1
|
Wang K, Li Y, Liu H, Zhang T, Luo J. Can physical activity counteract the negative effects of sedentary behavior on the physical and mental health of children and adolescents? A narrative review. Front Public Health 2024; 12:1412389. [PMID: 39157520 PMCID: PMC11328546 DOI: 10.3389/fpubh.2024.1412389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024] Open
Abstract
Background The increase in sedentary behavior (SB) in children and adolescents is one of the major threats to global public health, and the relationship between physical activity (PA) and SB has always been a key topic. Methods The literature search was conducted through PubMed, Web of Science, CNKI, Wanfang, and Scopus, and 121 pieces of literature were included in this study after screening and evaluation. Results (1) SB caused by screen time such as mobile phones and TVs has varying degrees of negative impact on obesity, cardiovascular metabolism, skeletal muscle development, and cognitive, and psychological disorders in children and adolescents. (2) Regular physical activity could effectively prevent, offset, or improve the harm of SB to the physical and mental health of children and adolescents, mainly by reducing the incidence of obesity, and cardiovascular and metabolic risks, promoting skeletal muscle development, and improving cognitive function and mental health. (3) The mechanism of physical activity to prevent or ameliorate the harm of SB was relatively complex, mainly involving the inhibition or activation of neurobiomolecules, the improvement of blood and cell metabolic factors, and the enhancement of brain functional connectivity. Conclusions Children and adolescents should avoid excessive SB, and through a variety of moderate to vigorous physical activity (MVPA) to replace or intermittent SB, which could effectively prevent or improve the harm of SB to physical and mental health.
Collapse
Affiliation(s)
- Kun Wang
- College of Physical Education, Southwest University, Research Centre for Exercise Detoxification, Chongqing, China
| | - Yan Li
- College of Liberal Studies (Sports Work Department), Chongqing Industry Polytechnic College, Chongqing, China
| | - Hengxu Liu
- College of Physical Education, Southwest University, Research Centre for Exercise Detoxification, Chongqing, China
| | - Tingran Zhang
- College of Physical Education, Southwest University, Research Centre for Exercise Detoxification, Chongqing, China
| | - Jiong Luo
- College of Physical Education, Southwest University, Research Centre for Exercise Detoxification, Chongqing, China
| |
Collapse
|
2
|
Alghadir AH, Gabr SA, Iqbal A. Hand grip strength, vitamin D status, and diets as predictors of bone health in 6-12 years old school children. BMC Musculoskelet Disord 2023; 24:830. [PMID: 37872520 PMCID: PMC10594896 DOI: 10.1186/s12891-023-06960-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Vitamin D and calcium-rich foods, exposure to sunlight, and physical activities (PA) play a pivotal role in promoting the production of sufficient vitamin D and improving grip strength needed for better bone health among school children. PURPOSE This study aimed to determine the effects of hand grip muscle strength (HGS), vitamin D in addition to diets, and PA on bone health status among 6-12 years old schoolchildren. METHODS This study was based on a cross-sectional observational design, which was descriptive in nature. A diverse sample of 560 elementary school children aged 6-12 years old were invited to participate in this descriptive cross-sectional study. The Dual-Energy X-Ray Absorptiometry (DXA), QUS technique, and ACTi graph GT1M accelerometer were used respectively as a valid tools to identify BMD, BMC, and other parameters of bone health like c-BUA values and bone stiffness (SI), and physical activity (PA) of all individuals participated in this study. In addition, a hydraulic dynamometer was used to measure hand grip strength among the participants. Moreover, an immunoassay technique was used to measure the serum levels of vitamin 25(OH)D level, and bone metabolism markers; NTX, DPD, Ca, and sBAP in all participants. Bone loss (osteoporosis) was cross-sectionally predicted in 19.64% of the total population, most of whom were girls (14.3% vs. 5.4% for boys; P = 0.01). Compared to boys, the incidence of osteoporosis was higher and significantly correlated in girls with lower HGS, deficient vitamin D, inadequate vitamin D and Ca intake, greater adiposity, poor PA, and lower sun exposure. Also, in girls, lower vitamin 25(OH)D levels, and poor HGS were shown to be significantly associated with lower values of BMD, BMC, SI, and higher values of bone resorption markers; NTX, DPD, and sBAP and lower serum Ca than do in boys. The findings suggested that deficient vitamin D, lower HGS, adiposity, PA, and sun exposure as related risk factors to the pravelence of bone loss among school children, particularly in girls. In addition, these parameters might be considered diagnostic non-invasive predictors of bone health for clinical use in epidemiological contexts; however, more studies are required.
Collapse
Affiliation(s)
- Ahmad H Alghadir
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Sami A Gabr
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Amir Iqbal
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia.
| |
Collapse
|
3
|
Brailey G, Metcalf B, Lear R, Price L, Cumming S, Stiles V. A comparison of the associations between bone health and three different intensities of accelerometer-derived habitual physical activity in children and adolescents: a systematic review. Osteoporos Int 2022; 33:1191-1222. [PMID: 35089364 PMCID: PMC9106641 DOI: 10.1007/s00198-021-06218-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/14/2021] [Indexed: 12/02/2022]
Abstract
Positive associations have been identified between bone outcomes and accelerometer-derived moderate (MPA) and vigorous (VPA) physical activity (PA) in youth; however, it remains unclear which intensity is most beneficial. This systematic review aimed to summarise accelerometer-derived methods used to estimate habitual PA in children and adolescents and determine whether the magnitude of association was consistently stronger for a particular intensity (MPA/MVPA/VPA). Observational studies assessing associations between accelerometer-derived MPA and/or MVPA and VPA with bone outcomes in children and adolescents (≤ 18 years) were identified in MEDLINE, EMBASE, Web of Science, SPORTDiscus and the Cochrane Central Register of Controlled Trials. Thirty articles were included (total n = 20,613 (10,077 males), 4-18 years). Chi-square tests determined whether the proportion of significant associations and strongest within-study associations differed significantly between intensities. Results demonstrated that accelerometer methods were highly variable between studies. Of the 570 associations analysed, 186 were significant (p < 0.05). The proportion of within-study strongest associations differed by PA intensity (3 × 2 χ2 = 86.6, p < 0.001) and was significantly higher for VPA (39%) compared to MVPA (5%; 2 × 2 χ2 = 55.3, p < 0.001) and MPA (9%, 2 × 2 χ2 = 49.1, p < 0.001). Results indicated a greater benefit of VPA over MPA/MVPA; however, variability in accelerometer-derived methods used prevents the precise bone-benefitting amount of VPA from being identified. Long epochs and numerous intensity cut-point definitions mean that bone-relevant PA has likely been missed or misclassified in this population. Future research should explore the use of shorter epochs (1 s) and identify bone-specific activity intensities, rather than using pre-defined activity classifications more relevant to cardiovascular health.
Collapse
Affiliation(s)
- Gemma Brailey
- Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK.
| | - Brad Metcalf
- Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Rebecca Lear
- Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Lisa Price
- Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Sean Cumming
- Department for Health, University of Bath, Bath, UK
| | - Victoria Stiles
- Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
4
|
Physical Activity Related to Body Muscle Mass Index and Stiffness Index in 7-to-10-Year-Old Girls. Healthcare (Basel) 2022; 10:healthcare10020197. [PMID: 35206812 PMCID: PMC8871963 DOI: 10.3390/healthcare10020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 02/05/2023] Open
Abstract
The relationship between moderate-to-vigorous physical activity (MVPA) performance time and body muscle mass and stiffness index in pre-puberty school-aged girls has not been fully elucidated. The effect of sexual maturity on bone mass is more pronounced in girls. This study aimed to clarify the relationship between MVPA performance time and the above-mentioned factors. This was a prospective, population-based cohort study of 111 girls aged 7–10 years. Data were collected via medical examination, clinical measurements, and questionnaires. Spearman’s ρ analysis was used to determine the association between skeletal muscle mass index (SMI) and stiffness index, muscle strength, and MVPA performance time. Participants who met the recommended MVPA level accounted for only 24.3% (n = 27) of all participating girls (n = 111). The following factors were significantly positively correlated with MVPA level at spearman’s ρ analysis: SMI (r = 0.303, p = 0.001), stiffness index (r = 0.229, p = 0.015), grip strength (r = 0.283, p = 0.003), back muscle strength (r = 0.197, p = 0.038), and standing long jump distance (r = 0.288, p = 0.002). Multiple regression analysis’s results revealed that SMI (β = 0.237; p = 0.024) was associated with MVPA performance time. These results can help school-aged girls to pay adequate attention to having healthy physical activity habits to prevent the decline of skeletal muscle mass, stiffness index, and body muscle strength.
