImmunologyBinzhou Medical UniversityYantaiChina
| | - Wei Lin
- Institute of Basic medicineShandong Academy of medical SciencesJinanChina
| |
Collapse
|
16
|
Pepple KL, Wilson L, Van Gelder RN. Comparison of Aqueous and Vitreous Lymphocyte Populations From Two Rat Models of Experimental Uveitis. Invest Ophthalmol Vis Sci 2019; 59:2504-2511. [PMID: 29847657 PMCID: PMC5963002 DOI: 10.1167/iovs.18-24192] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose To compare lymphocyte populations present within inflamed eyes in two rat models of autoimmune uveitis. Methods Experimental autoimmune uveitis (EAU) and primed mycobacterial uveitis (PMU) were initiated in Lewis rats. Aqueous and vitreous were collected at peak inflammation (PMU at day 2, EAU at day 14). The number of cells in the aqueous and vitreous was determined and compared for each eye and between the two models. Intraocular CD-19+ B cells, CD3+ T cells, and CD4+ or CD8+ T-cell subpopulations were identified by flow cytometry and compared between EAU and PMU. Results The median number of cells/mL collected from PMU aqueous (7.98 × 107 cells/mL), was not significantly different from the number of cells collected from EAU aqueous (1.61 × 107 cells/mL, P = 0.94). EAU aqueous contains a significantly larger mononuclear population (median 61%, interquartile range [IQR] 44%–67%) than PMU (median 9%, IQR 8%–10% [P < 0.0001]). Within the mononuclear population, EAU and PMU aqueous demonstrate similar proportions of CD3+, CD4+ T cells. However, EAU has a larger CD3+, CD8+, T-cell population than PMU, and this population also demonstrates co-expression of CD45R. B cells comprise a significantly larger median percentage of cells in EAU aqueous (median 18%, IQR 15%–20%) compared to PMU (median 13%, IQR 9%–15%, P = 0.006). Conclusions Flow cytometry analysis of intraocular lymphocytes from EAU and PMU identifies similarities and differences between the T-cell and B-cell populations present at peak inflammation. Complementary animal models that have well-defined mechanistic differences will improve our ability to test potential new therapies and bring meaningful advances into clinical practice for patients with uveitis.
Collapse
Affiliation(s)
- Kathryn L Pepple
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Leslie Wilson
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Russell N Van Gelder
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States.,Department of Biological Structure, University of Washington, Seattle, Washington, United States.,Department of Pathology, University of Washington, Seattle, Washington, United States
| |
Collapse
|
17
|
Are rats more human than mice? Immunobiology 2019; 224:172-176. [DOI: 10.1016/j.imbio.2018.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/12/2018] [Accepted: 09/19/2018] [Indexed: 11/23/2022]
|
18
|
Diedrichs-Möhring M, Kaufmann U, Wildner G. The immunopathogenesis of chronic and relapsing autoimmune uveitis – Lessons from experimental rat models. Prog Retin Eye Res 2018; 65:107-126. [DOI: 10.1016/j.preteyeres.2018.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/19/2018] [Accepted: 02/22/2018] [Indexed: 12/12/2022]
|
19
|
Diedrichs-Möhring M, Niesik S, Priglinger CS, Thurau SR, Obermayr F, Sperl S, Wildner G. Intraocular DHODH-inhibitor PP-001 suppresses relapsing experimental uveitis and cytokine production of human lymphocytes, but not of RPE cells. J Neuroinflammation 2018; 15:54. [PMID: 29467002 PMCID: PMC5822610 DOI: 10.1186/s12974-018-1088-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/02/2018] [Indexed: 01/02/2023] Open
Abstract
Background Uveitis is a potentially blinding inflammatory disease of the inner eye with a high unmet need for new therapeutic interventions. Here, we wanted to investigate the suppressive effect of the intraocular application of the small molecule dihydroorotate dehydrogenase (DHODH)-inhibitor PP-001 on experimental relapsing rat uveitis and furthermore determine its effect on proliferation and cytokine secretion of human peripheral blood lymphocytes (PBL) and human retinal pigment epithelial (RPE) cells in vitro. Methods Spontaneously relapsing uveitis was induced in rats by immunization with interphotoreceptor retinoid-binding protein (IRBP) peptide R14. PP-001 was injected intravitreally after resolution of the primary disease to investigate further relapses. Proliferation and metabolic activity of phytohemagglutinin (PHA)-stimulated human peripheral lymphocytes with and without PP-001 and cytokine secretion were determined by XTT assay and bioplex bead assay. The RPE cell line ARPE-19 as well as primary human RPE cells treated with PP-001 or anti-vascular endothelial