1
|
Elsayed AA, Sallam AM. Nucleotide sequence variants, gene expression and serum profile of immune and antioxidant markers associated with brucellosis resistance/susceptibility in Shami goat. Ir Vet J 2025; 78:2. [PMID: 39825331 PMCID: PMC11748588 DOI: 10.1186/s13620-025-00285-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 01/06/2025] [Indexed: 01/20/2025] Open
Abstract
Brucellosis is a highly contagious zoonotic bacterial disease. It has considerable negative consequences on the animal production industry worldwide. The objective of this study was to investigate the genetic and molecular variations in Shami goat susceptible to Brucella infection. Blood samples were collected from fifty mature Shami goats (30 Brucella-infected does and 20 non-infection). DNA was extracted and selected parts the immunity; solute carrier family 11 member 1 (SLC11A1), toll-like receptor 1 (TLR1), toll-like receptor 9 (TLR9), SP110 nuclear body protein (SP110), the adenosine A3 receptor (ADORA3), caspase activating recruitment domain 15 (CARD15) and interferon regulatory factor 3 (IRF3), antioxidant glutathione peroxidase 1 (GPX1), nitric oxide synthase (NOS), NAD(P)H dehydrogenase [quinone] 1 (NQO1) and transcription factor NF-E2-related factor 2 (Nrf2) and erythritol related transketolase (TKT), ribose 5-phosphate isomerase (RPIA) and Adenosine monophosphate deaminase (AMPD) genes were sequenced. Likewise, the levels of gene expressions were investigated. The results identified polymorphic variants between healthy and infected does. Levels of gene expression of SLC11A1, TLR1, TLR9, SP110, ADORA3, CARD15, IRF3, HMOX1, TKT, RPIA and AMPD were significantly (P < 0.05) up regulated in the infected compared to the non-infected ones. On the other hand, GPX1, NOS, NQO1 and Nrf2 genes were significantly (P < 0.05) downregulated in the infected compared to the non-infected does. The results of serum profile indicated that there is a significant (P < 0.05) increase in the activities of AST, ALT, GGT, LDH, ALP as well as serum level of globulin, triglycerides, cholesterol, MDA, NO, IL-1β, TNF-α, IgM, IgG, haptoglobin and amyloid A. On the other hand, there were significant reductions in the glucose, total protein albumin, urea, calcium, inorganic phosphorus, sodium, copper, zinc, iron, TAC, GSH, SOD, GPx, IL-10 and fibrinogen in the infected compared to the non-infected does. Our results provide valuable information about the serum profile variations and putative genetic markers for Brucella infection in goats. This could be utilized in controlling goat brucellosis through selective breeding of natural resistant animals.
Collapse
Affiliation(s)
- Ahmed A Elsayed
- Animal and Poultry Production Division, Animal Health Department, Desert Research Center, Cairo, Egypt
| | - Ahmed M Sallam
- Animal and Poultry Production Division, Department of Animal and Poultry Breeding, Desert Research Center, Cairo, Egypt.
| |
Collapse
|
2
|
Šoltysová M, Řezáčová P. Structure and function of bacterial transcription regulators of the SorC family. Transcription 2024; 15:139-160. [PMID: 39223991 PMCID: PMC11810097 DOI: 10.1080/21541264.2024.2387895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The SorC family is a large group of bacterial transcription regulators involved in controlling carbohydrate catabolism and quorum sensing. SorC proteins consist of a conserved C-terminal effector-binding domain and an N-terminal DNA-binding domain, whose type divides the family into two subfamilies: SorC/DeoR and SorC/CggR. Proteins of the SorC/CggR subfamily are known to regulate the key node of glycolysis-triose phosphate interconversion. On the other hand, SorC/DeoR proteins are involved in a variety of peripheral carbohydrate catabolic pathways and quorum sensing functions, including virulence. Despite the abundance and importance of this family, SorC proteins seem to be on the periphery of scientific interest, which might be caused by the fragmentary information about its representatives. This review aims to compile the existing knowledge and provide material to inspire future questions about the SorC protein family.
Collapse
Affiliation(s)
- Markéta Šoltysová
- Structural Biology, Institute of Organic Chemistry and Biochemistry of Czech Academy of Sciences, Prague, Czechia
| | - Pavlína Řezáčová
- Structural Biology, Institute of Organic Chemistry and Biochemistry of Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
3
|
Casaro S, Prim JG, Gonzalez TD, Cunha F, Bisinotto RS, Chebel RC, Santos JEP, Nelson CD, Jeon SJ, Bicalho RC, Driver JP, Galvão KN. Integrating uterine microbiome and metabolome to advance the understanding of the uterine environment in dairy cows with metritis. Anim Microbiome 2024; 6:30. [PMID: 38802977 PMCID: PMC11131188 DOI: 10.1186/s42523-024-00314-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Metritis is a prevalent uterine disease that affects the welfare, fertility, and survival of dairy cows. The uterine microbiome from cows that develop metritis and those that remain healthy do not differ from calving until 2 days postpartum, after which there is a dysbiosis of the uterine microbiome characterized by a shift towards opportunistic pathogens such as Fusobacteriota and Bacteroidota. Whether these opportunistic pathogens proliferate and overtake the uterine commensals could be determined by the type of substrates present in the uterus. The objective of this study was to integrate uterine microbiome and metabolome data to advance the understanding of the uterine environment in dairy cows that develop metritis. Holstein cows (n = 104) had uterine fluid collected at calving and at the day of metritis diagnosis. Cows with metritis (n = 52) were paired with cows without metritis (n = 52) based on days after calving. First, the uterine microbiome and metabolome were evaluated individually, and then integrated using network analyses. RESULTS The uterine microbiome did not differ at calving but differed on the day of metritis diagnosis between cows with and without metritis. The uterine metabolome differed both at calving and on the day of metritis diagnosis between cows that did and did not develop metritis. Omics integration was performed between 6 significant bacteria genera and 153 significant metabolites on the day of metritis diagnosis. Integration was not performed at calving because there were no significant differences in the uterine microbiome. A total of 3 bacteria genera (i.e. Fusobacterium, Porphyromonas, and Bacteroides) were strongly correlated with 49 metabolites on the day of metritis diagnosis. Seven of the significant metabolites at calving were among the 49 metabolites strongly correlated with opportunistic pathogenic bacteria on the day of metritis diagnosis. The main metabolites have been associated with attenuation of biofilm formation by commensal bacteria, opportunistic pathogenic bacteria overgrowth, tissue damage and inflammation, immune evasion, and immune dysregulation. CONCLUSIONS The data integration presented herein helps advance the understanding of the uterine environment in dairy cows with metritis. The identified metabolites may provide a competitive advantage to the main uterine pathogens Fusobacterium, Porphyromonas and Bacteroides, and may be promising targets for future interventions aiming to reduce opportunistic pathogenic bacteria growth in the uterus.