Collapse
|
5
|
Proia P, Amato A, Drid P, Korovljev D, Vasto S, Baldassano S. The Impact of Diet and Physical Activity on Bone Health in Children and Adolescents. Front Endocrinol (Lausanne) 2021; 12:704647. [PMID: 34589054 PMCID: PMC8473684 DOI: 10.3389/fendo.2021.704647] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/13/2021] [Indexed: 12/15/2022] Open
Abstract
There is growing recognition of the role of diet and physical activity in modulating bone mineral density, bone mineral content, and remodeling, which in turn can impact bone health later in life. Adequate nutrient composition could influence bone health and help to maximize peak bone mass. Therefore, children's nutrition may have lifelong consequences. Also, physical activity, adequate in volume or intensity, may have positive consequences on bone mineral content and density and may preserve bone loss in adulthood. Most of the literature that exists for children, about diet and physical activity on bone health, has been translated from studies conducted in adults. Thus, there are still many unanswered questions about what type of diet and physical activity may positively influence skeletal development. This review focuses on bone requirements in terms of nutrients and physical activity in childhood and adolescence to promote bone health. It explores the contemporary scientific literature that analyzes the impact of diet together with the typology and timing of physical activity that could be more appropriate depending on whether they are children and adolescents to assure an optimal skeleton formation. A description of the role of parathyroid hormone (PTH) and gut hormones (gastric inhibitory peptide (GIP), glucagon-like peptide (GLP)-1, and GLP-2) as potential candidates in this interaction to promote bone health is also presented.
Collapse
Affiliation(s)
- Patrizia Proia
- Department of Psychological, Pedagogical and Educational Sciences, Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
| | - Alessandra Amato
- Department of Psychological, Pedagogical and Educational Sciences, Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
| | - Patrik Drid
- Faculty of Sport and Physical Education, University of Novi Sad, Novi Sad, Serbia
| | - Darinka Korovljev
- Faculty of Sport and Physical Education, University of Novi Sad, Novi Sad, Serbia
| | - Sonya Vasto
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Sara Baldassano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| |
Collapse
|
6
|
Bland VL, Heatherington-Rauth M, Howe C, Going SB, Bea JW. Association of objectively measured physical activity and bone health in children and adolescents: a systematic review and narrative synthesis. Osteoporos Int 2020; 31:1865-1894. [PMID: 32542544 DOI: 10.1007/s00198-020-05485-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022]
Abstract
The influence of day-to-day physical activity on bone in adolescence has not been well characterized. Forty articles were identified that assessed the relationship between accelerometry-derived physical activity and bone outcomes in adolescents. Physical activity was positively associated with bone strength in peri-pubertal males, with less consistent evidence in females. Physical activity (PA) is recommended to optimize bone development in childhood and adolescence; however, the influence of day-to-day PA on bone development is not well defined. The aim of this review was to describe the current evidence for objectively measured PA on bone outcomes in healthy children and adolescents. MEDLINE, Embase, Cochrane Library, Scopus, Web of Science, CINAHL, PsycInfo, and ClinicalTrials.gov were searched for relevant articles up to April 2020. Studies assessing the relationship between accelerometry-derived PA and bone outcomes in adolescents (6-18 years old) were included. Two reviewers independently screened studies for eligibility, extracted data, and rated study quality. Forty articles met inclusion criteria (25 cross-sectional, 15 longitudinal). There was significant heterogeneity in accelerometry methodology and bone outcomes measured. Studies in males indicated a significant, positive relationship between moderate to vigorous PA (MVPA) and bone outcomes at the hip and femur, particularly during the peri-pubertal years. The results for MVPA and bone outcomes in females were mixed. There was a paucity of longitudinal studies using pQCT and a lack of data regarding how light PA and/or impact activity influences bone outcomes. The current evidence suggests that objectively measured MVPA is positively associated with bone outcomes in children and adolescents, especially in males. However, inconsistencies in methodology make it difficult to determine the amount and type of PA that leads to favorable bone outcomes. Given that the majority of research has been conducted in Caucasian adolescents, further research is needed in minority populations.
Collapse
Affiliation(s)
- V L Bland
- Department of Nutritional Sciences, University of Arizona, 1177 E 4th St, Tucson, AZ, 85721, USA.
| | - M Heatherington-Rauth
- Exercise and Health Laboratory, CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, 1499-002, Cruz-Quebrada, Portugal
| | - C Howe
- University of Arizona Health Sciences Library, University of Arizona, 1501 N Campbell Ave, Tucson, AZ, 85724, USA
| | - S B Going
- Department of Nutritional Sciences, University of Arizona, 1177 E 4th St, Tucson, AZ, 85721, USA
| | - J W Bea
- Department of Nutritional Sciences, University of Arizona, 1177 E 4th St, Tucson, AZ, 85721, USA
- University of Arizona Cancer Center, 3838 N Campbell Ave, Tucson, AZ, 85719, USA
| |
Collapse
|
7
|
Baptista F, Lopes E, Matute-Llorente Á, Teles J, Zymbal V. Adaptation of Proximal Femur to Mechanical Loading in Young Adults: Standard Vs Localized Regions Evaluated by DXA. J Clin Densitom 2020; 23:73-81. [PMID: 30274880 DOI: 10.1016/j.jocd.2018.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/30/2018] [Accepted: 07/30/2018] [Indexed: 11/28/2022]
Abstract
Regions of the proximal femur with less adaptive protection by mechanical loading may be at increased risk of structural failure. Since the size and location of these regions diverge from those defined by the dual-energy X-ray absorptiometry manufacturers the purpose of this study was to compare areal bone mineral density (aBMD) of different regions of the proximal femur considering impact loads from physical activity (PA). The participants were 134 young adults divided into 2 groups according to the impact of PA performed in the last 12 mo: high-impact PA and low-impact PA. The aBMD of the proximal femur was assessed by dual-energy X-ray absorptiometry at the standard femoral neck, intertrochanter, and trochanter, and at specific locations of the superolateral femoral neck and intertrochanteric region. The bone-specific physical activity questionnaire was used to estimate the impact load of PA. Comparisons between groups were adjusted for body height and body lean mass. Interaction analysis between sex and PA groups were conducted with analysis of variance. Comparisons of aBMD between bone regions were analyzed separately for men and women with repeated measures analysis of variance. In the high-impact PA group, men benefit more than women at all bone regions, except the aBMD at intertrochanteric region. Analyses of repeated measures did not reveal any significant interaction effect between bone regions (standard vs specific) and PA groups (low vs high-impact). In conclusion, aBMD differences due to mechanical loading were more pronounced in men than in women; the magnitude of the aBMD differences as a result of different levels of PA was similar between standard and localized regions.
Collapse
Affiliation(s)
- Fátima Baptista
- Exercise and Health Laboratory, CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisboa, Portugal.
| | - Edgar Lopes
- Exercise and Health Laboratory, CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisboa, Portugal
| | - Ángel Matute-Llorente
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, Department of Physiatry and Nursing, Faculty of Health and Sports Sciences, Universidad de Zaragoza, Zaragoza, Spain
| | - Júlia Teles
- Mathematics Unit, CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisboa, Portugal
| | - Vera Zymbal
- Exercise and Health Laboratory, CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
8
|
Fintini D, Cianfarani S, Cofini M, Andreoletti A, Ubertini GM, Cappa M, Manco M. The Bones of Children With Obesity. Front Endocrinol (Lausanne) 2020; 11:200. [PMID: 32390939 PMCID: PMC7193990 DOI: 10.3389/fendo.2020.00200] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
Excess adiposity in childhood may affect bone development, ultimately leading to bone frailty. Previous reports showing an increased rate of extremity fractures in children with obesity support this fear. On the other hand, there is also evidence suggesting that bone mineral content is higher in obese children than in normal weight peers. Both adipocytes and osteoblasts derive from multipotent mesenchymal stem cells (MSCs) and obesity drives the differentiation of MSCs toward adipocytes at the expense of osteoblast differentiation. Furthermore, adipocytes in bone marrow microenvironment release a number of pro-inflammatory and immunomodulatory molecules that up-regulate formation and activation of osteoclasts, thus favoring bone frailty. On the other hand, body adiposity represents a mechanical load, which is beneficial for bone accrual. In this frame, bone quality, and structure result from the balance of inflammatory and mechanical stimuli. Diet, physical activity and the hormonal milieu at puberty play a pivotal role on this balance. In this review, we will address the question whether the bone of obese children and adolescents is unhealthy in comparison with normal-weight peers and discuss mechanisms underlying the differences in bone quality and structure. We anticipate that many biases and confounders affect the clinical studies conducted so far and preclude us from achieving robust conclusions. Sample-size, lack of adequate controls, heterogeneity of study designs are the major drawbacks of the existing reports. Due to the increased body size of children with obesity, dual energy absorptiometry might overestimate bone mineral density in these individuals. Magnetic resonance imaging, peripheral quantitative CT (pQCT) scanning and high-resolution pQCT are promising techniques for the accurate estimate of bone mineral content in obese children. Moreover, no longitudinal study on the risk of incident osteoporosis in early adulthood of children and adolescents with obesity is available. Finally, we will address emerging dietary issues (i.e., the likely benefits for the bone health of polyunsaturated fatty acids and polyphenols) since an healthy diet (i.e., the Mediterranean diet) with balanced intake of certain nutrients associated with physical activity remain the cornerstones for achieving an adequate bone accrual in young individuals regardless of their adiposity degree.