growth factor (VEGF) antibody bevacizumab were also investigated for metabolic activity and cytokine/chemokine secretion. Results Injection of PP-001 into rat eyes reduced the number of relapses by 70%, from 20 relapses (57% of the rats affected) in the control group to 6 relapses (33% of the rats) in the treatment group. In human PBL cultures, PP-001 reduced the proliferation in a dose-dependent manner. The secretion of several cytokines such as IL-17, IFN-γ, and VEGF was suppressed by PP-001, as previously observed with rat T cells in the experimental autoimmune uveitis (EAU) model. In contrast, human RPE cells were not affected by PP-001, while the anti-VEGF antibody bevacizumab severely impaired the secretion of various cytokines including VEGF. Conclusions For the first time, intravitreal injection of PP-001 demonstrated an effective, but transient reduction of relapses in the rat EAU model. In vitro PP-001 suppressed proliferation and cytokine/chemokine secretion of human lymphocytes, while neither human RPE cell line ARPE-19 nor primary RPE cells were affected.
Collapse
Affiliation(s)
- Maria Diedrichs-Möhring
- Section of Immunobiology, Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstr. 8, 80336, Munich, Germany
| | - Sandy Niesik
- Section of Immunobiology, Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstr. 8, 80336, Munich, Germany.,Division Virus-associated carcinogenesis (F170), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Claudia S Priglinger
- Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstr. 8, 80336, Munich, Germany
| | - Stephan R Thurau
- Section of Immunobiology, Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstr. 8, 80336, Munich, Germany
| | - Franz Obermayr
- Panoptes Pharma GmbH, Reisnerstr. 34/1, 1030, Vienna, Austria
| | - Stefan Sperl
- Panoptes Pharma GmbH, Reisnerstr. 34/1, 1030, Vienna, Austria
| | - Gerhild Wildner
- Section of Immunobiology, Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstr. 8, 80336, Munich, Germany.
| |
Collapse
|
20
|
Xie L, Zhong X, Liu D, Liu L, Xia Z. The effects of freeze-dried Ganoderma lucidum mycelia on a recurrent oral ulceration rat model. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:511. [PMID: 29191190 PMCID: PMC5709989 DOI: 10.1186/s12906-017-2021-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 11/20/2017] [Indexed: 11/17/2022]
Abstract
Background Conventional scientific studies had supported the use of polysaccharides and β-glucans from a number of fungi, including Ganoderma lucidum for the treatment of recurrent oral ulceration (ROU). Our aim of the present study was to evaluate whether freeze-dried powder from G. lucidum mycelia (FDPGLM) prevents ROU in rats. Methods A Sprague-Dawley (SD) rat model with ROU was established by autoantigen injection. The ROU rats were treated with three different dosages of FDPGLM and prednisone acetate (PA), and their effects were evaluated according to the clinical therapeutic evaluation indices of ROU. Results High-dose FDPGLM induced significantly prolonged total intervals and a reduction in the number of ulcers and ulcer areas, thereby indicating that the treatment was effective in preventing ROU. Enzyme-linked immunosorbent assay (ELISA) showed that high-dose FDPGLM significantly enhanced the serum transforming growth factor-β1 (TGF-β1) levels, whereas reduced those of interleukin-6 (IL-6) and interleukin-17 (IL-17). Flow cytometry (FCM) showed that the proportion of CD4+ CD25+ Foxp3+ (forkhead box P3) regulatory T cells (Tregs) significantly increased by 1.5-fold in the high-dose FDPGLM group compared to that in the rat model group (P < 0.01). The application of middle- and high-dose FDPGLM also resulted in the upregulation of Foxp3 and downregulation of retinoid-related orphan receptor gamma t(RORγt) mRNA. Conclusion High-dose FDPGLM possibly plays a role in ROU by promoting CD4+ CD25+ Foxp3+ Treg and inhibiting T helper cell 17 differentiation. This study also shows that FDPGLM may be potentially used as a complementary and alternative medicine treatment scheme for ROU. Electronic supplementary material The online version of this article (10.1186/s12906-017-2021-8) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
Abstract
Th17 cells, a CD4+ T-cell subset, produce interleukin (IL)-17, a pro-inflammatory cytokine that has been shown to be involved in several forms of infectious and noninfectious uveitis. Here, we explore the roles of this IL in uveitic disorders as well as in experimental autoimmune uveitis, the possible pathogenic implications of several cytokines associated with IL-17 and analyze the current outcomes and goals for drugs aiming for the IL-17 pathway.