Collapse
Affiliation(s)
- S Casaro
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL, USA
| | - J G Prim
- Department of Clinical Sciences, Auburn University, Auburn, AL, USA
| | - T D Gonzalez
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL, USA
| | - F Cunha
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL, USA
| | - R S Bisinotto
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL, USA
| | - R C Chebel
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL, USA
| | - J E P Santos
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
- D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL, USA
| | - C D Nelson
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - S J Jeon
- Department of Veterinary Biomedical Sciences, Long Island University, Brookville, NY, USA
| | - R C Bicalho
- FERA Diagnostics and Biologicals, College Station, TX, USA
| | - J P Driver
- Division of Animals Sciences, University of Missouri, Columbia, MO, USA
| | - Klibs N Galvão
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL, USA.
- D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
4
|
Shirwany ASAK, Awais MM, Anwar MI, Hameed MR, Akhtar M, Ijaz N, Gill SS, Ali MA, Bhatti MS, Chaudhry M. Seroepidemiology and associated risk factors of brucellosis in small ruminants of district Khanewal, Pakistan. J Adv Vet Anim Res 2024; 11:9-18. [PMID: 38680794 PMCID: PMC11055584 DOI: 10.5455/javar.2024.k741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 05/01/2024] Open
Abstract
Objectives Keeping in view the economic and veterinary public health importance of brucellosis, this research was conducted to determine its seroprevalence and associated risk determinants in small ruminants in district Khanewal, Southern Punjab, Pakistan. Materials and Methods Two-stage cluster sampling technique was used for sampling, and the sample size was calculated using C-survey 2.0. Accordingly, sera samples (n = 392) were collected from small ruminants in the study area from October 2022 to July 2023. All the samples were tested for the presence of anti-Brucella antibodies by Rose Bengal Plate Test (RBPT), followed by confirmation of all the samples using an enzyme linked immunosorbent assay (ELISA) kit (ID.vet®, France; sensitivity and specificity=100%, each). Results The seropositivity rate of brucellosis was 7.14% [n = 28/392; 95% confidence interval (CI) = 4.87%-10.12%] by RBPT, whereas the results of ELISA showed an overall seroprevalence rate of 7.40% (n = 29/392; 95% CI = 5.11%-10.37%) in the study population. Univariate analysis of risk factors revealed that abortion history (AH), retained fetal membranes (RFMs), repeat breeding, flock size (FS), educational status of farmers (ESFs), awareness about brucellosis (AB), and farm hygiene had a significant association with the seroprevalence of brucellosis (p < 0.05). The multivariate analysis using a binary logistic regression model revealed that variables including tehsil, FS, AH, RFM, ESF, AB, and farming system were significant factors (p < 0.05) associated with brucellosis in the target population. Conclusion Brucellosis is prevalent in small ruminants in Khanewal, Pakistan. The disease burden can be reduced by improving the reproductive health of animals, farm hygiene, and farmers' awareness about the diseases. Further studies are needed on a larger scale to devise stringent disease control strategies to avoid losses associated with brucellosis at regional, national, and global levels.
Collapse
Affiliation(s)
- Abdul Sammad Ali Khan Shirwany
- One Health Research Laboratory, Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
- Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
- ASAKS and MMA contributed equally to this study and shared the first authorship
| | - Mian Muhammad Awais
- One Health Research Laboratory, Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
- ASAKS and MMA contributed equally to this study and shared the first authorship
| | - Muhammad Irfan Anwar
- One Health Research Laboratory, Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Raza Hameed
- One Health Research Laboratory, Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Masood Akhtar
- One Health Research Laboratory, Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Nabeel Ijaz
- Department of Clinical Sciences, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Shakera Sadiq Gill
- Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Amjad Ali
- Department of Clinical Sciences, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Sibtain Bhatti
- Livestock and Dairy Development Department, Directorate of Multan Division, Multan, Pakistan
| | - Mamoona Chaudhry
- Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
5
|
Al-Sharif M, Abdo M, Shabrawy OE, El-Naga EMA, Fericean L, Banatean-Dunea I, Ateya A. Investigating Polymorphisms and Expression Profile of Immune, Antioxidant, and Erythritol-Related Genes for Limiting Postparturient Endometritis in Holstein Cattle. Vet Sci 2023; 10:370. [PMID: 37368756 DOI: 10.3390/vetsci10060370] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
This study looked at genetic polymorphisms and transcript levels of immune, antioxidant, and erythritol-related markers for postparturient endometritis prediction and tracking in Holstein dairy cows. One hundred and thirty female dairy cows (65 endometritis affected and 65 apparently healthy) were used. Nucleotide sequence variations between healthy and endometritis-affected cows were revealed using PCR-DNA sequencing for immune (TLR4, TLR7, TNF-α, IL10, NCF4, and LITAF), antioxidant (ATOX1, GST, and OXSR1), and erythritol-related (TKT, RPIA, and AMPD1) genes. Chi-square investigation exposed a noteworthy variance amongst cow groups with and without endometritis in likelihood of dispersal of all distinguished nucleotide variants (p < 0.05). The IL10, ATOX1, and GST genes were expressed at substantially lower levels in endometritis-affected cows. Gene expression levels were considerably higher in endometritis-affected cows than in resistant ones for the genes TLR4, TLR7, TNF-α, NCF4, LITAF, OXSR1, TKT, RPIA, and AMPD1. The sort of marker and vulnerability or resistance to endometritis had a significant impact on the transcript levels of the studied indicators. The outcomes might confirm the importance of nucleotide variants along with gene expression patterns as markers of postparturient endometritis susceptibility/resistance and provide a workable control plan for Holstein dairy cows.
