1
|
Park G, Park S, Oh S, Choi N, Choi J. Effects of culture temperature (37°C, 39°C) and oxygen concentration (20%, 2%) on proliferation and differentiation of C2C12 cells. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2025; 67:224-235. [PMID: 39974777 PMCID: PMC11833204 DOI: 10.5187/jast.2023.e130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 02/21/2025]
Abstract
Cells, culture media, and so on are important elements of cultured meat production technology. Also, the environment (humidity, temperature, air composition, dissolved oxygen tension, etc.) for in vivo muscle production are important. Among cell culture conditions, culture temperature and oxygen concentration are important physical factors that can affect cells. The objective of this study was to determine effects of culture temperature and oxygen concentration on proliferation and differentiation of muscle cells. This study was conducted using C2C12 cells of rat myoblasts widely used in muscle physiology. The temperature was chosen to induce some thermal stress at 39°C, and the oxygen concentration was selected at 2% to mimic the oxygen levels present in muscle cells in vivo. Culture conditions consisted of CON (37°C/20% O2), T1 (37°C/2% O2), T2 (39°C/20% O2) and T3 (39°C/2% O2). In terms of cell proliferation, temperature conditions had a significant impact (p < 0.05), and a temperature of 39°C was found to reduce the cell count. Oxygen conditions had a significant impact on 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) absorbance, and temperature conditions were found to have a greater influence on cell proliferation compared to oxygen condition and interaction condition. The temperature conditions were found to have a significant impact (p < 0.05) on the expression of proteins related to myogenesis compared to oxygen conditions. The significant increase (p < 0.05) in the protein expression levels of Myh, Myod1, Myog, and Mb in T2 compared to CON, and in T3 compared to T1, suggests that a temperature of 39°C enhances the expression of myogenic differentiation proteins. These results indicate that temperature conditions have a significant impact (p < 0.05) on cell proliferation and differentiation, more so than oxygen conditions and interaction conditions. And a temperature of 39°C was found to inhibit cell proliferation, but in the case of differentiation, it was observed to be promoted due to the upregulation of myogenic differentiation proteins.
Collapse
Affiliation(s)
- Gyutae Park
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Sanghun Park
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Sehyuk Oh
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Nayoung Choi
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Jungseok Choi
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| |
Collapse
|
2
|
Lee JH, Kim TK, Kang MC, Park M, Choi YS. Methods to Isolate Muscle Stem Cells for Cell-Based Cultured Meat Production: A Review. Animals (Basel) 2024; 14:819. [PMID: 38473203 DOI: 10.3390/ani14050819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Cultured meat production relies on various cell types, including muscle stem cells (MuSCs), embryonic stem cell lines, induced pluripotent cell lines, and naturally immortalized cell lines. MuSCs possess superior muscle differentiation capabilities compared to the other three cell lines, making them key for cultured meat development. Therefore, to produce cultured meat using MuSCs, they must first be effectively separated from muscles. At present, the methods used to isolate MuSCs from muscles include (1) the pre-plating method, using the ability of cells to adhere differently, which is a biological characteristic of MuSCs; (2) the density gradient centrifugation method, using the intrinsic density difference of cells, which is a physical characteristic of MuSCs; and (3) fluorescence- and magnetic-activated cell sorting methods, using the surface marker protein on the cell surface of MuSCs, which is a molecular characteristic of MuSCs. Further efficient and valuable methods for separating MuSCs are expected to be required as the cell-based cultured meat industry develops. Thus, we take a closer look at the four methods currently in use and discuss future development directions in this review.
Collapse
Affiliation(s)
- Jae-Hoon Lee
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Tae-Kyung Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Min-Cheol Kang
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Minkyung Park
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| |
Collapse
|
3
|
Yun SH, Lee DY, Lee J, Mariano E, Choi Y, Park J, Han D, Kim JS, Hur SJ. Current Research, Industrialization Status, and Future Perspective of Cultured Meat. Food Sci Anim Resour 2024; 44:326-355. [PMID: 38764517 PMCID: PMC11097034 DOI: 10.5851/kosfa.2024.e13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 05/21/2024] Open
Abstract
Expectations for the industrialization of cultured meat are growing due to the increasing support from various sectors, such as the food industry, animal welfare organizations, and consumers, particularly vegetarians, but the progress of industrialization is slower than initially reported. This review analyzes the main issues concerning the industrialization of cultured meat, examines research and media reports on the development of cultured meat to date, and presents the current technology, industrialization level, and prospects for cultured meat. Currently, over 30 countries have companies industrializing cultured meat, and around 200 companies that are developing or industrializing cultured meat have been surveyed globally. By country, the United States has over 50 companies, accounting for more than 20% of the total. Acquiring animal cells, developing cell lines, improving cell proliferation, improving the efficiency of cell differentiation and muscle production, or developing cell culture media, including serum-free media, are the major research themes related to the development of cultured meat. In contrast, the development of devices, such as bioreactors, which are crucial in enabling large-scale production, is relatively understudied, and few of the many companies invested in the development of cultured meat have presented products for sale other than prototypes. In addition, because most information on key technologies is not publicly available, it is not possible to determine the level of technology in the companies, and it is surmised that the technology of cultured meat-related startups is not high. Therefore, further research and development are needed to promote the full-scale industrialization of cultured meat.
Collapse
Affiliation(s)
- Seung Hyeon Yun
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Da Young Lee
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Juhyun Lee
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Ermie Mariano
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Yeongwoo Choi
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jinmo Park
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Dahee Han
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jin Soo Kim
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Sun Jin Hur
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
4
|
Martins B, Bister A, Dohmen RGJ, Gouveia MA, Hueber R, Melzener L, Messmer T, Papadopoulos J, Pimenta J, Raina D, Schaeken L, Shirley S, Bouchet BP, Flack JE. Advances and Challenges in Cell Biology for Cultured Meat. Annu Rev Anim Biosci 2024; 12:345-368. [PMID: 37963400 DOI: 10.1146/annurev-animal-021022-055132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Cultured meat is an emerging biotechnology that aims to produce meat from animal cell culture, rather than from the raising and slaughtering of livestock, on environmental and animal welfare grounds. The detailed understanding and accurate manipulation of cell biology are critical to the design of cultured meat bioprocesses. Recent years have seen significant interest in this field, with numerous scientific and commercial breakthroughs. Nevertheless, these technologies remain at a nascent stage, and myriad challenges remain, spanning the entire bioprocess. From a cell biological perspective, these include the identification of suitable starting cell types, tuning of proliferation and differentiation conditions, and optimization of cell-biomaterial interactions to create nutritious, enticing foods. Here, we discuss the key advances and outstanding challenges in cultured meat, with a particular focus on cell biology, and argue that solving the remaining bottlenecks in a cost-effective, scalable fashion will require coordinated, concerted scientific efforts. Success will also require solutions to nonscientific challenges, including regulatory approval, consumer acceptance, and market feasibility. However, if these can be overcome, cultured meat technologies can revolutionize our approach to food.
Collapse
Affiliation(s)
- Beatriz Martins
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Arthur Bister
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Richard G J Dohmen
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Maria Ana Gouveia
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Rui Hueber
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Lea Melzener
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Tobias Messmer
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Joanna Papadopoulos
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Joana Pimenta
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Dhruv Raina
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Lieke Schaeken
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Sara Shirley
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Benjamin P Bouchet
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands;
| | - Joshua E Flack
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| |
Collapse
|
5
|
Endo Y, Zhu C, Giunta E, Guo C, Koh DJ, Sinha I. The Role of Hypoxia and Hypoxia Signaling in Skeletal Muscle Physiology. Adv Biol (Weinh) 2024; 8:e2200300. [PMID: 37817370 DOI: 10.1002/adbi.202200300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/06/2023] [Indexed: 10/12/2023]
Abstract
Hypoxia and hypoxia signaling play an integral role in regulating skeletal muscle physiology. Environmental hypoxia and tissue hypoxia in muscles cue for their appropriate physiological response and adaptation, and cause an array of cellular and metabolic changes. In addition, muscle stem cells (satellite cells), exist in a hypoxic state, and this intrinsic hypoxic state correlates with their quiescence and stemness. The mechanisms of hypoxia-mediated regulation of satellite cells and myogenesis are yet to be characterized, and their seemingly contradicting effects reported leave their exact roles somewhat perplexing. This review summarizes the recent findings on the effect of hypoxia and hypoxia signaling on the key aspects of muscle physiology, namely, stem cell maintenance and myogenesis with a particular attention given to distinguish the intrinsic versus local hypoxia in an attempt to better understand their respective regulatory roles and how their relationship affects the overall response. This review further describes their mechanistic links and their possible implications on the relevant pathologies and therapeutics.