Collapse
|
22
|
Nacka-Aleksić M, Stojić-Vukanić Z, Pilipović I, Vujnović I, Bufan B, Dimitrijević M, Leposavić G. Strain specificities in cellular and molecular immunopathogenic mechanisms underlying development of experimental autoimmune encephalomyelitis in aged rats. Mech Ageing Dev 2017; 164:146-163. [DOI: 10.1016/j.mad.2017.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/21/2017] [Accepted: 03/03/2017] [Indexed: 11/29/2022]
|
23
|
Liu X, Diedrichs-Möhring M, Wildner G. The Role of IFN-alpha in Experimental and Clinical Uveitis. Ocul Immunol Inflamm 2017; 27:23-33. [PMID: 28375033 DOI: 10.1080/09273948.2017.1298822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE IFN-α is the only treatment capable of inducing long-term remission in some patients with ocular Behçet's disease. In this review, we focus on immune mechanisms of IFN-α in animal models and patients and compare the outcome of different clinical studies. METHODS Review of literature using PubMed and Google and original data from rat models with monophasic/chronic or relapsing experimental autoimmune uveitis treated with IFN-α. RESULTS The role of IFN-α and its effect on various cell types were investigated, in some cases with contradictory results. Some patients respond very well to IFN-α treatment, while others are non-responders, which was reflected in the uveitis rat models: relapsing uveitis was ameliorated, the monophasic/chronic disease even aggravated. CONCLUSIONS Despite intensive investigations in patients and animal models, the immune mechanisms explaining the therapeutic effect of IFN-α in ocular Behçet's disease are not yet fully understood and need further investigation.
Collapse
Affiliation(s)
- Xiaoli Liu
- a Section of Immunobiology, Department of Ophthalmology , Klinikum der Universität München , Munich , Germany
| | - Maria Diedrichs-Möhring
- a Section of Immunobiology, Department of Ophthalmology , Klinikum der Universität München , Munich , Germany
| | - Gerhild Wildner
- a Section of Immunobiology, Department of Ophthalmology , Klinikum der Universität München , Munich , Germany
| |
Collapse
|
24
|
Novel CD28 antagonist mPEG PV1-Fab' mitigates experimental autoimmune uveitis by suppressing CD4+ T lymphocyte activation and IFN-γ production. PLoS One 2017; 12:e0171822. [PMID: 28248972 PMCID: PMC5331984 DOI: 10.1371/journal.pone.0171822] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/26/2017] [Indexed: 12/22/2022] Open
Abstract
Autoimmune Uveitis is an important chronic inflammatory disease and a leading cause of impaired vision and blindness. This ocular autoimmune disorder is mainly mediated by T CD4+ lymphocytes poising a TH1 phenotype. Costimulatory molecules are known to play an important role on T cell activation and therefore represent interesting therapeutical targets for autoimmune disorders. CD28 is the prototypical costimulatory molecule for T lymphocytes, and plays a crucial role in the initiation, and maintenance of immune responses. However, previous attempts to use this molecule in clinical practice achieved no success. Thus, we evaluated the efficacy of mPEG PV1-Fab’ (PV1), a novel selective CD28 antagonist monovalent Fab fragment in the treatment of Experimental Autoimmune Uveitis (EAU). Here, we showed that PV1 treatment decreases both average disease score and incidence of EAU. A decrease in the activation profile of both T CD4+ and T CD8+ eye-infiltrating lymphocytes was evidenced. In the periphery, T CD4+ cells from PV1-treated mice also showed a decrease in their activation status, with reduced expression of CD69, CD25, and PD-1 molecules. This suppression was not dependent on Treg cells, as both their frequency and absolute number were lower in PV1-treated mice. In addition, frequency of CD4+IFN-γ+ T cells was significantly lower in PV1-treated group, but not of IL-17-producing T cells. Moreover, after specific restimulation, PV1 blockade selectively blocked IFN-γ production by CD4+ lymphocytes Taken together, our data suggest that mPEG PV1-Fab’ acts mainly on IFN-γ-producing CD4+ T cells and emphasize that this specific CD28 blockade strategy is a potential specific and alternative tool for the treatment of autoimmune disorders in the eye.