Collapse
Affiliation(s)
- Mona Al-Sharif
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Cairo 11829, Egypt
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Omnia El Shabrawy
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Menofia University, Menofia 32951, Egypt
| | - Eman M Abu El-Naga
- Department of Theriogenology, Faculty of Veterinary Medicine, Aswan University, Aswan 81528, Egypt
| | - Liana Fericean
- Department of Biology and Plant Protection, Faculty of Agricultural Sciences, University of Life Sciences King Michael I, 300645 Timisoara, Romania
| | - Ioan Banatean-Dunea
- Department of Biology and Plant Protection, Faculty of Agricultural Sciences, University of Life Sciences King Michael I, 300645 Timisoara, Romania
| | - Ahmed Ateya
- Department of Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
6
|
Ba F, Ji X, Huang S, Zhang Y, Liu WQ, Liu Y, Ling S, Li J. Engineering Escherichia coli to Utilize Erythritol as Sole Carbon Source. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207008. [PMID: 36938858 DOI: 10.1002/advs.202207008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/16/2023] [Indexed: 05/18/2023]
Abstract
Erythritol, one of the natural sugar alcohols, is widely used as a sugar substitute sweetener in food industries. Humans themselves are not able to catabolize erythritol and their gut microbes lack related catabolic pathways either to metabolize erythritol. Here, Escherichia coli (E. coli) is engineered to utilize erythritol as sole carbon source aiming for defined applications. First, the erythritol metabolic gene cluster is isolated and the erythritol-binding transcriptional repressor and its DNA-binding site are experimentally characterized. Transcriptome analysis suggests that carbohydrate metabolism-related genes in the engineered E. coli are overall upregulated. In particular, the enzymes of transaldolase (talA and talB) and transketolase (tktA and tktB) are notably overexpressed (e.g., the expression of tktB is improved by nearly sixfold). By overexpression of the four genes, cell growth can be increased as high as three times compared to the cell cultivation without overexpression. Finally, engineered E. coli strains can be used as a living detector to distinguish erythritol-containing soda soft drinks and can grow in the simulated intestinal fluid supplemented with erythritol. This work is expected to inspire the engineering of more hosts to respond and utilize erythritol for broad applications in metabolic engineering, synthetic biology, and biomedical engineering.
Collapse
Affiliation(s)
- Fang Ba
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Xiangyang Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Shuhui Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Yufei Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Wan-Qiu Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Yifan Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| |
Collapse
|
7
|
Xiao Y, Li M, Guo X, Zeng H, Shuai X, Guo J, Huang Q, Chu Y, Zhou B, Wen J, Liu J, Jiao H. Inflammatory Mechanism of Brucella Infection in Placental Trophoblast Cells. Int J Mol Sci 2022; 23:13417. [PMID: 36362199 PMCID: PMC9657658 DOI: 10.3390/ijms232113417] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 01/03/2024] Open
Abstract
Brucellosis is a severe zoonotic infectious disease caused by the infection of the Brucella, which is widespread and causes considerable economic losses in underdeveloped areas. Brucella is a facultative intracellular bacteria whose main target cells for infection are macrophages, placental trophoblast cells and dendritic cells. The main clinical signs of Brucella infection in livestock are reproductive disorders and abortion. At present, the pathogenesis of placentitis or abortion caused by Brucella in livestock is not fully understood, and further research on the effect of Brucella on placental development is still necessary. This review will mainly introduce the research progress of Brucella infection of placental trophoblast cells as well as the inflammatory response caused by it, explaining the molecular regulation mechanism of Brucella leading to reproductive system disorders and abortion, and also to provide the scientific basis for revealing the pathogenesis and infection mechanism of Brucella.
Collapse
Affiliation(s)
- Yu Xiao
- The College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Mengjuan Li
- The College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Xiaoyi Guo
- The College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Hui Zeng
- The College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Xuehong Shuai
- The College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Jianhua Guo
- The College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Qingzhou Huang
- The College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Yuefeng Chu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Bo Zhou
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Yujinxiang Street 573, Changchun 130102, China
| | - Jake Wen
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Jun Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Yujinxiang Street 573, Changchun 130102, China
| | - Hanwei Jiao
- The College of Veterinary Medicine, Southwest University, Chongqing 400715, China
- The Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 400715, China
| |
Collapse
|
8
|
Minjárez-Sáenz M, Martínez-Júlvez M, Yruela I, Medina M. Mining the Flavoproteome of Brucella ovis, the Brucellosis Causing Agent in Ovis aries. Microbiol Spectr 2022; 10:e0229421. [PMID: 35315701 PMCID: PMC9045290 DOI: 10.1128/spectrum.02294-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/19/2022] [Indexed: 11/20/2022] Open
Abstract
Flavoproteins are a diverse class of proteins that are mostly enzymes and contain as cofactors flavin mononucleotide (FMN) and/or flavin adenine dinucleotide (FAD), which enable them to participate in a wide range of physiological reactions. We have compiled 78 potential proteins building the flavoproteome of Brucella ovis (B. ovis), the causative agent of ovine brucellosis. The curated list of flavoproteins here reported is based on (i) the analysis of sequence, structure and function of homologous proteins, and their classification according to their structural domains, clans, and expected enzymatic functions; (ii) the constructed phylogenetic trees of enzyme functional classes using 19 Brucella strains and 26 pathogenic and/or biotechnological relevant alphaproteobacteria together with B. ovis; and (iii) the evaluation of the genetic context for each entry. Candidates account for ∼2.7% of the B. ovis proteome, and 75% of them use FAD as cofactor. Only 55% of these flavoproteins belong to the core proteome of Brucella and contribute to B. ovis processes involved in maintenance activities, survival and response to stress, virulence, and/or infectivity. Several of the predicted flavoproteins are highly divergent in Brucella genus from revised proteins and for them it is difficult to envisage a clear function. This might indicate modified catalytic activities or even divergent processes and mechanisms still not identified. We have also detected the lack of some functional flavoenzymes in B. ovis, which might contribute to it being nonzoonotic. Finally, potentiality of B. ovis flavoproteome as the source of antimicrobial targets or biocatalyst is discussed. IMPORTANCE Some microorganisms depend heavily on flavin-dependent activities, but others maintain them at a minimum. Knowledge about flavoprotein content and functions in different microorganisms will help to identify their metabolic requirements, as well as to benefit either industry or health. Currently, most flavoproteins from the sheep pathogen Brucella ovis are only automatically annotated in databases, and only two have been experimentally studied. Indeed, certain homologues with unknown function are not characterized, and they might relate to still not identified mechanisms or processes. Our research has identified 78 members that comprise its flavoproteome, 76 of them flavoenzymes, which mainly relate to bacteria survival, virulence, and/or infectivity. The list of flavoproteins here presented allows us to better understand the peculiarities of Brucella ovis and can be applied as a tool to search for candidates as new biocatalyst or antimicrobial targets.