Collapse
Affiliation(s)
- Danilo Fintini
- Endocrinology Unit, Pediatric University Department, Bambino Gesù Children's Hospital, Rome, Italy
- *Correspondence: Danilo Fintini
| | - Stefano Cianfarani
- Diabetes and Growth Disorders Unit, Dipartimento Pediatrico Universitario Ospedaliero Bambino Gesù Children's Hospital, Tor Vergata University, Rome, Italy
- Department of Women's and Children's Health, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Marta Cofini
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Angela Andreoletti
- Pediatric Resident, Pediatric Clinic, University of Brescia, Brescia, Italy
| | - Grazia Maria Ubertini
- Endocrinology Unit, Pediatric University Department, Bambino Gesù Children's Hospital, Rome, Italy
| | - Marco Cappa
- Endocrinology Unit, Pediatric University Department, Bambino Gesù Children's Hospital, Rome, Italy
| | - Melania Manco
- Research Area for Multifactorial Diseases, Bambino Gesù Children's Hospital, Rome, Italy
- Melania Manco
| |
Collapse
|
9
|
Hervás G, Ruiz-Litago F, Irazusta J, Irazusta A, Sanz B, Gil-Goikouria J, Fraile-Bermudez AB, Pérez-Rodrigo C, Zarrazquin I. Bone Health and Its Relationship with Impact Loading and the Continuity of Physical Activity throughout School Periods. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E2834. [PMID: 31398885 PMCID: PMC6719051 DOI: 10.3390/ijerph16162834] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 11/16/2022]
Abstract
Bone is influenced by physical activity (PA) throughout life, but childhood and adolescence provide a key opportunity to maximize peak bone mass. Thus, it is important to identify the relationship between PA practiced in childhood and young adulthood to design a promotion plan for bone health. The purpose of this study was to analyze the relationship between different impact-loading PAs (and their continuity throughout school periods from childhood to young adulthood) and bone stiffness index (SI). In this cross-sectional study, which was conducted on 145 university students aged 18-21 years, bone measurements were measured by quantitative ultrasonometry (QUS), and PA information was recalled using a self-administered questionnaire. Associations between the SI and the impact of PA performed during secondary school (p = 0.027), high school (p = 0.002), and university (p = 0.016) periods were observed. The continuity of PA over a longer period of time was related to a higher SI (p = 0.007). Those who practiced PA throughout all school periods had a higher SI than those who practiced during primary school only (p = 0.038) or through primary and secondary schools (p = 0.009). These results suggest that impact-loading PA practiced during different school periods is related to higher values of the SI. Therefore, continuous PA from an early age may be an important contributing factor to achieving and maintaining adequate bone health.
Collapse
Affiliation(s)
- Gotzone Hervás
- Department of Physigology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.
| | - Fatima Ruiz-Litago
- Department of Physigology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Jon Irazusta
- Department of Physigology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Amaia Irazusta
- Department of Nursing I, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Begoña Sanz
- Department of Physigology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Javier Gil-Goikouria
- Department of Physigology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Ana Belen Fraile-Bermudez
- Department of Nursing I, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Carmen Pérez-Rodrigo
- Department of Physigology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Idoia Zarrazquin
- Department of Nursing I, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| |
Collapse
|
10
|
Szmodis M, Bosnyák E, Protzner A, Szőts G, Trájer E, Tóth M. Relationship between physical activity, dietary intake and bone parameters in 10-12 years old Hungarian boys and girls. Cent Eur J Public Health 2019; 27:10-16. [PMID: 30927391 DOI: 10.21101/cejph.a5140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Physical activity (PA) and adequate macro- and micronutrient intake have favourable influence on the bone status. The aim of this study was to analyse the relationships among PA, anthropometric data, dietary intake and ultrasound bone characteristics in children. METHODS 10-12 years old Hungarian children (N = 123, 59 girls, 64 boys) provided physical activity, diet, anthropometric and bone data. PA was measured with accelerometer (Actigraph GT3X+). Diet was evaluated with three-day, 24-hour food recall. Calcaneal quantitative ultrasound (QUS) bone parameters were registered with Sonost3000 bone densitometer. RESULTS Nutrition and anthropometry did not differ by gender. The values of broadband ultrasound attenuation (BUA) were significantly higher in boys. Girls spent significantly more time being sedentary, boys had greater light, moderate, vigorous, and moderate to vigorous physical activity (MVPA) levels. The children accumulated more than twice the suggested amount of public health guidelines for MVPA. QUS parameters correlated significantly with vigorous physical activity in boys, and with age, height, weight, fat percentage, and body mass index (BMI) for both genders. There was no significant relationship between nutrition and QUS; however, inadequate vitamin K intake correlated with less favourable bone parameters. Multiple linear regression analysis confirmed the importance of vigorous PA - speed of sound (SOS): β = 0.358, p = 0.006; BUA: β = 0.340, p = 0.007; bone quality index (BQI): β = 0.377, p = 0.002; vitamin K intake - SOS: β = 0.256, p = 0.025; BUA: β = 0.235, p = 0.033; BQI: β = 0.295, p = 0.007; BMI - SOS: β = 0.207, p = 0.064; BUA: β = 0.455, p < 0.001; BQI: β = 0.284, p = 0.008; and age - SOS: β = 0.450, p < 0.001; BUA: β = 0.318, p = 0.004; BQI: β = 0.444, p < 0.001). CONCLUSIONS Changes in the characteristics of ultrasound bone parameters among 10-12 years old children mainly depended on the amount of intense PA, adequate vitamin K intake and anthropometric variables related to age.
Collapse
Affiliation(s)
- Márta Szmodis
- University of Physical Education, Department of Health Sciences and Sports Medicine, Budapest, Hungary
| | - Edit Bosnyák
- University of Physical Education, Department of Health Sciences and Sports Medicine, Budapest, Hungary
| | - Anna Protzner
- University of Physical Education, Department of Health Sciences and Sports Medicine, Budapest, Hungary
| | - Gábor Szőts
- University of Physical Education, Department of Health Sciences and Sports Medicine, Budapest, Hungary
| | - Emese Trájer
- University of Physical Education, Department of Health Sciences and Sports Medicine, Budapest, Hungary
| | - Miklós Tóth
- University of Physical Education, Department of Health Sciences and Sports Medicine, Budapest, Hungary
| |
Collapse
|
11
|
Marin-Puyalto J, Mäestu J, Gómez-Cabello A, Lätt E, Remmel L, Purge P, Vicente-Rodríguez G, Jürimäe J. Frequency and duration of vigorous physical activity bouts are associated with adolescent boys' bone mineral status: A cross-sectional study. Bone 2019; 120:141-147. [PMID: 30355511 DOI: 10.1016/j.bone.2018.10.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 11/29/2022]
Abstract
PURPOSE Vigorous physical activity (VPA) has been proven to promote osteogenesis in adolescents; however the specifics of the optimal pattern of frequency and duration of VPA are unknown. The main goal of the present study was to analyze the associations of different length of VPA bouts with bone health. METHODS 180 healthy male adolescents (11-13 years) had their bone mineral content and density assessed by dual-energy X-ray absorptiometry scans at the whole body, femoral neck (FN) and lumbar spine and their physical activity measured by an accelerometer during one week. RESULTS VPA was the intensity with the strongest associations with bone mineral parameters especially at the FN. Subjects whose longest VPA bout was 5 min or above had higher FN bone mineral density (BMD) than those who did not complete any 5-min bout and these differences were greater with participants who reached 15 consecutive minutes of VPA (>15': 0.977 ± 0.020 g/cm2; 5'-15': 0.907 ± 0.009 g/cm2; <5': 0.876 ± 0.009 g/cm2; all p < 0.05). When comparing the relevance of VPA bouts and volume of physical activity, the group with low volume and having a VPA bout had better FN BMD compared to the group with high volume but no VPA bout. Additionally, the group with both high volume and VPA bout showed better FN BMD than the rest of the groups. CONCLUSIONS VPA may be the most effective activity intensity to improve bone mineral density and content of adolescent boys, with greater benefits if VPA periods either long or frequent.