Collapse
|
25
|
Dry eye disease and uveitis: A closer look at immune mechanisms in animal models of two ocular autoimmune diseases. Autoimmun Rev 2016; 15:1181-1192. [DOI: 10.1016/j.autrev.2016.09.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 07/08/2016] [Indexed: 12/13/2022]
|
26
|
Grégoire S, Terrada C, Martin GH, Fourcade G, Baeyens A, Marodon G, Fisson S, Billiard F, Lucas B, Tadayoni R, Béhar-Cohen F, Levacher B, Galy A, LeHoang P, Klatzmann D, Bodaghi B, Salomon BL. Treatment of Uveitis by In Situ Administration of Ex Vivo–Activated Polyclonal Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2016; 196:2109-18. [DOI: 10.4049/jimmunol.1501723] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/21/2015] [Indexed: 02/05/2023]
|
27
|
Male rats develop more severe experimental autoimmune encephalomyelitis than female rats: sexual dimorphism and diergism at the spinal cord level. Brain Behav Immun 2015; 49:101-18. [PMID: 25944279 DOI: 10.1016/j.bbi.2015.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 03/26/2015] [Accepted: 04/26/2015] [Indexed: 02/06/2023] Open
Abstract
Compared with females, male Dark Agouti (DA) rats immunized for experimental autoimmune encephalomyelitis (EAE) with rat spinal cord homogenate in complete Freund's adjuvant (CFA) exhibited lower incidence of the disease, but the maximal neurological deficit was greater in the animals that developed the disease. Consistently, at the peak of the disease greater number of reactivated CD4+CD134+CD45RC- T lymphocytes was retrieved from male rat spinal cord. Their microglia/macrophages were more activated and produced greater amount of prototypic proinflammatory cytokines in vitro. Additionally, oppositely to the expression of mRNAs for IL-12/p35, IL-10 and IL-27/p28, the expression of mRNA for IL-23/p19 was upregulated in male rat spinal cord mononuclear cells. Consequently, the IL-17+:IFN-γ+ cell ratio within T lymphocytes from their spinal cord was skewed towards IL-17+ cells. Within this subpopulation, the IL-17+IFN-γ+:IL-17+IL-10+ cell ratio was shifted towards IL-17+IFN-γ+ cells, which have prominent tissue damaging capacity. This was associated with an upregulated expression of mRNAs for IL-1β and IL-6, but downregulated TGF-β mRNA expression in male rat spinal cord mononuclear cells. The enhanced GM-CSF mRNA expression in these cells supported the greater pathogenicity of IL-17+ T lymphocytes infiltrating male spinal cord. In the inductive phase of the disease, contrary to the draining lymph node, in the spinal cord the frequency of CD134+ cells among CD4+ T lymphocytes and the frequency of IL-17+ cells among T lymphocytes were greater in male than in female rats. This most likely reflected an enhanced transmigration of mononuclear cells into the spinal cord (judging by the lesser spinal cord CXCL12 mRNA expression), the greater frequency of activated microglia/macrophages and the increased expression of mRNAs for Th17 polarizing cytokines in male rat spinal cord mononuclear cells. Collectively, the results showed cellular and molecular mechanisms underlying the target organ specific sexual dimorphism in the T lymphocyte-dependent immune/inflammatory response, and suggested a substantial role for the target organ in shaping the sexually dimorphic clinical outcome of EAE.