Collapse
Affiliation(s)
- Martha Minjárez-Sáenz
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
| | - Marta Martínez-Júlvez
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
- Group of Biochemistry, Biophysics and Computational Biology “GBsC” (BIFI, Unizar) Joint Unit to CSIC, Zaragoza, Spain
| | - Inmaculada Yruela
- Estación Experimental de Aula Dei, CSIC, Zaragoza, Spain
- Group of Biochemistry, Biophysics and Computational Biology “GBsC” (BIFI, Unizar) Joint Unit to CSIC, Zaragoza, Spain
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
- Group of Biochemistry, Biophysics and Computational Biology “GBsC” (BIFI, Unizar) Joint Unit to CSIC, Zaragoza, Spain
| |
Collapse
|
9
|
Hulbah M, Croxen MA, Tyrrell GJ. Phenotypic changes in group B streptococci grown in the presence of the polyols, erythritol, sorbitol and mannitol. BMC Microbiol 2021; 21:145. [PMID: 33985431 PMCID: PMC8117501 DOI: 10.1186/s12866-021-02208-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 04/29/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Group B streptococci (GBS) are important neonatal bacterial pathogens that can cause severe invasive disease in the newborn. It is thought that in many cases of invasive neonatal GBS disease, the bacteria ascend the vagina into the uterus and infect the amniotic fluid surrounding the fetus. Important constituents of this environment include the polyols or sugar alcohols of which erythritol, sorbitol and mannitol are examples. The aim of our study was to investigate the effect of polyols on GBS grown in media containing these sugar alcohols. RESULTS GBS incubated in varying concentrations of polyols (erythritol, sorbitol or mannitol) did not display any significant enhancement or inhibition of bacterial growth. However, growth of GBS in the presence of erythritol significantly increased the surface expression of GBS-PGK (a plasminogen binding protein) 1.25 to 1.5-fold depending on the erythritol concentration and significantly enhanced the survival in human blood 3X to 18X depending on the concentration of polyol used. Interestingly, GBS grown in 1% erythritol significantly increased invasion by the bacteria of HeLa cells (epithelial cell line) (150% vs 100%) however, at higher concentrations (2% or 4% of polyol) the number of CFUs was significantly reduced (55-75% vs 100%) suggesting higher concentrations of polyols may inhibit invasion. Erythritol also increased GBS hemolytic activity as well as enhancing biofilm formation 1.4X to 3.3X depending on the concentration of polyol used. CONCLUSIONS GBS grown in the presence of polyols alters the bacteria's phenotype resulting in changes associated with GBS virulence. This effect was greatest for the polyol erythritol.
Collapse
Affiliation(s)
- Maram Hulbah
- Division of Diagnostic and Applied Microbiology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Matthew A Croxen
- Division of Diagnostic and Applied Microbiology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
- Alberta Precision Laboratories-Public Health, Edmonton, Alberta, T6G 2J2, Canada
| | - Gregory J Tyrrell
- Division of Diagnostic and Applied Microbiology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada.
- Alberta Precision Laboratories-Public Health, Edmonton, Alberta, T6G 2J2, Canada.
| |
Collapse
|
10
|
Roop RM, Barton IS, Hopersberger D, Martin DW. Uncovering the Hidden Credentials of Brucella Virulence. Microbiol Mol Biol Rev 2021; 85:e00021-19. [PMID: 33568459 PMCID: PMC8549849 DOI: 10.1128/mmbr.00021-19] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Bacteria in the genus Brucella are important human and veterinary pathogens. The abortion and infertility they cause in food animals produce economic hardships in areas where the disease has not been controlled, and human brucellosis is one of the world's most common zoonoses. Brucella strains have also been isolated from wildlife, but we know much less about the pathobiology and epidemiology of these infections than we do about brucellosis in domestic animals. The brucellae maintain predominantly an intracellular lifestyle in their mammalian hosts, and their ability to subvert the host immune response and survive and replicate in macrophages and placental trophoblasts underlies their success as pathogens. We are just beginning to understand how these bacteria evolved from a progenitor alphaproteobacterium with an environmental niche and diverged to become highly host-adapted and host-specific pathogens. Two important virulence determinants played critical roles in this evolution: (i) a type IV secretion system that secretes effector molecules into the host cell cytoplasm that direct the intracellular trafficking of the brucellae and modulate host immune responses and (ii) a lipopolysaccharide moiety which poorly stimulates host inflammatory responses. This review highlights what we presently know about how these and other virulence determinants contribute to Brucella pathogenesis. Gaining a better understanding of how the brucellae produce disease will provide us with information that can be used to design better strategies for preventing brucellosis in animals and for preventing and treating this disease in humans.
Collapse
Affiliation(s)
- R Martin Roop
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Ian S Barton
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Dariel Hopersberger
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Daniel W Martin
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
11
|
González-Espinoza G, Arce-Gorvel V, Mémet S, Gorvel JP. Brucella: Reservoirs and Niches in Animals and Humans. Pathogens 2021; 10:pathogens10020186. [PMID: 33572264 PMCID: PMC7915599 DOI: 10.3390/pathogens10020186] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 01/18/2023] Open
Abstract
Brucella is an intracellular bacterium that causes abortion, reproduction failure in livestock and leads to a debilitating flu-like illness with serious chronic complications if untreated in humans. As a successful intracellular pathogen, Brucella has developed strategies to avoid recognition by the immune system of the host and promote its survival and replication. In vivo, Brucellae reside mostly within phagocytes and other cells including trophoblasts, where they establish a preferred replicative niche inside the endoplasmic reticulum. This process is central as it gives Brucella the ability to maintain replicating-surviving cycles for long periods of time, even at low bacterial numbers, in its cellular niches. In this review, we propose that Brucella takes advantage of the environment provided by the cellular niches in which it resides to generate reservoirs and disseminate to other organs. We will discuss how the favored cellular niches for Brucella infection in the host give rise to anatomical reservoirs that may lead to chronic infections or persistence in asymptomatic subjects, and which may be considered as a threat for further contamination. A special emphasis will be put on bone marrow, lymph nodes, reproductive and for the first time adipose tissues, as well as wildlife reservoirs.