Collapse
Affiliation(s)
- Jorge Marin-Puyalto
- Faculty of Health and Sport Science (FCSD), Department of Physiatry and Nursing, Universidad de Zaragoza, Ronda Misericordia 5, 22001 Huesca, Spain; GENUD (Growth, Exercise, Nutrition and Development) Research Group, Zaragoza, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Spain; Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain; EXERNET red de investigación en ejercicio físico y salud para poblaciones especiales, Spain.
| | - Jarek Mäestu
- Institute of Sport Pedagogy and Coaching Sciences, Centre of Behavioral, Social and Health Sciences, University of Tartu, Tartu, Estonia
| | - Alba Gómez-Cabello
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, Zaragoza, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Spain; Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain; EXERNET red de investigación en ejercicio físico y salud para poblaciones especiales, Spain; Centro Universitario de la Defensa, Zaragoza, Spain
| | - Evelin Lätt
- Institute of Sport Pedagogy and Coaching Sciences, Centre of Behavioral, Social and Health Sciences, University of Tartu, Tartu, Estonia
| | - Liina Remmel
- Institute of Sport Pedagogy and Coaching Sciences, Centre of Behavioral, Social and Health Sciences, University of Tartu, Tartu, Estonia
| | - Priit Purge
- Institute of Sport Pedagogy and Coaching Sciences, Centre of Behavioral, Social and Health Sciences, University of Tartu, Tartu, Estonia
| | - German Vicente-Rodríguez
- Faculty of Health and Sport Science (FCSD), Department of Physiatry and Nursing, Universidad de Zaragoza, Ronda Misericordia 5, 22001 Huesca, Spain; GENUD (Growth, Exercise, Nutrition and Development) Research Group, Zaragoza, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Spain; Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain; EXERNET red de investigación en ejercicio físico y salud para poblaciones especiales, Spain
| | - Jaak Jürimäe
- Institute of Sport Pedagogy and Coaching Sciences, Centre of Behavioral, Social and Health Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
12
|
Marin-Puyalto J, Mäestu J, Gomez-Cabello A, Lätt E, Remmel L, Purge P, Casajús JA, Vicente-Rodríguez G, Jürimäe J. Vigorous physical activity patterns affect bone growth during early puberty in boys. Osteoporos Int 2018; 29:2693-2701. [PMID: 30334092 DOI: 10.1007/s00198-018-4731-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/03/2018] [Indexed: 01/26/2023]
Abstract
UNLABELLED This study aims to analyze the impact of participation in vigorous physical activity as it can promote a healthy bone development. Adolescents who increased their participation in vigorous physical activity showed higher improvements in bone parameters compared to those who did not, which highlights the relevance of vigorous physical activity engagement. INTRODUCTION The main purpose of the study was to analyze the effects of different patterns of vigorous physical activity (VPA) on bone development. METHODS One-week accelerometry registers and dual-energy X-ray absorptiometry scans at the whole body, hip, and lumbar spine of 140 healthy male adolescents (11-13 years, at baseline) were performed twice with a 1-year interval between measurements. Four patterns of VPA evolution ("low-low," "low-high," "high-low," and "high-high") and three patterns of bone growth ("optimal," "mean," and "reduced") were defined according to the median participation in VPA and a cluster analysis of the longitudinal changes in BMC and BMD in all sites measured, respectively. Bone mineral parameters were adjusted for skeletal age and body weight prior to statistical comparison among groups. RESULTS Participants in the "low-high" group had greater adjusted BMD increases at both the femoral neck and lumbar spine when compared to the "low-low" group (estimated mean (95% CI) 0.066 (0.047-0.085) vs. 0.034 (0.021-0.047) g/cm2 and 0.074 (0.054-0.093) vs. 0.049 (0.035-0.062) g/cm2 respectively, both p < 0.05). Femoral neck BMD adjusted increase was also different between the "high-high" and the "high-low" groups (0.053 (0.041-0.066) vs. 0.030 (0.011-0.049) g/cm2, p < 0.05). Additionally, a higher percentage of "optimal" growth was found in the "low-high" group than in the "low-low" and "high-low" categories (36.3, 12.5 and 13.6% respectively, p < 0.05). CONCLUSIONS Engaging in VPA as well as maintaining high levels of VPA during puberty is associated with greater gains in bone mass, which can have an impact in future bone health.
Collapse
Affiliation(s)
- J Marin-Puyalto
- Faculty of Health and Sport Science (FCSD), Department of Physiatry and Nursing, Universidad de Zaragoza, Ronda Misericordia 5, 22001, Huesca, Spain
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain
- EXERNET red de investigación en ejercicio físico y salud para poblaciones especiales, Zaragoza, Spain
| | - J Mäestu
- Institute of Sport Pedagogy and Coaching Sciences, Centre of Behavioral, Social and Health Sciences, University of Tartu, Tartu, Estonia
| | - A Gomez-Cabello
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain
- EXERNET red de investigación en ejercicio físico y salud para poblaciones especiales, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
- Centro Universitario de la Defensa, Zaragoza, Spain
| | - E Lätt
- Institute of Sport Pedagogy and Coaching Sciences, Centre of Behavioral, Social and Health Sciences, University of Tartu, Tartu, Estonia
| | - L Remmel
- Institute of Sport Pedagogy and Coaching Sciences, Centre of Behavioral, Social and Health Sciences, University of Tartu, Tartu, Estonia
| | - P Purge
- Institute of Sport Pedagogy and Coaching Sciences, Centre of Behavioral, Social and Health Sciences, University of Tartu, Tartu, Estonia
| | - J A Casajús
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain
- EXERNET red de investigación en ejercicio físico y salud para poblaciones especiales, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
- Faculty of Health Sciences (FCS), Department of Physiatry and Nursing, Universidad de Zaragoza, C/Domingo Miral s/n, 50009, Zaragoza, Spain
| | - G Vicente-Rodríguez
- Faculty of Health and Sport Science (FCSD), Department of Physiatry and Nursing, Universidad de Zaragoza, Ronda Misericordia 5, 22001, Huesca, Spain.
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, Zaragoza, Spain.
- Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain.
- EXERNET red de investigación en ejercicio físico y salud para poblaciones especiales, Zaragoza, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain.
- Faculty of Health Sciences (FCS), Department of Physiatry and Nursing, Universidad de Zaragoza, C/Domingo Miral s/n, 50009, Zaragoza, Spain.
| | - J Jürimäe
- Institute of Sport Pedagogy and Coaching Sciences, Centre of Behavioral, Social and Health Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
13
|
Araújo FA, Martins A, Alegrete N, Howe LD, Lucas R. A shared biomechanical environment for bone and posture development in children. Spine J 2017; 17:1426-1434. [PMID: 28479481 DOI: 10.1016/j.spinee.2017.04.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 03/13/2017] [Accepted: 04/24/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT In each specific habitual standing posture, gravitational forces determine the mechanical setting provided to skeletal structures. Bone quality and resistance to physical stress is highly determined by habitual mechanical stimulation. However, the relationship between bone properties and sagittal posture has never been studied in children. PURPOSE This study aimed to investigate the association between bone physical properties and sagittal standing postural patterns in 7-year-old children. We also analyzed the relationship between fat or fat-free mass and postural patterns. STUDY DESIGN Cross-sectional evaluation. PATIENT SAMPLE This study was performed in a sample of 1,138 girls and 1,260 boys at 7 years of age participating in the Generation XXI study, a population-based cohort of children followed since birth (2005-2006) and recruited in Porto, Portugal. OUTCOME MEASURES Sagittal standing posture was measured through photographs of the sagittal right view of children in the standing position. Three angles were considered to quantify the magnitude of major curves of the spine and an overall balance measure (trunk, lumbar, and sway angles). Postural patterns were identified using latent profile analysis in Mplus. METHODS Weight and height were measured. Total body less head fat or fat-free mass and bone properties were estimated from whole-body dual-energy X-ray absorptiometry scans. The associations of fat or fat-free mass and bone physical properties with postural patterns were jointly estimated in latent profile analysis using multinomial logistic regressions. RESULTS The identified patterns were labeled as Sway, Flat, and "Neutral to Hyperlordotic" (in girls), and "Sway to Neutral," Flat, and Hyperlordotic (in boys). In both genders, children in the Flat pattern showed the lowest body mass index, and children with a rounded posture presented the highest: mean differences varying from -0.86 kg/m2 to 0.60 kg/m2 in girls and from -0.70 kg/m2 to 0.62 kg/m2 in boys (vs. Sway or "Sway to Neutral"). Fat and fat-free mass were inversely associated with a Flat pattern and positively associated with a rounded posture: odds ratio (OR) of 0.23 per standard deviation (SD) fat and 0.70 per SD fat-free mass for the Flat pattern, and 1.85 (fat) and 1.43 (fat-free) for the Hyperlordotic pattern in boys, with similar findings in girls. The same direction of relationships was observed between bone physical properties and postural patterns. A positive association between bone (especially bone mineral density) and a rounded posture was robust to adjustment for age, height, and body composition (girls: OR=1.79, p=.006 fat-adjusted, OR=2.00, p=.014 fat-free mass adjusted; boys: OR=2.02, p=.002 fat-adjusted, OR=2.42, p<.001 fat-free mass adjusted). CONCLUSIONS In this population-based pediatric setting, there was an inverse association between bone physical properties and a Flat posture. Bone and posture were more strongly positively linked in a rounded posture. Our results support that both bone properties and posture mature in a shared and interrelated mechanical environment, probably modulated by pattern-specific anthropometrics and body composition.