Collapse
|
28
|
Nacka-Aleksić M, Pilipović I, Stojić-Vukanić Z, Kosec D, Bufan B, Vujnović I, Arsenović-Ranin N, Dimitrijević M, Leposavić G. Sexual dimorphism in the aged rat CD4+ T lymphocyte-mediated immune response elicited by inoculation with spinal cord homogenate. Mech Ageing Dev 2015; 152:15-31. [PMID: 26408399 DOI: 10.1016/j.mad.2015.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 09/20/2015] [Indexed: 01/13/2023]
Abstract
Considering the crucial pathogenic role of CD4+ T cells in experimental autoimmune encephalomyelitis (EAE) and the opposite direction of the sexual dimorphism in the severity of the disease in 22-24-and 3-month-old dark agouti rats, sex differences in CD4+ T-cell-mediated immune response in aged rats immunized for EAE were examined and compared with those in young animals. In the inductive phase of EAE, fewer activated CD4+ lymphocytes were retrieved from draining lymph nodes of male (developing less severe disease) compared with female rats, due, at least partly, to their lesser expansion. The former reflected a greater suppressive capacity of CD4+CD25+Foxp3+ cells. Consequently, CD4+ lymphocyte infiltration into the spinal cord of aged male rats was diminished. At the peak of EAE, the frequency of reactivated cells was lower, whereas that of the regulatory CD4+ cells was higher in male rat spinal cord. Consistently, microglial activation and the expression of proinflammatory/damaging cytokines in male rat spinal cord mononuclear cells were diminished. Additionally, the frequency of the highly pathogenic IL-17+IFN-γ+ T lymphocytes infiltrating their spinal cord was lower. Together, these results point to (i) an age-specificity in CD4+ cell-mediated immune response and (ii) mechanisms underlying the sex differences in this response in aged rats.
Collapse
Affiliation(s)
- Mirjana Nacka-Aleksić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Ivan Pilipović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Duško Kosec
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Biljana Bufan
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Ivana Vujnović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Nevena Arsenović-Ranin
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Mirjana Dimitrijević
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Gordana Leposavić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia.
| |
Collapse
|
29
|
Age-associated changes in rat immune system: Lessons learned from experimental autoimmune encephalomyelitis. Exp Gerontol 2014; 58:179-97. [DOI: 10.1016/j.exger.2014.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/24/2014] [Accepted: 08/12/2014] [Indexed: 01/15/2023]
|
30
|
Jia X, Li J, Shi D, Zhao Y, Dong Y, Ju H, Yang J, Sun J, Li X, Ren H. Grouping annotations on the subcellular layered interactome demonstrates enhanced autophagy activity in a recurrent experimental autoimmune uveitis T cell line. PLoS One 2014; 9:e104404. [PMID: 25116327 PMCID: PMC4130584 DOI: 10.1371/journal.pone.0104404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 07/11/2014] [Indexed: 11/25/2022] Open
Abstract
Human uveitis is a type of T cell-mediated autoimmune disease that often shows relapse-remitting courses affecting multiple biological processes. As a cytoplasmic process, autophagy has been seen as an adaptive response to cell death and survival, yet the link between autophagy and T cell-mediated autoimmunity is not certain. In this study, based on the differentially expressed genes (GSE19652) between the recurrent versus monophasic T cell lines, whose adoptive transfer to susceptible animals may result in respective recurrent or monophasic uveitis, we proposed grouping annotations on a subcellular layered interactome framework to analyze the specific bioprocesses that are linked to the recurrence of T cell autoimmunity. That is, the subcellular layered interactome was established by the Cytoscape and Cerebral plugin based on differential expression, global interactome, and subcellular localization information. Then, the layered interactomes were grouping annotated by the ClueGO plugin based on Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases. The analysis showed that significant bioprocesses with autophagy were orchestrated in the cytoplasmic layered interactome and that mTOR may have a regulatory role in it. Furthermore, by setting up recurrent and monophasic uveitis in Lewis rats, we confirmed by transmission electron microscopy that, in comparison to the monophasic disease, recurrent uveitis in vivo showed significantly increased autophagy activity and extended lymphocyte infiltration to the affected retina. In summary, our framework methodology is a useful tool to disclose specific bioprocesses and molecular targets that can be attributed to a certain disease. Our results indicated that targeted inhibition of autophagy pathways may perturb the recurrence of uveitis.