Collapse
|
12
|
Wang S, Wang W, Sun K, Bateer H, Zhao X. Comparative genomic analysis between newly sequenced Brucella abortus vaccine strain A19 and another Brucella abortus vaccine S19. Genomics 2019; 112:1444-1453. [PMID: 31454518 DOI: 10.1016/j.ygeno.2019.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/19/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Brucellosis is a bacterial disease caused by Brucella infection. Brucella abortus strain A19 is a spontaneously attenuated vaccine strain that has been used in vaccination of cattle against brucellosis. Until now, the physiological and molecular mechanisms of A19 are still unknown. RESULTS In this paper, the whole-genome sequence of B. abortus A19 was performed using Illumina Hiseq 4000 and PacBio sequencing technology and comparative genomics analysis were carried out with the whole genome sequences of B. abortus strains S19. This analysis indicated that the two vaccine strains have a high degree of similarity in genomic structure. We further analysis of the difference in genomic structure between A19 and S19. And found some differential genes such as eryC, eryD and eryF. Of the other different proteins between A19 and S19, such as outer membrane protein, 2-isopropylmalate synthase, citramalate synthase, GntR family transcriptional regulator and ABC transporters, no clear effects related to bacterial virulence were found, pending further investigation. CONCLUSION The data presented here provide a reasonable basis for designing Brucella vaccines that can be used in other strains.
Collapse
Affiliation(s)
- Shuyi Wang
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture/College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China; Inner Mongolia Autonomous Region Comprehensive Center for Disease Control and Prevention, Hohhot, Inner Mongolia 010031, China
| | - Wenlong Wang
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture/College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Ke Sun
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture/College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Huhe Bateer
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture/College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China.
| | - Xueliang Zhao
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture/College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China.
| |
Collapse
|
13
|
Hosein HI, Zaki HM, Safwat NM, Menshawy AMS, Rouby S, Mahrous A, Madkour BED. Evaluation of the General Organization of Veterinary Services control program of animal brucellosis in Egypt: An outbreak investigation of brucellosis in buffalo. Vet World 2018; 11:748-757. [PMID: 30034165 PMCID: PMC6048072 DOI: 10.14202/vetworld.2018.748-757] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/07/2018] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND AND AIM Brucellosis is a major constraint to livestock production in Egypt as well as many developing countries worldwide. Bovine brucellosis is an economically important disease with reproductive failure as a principal manifestation resulting in abortion, premature birth and decreased milk production in females, and orchitis and epididymitis in males. In spite of the efforts of Egyptian veterinary services to overcome brucellosis, the disease is still prevalent in both animals and humans and represents one of the most important public health hazards in Egypt. The aim of the present work was to investigate the efficacy of the control program implemented by the General Organization of Veterinary Services in Brucella infected buffalo farm on serological, molecular, cultural, and histopathological basis. Brucella melitensis biovar 3 was recovered from 6 buffalo-cows. MATERIALS AND METHODS Blood samples were collected from a total of 750 non-vaccinated lactating buffalo-cows. These animals were proved positive for Brucella by the Egyptian brucellosis national program. Sera were tested using buffered acidified plate antigen test and rose Bengal test as screening tests and complement fixation test as a confirmatory test. Positive animals were separated for slaughtering under the supervision of the Egyptian veterinary authorities. Remaining animals were tested every 3 weeks with slaughtering of positive cases and this continued until the remaining animals revealed three successive negative serological tests. Different lymph nodes (prescapular, prefemoral, mediastinal, retropharyngeal, and supramammary) were collected from 11 Brucella seropositive buffalo-cows slaughtered after being confirmed serologically as Brucella infected cases. Samples were collected and processed for bacterial isolation and nucleic acid detection using polymerase chain reaction (PCR). Parts of these specimens were fixed in 10% neutral buffered formalin for 48 h then processed by paraffin embedding technique. RESULTS "Test and slaughter" policy was applied on Brucella infected dairy buffalo farm. The program continued for 6 months with slaughtering of positive cases until the herd was proved Brucella free. B. melitensis biovar 3 could be recovered from six buffalo-cows. Universal PCR confirmed Brucella on genus level and Bruce-ladder multiplex, PCR confirmed the presence of B. melitensis on the species level. Histopathological examination of Brucella-infected lymph nodes revealed massive rarified and depleted lymphoid areas of both sub-capsular and deep cortical lymphoid follicles, macrophage cells granulomatous reaction, as well as fat, infiltrates, and chronic vasculitis. The chronic nature of Brucella lesions has been confirmed in this study as indicated by the chronic vasculitis and collagen deposition. CONCLUSION Freedom status from brucellosis in this study required 6 months which are considered long time allowing the spread of infection to other localities especially under unhygienic conditions, husbandry system favoring mixed populations of different ages, sex, aborted and pregnant, and lack of controlled movement of animals. Therefore, effective control of animal brucellosis requires surveillance to identify infected animal herds, elimination of the reservoirs, and vaccination of young heifers. B. melitensis biovar 3 is the cause of the Brucella outbreak in buffalo which still remains the prevalent type of Brucella in Egypt. The disease runs a chronic course allowing further spread of infection.