Collapse
Affiliation(s)
- Fábio A Araújo
- ISPUP-EPIUnit, Universidade do Porto, Rua das Taipas 135, Porto 4050-600, Portugal; Departamento de Ciências da Saúde Pública e Forenses e Educação Médica, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, Porto 4200-319, Portugal.
| | - Ana Martins
- ISPUP-EPIUnit, Universidade do Porto, Rua das Taipas 135, Porto 4050-600, Portugal; Departamento de Ciências da Saúde Pública e Forenses e Educação Médica, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, Porto 4200-319, Portugal
| | - Nuno Alegrete
- Centro Hospitalar São João, Alameda Prof. Hernâni Monteiro, Porto 4200-319, Portugal; Departamento de Cirurgia, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, Porto 4200-319, Portugal
| | - Laura D Howe
- MRC Integrative Epidemiology Unit, Oakfield House, Oakfield Grove, Bristol BS8 2BN, United Kingdom; School of Social and Community Medicine, University of Bristol, Senate House, Tyndall Avenue, Bristol BS8 1TH, United Kingdom
| | - Raquel Lucas
- ISPUP-EPIUnit, Universidade do Porto, Rua das Taipas 135, Porto 4050-600, Portugal; Departamento de Ciências da Saúde Pública e Forenses e Educação Médica, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, Porto 4200-319, Portugal
| |
Collapse
|
14
|
Martins A, Monjardino T, Nogueira L, Canhão H, Lucas R. Do bone mineral content and density determine fracture in children? A possible threshold for physical activity. Pediatr Res 2017; 82:396-404. [PMID: 28467405 DOI: 10.1038/pr.2017.113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/15/2017] [Indexed: 11/09/2022]
Abstract
BackgroundRelations between bone parameters, physical exertion, and childhood fractures are complex. We aimed to estimate the associations between fracture history and bone mineral content (BMC) and areal bone mineral density (aBMD) at 7 years of age, by levels of physical activity, as a proxy for trauma frequency.MethodsWe used data collected from 2,261 children of the Generation XXI birth cohort, assembled in 2005/6 in Porto, Portugal. At the age of 7 years (2012/4), fracture history, time spent per week in active play, and sports practice were reported by parents. Subtotal and lumbar spine (LS) BMC and aBMD were measured using whole-body dual-energy X-ray absorptiometry.ResultsBoys and girls in the highest categories of time spent in sports practice or active play generally had higher BMC and aBMD. Among girls, BMC and aBMD were protective of fracture only in the highest quarter of active play (>660 min/week)-odds ratios (OR; 95% confidence interval (95% CI)) for subtotal BMC=0.27 (0.11-0.67), subtotal aBMD=0.18 (0.06-0.49), and LS aBMD=0.41 (0.22-0.75). For boys in the highest quarter of sports practice (>240 min/week), subtotal and LS BMC were protective of fracture-OR=0.39 (0.16-0.98) and 0.51 (0.27-0.96), respectively.ConclusionIn prepubertal children, BMC and aBMD predicted fracture history only in the highest levels of physical activity.
Collapse
Affiliation(s)
- Ana Martins
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | - Teresa Monjardino
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | - Luísa Nogueira
- Department of Radiology, School of Health Technology of Porto/Polytechnic Institute of Porto (ESTSP/IPP), Porto, Portugal
| | - Helena Canhão
- EpiDoC, CEDOC, Nova Medical School, NOVA University, Lisbon, Portugal
| | - Raquel Lucas
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| |
Collapse
|
15
|
Diniz TA, Agostinete RR, Costa P, Saraiva BTC, Sonvenso DK, Freitas IF, Fernandes RA, Christofaro DGD. Relationship between total and segmental bone mineral density and different domains of physical activity among children and adolescents: cross-sectional study. SAO PAULO MED J 2017; 135:444-449. [PMID: 28832809 PMCID: PMC10027243 DOI: 10.1590/1516-3180.2017.0042070417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 04/07/2017] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND This study aimed to investigate the relationship between total and segmental bone mineral density (BDM) and physical activity (PA) in different domains (school, leisure and sports) among adolescents and children. DESIGN AND SETTING Cross-sectional study in the Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP). METHODS The study sample consisted of 173 children and adolescents (10.31 ± 1.87 years). The BMDs for the whole body (WB) and the regions of the trunk and legs were measured using dual energy X-ray absorptiometry (DXA). PA was measured using the Baecke questionnaire. A regression model was used to analyze the relationship between all the BMDs and the different domains of PA. RESULTS 41.5% of the adolescents had high percentages of body fat. Regarding the comparison between physically active and insufficiently active adolescents, there were no statistically significant differences in any BMD variables (P > 0.05). The BMD of the legs showed positive relationships with the total PA (β = 0.009; P = 0.013) and sports PA (β = 0.010; P = 0.049) after insertion of the confounders. Similarly, the WB BMD showed the same relationships (total PA: β = 0.005; P = 0.045; and sports PA: β = 0.008; P = 0.049). No relationship was found between leisure and school PA and any of the BMDs (P > 0.05). CONCLUSION The results indicated that practice of sport was related to higher BMD values, independent of sex, age and body fatness.
Collapse
Affiliation(s)
- Tiego Aparecido Diniz
- Doctoral Student, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo (SP), Brazil
| | - Ricardo Ribeiro Agostinete
- Master's Student, Department of Physiotherapy, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Presidente Prudente (SP), Brazil
| | - Paulo Costa
- Master's Student, Department of Physiotherapy, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Presidente Prudente (SP), Brazil
| | - Bruna Thamyres Ciccotti Saraiva
- Master's Student, Department of Physical Exercise, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), São Paulo (SP), Brazil
| | - Diego Kanashiro Sonvenso
- Undergraduate Student, Department of Physical Exercise, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), São Paulo (SP), Brazil
| | - Ismael Forte Freitas
- Associate Professor, Department of Physical Exercise, Department of Physical Education, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Presidente Prudente (SP), Brazil
| | - Rômulo Araujo Fernandes
- Associate Professor, Department of Physical Exercise, Department of Physical Education, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Presidente Prudente (SP), Brazil
| | - Diego Giulliano Destro Christofaro
- Associate Professor, Department of Physical Exercise, Department of Physical Education, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Presidente Prudente (SP), Brazil
| |
Collapse
|
16
|
Poitras VJ, Gray CE, Borghese MM, Carson V, Chaput JP, Janssen I, Katzmarzyk PT, Pate RR, Connor Gorber S, Kho ME, Sampson M, Tremblay MS. Systematic review of the relationships between objectively measured physical activity and health indicators in school-aged children and youth. Appl Physiol Nutr Metab 2017; 41:S197-239. [PMID: 27306431 DOI: 10.1139/apnm-2015-0663] [Citation(s) in RCA: 1106] [Impact Index Per Article: 158.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Moderate-to-vigorous physical activity (MVPA) is essential for disease prevention and health promotion. Emerging evidence suggests other intensities of physical activity (PA), including light-intensity activity (LPA), may also be important, but there has been no rigorous evaluation of the evidence. The purpose of this systematic review was to examine the relationships between objectively measured PA (total and all intensities) and health indicators in school-aged children and youth. Online databases were searched for peer-reviewed studies that met the a priori inclusion criteria: population (apparently healthy, aged 5-17 years), intervention/exposure/comparator (volumes, durations, frequencies, intensities, and patterns of objectively measured PA), and outcome (body composition, cardiometabolic biomarkers, physical fitness, behavioural conduct/pro-social behaviour, cognition/academic achievement, quality of life/well-being, harms, bone health, motor skill development, psychological distress, self-esteem). Heterogeneity among studies precluded meta-analyses; narrative synthesis was conducted. A total of 162 studies were included (204 171 participants from 31 countries). Overall, total PA was favourably associated with physical, psychological/social, and cognitive health indicators. Relationships were more consistent and robust for higher (e.g., MVPA) versus lower (e.g., LPA) intensity PA. All patterns of activity (sporadic, bouts, continuous) provided benefit. LPA was favourably associated with cardiometabolic biomarkers; data were scarce for other outcomes. These findings continue to support the importance of at least 60 min/day of MVPA for disease prevention and health promotion in children and youth, but also highlight the potential benefits of LPA and total PA. All intensities of PA should be considered in future work aimed at better elucidating the health benefits of PA in children and youth.