Collapse
Affiliation(s)
- Xiuzhi Jia
- Department of Immunology, Harbin Medical University, Harbin, China
- Infection and Immunity, Key Laboratory of Heilongjiang Province, Harbin, China
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jingbo Li
- Department of Anesthesiology, the 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dejing Shi
- Department of Ophthalmology, the 4th Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Zhao
- Department of Immunology, Harbin Medical University, Harbin, China
- Infection and Immunity, Key Laboratory of Heilongjiang Province, Harbin, China
| | - Yucui Dong
- Department of Immunology, Harbin Medical University, Harbin, China
- Infection and Immunity, Key Laboratory of Heilongjiang Province, Harbin, China
| | - Huanyu Ju
- Department of Immunology, Harbin Medical University, Harbin, China
- Infection and Immunity, Key Laboratory of Heilongjiang Province, Harbin, China
| | - Jinfeng Yang
- Department of Immunology, Harbin Medical University, Harbin, China
- Infection and Immunity, Key Laboratory of Heilongjiang Province, Harbin, China
| | - Jianhua Sun
- The Blood Center of Hei Long Jiang Province, Harbin, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Huan Ren
- Department of Immunology, Harbin Medical University, Harbin, China
- Infection and Immunity, Key Laboratory of Heilongjiang Province, Harbin, China
| |
Collapse
|
31
|
Huber A, Diedrichs-Möhring M, Wildner G. Spontaneously relapsing-remitting experimental autoimmune uveitis in rats allows successful therapeutic oral tolerance induction in ongoing disease. Mol Immunol 2014; 63:215-26. [PMID: 25085538 DOI: 10.1016/j.molimm.2014.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/02/2014] [Accepted: 07/05/2014] [Indexed: 10/25/2022]
Abstract
Antigen-specific tolerance induction is a desired therapy for uveitis patients. Our relapsing-remitting rat model of experimental autoimmune uveitis (EAU) induced with IRBP peptide R14 enables us to test the effect of oral tolerance on the prevention of relapsing uveitis. We investigated several peptides overlapping the sequence of R14 for prevention and different doses of R14 for therapy to determine the tolerogenic epitope and the most effective therapeutic regimen for uveitis. Lewis rats were immunized with R14-CFA to induce EAU. Oral tolerance was induced prior to immunization (prevention) or after onset of EAU to prevent relapses (therapy). Therapeutic feeding was performed with high and/or low doses of oral antigen for clonal deletion of effector and induction of regulatory T cells. Uveitis was determined clinically and histologically; mesenteric lymph node (mLN) cells of tolerized rats were tested for surface markers, cytokines and Foxp3 expression. Preventive feeding of R14 and its major epitope R16, but none of the overlapping peptides significantly suppressed EAU and also prevented relapses, irrespective of their pathogenicity. Therapeutic feeding with R14 dramatically reduced relapses, while only the consecutive feeding of high and low-dose R14 had an ameliorating effect on the first course of disease. IL-10-producing T cells from mLN decreased after oral tolerization, and with R14-stimulation in vitro the TCRαβ+/Foxp3+ population increased in the low-dose fed group. No mLN population could be clearly assigned to successful oral tolerance induction during active autoimmune uveitis.
Collapse
Affiliation(s)
- Andrea Huber
- Section of Immunobiology, Department of Ophthalmology, Klinikum der Universität, Mathildenstr. 8, 80336 München, Germany
| | - Maria Diedrichs-Möhring
- Section of Immunobiology, Department of Ophthalmology, Klinikum der Universität, Mathildenstr. 8, 80336 München, Germany
| | - Gerhild Wildner
- Section of Immunobiology, Department of Ophthalmology, Klinikum der Universität, Mathildenstr. 8, 80336 München, Germany.