Collapse
Affiliation(s)
- Yori Endo
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, 02115, USA
| | - Christina Zhu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, 02115, USA
- Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX, 79430, USA
| | - Elena Giunta
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, 02115, USA
- Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539, München, Germany
| | - Cynthia Guo
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, 02115, USA
- Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
| | - Daniel J Koh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, 02115, USA
| | - Indranil Sinha
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
6
|
Sutcu HH, Montagne B, Ricchetti M. DNA-PKcs regulates myogenesis in an Akt-dependent manner independent of induced DNA damage. Cell Death Differ 2023; 30:1900-1915. [PMID: 37400716 PMCID: PMC10406879 DOI: 10.1038/s41418-023-01177-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 07/05/2023] Open
Abstract
Skeletal muscle regeneration relies on muscle stem (satellite) cells. We previously demonstrated that satellite cells efficiently and accurately repair radiation-induced DNA double-strand breaks (DSBs) via the DNA-dependent kinase DNA-PKcs. We show here that DNA-PKcs affects myogenesis independently of its role in DSB repair. Consequently, this process does not require the accumulation of DSBs and it is also independent of caspase-induced DNA damage. We report that in myogenic cells DNA-PKcs is essential for the expression of the differentiation factor Myogenin in an Akt2-dependent manner. DNA-PKcs interacts with the p300-containing complex that activates Myogenin transcription. We show also that SCID mice that are deficient in DNA-PKcs, and are used for transplantation and muscle regeneration studies, display altered myofiber composition and delayed myogenesis upon injury. These defects are exacerbated after repeated injury/regeneration events resulting in reduced muscle size. We thus identify a novel, caspase-independent, regulation of myogenic differentiation, and define a differentiation phase that does not involve the DNA damage/repair process.
Collapse
Affiliation(s)
- Haser Hasan Sutcu
- Institut Pasteur, Team Stability of Nuclear & Mitochondrial DNA, Department of Developmental and Stem Cell Biology, CNRS UMR3738, 75015, Paris, France
- Université Pierre et Marie Curie (Sorbonne Universities, ED515), Paris, France
- Institut de Radioprotection et de Sûrété Nucléaire (IRSN), Radiobiology of Accidental Exposure Laboratory (PSE-SANTE/SERAMED/LRAcc), B.P. 17, 92262 Fontenay-aux-Roses, Cedex, France
| | - Benjamin Montagne
- Institut Pasteur, Team Stability of Nuclear & Mitochondrial DNA, Department of Developmental and Stem Cell Biology, CNRS UMR3738, 75015, Paris, France
- Institut Pasteur, Molecular Mechanisms of Pathological and Physiological Ageing, Department of Developmental and Stem Cell Biology, Paris, France
| | - Miria Ricchetti
- Institut Pasteur, Team Stability of Nuclear & Mitochondrial DNA, Department of Developmental and Stem Cell Biology, CNRS UMR3738, 75015, Paris, France.
- Institut Pasteur, Molecular Mechanisms of Pathological and Physiological Ageing, Department of Developmental and Stem Cell Biology, Paris, France.
| |
Collapse
|
7
|
Horwath O, Nordström F, von Walden F, Apró W, Moberg M. Acute hypoxia attenuates resistance exercise-induced ribosome signaling but does not impact satellite cell pool expansion in human skeletal muscle. FASEB J 2023; 37:e22811. [PMID: 36786723 DOI: 10.1096/fj.202202065rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/15/2023]
Abstract
Cumulative evidence supports the hypothesis that hypoxia acts as a regulator of muscle mass. However, the underlying molecular mechanisms remain incompletely understood, particularly in human muscle. Here we examined the effect of hypoxia on signaling pathways related to ribosome biogenesis and myogenic activity following an acute bout of resistance exercise. We also investigated whether hypoxia influenced the satellite cell response to resistance exercise. Employing a randomized, crossover design, eight men performed resistance exercise in normoxia (FiO2 21%) or normobaric hypoxia (FiO2 12%). Muscle biopsies were collected in a time-course manner (before, 0, 90, 180 min and 24 h after exercise) and were analyzed with respect to cell signaling, gene expression and satellite cell content using immunoblotting, RT-qPCR and immunofluorescence, respectively. In normoxia, resistance exercise increased the phosphorylation of RPS6, TIF-1A and UBF above resting levels. Hypoxia reduced the phosphorylation of these targets by ~37%, ~43% and ~ 67% throughout the recovery period, respectively (p < .05 vs. normoxia). Resistance exercise also increased 45 S pre-rRNA expression and mRNA expression of c-Myc, Pol I and TAF-1A above resting levels, but no differences were observed between conditions. Similarly, resistance exercise increased mRNA expression of myogenic regulatory factors throughout the recovery period and Pax7+ cells were elevated 24 h following exercise in mixed and type II muscle fibers, with no differences observed between normoxia and hypoxia. In conclusion, acute hypoxia attenuates ribosome signaling, but does not impact satellite cell pool expansion and myogenic gene expression following a bout of resistance exercise in human skeletal muscle.
Collapse
Affiliation(s)
- Oscar Horwath
- Department of Physiology, Nutrition and Biomechanics, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Fabian Nordström
- Department of Physiology, Nutrition and Biomechanics, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Ferdinand von Walden
- Division of Pediatric Neurology, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - William Apró
- Department of Physiology, Nutrition and Biomechanics, Swedish School of Sport and Health Sciences, Stockholm, Sweden.,Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Solna, Sweden
| | - Marcus Moberg
- Department of Physiology, Nutrition and Biomechanics, Swedish School of Sport and Health Sciences, Stockholm, Sweden.,Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
8
|
Effects of Hypoxia on Proliferation and Differentiation in Belgian Blue and Hanwoo Muscle Satellite Cells for the Development of Cultured Meat. Biomolecules 2022; 12:biom12060838. [PMID: 35740963 PMCID: PMC9221279 DOI: 10.3390/biom12060838] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
Among future food problems, the demand for meat is expected to increase rapidly, but the production efficiency of meat, which is a protein source, is very low compared to other foods. To address this problem, research on the development and production of cultured meat as an alternative meat source using muscle stem cells in vitro has recently been undertaken. Many studies have been conducted on myosatellite cells for medical purposes, but studies on alternative meat production are rare. In vitro cell culture mimics the in vivo environment for cell growth. The satellite cell niche is closer to hypoxic (2% O2) than normoxic (20% O2) conditions. The aim of this study was to investigate the efficient oxygen conditions of myosatellite cell cultures for the production of cultured meat. The bovine satellite cell counts and mRNA (Pax7, Myf5 and HIF1α) levels were higher in hypoxia than normoxia (p < 0.05). Through Hoechst-positive nuclei counts, and expression of Pax7, MyoD and myosin protein by immunofluorescence, it was confirmed that muscle cells performed normal proliferation and differentiation. Myoblast fusion was higher under hypoxic conditions (p < 0.05), and the myotube diameters were also thicker (p < 0.05). In the myotube, the number of cells was high in hypoxia, and the expression of the total protein amounts, differentiation marker mRNA (myogenin, myosin and TOM20), and protein markers (myosin and TOM20) was also high. The study results demonstrated that the proliferation and differentiation of bovine myosatellite cells were promoted more highly under hypoxic conditions than under normoxic conditions. Therefore, hypoxic cultures that promote the proliferation and differentiation of bovine myosatellite cells may be an important factor in the development of cultured meat.