Collapse
Affiliation(s)
- Veronica Joan Poitras
- a Healthy Active Living and Obesity Research Group, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - Casey Ellen Gray
- a Healthy Active Living and Obesity Research Group, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - Michael M Borghese
- b School of Kinesiology and Health Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Valerie Carson
- c Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB T6G 2H9, Canada
| | - Jean-Philippe Chaput
- a Healthy Active Living and Obesity Research Group, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - Ian Janssen
- b School of Kinesiology and Health Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| | | | - Russell R Pate
- e Department of Exercise Science, University of South Carolina, Columbia, SC 29208, USA
| | - Sarah Connor Gorber
- f Office of the Task Force on Preventive Health Care, Public Health Agency of Canada, Ottawa, ON K1A 0K9, Canada
| | - Michelle E Kho
- g School of Rehabilitation Science, McMaster University, Hamilton, ON L8S 1C7, Canada
| | - Margaret Sampson
- h Library and Media Services, Children's Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada
| | - Mark S Tremblay
- a Healthy Active Living and Obesity Research Group, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| |
Collapse
|
17
|
Tønnesen R, Schwarz P, Hovind PH, Jensen LT. Physical exercise associated with improved BMD independently of sex and vitamin D levels in young adults. Eur J Appl Physiol 2016; 116:1297-304. [PMID: 27146169 PMCID: PMC4911375 DOI: 10.1007/s00421-016-3383-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/28/2016] [Indexed: 02/02/2023]
Abstract
Purpose Young men and women accrue the majority of their bone mass in their teens and twenties, where their bone mass peaks (PBM), yet little is known about the roles of physical exercise, vitamin D levels and bone mineral density (BMD) near PBM. Methods To comparatively examine the effect of physical exercise and two vitamin D levels (insufficient s-25[OH]D <50 nmol/L and sufficient s-25[OH]D >80 nmol/L) on the BMD measured at the femoral neck, total hip (bilaterally) and the lumbar spine (L2–L4) in male and female participants approaching PBM. Results The insufficient s-25[OH]D group, median age 21.6 (19.8–22.8) years, and BMI 24.2 ± 5.0 kg/m2 had BMD 0.10 (0.03, 0.17) g/cm2 (p = 0.008) lower at all DXA-scan sites compared to the sufficient s-25[OH]D group, median age 19.5 (19.0–22.3) years, and BMI of 22.6 ± 1.8 kg/m2. Exercise was positively associated with the BMD at all DXA-scan sites (ptrend = 0.0001) and with equal benefit; there was no interaction between exercise and the DXA-scan site (p = 0.09). The male participants did not have a systematically higher BMD than the female participants for all scan sites; only for hips total and femoral neck bilaterally, while it was equal at the lumbar spine. Conclusion The BMD in young healthy adults is associated with physical exercise, independent of sex and s-25[OH]D status. A sufficient s-25[OH]D status was systematically associated with a higher BMD for all levels of exercise. For both sexes and vitamin D levels exercise was equally positively associated with BMD.
Collapse
Affiliation(s)
- Rune Tønnesen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Nordre Ringvej 57, Glostrup, 2600, Copenhagen, Denmark.
| | - Peter Schwarz
- Department of Endocrinology PE and Research Centre of Ageing and Osteoporosis, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Hambak Hovind
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Nordre Ringvej 57, Glostrup, 2600, Copenhagen, Denmark
| | - Lars Thorbjørn Jensen
- Department of Clinical Physiology and Nuclear Medicine, University Hospital of Herlev, Copenhagen, Denmark
- Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Abstract
BACKGROUND Periods of growth are thought to be the best time to increase bone mineral content, bone area, and areal bone mineral density (aBMD) through increased loading owing to high rates of bone modeling and remodeling. However, questions remain regarding whether a benefit of exercise is seen at all bone sites, is dependent on pubertal status or sex of the child, or whether other factors such as diet modify the response to exercise. QUESTIONS/PURPOSES We asked: (1) Does bone-loading exercise in childhood consistently increase bone mineral content, bone area, or aBMD? (2) Do effects of exercise differ depending on pubertal status or sex? (3) Does calcium intake modify the bone response to exercise? METHODS A literature search identified 22 unique trials for inclusion in this meta-analysis of the effect of exercise on bone changes by bone site, pubertal status, and sex. Sample sizes ranged from 16 to 410 subjects 3 to 18 years old with length of intervention ranging from 3 to 36 months. Fifteen of 22 trials were randomized (child randomized in nine, classroom/school randomized in six) and seven were observational trials. Ten trials were Level 2 and 11 were Level 3 based on the Oxford Centre for Evidence-Based Medicine criteria. Random effects models tested the difference (intervention mean effect-control mean effect) in percent change in bone mineral content, bone area, and aBMD. Meta-regression was used to identify sources of heterogeneity and funnel plots were used to assess publication bias. RESULTS Children assigned to exercise had greater mean percent changes in bone mineral content and aBMD than children assigned to the control groups. Mean differences (95% CI) in bone mineral content percent change between intervention and control groups at total body (0.8; 95% CI, 0.3-1.3; p = 0.003), femoral neck (1.5; 95% CI, 0.5-2.5; p = 0.003), and spine (1.7; 95% CI, 0.4-3.1; p = 0.01) were significant with no differences in bone area (all p > 0.05). There were greater percent changes in aBMD in intervention than control groups at the femoral neck (0.6; 95% CI, 0.2-1.1; p = 0.006) and spine (1.2; 95% CI, 0.6-1.8; p < 0.001). Benefit of exercise was limited to children who were prepubertal (bone mineral content: total body [0.9; 95% CI, 0.2-1.7; p = 0.01], femoral neck [1.8; 95% CI, 0.0-3.5; p = 0.047], spine [3.7; 95% CI, 0.8-6.6; p = 0.01], and aBMD: femoral neck [0.6; 95% CI, -0.1-1.2; p = 0.07], spine [1.5; 95% CI, 0.7-2.3; p < 0.001]), with no differences among children who were pubertal (all p > 0.05). Changes in aBMD did not differ by sex (all p > 0.05), although the number of studies providing male-specific results was small (six of 22 eligible studies included boys). There was significant heterogeneity in bone mineral content and bone area for which a source could not be identified. Heterogeneity in spine aBMD was reduced by including calcium intake and intervention length as covariates. Three trials designed to determine whether calcium intake modified the bone response to exercise all reported a greater effect of exercise on leg bone mineral content in children randomized to receive supplemental calcium than those receiving placebo. CONCLUSIONS Exercise interventions during childhood led to 0.6% to 1.7% greater annual increase in bone accrual, with effects predominantly among children who were prepubertal. If this effect were to persist into adulthood, it would have substantial implications for osteoporosis prevention. It is important to identify sources of heterogeneity among studies to determine factors that might influence the bone response to increased exercise during growth. LEVEL OF EVIDENCE Level II, therapeutic study.