| |
Collapse
|
32
|
Hu MH, Zheng QF, Jia XZ, Li Y, Dong YC, Wang CY, Lin QY, Zhang FY, Zhao RB, Xu HW, Zhou JH, Yuan HP, Zhang WH, Ren H. Neuroprotection effect of interleukin (IL)-17 secreted by reactive astrocytes is emerged from a high-level IL-17-containing environment during acute neuroinflammation. Clin Exp Immunol 2014; 175:268-84. [PMID: 24117055 DOI: 10.1111/cei.12219] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2013] [Indexed: 01/24/2023] Open
Abstract
An increase in interleukin (IL)-17A-producing cells, particularly at sites of tissue inflammation, is observed frequently, yet the mechanism is not fully understood. This study aims to dissect the role of IL-17 in autoimmunity-mediated neuroinflammation. The cytokine milieu containing elevated IL-17, which often appears in active states of autoimmunity, was mimicked in vitro by a supernatant obtained from rat peripheral blood monocytes stimulated with phorbol mystistate acetate (PMA)/ionomycin. The application of such inflammatory media on only primary cultured cerebellar granule neurones resulted in significant apoptosis, but the presence of astrocytes largely prevented the effect. The supernatants of the stimulated astrocytes, especially those that contained the highest level of IL-17, achieved the best protection, and this effect could be blocked by anti-IL-17 antibodies. Protein IL-17 inhibited intracellular calcium increase and protected the neurones under inflammatory attack from apoptosis. IL-17, but not interferon (IFN)-γ, in the inflammatory media contributed to astrocyte secretion of IL-17, which depended on the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway activation. The astrocytes that were treated with IL-17 alone or with prolonged treatment of the inflammatory media failed to produce sufficient levels of IL-17. Moreover, confirmatory data were obtained in vivo in a monophasic experimental autoimmune uveitis (EAU) in Lewis rats; in this preparation, the high-level IL-17-containing the cytokine milieu was demonstrated, along with IL-17 secretion by the resident neural cells. The antagonism of IL-17 at a late stage disturbed the disease resolution and resulted in significant neural apoptosis. Our data show a dynamic role of IL-17 in the maintenance of homeostasis and neuroprotection in active neuroinflammation.
Collapse
Affiliation(s)
- M H Hu
- Department of Immunology, Harbin Medical University, Harbin, China; Infection and Immunity, Key Laboratory of Heilongjiang Province, Harbin, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lee RW, Nicholson LB, Sen HN, Chan CC, Wei L, Nussenblatt RB, Dick AD. Autoimmune and autoinflammatory mechanisms in uveitis. Semin Immunopathol 2014; 36:581-94. [PMID: 24858699 PMCID: PMC4186974 DOI: 10.1007/s00281-014-0433-9] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 04/13/2014] [Indexed: 12/12/2022]
Abstract
The eye, as currently viewed, is neither immunologically ignorant nor sequestered from the systemic environment. The eye utilises distinct immunoregulatory mechanisms to preserve tissue and cellular function in the face of immune-mediated insult; clinically, inflammation following such an insult is termed uveitis. The intra-ocular inflammation in uveitis may be clinically obvious as a result of infection (e.g. toxoplasma, herpes), but in the main infection, if any, remains covert. We now recognise that healthy tissues including the retina have regulatory mechanisms imparted by control of myeloid cells through receptors (e.g. CD200R) and soluble inhibitory factors (e.g. alpha-MSH), regulation of the blood retinal barrier, and active immune surveillance. Once homoeostasis has been disrupted and inflammation ensues, the mechanisms to regulate inflammation, including T cell apoptosis, generation of Treg cells, and myeloid cell suppression in situ, are less successful. Why inflammation becomes persistent remains unknown, but extrapolating from animal models, possibilities include differential trafficking of T cells from the retina, residency of CD8+ T cells, and alterations of myeloid cell phenotype and function. Translating lessons learned from animal models to humans has been helped by system biology approaches and informatics, which suggest that diseased animals and people share similar changes in T cell phenotypes and monocyte function to date. Together the data infer a possible cryptic infectious drive in uveitis that unlocks and drives persistent autoimmune responses, or promotes further innate immune responses. Thus there may be many mechanisms in common with those observed in autoinflammatory disorders.
Collapse
Affiliation(s)
- Richard W Lee
- National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, University Hospitals Bristol NHS, Foundation Trust, and University of Bristol, Bristol, UK
| | | | | | | | | | | | | |
Collapse
|
34
|
Wildner G, Kaufmann U. What causes relapses of autoimmune diseases? The etiological role of autoreactive T cells. Autoimmun Rev 2013; 12:1070-5. [DOI: 10.1016/j.autrev.2013.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 04/25/2013] [Indexed: 10/26/2022]
|