Collapse
|
9
|
Knežić T, Janjušević L, Djisalov M, Yodmuang S, Gadjanski I. Using Vertebrate Stem and Progenitor Cells for Cellular Agriculture, State-of-the-Art, Challenges, and Future Perspectives. Biomolecules 2022; 12:699. [PMID: 35625626 PMCID: PMC9138761 DOI: 10.3390/biom12050699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/01/2022] [Accepted: 05/07/2022] [Indexed: 12/19/2022] Open
Abstract
Global food systems are under significant pressure to provide enough food, particularly protein-rich foods whose demand is on the rise in times of crisis and inflation, as presently existing due to post-COVID-19 pandemic effects and ongoing conflict in Ukraine and resulting in looming food insecurity, according to FAO. Cultivated meat (CM) and cultivated seafood (CS) are protein-rich alternatives for traditional meat and fish that are obtained via cellular agriculture (CA) i.e., tissue engineering for food applications. Stem and progenitor cells are the building blocks and starting point for any CA bioprocess. This review presents CA-relevant vertebrate cell types and procedures needed for their myogenic and adipogenic differentiation since muscle and fat tissue are the primary target tissues for CM/CS production. The review also describes existing challenges, such as a need for immortalized cell lines, or physical and biochemical parameters needed for enhanced meat/fat culture efficiency and ways to address them.
Collapse
Affiliation(s)
- Teodora Knežić
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr. Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (L.J.); (M.D.)
| | - Ljiljana Janjušević
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr. Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (L.J.); (M.D.)
| | - Mila Djisalov
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr. Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (L.J.); (M.D.)
| | - Supansa Yodmuang
- Research Affairs, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Rd, Pathumwan, Bangkok 10330, Thailand;
| | - Ivana Gadjanski
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr. Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (L.J.); (M.D.)
| |
Collapse
|
10
|
Lee DY, Lee SY, Jung JW, Kim JH, Oh DH, Kim HW, Kang JH, Choi JS, Kim GD, Joo ST, Hur SJ. Review of technology and materials for the development of cultured meat. Crit Rev Food Sci Nutr 2022; 63:8591-8615. [PMID: 35466822 DOI: 10.1080/10408398.2022.2063249] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cultured meat production technology suggested that can solve the problems of traditional meat production such as inadequate breeding environment, wastewater, methane gas generation, and animal ethics issues. Complementing cultured meat production methods, sales and safety concerns will make the use of cultured meat technology easier. This review contextualizes the commercialization status of cultured meat and the latest technologies and challenges associated with its production. Investigation was conducted on materials and basic cell culture technique for cultured meat culture is presented. The development of optimal cultured meat technology through these studies will be an innovative leap in food technology. The process of obtaining cells from animal muscle, culturing cells, and growing cells into meat are the basic processes of cultured meat production. The substances needed to production of cultured meat were antibiotics, digestive enzymes, basal media, serum or growth factors. Although muscle cells have been produced closer to meat due to the application of scaffolds materials and 3 D printing technology, still a limit to reducing production costs enough to be used as foods. In addition, developing edible materials is also a challenge because the materials used to produce cultured meat are still not suitable for food sources.
Collapse
Affiliation(s)
- Da Young Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi, Korea
| | - Seung Yun Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi, Korea
| | - Jae Won Jung
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi, Korea
| | - Jae Hyun Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi, Korea
| | - Dong Hun Oh
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi, Korea
| | - Hyun Woo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi, Korea
| | - Ji Hyeop Kang
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi, Korea
| | - Jung Seok Choi
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Gap-Don Kim
- Graduate School of International Agricultural Technology, Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, Kangwong, Korea
| | - Seon-Tea Joo
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Gyeongnam, Korea
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi, Korea
| |
Collapse
|
11
|
Pircher T, Wackerhage H, Akova E, Böcker W, Aszodi A, Saller MM. Fusion of Normoxic- and Hypoxic-Preconditioned Myoblasts Leads to Increased Hypertrophy. Cells 2022; 11:cells11061059. [PMID: 35326510 PMCID: PMC8947054 DOI: 10.3390/cells11061059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/14/2022] [Accepted: 03/19/2022] [Indexed: 12/20/2022] Open
Abstract
Injuries, high altitude, and endurance exercise lead to hypoxic conditions in skeletal muscle and sometimes to hypoxia-induced local tissue damage. Thus, regenerative myoblasts/satellite cells are exposed to different levels and durations of partial oxygen pressure depending on the spatial distance from the blood vessels. To date, it is unclear how hypoxia affects myoblasts proliferation, differentiation, and particularly fusion with normoxic myoblasts. To study this, we investigated how 21% and 2% oxygen affects C2C12 myoblast morphology, proliferation, and myogenic differentiation and evaluated the fusion of normoxic- or hypoxic-preconditioned C2C12 cells in 21% or 2% oxygen in vitro. Out data show that the long-term hypoxic culture condition does not affect the proliferation of C2C12 cells but leads to rounder cells and reduced myotube formation when compared with myoblasts exposed to normoxia. However, when normoxic- and hypoxic-preconditioned myoblasts were differentiated together, the resultant myotubes were significantly larger than the control myotubes. Whole transcriptome sequencing analysis revealed several novel candidate genes that are differentially regulated during the differentiation under normoxia and hypoxia in mixed culture conditions and may thus be involved in the increase in myotube size. Taken together, oxygen-dependent adaption and interaction of myoblasts may represent a novel approach for the development of innovative therapeutic targets.
Collapse
Affiliation(s)
- Tamara Pircher
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), Ludwig-Maximilians-University (LMU), Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany; (T.P.); (E.A.); (W.B.); (A.A.)
| | - Henning Wackerhage
- Faculty of Sport and Health Sciences, Technical University of Munich, Georg-Brauchle-Ring 60, 80992 Munich, Germany;
| | - Elif Akova
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), Ludwig-Maximilians-University (LMU), Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany; (T.P.); (E.A.); (W.B.); (A.A.)
| | - Wolfgang Böcker
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), Ludwig-Maximilians-University (LMU), Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany; (T.P.); (E.A.); (W.B.); (A.A.)
| | - Attila Aszodi
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), Ludwig-Maximilians-University (LMU), Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany; (T.P.); (E.A.); (W.B.); (A.A.)
| | - Maximilian M. Saller
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), Ludwig-Maximilians-University (LMU), Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany; (T.P.); (E.A.); (W.B.); (A.A.)
- Correspondence: ; Tel.: +49-89-4400-55486
| |
Collapse
|
12
|
Elashry MI, Kinde M, Klymiuk MC, Eldaey A, Wenisch S, Arnhold S. The effect of hypoxia on myogenic differentiation and multipotency of the skeletal muscle-derived stem cells in mice. Stem Cell Res Ther 2022; 13:56. [PMID: 35123554 PMCID: PMC8817503 DOI: 10.1186/s13287-022-02730-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/20/2022] [Indexed: 01/01/2023] Open
Abstract
Abstract
Background
Skeletal muscle-derived stem cells (SC) have become a promising approach for investigating myogenic differentiation and optimizing tissue regeneration. Muscle regeneration is performed by SC, a self-renewal cell population underlying the basal lamina of muscle fibers. Here, we examined the impact of hypoxia condition on the regenerative capacity of SC either in their native microenvironment or via isolation in a monolayer culture using ectopic differentiation inductions. Furthermore, the effect of low oxygen tension on myogenic differentiation protocols of the myoblasts cell line C2C12 was examined.