Collapse
Affiliation(s)
- Bonny Specker
- />EA Martin Program, South Dakota State University, SWC Box 506, Brookings, SD 57007 USA
| | - Natalie W. Thiex
- />Biology and Microbiology Department, South Dakota State University, Brookings, SD USA
| | - Ramu G. Sudhagoni
- />Master of Public Health Program, School of Health Sciences, University of South Dakota, Vermillion, SD USA
| |
Collapse
|
19
|
Herrmann D, Buck C, Sioen I, Kouride Y, Marild S, Molnár D, Mouratidou T, Pitsiladis Y, Russo P, Veidebaum T, Ahrens W. Impact of physical activity, sedentary behaviour and muscle strength on bone stiffness in 2-10-year-old children-cross-sectional results from the IDEFICS study. Int J Behav Nutr Phys Act 2015; 12:112. [PMID: 26377674 PMCID: PMC4574210 DOI: 10.1186/s12966-015-0273-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 08/29/2015] [Indexed: 11/17/2022] Open
Abstract
Background Physical activity (PA), weight-bearing exercises (WBE) and muscle strength contribute to skeletal development, while sedentary behaviour (SB) adversely affects bone health. Previous studies examined the isolated effect of PA, SB or muscle strength on bone health, which was usually assessed by x-ray methods, in children. Little is known about the combined effects of these factors on bone stiffness (SI) assessed by quantitative ultrasound. We investigated the joint association of PA, SB and muscle strength on SI in children. Methods In 1512 preschool (2- < 6 years) and 2953 school children (6–10 years), data on calcaneal SI as well as on accelerometer-based sedentary time (SED), light (LPA), moderate (MPA) and vigorous PA (VPA) were available. Parents reported sports (WBE versus no WBE), leisure time PA and screen time of their children. Jumping distance and handgrip strength served as indicators for muscle strength. The association of PA, SB and muscle strength with SI was estimated by multivariate linear regression, stratified by age group. Models were adjusted for age, sex, country, fat-free mass, daylight duration, consumption of dairy products and PA, or respectively SB. Results Mean SI was similar in preschool (79.5 ± 15.0) and school children (81.3 ± 12.1). In both age groups, an additional 10 min/day in MPA or VPA increased the SI on average by 1 or 2 %, respectively (p ≤ .05). The negative association of SED with SI decreased after controlling for MVPA. LPA was not associated with SI. Furthermore, participation in WBE led to a 3 and 2 % higher SI in preschool (p = 0.003) and school children (p < .001), respectively. Although muscle strength significantly contributed to SI, it did not affect the associations of PA with SI. In contrast to objectively assessed PA, reported leisure time PA and screen time showed no remarkable association with SI. Conclusion This study suggests that already an additional 10 min/day of MPA or VPA or the participation in WBE may result in a relevant increase in SI in children, taking muscle strength and SB into account. Our results support the importance of assessing accelerometer-based PA in large-scale studies. This may be important when deriving dose–response relationships between PA and bone health in children.
Collapse
Affiliation(s)
- Diana Herrmann
- Department of Epidemiological Methods and Etiological Research, Leibniz Institute for Prevention Research and Epidemiology - BIPS, Achterstr. 30, 28359, Bremen, Germany.
| | - Christoph Buck
- Department of Biometry and Data Management, Leibniz Institute for Prevention Research and Epidemiology - BIPS, Achterstr. 30, 28359, Bremen, Germany.
| | - Isabelle Sioen
- Department of Public Health, Ghent University, 4K3, De Pintelaan 185, 9000, Ghent, Belgium.
| | - Yiannis Kouride
- Research and Education Institute of Child Health, 138 Limassol Ave, #205, 2015, Strovolos, Cyprus.
| | - Staffan Marild
- Department of Paediatrics, Queen Silvia Children's Hospital, University of Gothenburg, Rondvägen 15, 41685, Gothenburg, Sweden.
| | - Dénes Molnár
- Department of Pediatrics, Medical Faculty, University of Pecs, Jozsef A. u. 7, 7623, Pecs, Hungary.
| | - Theodora Mouratidou
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, University of Zaragoza, C/Domingo Miral s/n, 50009, Zaragoza, Spain.
| | - Yannis Pitsiladis
- Centre for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Welkin House, 30 Carlisle Road, Eastbourne, BN20 7SN, UK.
| | - Paola Russo
- Institute of Food Sciences, National Research Council, Via Roma 64, 83100, Avellino, Italy.
| | - Toomas Veidebaum
- Department of Chronic Diseases, Centre of Behavioural and Health Sciences, National Institute for Health Development, Hiiu 42, 11619, Tallinn, Estonia.
| | - Wolfgang Ahrens
- Department of Epidemiological Methods and Etiological Research, Leibniz Institute for Prevention Research and Epidemiology - BIPS, Achterstr. 30, 28359, Bremen, Germany. .,Faculty of Mathematics and Computer Science, Bremen University, Bibliothekstraße 1, 28359, Bremen, Germany.
| | | |
Collapse
|
20
|
Li X, Viceconti M, Cohen MC, Reilly GC, Carré MJ, Offiah AC. Developing CT based computational models of pediatric femurs. J Biomech 2015; 48:2034-40. [PMID: 25895643 DOI: 10.1016/j.jbiomech.2015.03.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 03/20/2015] [Accepted: 03/24/2015] [Indexed: 11/16/2022]
Abstract
The mechanisms of fracture in infants and toddlers are not well understood. There have been very few studies on the mechanical properties of pediatric bones and their responses under fracture loading. A better understanding of fracture mechanisms in children will help elucidate both accidental and non-accidental injuries, as well as bone fragility diseases. The aim of this study is to develop in silico femoral models from CT scans to provide detailed quantitative information regarding the geometry and mechanical response of the femur, with the long term potential of investigating injury mechanisms. Fifteen anonymized QCT scans (aged 0-3 years) were collected and used to create personalized computational models of femurs. The elastic modulus of femur was illustrated at various ages. The models were also subjected to a series of four point bending simulations taking into account a range of loads perpendicular to the femoral shaft. The results showed that mid-shaft cross-section at birth appeared circular, but the diameter in the anteroposterior axis gradually increased with age. The density, and by implication modulus of elasticity at the mid-shaft became more differentiated with growth. Pediatric cortical bone with density close to the peak values found in adults was attained a few weeks after birth. The method is able to capture quantitative variations in geometries, material properties and mechanical responses, and has confirmed the rapid development of bone during the first few years of life using in silico models.
Collapse
Affiliation(s)
- Xinshan Li
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK; Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield, UK.
| | - Marco Viceconti
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK; Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield, UK.
| | - Marta C Cohen
- Department of Histopathology, Sheffield Children׳s Hospital, Western Bank, Sheffield, UK; Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield, UK.
| | - Gwendolen C Reilly
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK; Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield, UK.
| | - Matt J Carré
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK; Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield, UK.
| | - Amaka C Offiah
- Academic Unit of Child Health, University of Sheffield, Sheffield, UK; Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield, UK.
| |
Collapse
|
21
|
Wallace IJ, Judex S, Demes B. Effects of load-bearing exercise on skeletal structure and mechanics differ between outbred populations of mice. Bone 2015; 72:1-8. [PMID: 25460574 DOI: 10.1016/j.bone.2014.11.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 11/15/2014] [Accepted: 11/17/2014] [Indexed: 11/18/2022]
Abstract
Effects of load-bearing exercise on skeletal structure and mechanical properties can vary between inbred strains of mice. Here, we examine whether such variation also exists at the population level. An experiment was performed with two outbred mouse stocks that have been reproductively isolated for >120 generations (Hsd:ICR, Crl:CD1). Growing females from each stock were either treated with a treadmill-running regimen for 1 month or served as controls. Limb forces were recorded with a force plate and cage activity monitored to verify that they were similar between stocks. After the experiment, femoral cortical and trabecular bone structure were quantified with micro-CT in the mid-diaphysis and distal metaphysis, respectively, and diaphyseal structural strength was determined with mechanical testing. Among Hsd:ICR mice, running led to significant improvements in diaphyseal bone quantity, structural geometry, and mechanical properties, as well as enhanced trabecular morphology. In contrast, among Crl:CD1 mice, the same running regimen had little effect on cortical and trabecular structure and significantly reduced diaphyseal resistance to fracture. In neither stock was body mass, muscle mass, or cage activity level different between runners and controls. Given that most environmental variables were controlled in this study, the differential effects of exercise on Hsd:ICR and Crl:CD1 bones were likely due to genetic differences between stocks. These results suggest that the benefits of loading for bone may vary between human populations (e.g., ethnic groups), in which case exercise programs and technologies designed to promote bone health with mechanical signals may be more advantageous to certain populations than others.