Collapse
Affiliation(s)
- H. I. Hosein
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Hoda Mohamed Zaki
- Department of Brucella Researches, Animal Health Research Institute, Giza, Egypt
| | - Nesreen Mohamed Safwat
- Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Ahmed M. S. Menshawy
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Sherin Rouby
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | | | - Bahaa El-deen Madkour
- Department of Animal Medicine, Faculty of Veterinary Medicine, Aswan University, Egypt
| |
Collapse
|
14
|
Mirończuk AM, Biegalska A, Zugaj K, Rzechonek DA, Dobrowolski A. A Role of a Newly Identified Isomerase From Yarrowia lipolytica in Erythritol Catabolism. Front Microbiol 2018; 9:1122. [PMID: 29910781 PMCID: PMC5992420 DOI: 10.3389/fmicb.2018.01122] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/11/2018] [Indexed: 11/13/2022] Open
Abstract
Erythritol is a natural sweetener produced by microorganisms as an osmoprotectant. It belongs to the group of polyols and it can be utilized by the oleaginous yeast Yarrowia lipolytica. Despite the recent identification of the transcription factor of erythritol utilization (EUF1), the metabolic pathway of erythritol catabolism remains unknown. In this study we identified a new gene, YALI0F01628g, involved in erythritol assimilation. In silico analysis showed that YALI0F01628g is a putative isomerase and it is localized in the same region as EUF1. qRT-PCR analysis of Y. lipolytica showed a significant increase in YALI0F01628g expression during growth on erythritol and after overexpression of EUF1. Moreover, the deletion strain ΔF01628 showed significantly impaired erythritol assimilation, whereas synthesis of erythritol remained unchanged. The results showed that YALI0F1628g is involved in erythritol assimilation; thus we named the gene EYI1. Moreover, we suggest the metabolic pathway of erythritol assimilation in yeast Y. lipolytica.
Collapse
Affiliation(s)
- Aleksandra M. Mirończuk
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | | | | | | | | |
Collapse
|
15
|
Rzechonek DA, Neuvéglise C, Devillers H, Rymowicz W, Mirończuk AM. EUF1 - a newly identified gene involved in erythritol utilization in Yarrowia lipolytica. Sci Rep 2017; 7:12507. [PMID: 28970528 PMCID: PMC5624910 DOI: 10.1038/s41598-017-12715-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/18/2017] [Indexed: 11/09/2022] Open
Abstract
The gene YALI0F01562g was identified as an important factor involved in erythritol catabolism of the unconventional yeast Yarrowia lipolytica. Its putative role was identified for the first time by comparative analysis of four Y. lipolytica strains: A-101.1.31, Wratislavia K1, MK1 and AMM. The presence of a mutation that seriously damaged the gene corresponded to inability of the strain Wratislavia K1 to utilize erythritol. RT-PCR analysis of the strain MK1 demonstrated a significant increase in YALI0F01562g expression during growth on erythritol. Further studies involving deletion and overexpression of the selected gene showed that it is indeed essential for efficient erythritol assimilation. The deletion strain Y. lipolytica AMM∆euf1 was almost unable to grow on erythritol as the sole carbon source. When the strain was applied in the process of erythritol production from glycerol, the amount of erythritol remained constant after reaching the maximal concentration. Analysis of the YALI0F01562g gene sequence revealed the presence of domains characteristic for transcription factors. Therefore we suggest naming the studied gene Erythritol Utilization Factor - EUF1.
Collapse
Affiliation(s)
- Dorota A Rzechonek
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 37, Wrocław, 57-630, Poland
| | - Cécile Neuvéglise
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, Paris, France
| | - Hugo Devillers
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, Paris, France
| | - Waldemar Rymowicz
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 37, Wrocław, 57-630, Poland
| | - Aleksandra M Mirończuk
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 37, Wrocław, 57-630, Poland.
| |
Collapse
|
16
|
Barbier T, Zúñiga-Ripa A, Moussa S, Plovier H, Sternon JF, Lázaro-Antón L, Conde-Álvarez R, De Bolle X, Iriarte M, Moriyón I, Letesson JJ. Brucella central carbon metabolism: an update. Crit Rev Microbiol 2017; 44:182-211. [PMID: 28604247 DOI: 10.1080/1040841x.2017.1332002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The brucellae are facultative intracellular pathogens causing brucellosis, an important zoonosis. Here, we review the nutritional, genetic, proteomic and transcriptomic studies on Brucella carbon uptake and central metabolism, information that is needed for a better understanding of Brucella virulence. There is no uniform picture across species but the studies suggest primary and/or secondary transporters for unknown carbohydrates, lactate, glycerol phosphate, erythritol, xylose, ribose, glucose and glucose/galactose, and routes for their incorporation to central metabolism, including an erythritol pathway feeding the pentose phosphate cycle. Significantly, all brucellae lack phosphoenolpyruvate synthase and phosphofructokinase genes, which confirms previous evidence on glycolysis absence, but carry all Entner-Doudoroff (ED) pathway and Krebs cycle (and glyoxylate pathway) genes. However, glucose catabolism proceeds through the pentose phosphate cycle in the classical species, and the ED pathway operates in some rodent-associated brucellae, suggesting an ancestral character for this pathway in this group. Gluconeogenesis is functional but does not rely exclusively on classical fructose bisphosphatases. Evidence obtained using infection models is fragmentary but suggests the combined or sequential use of hexoses/pentoses, amino acids and gluconeogenic substrates. We also discuss the role of the phosphotransferase system, stringent reponse, quorum sensing, BvrR/S and sRNAs in metabolism control, an essential aspect of the life style of facultative intracellular parasites.
Collapse
Affiliation(s)
- T Barbier
- a Unité de Recherche en Biologie des Microorganismes , Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur , Namur , Belgium
| | - A Zúñiga-Ripa
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| | - S Moussa
- a Unité de Recherche en Biologie des Microorganismes , Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur , Namur , Belgium
| | - H Plovier
- a Unité de Recherche en Biologie des Microorganismes , Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur , Namur , Belgium
| | - J F Sternon
- a Unité de Recherche en Biologie des Microorganismes , Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur , Namur , Belgium
| | - L Lázaro-Antón
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| | - R Conde-Álvarez
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| | - X De Bolle
- a Unité de Recherche en Biologie des Microorganismes , Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur , Namur , Belgium
| | - M Iriarte
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| | - I Moriyón
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| | - J J Letesson
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| |
Collapse
|
17
|
Acharya KP, Kaphle K, Shrestha K, Garin Bastuji B, Smits HL. Review of brucellosis in Nepal. Int J Vet Sci Med 2016; 4:54-62. [PMID: 33195685 DOI: 10.1016/j.ijvsm.2016.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 10/21/2016] [Accepted: 10/25/2016] [Indexed: 11/16/2022] Open
Abstract
Brucellosis is an abortifacient zoonotic disease that remains prominent in third world countries like Nepal. Brucellosis poses a public health concern, because its incidence in livestock can present substantial economic and health burdens for herders and health professionals. Several cases of bovine and human brucellosis have been reported and the prevalence is higher among livestock than among humans in Nepal. Lack of awareness, unhealthy food habit, traditional husbandry practices, and a lack of surveillance and immunization have been the major factors in maintaining a vicious cycle of propagation of the disease in human and animals. The aim of this paper is to evaluate the current status of the disease, the mechanism of infection, and pathogenesis, its zoonotic potential, diagnostic advances, treatment regimens, and the preventive measures that can be adopted in managing human brucellosis in under-developed countries such as Nepal.