Methods
Hind limb muscles of wild type mice were processed for both SC/fiber isolation and myoblast extraction using magnetic beads. SC were induced for myogenic, adipogenic and osteogenic commitments under normoxic (21% O2) and hypoxic (3% O2) conditions. SC proliferation and differentiation were evaluated using histological staining, immunohistochemistry, morphometric analysis and RT-qPCR. The data were statistically analyzed using ANOVA.
Results
The data revealed enhanced SC proliferation and motility following differentiation induction after 48 h under hypoxia. Following myogenic induction, the number of undifferentiated cells positive for Pax7 were increased at 72 h under hypoxia. Hypoxia upregulated MyoD and downregulated Myogenin expression at day-7 post-myogenic induction. Hypoxia promoted both SC adipogenesis and osteogenesis under respective induction as shown by using Oil Red O and Alizarin Red S staining. The expression of adipogenic markers; peroxisome proliferator activated receptor gamma (PPARγ) and fatty acid-binding protein 4 (FABP4) were upregulated under hypoxia up to day 14 compared to normoxic condition. Enhanced osteogenic differentiation was detected under hypoxic condition via upregulation of osteocalcin and osteopontin expression up to day 14 as well as, increased calcium deposition at day 21. Hypoxia exposure increases the number of adipocytes and the size of fat vacuoles per adipocyte compared to normoxic culture. Combining the differentiation medium with dexamethasone under hypoxia improves the efficiency of the myogenic differentiation protocol of C2C12 by increasing the length of the myotubes.
Conclusions
Hypoxia exposure increases cell resources for clinical applications and promotes SC multipotency and thus beneficial for tissue regeneration.
Collapse
|
13
|
Zhu P, Hamlish NX, Thakkar AV, Steffeck AWT, Rendleman EJ, Khan NH, Waldeck NJ, DeVilbiss AW, Martin-Sandoval MS, Mathews TP, Chandel NS, Peek CB. BMAL1 drives muscle repair through control of hypoxic NAD + regeneration in satellite cells. Genes Dev 2022; 36:149-166. [PMID: 35115380 PMCID: PMC8887128 DOI: 10.1101/gad.349066.121] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/05/2022] [Indexed: 01/07/2023]
Abstract
The process of tissue regeneration occurs in a developmentally timed manner, yet the role of circadian timing is not understood. Here, we identify a role for the adult muscle stem cell (MuSC)-autonomous clock in the control of muscle regeneration following acute ischemic injury. We observed greater muscle repair capacity following injury during the active/wake period as compared with the inactive/rest period in mice, and loss of Bmal1 within MuSCs leads to impaired muscle regeneration. We demonstrate that Bmal1 loss in MuSCs leads to reduced activated MuSC number at day 3 postinjury, indicating a failure to properly expand the myogenic precursor pool. In cultured primary myoblasts, we observed that loss of Bmal1 impairs cell proliferation in hypoxia (a condition that occurs in the first 1-3 d following tissue injury in vivo), as well as subsequent myofiber differentiation. Loss of Bmal1 in both cultured myoblasts and in vivo activated MuSCs leads to reduced glycolysis and premature activation of prodifferentiation gene transcription and epigenetic remodeling. Finally, hypoxic cell proliferation and myofiber formation in Bmal1-deficient myoblasts are restored by increasing cytosolic NAD+ Together, we identify the MuSC clock as a pivotal regulator of oxygen-dependent myoblast cell fate and muscle repair through the control of the NAD+-driven response to injury.
Collapse
Affiliation(s)
- Pei Zhu
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Noah X Hamlish
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Abhishek Vijay Thakkar
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Adam W T Steffeck
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Emily J Rendleman
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Nabiha H Khan
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Nathan J Waldeck
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Andrew W DeVilbiss
- Children's Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | - Misty S Martin-Sandoval
- Children's Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | - Thomas P Mathews
- Children's Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | - Navdeep S Chandel
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Medicine, Division of Pulmonary and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Clara B Peek
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
14
|
Archacka K, Grabowska I, Mierzejewski B, Graffstein J, Górzyńska A, Krawczyk M, Różycka AM, Kalaszczyńska I, Muras G, Stremińska W, Jańczyk-Ilach K, Walczak P, Janowski M, Ciemerych MA, Brzoska E. Hypoxia preconditioned bone marrow-derived mesenchymal stromal/stem cells enhance myoblast fusion and skeletal muscle regeneration. Stem Cell Res Ther 2021; 12:448. [PMID: 34372911 PMCID: PMC8351116 DOI: 10.1186/s13287-021-02530-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/08/2021] [Indexed: 12/19/2022] Open
Abstract
Background The skeletal muscle reconstruction occurs thanks to unipotent stem cells, i.e., satellite cells. The satellite cells remain quiescent and localized between myofiber sarcolemma and basal lamina. They are activated in response to muscle injury, proliferate, differentiate into myoblasts, and recreate myofibers. The stem and progenitor cells support skeletal muscle regeneration, which could be disturbed by extensive damage, sarcopenia, cachexia, or genetic diseases like dystrophy. Many lines of evidence showed that the level of oxygen regulates the course of cell proliferation and differentiation. Methods In the present study, we analyzed hypoxia impact on human and pig bone marrow-derived mesenchymal stromal cell (MSC) and mouse myoblast proliferation, differentiation, and fusion. Moreover, the influence of the transplantation of human bone marrow-derived MSCs cultured under hypoxic conditions on skeletal muscle regeneration was studied. Results We showed that bone marrow-derived MSCs increased VEGF expression and improved myogenesis under hypoxic conditions in vitro. Transplantation of hypoxia preconditioned bone marrow-derived MSCs into injured muscles resulted in the improved cell engraftment and formation of new vessels. Conclusions We suggested that SDF-1 and VEGF secreted by hypoxia preconditioned bone marrow-derived MSCs played an essential role in cell engraftment and angiogenesis. Importantly, hypoxia preconditioned bone marrow-derived MSCs more efficiently engrafted injured muscles; however, they did not undergo myogenic differentiation. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02530-3.
Collapse
Affiliation(s)
- Karolina Archacka
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Iwona Grabowska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Bartosz Mierzejewski
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Joanna Graffstein
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Alicja Górzyńska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Marta Krawczyk
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Anna M Różycka
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Ilona Kalaszczyńska
- Department of Histology and Embryology, Medical University of Warsaw, 02-004, Warsaw, Poland.,Laboratory for Cell Research and Application, Medical University of Warsaw, 02-097, Warsaw, Poland
| | - Gabriela Muras
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Władysława Stremińska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Katarzyna Jańczyk-Ilach
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Piotr Walczak
- Department of Pathophysiology, Faculty of Medical Sciences, University of Warmia and Mazury, Warszawska 30 St, 10-082, Olsztyn, Poland.,Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, the Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Mirosław Janowski
- Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, 21201, USA.,NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5 St, 02-106, Warsaw, Poland
| | - Maria A Ciemerych
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Edyta Brzoska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland.
| |
Collapse
|
15
|
Pircher T, Wackerhage H, Aszodi A, Kammerlander C, Böcker W, Saller MM. Hypoxic Signaling in Skeletal Muscle Maintenance and Regeneration: A Systematic Review. Front Physiol 2021; 12:684899. [PMID: 34248671 PMCID: PMC8260947 DOI: 10.3389/fphys.2021.684899] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/26/2021] [Indexed: 12/26/2022] Open
Abstract
In skeletal muscle tissue, oxygen (O2) plays a pivotal role in both metabolism and the regulation of several intercellular pathways, which can modify proliferation, differentiation and survival of cells within the myogenic lineage. The concentration of oxygen in muscle tissue is reduced during embryogenesis and pathological conditions. Myogenic progenitor cells, namely satellite cells, are necessary for muscular regeneration in adults and are localized in a hypoxic microenvironment under the basal lamina, suggesting that the O2 level could affect their function. This review presents the effects of reduced oxygen levels (hypoxia) on satellite cell survival, myoblast regeneration and differentiation in vertebrates. Further investigations and understanding of the pathways involved in adult muscle regeneration during hypoxic conditions are maybe clinically relevant to seek for novel drug treatments for patients with severe muscle damage. We especially outlined the effect of hypoxia-inducible factor 1-alpha (HIF1A), the most studied transcriptional regulator of cellular and developmental response to hypoxia, whose investigation has recently been awarded with the Nobel price.