Collapse
Affiliation(s)
- Ian J Wallace
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Stefan Judex
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Brigitte Demes
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
22
|
Vaitkeviciute D, Lätt E, Mäestu J, Jürimäe T, Saar M, Purge P, Maasalu K, Jürimäe J. Physical activity and bone mineral accrual in boys with different body mass parameters during puberty: a longitudinal study. PLoS One 2014; 9:e107759. [PMID: 25279833 PMCID: PMC4184811 DOI: 10.1371/journal.pone.0107759] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 08/14/2014] [Indexed: 11/27/2022] Open
Abstract
The aim of our longitudinal study was to investigate the relationships between physical activity and bone mass in boys with different body mass status during the years surrounding pubertal growth spurt. Two hundred and six boys entering puberty took part in this study. The subjects were divided into underweight (BMI < 15.35), normal weight (BMI ≥ 15.35-21.22), overweight (BMI ≥ 21.22-26.02) and obese (BMI > 26.02) groups at baseline according to age related categories. Whole-body DXA scans were performed at baseline, after 12 and 24 months to assess body composition (lean body mass, fat mass), and total body (TB), lumbar spine (LS) and femoral neck (FN) bone mineral density (BMD) parameters. Physical activity was measured by 7-day accelerometry. For longitudinal analysis, multilevel fixed effects regression models were constructed. Biological age, height and lean body mass had an effect for explanation of TB BMD, FN BMD and LS BMD. Moderate to vigorous physical activity (MVPA), vigorous physical activity (VPA) and sedentary time (SED) had the significant effect only on FN BMD. Being an underweight boy at the baseline indicated greater chance (p<0.01) to have lower TB BMD in the future (2 years at follow up) development, compared to normal weight (estimates = -0.038), overweight (estimates = -0.061) and obese boys (estimates = -0.106).
Collapse
Affiliation(s)
- Donvina Vaitkeviciute
- Institute of Sport Pedagogy and Coaching Sciences, Faculty of Exercise and Sport Sciences, Centre of Behavioral, Social and Health Sciences, University of Tartu, Tartu, Estonia
| | - Evelin Lätt
- Institute of Sport Pedagogy and Coaching Sciences, Faculty of Exercise and Sport Sciences, Centre of Behavioral, Social and Health Sciences, University of Tartu, Tartu, Estonia
| | - Jarek Mäestu
- Institute of Sport Pedagogy and Coaching Sciences, Faculty of Exercise and Sport Sciences, Centre of Behavioral, Social and Health Sciences, University of Tartu, Tartu, Estonia
| | - Toivo Jürimäe
- Institute of Sport Pedagogy and Coaching Sciences, Faculty of Exercise and Sport Sciences, Centre of Behavioral, Social and Health Sciences, University of Tartu, Tartu, Estonia
| | - Meeli Saar
- Institute of Sport Pedagogy and Coaching Sciences, Faculty of Exercise and Sport Sciences, Centre of Behavioral, Social and Health Sciences, University of Tartu, Tartu, Estonia
| | - Priit Purge
- Institute of Sport Pedagogy and Coaching Sciences, Faculty of Exercise and Sport Sciences, Centre of Behavioral, Social and Health Sciences, University of Tartu, Tartu, Estonia
| | - Katre Maasalu
- Department of Traumatology and Orthopedics, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Jaak Jürimäe
- Institute of Sport Pedagogy and Coaching Sciences, Faculty of Exercise and Sport Sciences, Centre of Behavioral, Social and Health Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
23
|
Cardadeiro G, Baptista F, Rosati N, Zymbal V, Janz KF, Sardinha LB. Influence of physical activity and skeleton geometry on bone mass at the proximal femur in 10- to 12-year-old children--a longitudinal study. Osteoporos Int 2014; 25:2035-45. [PMID: 24809809 DOI: 10.1007/s00198-014-2729-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 04/17/2014] [Indexed: 10/25/2022]
Abstract
UNLABELLED Physical activity (PA) have long been identified as a determining factor of the mineralization of the skeleton, particularly in children. Our research supports the hypothesis that the geometry of the pelvis and proximal femur (PF) might moderate the effect of PA in the relative mineralization of the PF subregions. INTRODUCTION Using a longitudinal observational study with two evaluations and a 1-year follow-up interval, we investigated the influence of PA and skeletal geometry in bone mineral density (BMD) and bone mass distribution at the PF in 96 girls and 81 boys (10-12 years). It is plausible that the geometry of the pelvis-PF structure moderates mechanical forces exerted at the hip and therefore creates different degrees of mineralization among PF subregions. METHODS Whole body and left hip dual X-ray absorptiometry scans were used to derive geometric measures of the pelvis-inter-acetabular distance (IAD) and PF abductor lever arm (ALA). BMD was measured at the integral, superolateral (SL), and inferomedial (IM) femoral neck (FN), and at the trochanter (TR). These subregions were used to represent bone mass distribution via three BMD ratios: FN/PF, IM/SL, and TR/PF. PA was measured using accelerometry and a bone-specific PA questionnaire (BPAQ). RESULTS A longitudinal data approach revealed BPAQ as a positive predictor for all BMD variables (p < 0.05) except TR BMD in girls and FN BMD in boys. Comparing the most active with the less-active participants, the greatest benefits of PA were observed at the FN of the girls with the lowest IAD (p < 0.001), at the FN of the boys with the highest IAD (p < 0.001) and at the TR of the boys with the lowest ALA (p < 0.01). CONCLUSIONS Geometric measures of IAD and ALA seem to moderate the effect of PA role in the relative mineralization of the PF regions. On the other hand, absolute BMD levels appear to be determined by mechanical loading.
Collapse
Affiliation(s)
- G Cardadeiro
- Exercise and Health Laboratory, Interdisciplinary Centre for the Study of Human Performance, Faculty of Human Kinetics, University of Lisbon, Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
24
|
Cardadeiro G, Baptista F, Janz KF, Rodrigues LA, Sardinha LB. Pelvis width associated with bone mass distribution at the proximal femur in children 10-11 years old. J Bone Miner Metab 2014; 32:174-83. [PMID: 23744478 PMCID: PMC4538927 DOI: 10.1007/s00774-013-0478-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 04/22/2013] [Indexed: 11/26/2022]
Abstract
Differences in skeletal geometry may generate different patterns of mechanical loading to bone. Impact and muscle loading during physical activity have been shown to influence skeletal geometry. The purpose of this study was to compare geometric measures of the pelvis and proximal femur (PF) of young children and to analyze the contribution and potential interaction of these geometric measures with physical activity on PF bone mass distribution. Participants were 149 girls and 145 boys, aged 10-11 years. Total body and left hip DXA scans were used to derive pelvic and PF geometric measures and PF bone mineral density (BMD) at the femoral neck (FN), trochanter (TR), and intertrochanter (IT). These subregions were used to represent bone mass distribution via three BMD ratios: FN:PF, TR:PF, and IT:PF. Physical activity was objectively measured using accelerometry, and maturity was estimated as the years of distance from peak height velocity. When compared to boys, girls had a wider pelvic diameter and greater interacetabular distances (p < 0.001), lower BMD at FN, TR, and IT (p < 0.05), and higher TR:PF (p < 0.001). After controlling for maturity, body height, and lean body mass, the interacetabular distance in girls explained 21.1 % (β = 0.713, p < 0.001) in TR:PF and 2.9 % (β = -0.179, p = 0.031) in the IT:PF. Neck-shaft angle explained 5.6 % (β = -0.265, p = 0.001) of the IT:PF and 3.1 % (β = 0.194, p = 0.018) of the FN:PF. In boys, FN axis length explained 2.9 % (β = 0.195, p = 0.040) of TR:PF. There was no main effect of physical activity or interaction effect with pelvic geometry in explaining BMD differences among the subregions of the PF. Even before sexual dimorphism, girls have a wider pelvis than boys, which accounted for proportionally greater BMD of the TR than other subregions of the PF.
Collapse
Affiliation(s)
- Graça Cardadeiro
- Exercise and Health Laboratory, Faculty of Human Movement, Interdisciplinary Centre for the Study of Human Performance, Technical University of Lisbon, Estrada da Costa, 1495-688, Cruz Quebrada, Portugal
| | | | | | | | | |
Collapse
|
25
|
Abstract
The pediatric origin of osteoporosis has led many investigators to focus on determining factors that influence bone gain during growth and methods for optimizing this gain. Bone responds to bone loading activities by increasing mass or size. Overall, pediatric studies have found a positive effect of bone loading on bone size and accrual, but the types of loads necessary for a bone response have only recently been investigated in human studies. Findings indicate that responses vary by sex, maturational status, and are site-specific. Estrogen status, body composition, and nutritional status also may influence the bone response to loading. Despite the complex interrelationships among these various factors, it is prudent to conclude that increased physical activity throughout life is likely to optimize bone health.
Collapse
Affiliation(s)
- Bonny Specker
- E.A. Martin Program in Human Nutrition, SWC, South Dakota State University, Box 506, Brookings, SD, 57007, USA,
| | | |
Collapse
|