Collapse
Affiliation(s)
- Krishna Prasad Acharya
- Ecole d'Ingenieurs de Purpan, Toulouse, France
- Agriculture and Forestry University (AFU), Rampur, Chitwan, Nepal
- Institute of Agriculture and Animal Science (IAAS), Tribhuvan University (TU), Kathmandu, Nepal
| | - Krishna Kaphle
- Institute of Agriculture and Animal Science (IAAS), Tribhuvan University (TU), Kathmandu, Nepal
| | | | - Bruno Garin Bastuji
- European & International Affairs Department Agence Nationale de Sécurité Sanitaire de l'alimentation, de l'environnement et du travail French Agency for Food, Environmental & Occupational Health & Safety (ANSES)
| | - Henk L Smits
- KIT Biomedical Research, Royal Tropical Institute/Koninklijk Instituut voor de Tropen, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Acharya KP, Niroula N, Kaphle K. Review of Brucellosis in Nepal. Epidemiol Health 2016; 38:e2016042. [PMID: 27703129 PMCID: PMC5425907 DOI: 10.4178/epih.e2016042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 09/30/2016] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES The aim of this paper is to evaluate the current status of the disease, the mechanism of infection, and pathogenesis, its zoonotic potential, diagnostic advances, treatment regimens, and the preventive measures that can be adopted in managing human brucellosis in under-developed countries such as Nepal. METHODS We performed a systematic review of all the available literture through Google Scholar, PubMed, Gideon Informatics, World Health Organization and other legitimate sources. Other secondary informations were collected from the government agencies such as department of livestock services and Ministry of Health. The obtained information was then re-analysed and summarized. RESULTS Few publications have addressed brucellosis in Nepal and most of those publications have focused on bovine brucellosis with sparse information available on brucellosis in humans and small ruminants. Brucella abortus is the most predominant causative agent followed by B. suis. B. abortus is predominant in cattle accounting for a substantial portion of bovine abortion in the country. Lack of awareness, unhealthy food habit, traditional husbandry practices, and a lack of surveillance and immunization have been the major factors in maintaining a vicious cycle of propagation of the disease in human and animals. Unfortunately, nothing has been done to identify the species of Brucella at the biovar level. CONCLUSIONS Although brucellosis has been reported to be endemic in Nepal, neither the distribution nor the economic and public health impact of this disease is well characterized. Robust and well-designed nationwide survey is warranted to assess the prevalence and distribution of disease in livestock and humans. Such data would facilitate the design of appropriate control programmes.
Collapse
Affiliation(s)
| | - Nirajan Niroula
- Institute of Agriculture and Animal Science, Tribhuwan University, Chitwan, Nepal
| | - Krishna Kaphle
- Institute of Agriculture and Animal Science, Tribhuwan University, Chitwan, Nepal
| |
Collapse
|
19
|
Acharya KP. Brucellosis in Nepal - A Potential Threat to Public Health Professionals. CURRENT HEALTH SCIENCES JOURNAL 2016; 42:396-407. [PMID: 30581595 PMCID: PMC6269619 DOI: 10.12865/chsj.42.04.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/18/2016] [Indexed: 11/18/2022]
Abstract
Brucellosis is a prominent zoonotic disease affecting humans and animals which with the lack of proper diagnosis and treatment remains dangerous in third world countries like Nepal. Currently, Brucellosis poses a public health concern, whose incidences among entire herds of animals can present substantial economic and health burdens for herders and health professionals. Additionally, factors such as close contact with animals, poor animal husbandry, and unhygienic feeding habits can exacerbate the spread of Brucella and related zoonotic agents. In Nepal, serious cases of bovine and even human brucellosis have been reported, although the topic is yet to be extensively reviewed. This paper evaluates the literatures on human and animal brucellosis in Nepal and other countries, with an emphasis on the impact of Brucella outbreaks on public health professionals. Herein, we summarize the current status of the disease, the mechanism of infection, pathogenesis, zoonotic potential, diagnostic advances, treatment regimens, and the preventive measures that can be adopted in managing human brucellosis in under-developed countries such as Nepal.
Collapse
Affiliation(s)
- K P Acharya
- Animal Science Instructor,Shree Himganga Higher Secondary School, Ramechhap, Nepal; Institute of Agriculture and Animal Science, Tribhuwan University, Rampur, Chitwan, Nepal
| |
Collapse
|
20
|
WITHDRAWN: Acute brucellosis in Nepal: Research and prospects. JOURNAL OF ACUTE DISEASE 2016. [DOI: 10.1016/j.joad.2016.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
21
|
RNA-seq reveals the critical role of CspA in regulating Brucella melitensis metabolism and virulence. SCIENCE CHINA-LIFE SCIENCES 2016; 59:417-24. [PMID: 26740105 DOI: 10.1007/s11427-015-4981-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 11/23/2015] [Indexed: 10/22/2022]
Abstract
Brucella melitensis is a facultative intracellular bacterium that replicates within macrophages. The ability of Brucella to survive and multiply in the hostile environment of host macrophages is essential for its virulence. The cold shock protein CspA plays an important role in the virulence of B. melitensis. To analyze the genes regulated by CspA, the whole transcriptomes of B. melitensis NIΔcspA and its parental wild-type strain, B. melitensis NI, were sequenced and analyzed using the Solexa/Illumina sequencing platform. A total of 446 differentially expressed genes were identified, including 324 up-regulated and 122 down-regulated genes. Numerous genes identified are involved in amino acid, fatty acid, nitrogen, and energy metabolism. Interestingly, all genes involved in the type IV secretion system and LuxR-type regulatory protein VjbR were significantly down-regulated in NIΔcspA. In addition, an effector translocation assay confirmed that the function of T4SS in NIΔcspA is influenced by deletion of the cspA gene. These results revealed the differential phenomena associated with virulence and metabolism in NIΔcspA and NI, providing important information for understanding detailed CspA-regulated interaction networks and Brucella pathogenesis.