Collapse
Affiliation(s)
- Tamara Pircher
- Experimental Surgery and Regenerative Medicine, Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Munich, Germany
| | - Henning Wackerhage
- Faculty of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Attila Aszodi
- Experimental Surgery and Regenerative Medicine, Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Munich, Germany
| | - Christian Kammerlander
- Experimental Surgery and Regenerative Medicine, Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Munich, Germany
| | - Wolfgang Böcker
- Experimental Surgery and Regenerative Medicine, Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Munich, Germany
| | - Maximilian Michael Saller
- Experimental Surgery and Regenerative Medicine, Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Munich, Germany
| |
Collapse
|
16
|
Choi KH, Yoon JW, Kim M, Lee HJ, Jeong J, Ryu M, Jo C, Lee CK. Muscle stem cell isolation and in vitro culture for meat production: A methodological review. Compr Rev Food Sci Food Saf 2021; 20:429-457. [PMID: 33443788 DOI: 10.1111/1541-4337.12661] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
Cultured muscle tissue-based protein products, also known as cultured meat, are produced through in vitro myogenesis involving muscle stem cell culture and differentiation, and mature muscle cell processing for flavor and texture. This review focuses on the in vitro myogenesis for cultured meat production. The muscle stem cell-based in vitro muscle tissue production consists of a sequential process: (1) muscle sampling for stem cell collection, (2) muscle tissue dissociation and muscle stem cell isolation, (3) primary cell culture, (4) upscaled cell culture, (5) muscle differentiation and maturation, and (6) muscle tissue harvest. Although muscle stem cell research is a well-established field, the majority of these steps remain to be underoptimized to enable the in vitro creation of edible muscle-derived meat products. The profound understanding of the process would help not only cultured meat production but also business sectors that have been seeking new biomaterials for the food industry. In this review, we discuss comprehensively and in detail each step of cutting-edge methods for cultured meat production. This would be meaningful for both academia and industry to prepare for the new era of cellular agriculture.
Collapse
Affiliation(s)
- Kwang-Hwan Choi
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Ji Won Yoon
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Minsu Kim
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Hyun Jung Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Jinsol Jeong
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Minkyung Ryu
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea.,Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea.,Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
| |
Collapse
|
17
|
Overfeeding and Substrate Availability, But Not Age or BMI, Alter Human Satellite Cell Function. Nutrients 2020; 12:nu12082215. [PMID: 32722351 PMCID: PMC7468931 DOI: 10.3390/nu12082215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/09/2020] [Accepted: 07/21/2020] [Indexed: 12/25/2022] Open
Abstract
Satellite cells (SC) aid skeletal muscle growth and regeneration. SC-mediated skeletal muscle repair can both be influenced by and exacerbate several diseases linked to a fatty diet, obesity, and aging. The purpose of this study was to evaluate the effects of different lifestyle factors on SC function, including body mass index (BMI), age, and high-fat overfeeding. For this study, SCs were isolated from the vastus lateralis of sedentary young (18–30 years) and sedentary older (60–80 years) men with varying BMIs (18–32 kg/m2), as well as young sedentary men before and after four weeks of overfeeding (OVF) (55% fat/ + 1000 kcal, n = 4). The isolated SCs were then treated in vitro with a control (5 mM glucose, 10% fetal bovine serum (FBS)) or a high substrate growth media (HSM) (10% FBS, 25 mM glucose, and 400 μM 2:1 oleate–palmitate). Cells were assessed on their ability to proliferate, differentiate, and fuel substrate oxidation after differentiation. The effect of HSM was measured as the percentage difference between SCs exposed to HSM compared to control media. In vitro SC function was not affected by donor age. OVF reduced SC proliferation rates (–19% p < 0.05) but did not influence differentiation. Cellular proliferation in response to HSM was correlated to the donor’s body mass index (BMI) (r2 = 0.6121, p < 0.01). When exposed to HSM, SCs from normal weight (BMI 18–25 kg/m2) participants exhibited reduced proliferation and fusion rates with increased fatty-acid oxidation (p < 0.05), while SCs from participants with higher BMIs (BMI 25–32 kg/m2) demonstrated enhanced proliferation in HSM. HSM reduced proliferation and fusion (p < 0.05) in SCs isolated from subjects before OVF, whereas HSM exposure accelerated proliferation and fusion in SCs collected following OVF. These results indicated that diet has a greater influence on SC function than age and BMI. Though age and BMI do not influence in vitro SC function when grown in controlled conditions, both factors influenced the response of SCs to substrate challenges, indicating age and BMI may mediate responses to diet.
Collapse
|
18
|
Prolyl hydroxylase domain 2 reduction enhances skeletal muscle tissue regeneration after soft tissue trauma in mice. PLoS One 2020; 15:e0233261. [PMID: 32413092 PMCID: PMC7228053 DOI: 10.1371/journal.pone.0233261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022] Open
Abstract
The transcription factor Hypoxia-inducible factor 1 (HIF-1) plays a pivotal role in tissue regeneration. HIF-1 is negatively controlled by O2-dependent prolyl hydroxylases with a predominant role of prolyl hydroxylase 2 isoform (Phd2). Transgenic mice, hypomorphic for this isoform, accumulate more HIF-1 under normoxic conditions. Using these mice, we investigated the influence of Phd2 and HIF-1 on the regenerative capability of skeletal muscle tissue after myotrauma. Phd2-hypomorphic and wild type mice (on C57Bl/6 background) were grouped with regeneration times from 6 to 168 hours after closed mechanic muscle trauma to the hind limb. Tissue samples were analysed by immuno-staining and real-time PCR. Bone marrow derived macrophages of wild type and Phd2-hypomorphic mice were isolated and analysed via flow cytometry and quantitative real-time PCR. Phd2 reduction led to a higher regenerative capability due to enhanced activation of myogenic factors accompanied by induction of genes responsible for glucose and lactate metabolism in Phd2-hypomorphic mice. Macrophage infiltration into the trauma areas in hypomorphic mice started earlier and was more pronounced compared to wild type mice. Phd2-hypomorphic mice also showed higher numbers of macrophages in areas with sustained trauma 72 hours after myotrauma application. In conclusion, we postulate that the HIF-1 pathway is activated secondary to a Phd2 reduction which may lead to i) higher activation of myogenic factors, ii) increased number of positive stem cell proliferation markers, and iii) accelerated macrophage recruitment to areas of trauma, resulting in faster muscle tissue regeneration after myotrauma. With the current development of prolyl hydroxylase domain inhibitors, our findings point towards a potential clinical benefit after myotrauma.
Collapse
|
19
|
Biz C, Crimi A, Fantoni I, Pozzuoli A, Ruggieri P. Muscle stem cells: what's new in orthopedics? ACTA BIO-MEDICA : ATENEI PARMENSIS 2019; 90:8-13. [PMID: 30714993 PMCID: PMC6503412 DOI: 10.23750/abm.v90i1-s.8078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIM OF THE WORK Adult stem cells were studied as a source of potentially useful development for tissue engineering and repair techniques. The aim of this review is to clarify the actual and possible uses of muscle stem cells in orthopedics. METHODS A selection of studies was made to obtain a homogeneous and up to date overview on the muscle stem cells applications. RESULTS In recent years muscle was studied as a good source of adult stem cells that can differentiate into different cell lineages. Muscle stem cells are a heterogeneous population of cells, which demonstrated in vitro a great potential for the regeneration and repair of muscle, bone and cartilage tissue. Among muscle stem cells, satellite stem cells are the most known progenitor cells: they can differentiate in osteoblasts, adipocytes, chondrocytes and myocytes. CONCLUSIONS Although muscle stem cells are a promising field of research, more pre-clinical studies in animal models are still needed to determine the safety and efficiency of the transplant procedures in humans.
Collapse
Affiliation(s)
- Carlo Biz
- Orthopaedic Clinic, Department of Surgery, Oncology and Gastroenterology DiSCOG, University of Padua, Padova, Italy.
| | | | | | | | | |
Collapse
|
20
|
Zhang H, Barralet JE. Mimicking oxygen delivery and waste removal functions of blood. Adv Drug Deliv Rev 2017; 122:84-104. [PMID: 28214553 DOI: 10.1016/j.addr.2017.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 12/20/2022]
Abstract
In addition to immunological and wound healing cell and platelet delivery, ion stasis and nutrient supply, blood delivers oxygen to cells and tissues and removes metabolic wastes. For decades researchers have been trying to develop approaches that mimic these two immediately vital functions of blood. Oxygen is crucial for the long-term survival of tissues and cells in vertebrates. Hypoxia (oxygen deficiency) and even at times anoxia (absence of oxygen) can occur during organ preservation, organ and cell transplantation, wound healing, in tumors and engineering of tissues. Different approaches have been developed to deliver oxygen to tissues and cells, including hyperbaric oxygen therapy (HBOT), normobaric hyperoxia therapy (NBOT), using biochemical reactions and electrolysis, employing liquids with high oxygen solubility, administering hemoglobin, myoglobin and red blood cells (RBCs), introducing oxygen-generating agents, using oxygen-carrying microparticles, persufflation, and peritoneal oxygenation. Metabolic waste accumulation is another issue in biological systems when blood flow is insufficient. Metabolic wastes change the microenvironment of cells and tissues, influence the metabolic activities of cells, and ultimately cause cell death. This review examines advances in blood mimicking systems in the field of biomedical engineering in terms of oxygen delivery and metabolic waste removal.
Collapse
|
21
|
Ueta CB, Gomes KS, Ribeiro MA, Mochly-Rosen D, Ferreira JCB. Disruption of mitochondrial quality control in peripheral artery disease: New therapeutic opportunities. Pharmacol Res 2017; 115:96-106. [PMID: 27876411 PMCID: PMC5205542 DOI: 10.1016/j.phrs.2016.11.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/10/2016] [Accepted: 11/12/2016] [Indexed: 01/25/2023]
Abstract
Peripheral artery disease (PAD) is a multifactorial disease initially triggered by reduced blood supply to the lower extremities due to atherosclerotic obstructions. It is considered a major public health problem worldwide, affecting over 200 million people. Management of PAD includes smoking cessation, exercise, statin therapy, antiplatelet therapy, antihypertensive therapy and surgical intervention. Although these pharmacological and non-pharmacological interventions usually increases blood flow to the ischemic limb, morbidity and mortality associated with PAD continue to increase. This scenario raises new fundamental questions regarding the contribution of intrinsic metabolic changes in the distal affected skeletal muscle to the progression of PAD. Recent evidence suggests that disruption of skeletal muscle mitochondrial quality control triggered by intermittent ischemia-reperfusion injury is associated with increased morbidity in individuals with PAD. The mitochondrial quality control machinery relies on surveillance systems that help maintaining mitochondrial homeostasis upon stress. In this review, we describe some of the most critical mechanisms responsible for the impaired skeletal muscle mitochondrial quality control in PAD. We also discuss recent findings on the central role of mitochondrial bioenergetics and quality control mechanisms including mitochondrial fusion-fission balance, turnover, oxidative stress and aldehyde metabolism in the pathophysiology of PAD, and highlight their potential as therapeutic targets.
Collapse
Affiliation(s)
- Cintia B Ueta
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Katia S Gomes
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Márcio A Ribeiro
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, USA
| | - Julio C B Ferreira
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Brazil.
| |
Collapse
|
22
|
Chaillou T, Lanner JT. Regulation of myogenesis and skeletal muscle regeneration: effects of oxygen levels on satellite cell activity. FASEB J 2016; 30:3929-3941. [PMID: 27601440 DOI: 10.1096/fj.201600757r] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/15/2016] [Indexed: 12/11/2022]
Abstract
Reduced oxygen (O2) levels (hypoxia) are present during embryogenesis and exposure to altitude and in pathologic conditions. During embryogenesis, myogenic progenitor cells reside in a hypoxic microenvironment, which may regulate their activity. Satellite cells are myogenic progenitor cells localized in a local environment, suggesting that the O2 level could affect their activity during muscle regeneration. In this review, we present the idea that O2 levels regulate myogenesis and muscle regeneration, we elucidate the molecular mechanisms underlying myogenesis and muscle regeneration in hypoxia and depict therapeutic strategies using changes in O2 levels to promote muscle regeneration. Severe hypoxia (≤1% O2) appears detrimental for myogenic differentiation in vitro, whereas a 3-6% O2 level could promote myogenesis. Hypoxia impairs the regenerative capacity of injured muscles. Although it remains to be explored, hypoxia may contribute to the muscle damage observed in patients with pathologies associated with hypoxia (chronic obstructive pulmonary disease, and peripheral arterial disease). Hypoxia affects satellite cell activity and myogenesis through mechanisms dependent and independent of hypoxia-inducible factor-1α. Finally, hyperbaric oxygen therapy and transplantation of hypoxia-conditioned myoblasts are beneficial procedures to enhance muscle regeneration in animals. These therapies may be clinically relevant to treatment of patients with severe muscle damage.-Chaillou, T. Lanner, J. T. Regulation of myogenesis and skeletal muscle regeneration: effects of oxygen levels on satellite cell activity.
Collapse
Affiliation(s)
- Thomas Chaillou
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Johanna T Lanner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
23
|
Sellathurai J, Nielsen J, Hejbøl EK, Jørgensen LH, Dhawan J, Nielsen MFB, Schrøder HD. Low Oxygen Tension Enhances Expression of Myogenic Genes When Human Myoblasts Are Activated from G0 Arrest. PLoS One 2016; 11:e0158860. [PMID: 27442119 PMCID: PMC4956100 DOI: 10.1371/journal.pone.0158860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 06/23/2016] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES Most cell culture studies have been performed at atmospheric oxygen tension of 21%, however the physiological oxygen tension is much lower and is a factor that may affect skeletal muscle myoblasts. In this study we have compared activation of G0 arrested myoblasts in 21% O2 and in 1% O2 in order to see how oxygen tension affects activation and proliferation of human myoblasts. MATERIALS AND METHODS Human myoblasts were isolated from skeletal muscle tissue and G0 arrested in vitro followed by reactivation at 21% O2 and 1% O2. The effect was assesses by Real-time RT-PCR, immunocytochemistry and western blot. RESULTS AND CONCLUSIONS We found an increase in proliferation rate of myoblasts when activated at a low oxygen tension (1% O2) compared to 21% O2. In addition, the gene expression studies showed up regulation of the myogenesis related genes PAX3, PAX7, MYOD, MYOG (myogenin), MET, NCAM, DES (desmin), MEF2A, MEF2C and CDH15 (M-cadherin), however, the fraction of DES and MYOD positive cells was not increased by low oxygen tension, indicating that 1% O2 may not have a functional effect on the myogenic response. Furthermore, the expression of genes involved in the TGFβ, Notch and Wnt signaling pathways were also up regulated in low oxygen tension. The differences in gene expression were most pronounced at day one after activation from G0-arrest, thus the initial activation of myoblasts seemed most sensitive to changes in oxygen tension. Protein expression of HES1 and β-catenin indicated that notch signaling may be induced in 21% O2, while the canonical Wnt signaling may be induced in 1% O2 during activation and proliferation of myoblasts.
Collapse
Affiliation(s)
- Jeeva Sellathurai
- Institute of Clinical Research, SDU Muscle Research Cluster (SMRC), University of Southern Denmark, Odense, Denmark
- Department of Clinical Pathology, Odense University Hospital, Odense, Denmark
- * E-mail: (JS); (HDS)
| | - Joachim Nielsen
- Department of Sports Science and Clinical Biomechanics, SDU Muscle Research Cluster (SMRC), University of Southern Denmark, Odense, Denmark
| | - Eva Kildall Hejbøl
- Institute of Clinical Research, SDU Muscle Research Cluster (SMRC), University of Southern Denmark, Odense, Denmark
- Department of Clinical Pathology, Odense University Hospital, Odense, Denmark
| | - Louise Helskov Jørgensen
- Institute of Clinical Research, SDU Muscle Research Cluster (SMRC), University of Southern Denmark, Odense, Denmark
- Department of Clinical Pathology, Odense University Hospital, Odense, Denmark
| | - Jyotsna Dhawan
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), National Center for Biological Sciences, Bangalore, India
| | | | - Henrik Daa Schrøder
- Institute of Clinical Research, SDU Muscle Research Cluster (SMRC), University of Southern Denmark, Odense, Denmark
- Department of Clinical Pathology, Odense University Hospital, Odense, Denmark
- * E-mail: (JS); (HDS)
| |
Collapse
|
24
|
Zhang K, Zhao T, Huang X, He Y, Zhou Y, Wu L, Wu K, Fan M, Zhu L. Dissolved oxygen concentration in the medium during cell culture: Defects and improvements. Cell Biol Int 2016; 40:354-60. [PMID: 26648388 DOI: 10.1002/cbin.10570] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/01/2015] [Indexed: 12/21/2022]
Abstract
In vitro cell culture has provided a useful model to study the effects of oxygen on cellular behavior. However, it remains unknown whether the in vitro operations themselves affect the medium oxygen levels and the living states of cells. In addition, a prevailing controversy is whether reactive oxygen species (ROS) production is induced by continuous hypoxia or reoxygenation. In this study, we have measured the effects of different types of cell culture containers and the oxygen environment where medium replacement takes place on the actual oxygen tension in the medium. We found that the deviations of oxygen concentrations in the medium are much greater in 25-cm(2) flasks than in 24-well plates and 35-mm dishes. The dissolved oxygen concentrations in the medium were increased after medium replacement in normoxia, but remained unchanged in glove boxes in which the oxygen tension remained at a low level (11.4, 5.7, and 0.5% O2 ). We also found that medium replacement in normoxia increased the number of ROS-positive cells and reduced the cell viability; meanwhile, medium replacement in a glove box did not produce the above effects. Therefore, we conclude that the use of 25-cm(2) flasks should be avoided and demonstrate that continuous hypoxia does not produce ROS, whereas the reoxygenation that occurs during the harvesting of cells leads to ROS and induces cell death.
Collapse
Affiliation(s)
- Kuan Zhang
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Beijing, 100850, China.,Brain Research Center, College of Basic Medical Sciences, Third Military Medical University, Chongqing, 400038, China
| | - Tong Zhao
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Xin Huang
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Yunlin He
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Yanzhao Zhou
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Liying Wu
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Kuiwu Wu
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Ming Fan
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Beijing, 100850, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, China
| | - Lingling Zhu
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Beijing, 100850, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, China
| |
Collapse
|
25
|
Schiavo AA, Franzin C, Albiero M, Piccoli M, Spiro G, Bertin E, Urbani L, Visentin S, Cosmi E, Fadini GP, De Coppi P, Pozzobon M. Endothelial properties of third-trimester amniotic fluid stem cells cultured in hypoxia. Stem Cell Res Ther 2015; 6:209. [PMID: 26519360 PMCID: PMC4628318 DOI: 10.1186/s13287-015-0204-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/02/2015] [Accepted: 10/15/2015] [Indexed: 12/22/2022] Open
Abstract
Introduction Endothelial dysfunction is found in different pathologies such as diabetes and renal and heart diseases, representing one of the major health problems. The reduced vasodilation of impaired endothelium starts a prothrombotic state associated with irregular blood flow. We aimed to explore the potential of amniotic fluid stem (AFS) cells as a source for regenerative medicine in this field; for the first time, we focused on third-trimester amniotic fluid AFS cells and compared them with the already-described AFS cells from the second trimester. Methods Cells from the two trimesters were cultured, selected and expanded in normoxia (20 % oxygen) and hypoxia (5 % oxygen). Cells were analysed to compare markers, proliferation rate and differentiation abilities. Endothelial potential was assessed not only in vitro—Matrigel tube formation assay, acetylated human low-density lipoprotein (AcLDL) uptake—but also in vivo (Matrigel plug with cell injection and two animal models). Specifically, for the latter, we used established protocols to assess the involvement of AFS cells in two different mouse models of endothelial dysfunction: (1) a chronic ischemia model with local injection of cells and (2) an electric carotid damage where cells were systemically injected. Results We isolated and expanded AFS cells from third-trimester amniotic fluid samples by using CD117 as a selection marker. Hypoxia enhanced the proliferation rate, the surface protein pattern was conserved between the trimesters and comparable differentiation was achieved after culture in both normoxia and hypoxia. Notably, the expression of early endothelial transcription factors and AngiomiRs was detected before and after induction. When in vivo, AFS cells from both trimesters expanded in hypoxia were able to rescue the surface blood flow when locally injected in mice after chronic ischemia damage, and importantly AFS cells at term of gestation possessed enhanced ability to fix carotid artery electric damage compared with AFS cells from the second trimester. Conclusions To the best of our knowledge, this is the first research work that fully characterizes AFS cells from the third trimester for regenerative medicine purposes. The results highlight how AFS cells, in particular at term of gestation and cultured in hypoxia, can be considered a promising source of stem cells possessing significant endothelial regenerative potential. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0204-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrea Alex Schiavo
- Stem Cells and Regenerative Medicine Laboratory, Foundation Institute of Pediatric Research Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy. .,Department of Woman and Children Health, University of Padova, via Giustinani 2, 35100, Padova, Italy.
| | - Chiara Franzin
- Stem Cells and Regenerative Medicine Laboratory, Foundation Institute of Pediatric Research Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy.
| | - Mattia Albiero
- Venetian Institute of Molecular Medicine, via Orus 2, 35129, Padova, Italy. .,Medicine Department (DIMED), University of Padova, via Giustiniani 2, 35100, Padova, Italy.
| | - Martina Piccoli
- Stem Cells and Regenerative Medicine Laboratory, Foundation Institute of Pediatric Research Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy.
| | - Giovanna Spiro
- Stem Cells and Regenerative Medicine Laboratory, Foundation Institute of Pediatric Research Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy. .,Medicine Department (DIMED), University of Padova, via Giustiniani 2, 35100, Padova, Italy.
| | - Enrica Bertin
- Stem Cells and Regenerative Medicine Laboratory, Foundation Institute of Pediatric Research Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy.
| | - Luca Urbani
- Stem Cells and Regenerative Medicine Laboratory, Foundation Institute of Pediatric Research Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy. .,Stem Cells and Regenerative Medicine Section, Developmental biology and Cancer Program, Institute of Child Health, University College London, 30 Guilford Street, WC1N 1EH, London, UK.
| | - Silvia Visentin
- Department of Woman and Children Health, University of Padova, via Giustinani 2, 35100, Padova, Italy.
| | - Erich Cosmi
- Department of Woman and Children Health, University of Padova, via Giustinani 2, 35100, Padova, Italy.
| | - Gian Paolo Fadini
- Venetian Institute of Molecular Medicine, via Orus 2, 35129, Padova, Italy. .,Medicine Department (DIMED), University of Padova, via Giustiniani 2, 35100, Padova, Italy.
| | - Paolo De Coppi
- Stem Cells and Regenerative Medicine Section, Developmental biology and Cancer Program, Institute of Child Health, University College London, 30 Guilford Street, WC1N 1EH, London, UK.
| | - Michela Pozzobon
- Stem Cells and Regenerative Medicine Laboratory, Foundation Institute of Pediatric Research Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy.
| |
Collapse
|
26
|
Ding K, Yang Z, Xu JZ, Liu WY, Zeng Q, Hou F, Lin S. Elastic hydrogel substrate supports robust expansion of murine myoblasts and enhances their engraftment. Exp Cell Res 2015. [PMID: 26210646 DOI: 10.1016/j.yexcr.2015.07.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The application of satellite cell-derived myoblasts in regenerative medicine has been restricted by the rapid loss of stemness during in vitro cell expansion using traditional culture systems. However, studies published in the past decade have highlighted the influence of substrate elasticity on stem cell fate and revealed that culture on a soft hydrogel substrate can promote self-renewal and prolong the regenerative potential of muscle stem cells. Whether hydrogel substrates have similar effects after long-term robust expansion remains to be determined. Herein we prepared an elastic chitosan/beta-glycerophosphate/collagen hydrogel mimicking the soft microenvironment of muscle tissues for use as the substrate for satellite cell culture and investigated its influence on long-term cell expansion. After 20 passages in culture, satellite cell-derived myoblasts cultured on our hydrogel substrate exhibited significant improvements in proliferation capability, cell viability, colony forming frequency, and potential for myogenic differentiation compared to those cultured on a routine rigid culture surface. Immunochemical staining and western blot analysis both confirmed that myoblasts cultured on the hydrogel substrate expressed higher levels of several differentiation-related markers, including Pax7, Pax3, and SSEA-1, and a lower level of MyoD compared to myoblasts cultured on rigid culture plates (all p<0.05). After transplantation into the tibialis anterior of nude mice, myoblasts that had been cultured on the hydrogel substrate demonstrated a significantly greater engraftment efficacy than those cultured on the traditional surface. Collectively, these results indicate that the elastic hydrogel substrate supported robust expansion of murine myoblasts and enhanced their engraftment in vivo.
Collapse
Affiliation(s)
- Ke Ding
- Department of Pediatric Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China.
| | - Zhong Yang
- Department of Clinical Hematology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jian-Zhong Xu
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.
| | - Wen-Ying Liu
- Department of Pediatric Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Qiang Zeng
- Department of Pediatric Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Fang Hou
- Department of Pediatric Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Sen Lin
- Department of Anatomy and Histology & Embryology, Chengdu Medical College, Chengdu 610500, China
| |
Collapse
|
27
|
Characterization of a novel chicken muscle disorder through differential gene expression and pathway analysis using RNA-sequencing. BMC Genomics 2015; 16:399. [PMID: 25994290 PMCID: PMC4438523 DOI: 10.1186/s12864-015-1623-0] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 05/06/2015] [Indexed: 01/22/2023] Open
Abstract
Background Improvements in poultry production within the past 50 years have led to increased muscle yield and growth rate, which may be contributing to an increased rate and development of new muscle disorders in chickens. Previously reported muscle disorders and conditions are generally associated with poor meat quality traits and have a significant negative economic impact on the poultry industry. Recently, a novel myopathy phenotype has emerged which is characterized by palpably “hard” or tough breast muscle. The objective of this study is to identify the underlying biological mechanisms that contribute to this emerging muscle disorder colloquially referred to as “Wooden Breast”, through the use of RNA-sequencing technology. Methods We constructed cDNA libraries from five affected and six unaffected breast muscle samples from a line of commercial broiler chickens. After paired-end sequencing of samples using the Illumina Hiseq platform, we used Tophat to align the resulting sequence reads to the chicken reference genome and then used Cufflinks to find significant changes in gene transcript expression between each group. By comparing our gene list to previously published histology findings on this disorder and using Ingenuity Pathways Analysis (IPA®), we aim to develop a characteristic gene expression profile for this novel disorder through analyzing genes, gene families, and predicted biological pathways. Results Over 1500 genes were differentially expressed between affected and unaffected birds. There was an average of approximately 98 million reads per sample, across all samples. Results from the IPA analysis suggested “Diseases and Disorders” such as connective tissue disorders, “Molecular and Cellular Functions” such as cellular assembly and organization, cellular function and maintenance, and cellular movement, “Physiological System Development and Function” such as tissue development, and embryonic development, and “Top Canonical Pathways” such as, coagulation system, axonal guidance signaling, and acute phase response signaling, are associated with the Wooden Breast disease. Conclusions There is convincing evidence by RNA-seq analysis to support localized hypoxia, oxidative stress, increased intracellular calcium, as well as the possible presence of muscle fiber-type switching, as key features of Wooden Breast Disease, which are supported by reported microscopic lesions of the disease. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1623-0) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Effects of Transient Hypoxia versus Prolonged Hypoxia on Satellite Cell Proliferation and Differentiation In Vivo. Stem Cells Int 2015; 2015:961307. [PMID: 25788948 PMCID: PMC4348605 DOI: 10.1155/2015/961307] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/22/2015] [Indexed: 12/17/2022] Open
Abstract
The microenvironment of the injury site can have profound effects on wound healing. Muscle injury results in ischemia leading to short-term local hypoxia, but there are conflicting reports on the role of hypoxia on the myogenic program in vivo and in vitro. In our rat model of mitochondrial restoration (MR), temporary upregulation of mitochondrial activity by a cocktail of organelle-encoded RNAs results in satellite cell proliferation and initiation of myogenesis. We now report that MR leads to a transient hypoxic response in situ. Inhibition of hypoxia by lowering mitochondrial O2 consumption, either by respiratory electron transport inhibitors, or by NO-mediated inhibition of O2 binding to cytochrome c oxidase, resulted in exacerbation of inflammation. Lentivirus-mediated knockdown of hypoxia-inducible factor 1α (HIF1α) or of Notch signaling components had a similar effect, and pharmacologic inhibition of HIF or Notch reduced the number of proliferating Pax7+ cells. In contrast, a prolonged hypoxic response induced either by uncoupling of respiration from oxidative phosphorylation or through HIF stabilization by dimethyloxalylglycine (DMOG) had an immediate anti-inflammatory effect. Although significant satellite cell proliferation occurred in presence of DMOG, expression of differentiation markers was affected. These results emphasize the importance of transient hypoxia as opposed to prolonged hypoxia for myogenesis.
Collapse
|
29
|
Biomimetic engineered muscle with capacity for vascular integration and functional maturation in vivo. Proc Natl Acad Sci U S A 2014; 111:5508-13. [PMID: 24706792 DOI: 10.1073/pnas.1402723111] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tissue-engineered skeletal muscle can serve as a physiological model of natural muscle and a potential therapeutic vehicle for rapid repair of severe muscle loss and injury. Here, we describe a platform for engineering and testing highly functional biomimetic muscle tissues with a resident satellite cell niche and capacity for robust myogenesis and self-regeneration in vitro. Using a mouse dorsal window implantation model and transduction with fluorescent intracellular calcium indicator, GCaMP3, we nondestructively monitored, in real time, vascular integration and the functional state of engineered muscle in vivo. During a 2-wk period, implanted engineered muscle exhibited a steady ingrowth of blood-perfused microvasculature along with an increase in amplitude of calcium transients and force of contraction. We also demonstrated superior structural organization, vascularization, and contractile function of fully differentiated vs. undifferentiated engineered muscle implants. The described in vitro and in vivo models of biomimetic engineered muscle represent enabling technology for novel studies of skeletal muscle function and regeneration.
Collapse
|
30
|
Langen R, Gosker H, Remels A, Schols A. Triggers and mechanisms of skeletal muscle wasting in chronic obstructive pulmonary disease. Int J Biochem Cell Biol 2013; 45:2245-56. [DOI: 10.1016/j.biocel.2013.06.015] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/09/2013] [Accepted: 06/14/2013] [Indexed: 11/29/2022]
|