Collapse
|
22
|
RNA-seq reveals the critical role of OtpR in regulating Brucella melitensis metabolism and virulence under acidic stress. Sci Rep 2015; 5:10864. [PMID: 26242322 PMCID: PMC4542472 DOI: 10.1038/srep10864] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 04/29/2015] [Indexed: 02/07/2023] Open
Abstract
The response regulator OtpR is critical for the growth, morphology and virulence of Brucella melitensis. Compared to its wild type strain 16 M, B. melitensis 16 MΔotpR mutant has decreased tolerance to acid stress. To analyze the genes regulated by OtpR under acid stress, we performed RNA-seq whole transcriptome analysis of 16 MΔotpR and 16 M. In total, 501 differentially expressed genes were identified, including 390 down-regulated and 111 up-regulated genes. Among these genes, 209 were associated with bacterial metabolism, including 54 genes involving carbohydrate metabolism, 13 genes associated with nitrogen metabolism, and seven genes associated with iron metabolism. The 16 MΔotpR also decreased capacity to utilize different carbon sources and to tolerate iron limitation in culture experiments. Notably, OtpR regulated many Brucella virulence factors essential for B. melitensis intracellular survival. For instance, the virB operon encoding type IV secretion system was significantly down-regulated, and 36 known transcriptional regulators (e.g., vjbR and blxR) were differentially expressed in 16 MΔotpR. Selected RNA-seq results were experimentally confirmed by RT-PCR and RT-qPCR. Overall, these results deciphered differential phenomena associated with virulence, environmental stresses and cell morphology in 16 MΔotpR and 16 M, which provided important information for understanding the detailed OtpR-regulated interaction networks and Brucella pathogenesis.
Collapse
|
23
|
Erythritol feeds the pentose phosphate pathway via three new isomerases leading to D-erythrose-4-phosphate in Brucella. Proc Natl Acad Sci U S A 2014; 111:17815-20. [PMID: 25453104 DOI: 10.1073/pnas.1414622111] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Erythritol is an important nutrient for several α-2 Proteobacteria, including N2-fixing plant endosymbionts and Brucella, a worldwide pathogen that finds this four-carbon polyol in genital tissues. Erythritol metabolism involves phosphorylation to L-erythritol-4-phosphate by the kinase EryA and oxidation of the latter to L-3-tetrulose 4-phosphate by the dehydrogenase EryB. It is accepted that further steps involve oxidation by the putative dehydrogenase EryC and subsequent decarboxylation to yield triose-phosphates. Accordingly, growth on erythritol as the sole C source should require aldolase and fructose-1,6-bisphosphatase to produce essential hexose-6-monophosphate. However, we observed that a mutant devoid of fructose-1,6-bisphosphatases grew normally on erythritol and that EryC, which was assumed to be a dehydrogenase, actually belongs to the xylose isomerase superfamily. Moreover, we found that TpiA2 and RpiB, distant homologs of triose phosphate isomerase and ribose 5-phosphate isomerase B, were necessary, as previously shown for Rhizobium. By using purified recombinant enzymes, we demonstrated that L-3-tetrulose-4-phosphate was converted to D-erythrose 4-phosphate through three previously unknown isomerization reactions catalyzed by EryC (tetrulose-4-phosphate racemase), TpiA2 (D-3-tetrulose-4-phosphate isomerase; renamed EryH), and RpiB (D-erythrose-4-phosphate isomerase; renamed EryI), a pathway fully consistent with the isotopomer distribution of the erythrose-4-phosphate-derived amino acids phenylalanine and tyrosine obtained from bacteria grown on (13)C-labeled erythritol. D-erythrose-4-phosphate is then converted by enzymes of the pentose phosphate pathway to glyceraldehyde 3-phosphate and fructose 6-phosphate, thus bypassing fructose-1,6-bisphosphatase. This is the first description to our knowledge of a route feeding carbohydrate metabolism exclusively via D-erythrose 4-phosphate, a pathway that may provide clues to the preferential metabolism of erythritol by Brucella and its role in pathogenicity.
Collapse
|
24
|
Wang Z, Wang SS, Wang GL, Wu TL, Lv YL, Wu QM. A pregnant mouse model for the vertical transmission of Brucella melitensis. Vet J 2013; 200:116-21. [PMID: 24462801 DOI: 10.1016/j.tvjl.2013.12.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 12/10/2013] [Accepted: 12/19/2013] [Indexed: 11/24/2022]
Abstract
Abortion is the major clinical sign of brucellosis in animals but little is known about the underlying mechanisms. This study was designed to evaluate a pregnant mouse model for the vertical transmission of Brucella melitensis using four infectious doses: 10(3) colony-forming units (CFU), 10(4) CFU, 10(5) CFU, and 10(6) CFU. During the experimental period, no instances of abortion were recorded, but stillbirths were observed in the groups infected with doses of 10(4) CFU and higher. Regardless of whether the fetuses were stillborn or alive, transmission of bacteria to the fetus and bacterial replication in the cytoplasm of placental trophoblast giant cells were detected. A higher degree of bacterial colonization was found in the placenta than in the spleen or fetus. Doses of 10(5) CFU of B. melitensis or higher produced a severe, necrotizing placentitis similar to the pathological damage observed in ruminants. The data suggest that experimental murine brucellosis resembles ruminant brucellosis and represents a potential model for studying the pathogenic mechanisms of B. melitensis.
Collapse
Affiliation(s)
- Z Wang
- Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan Xilu No. 2, Haidian District, Beijing 100193, China
| | - S S Wang
- College of Biological Sciences, Anyang Institute of Technology, Anyang 455000, China
| | - G L Wang
- College of Veterinary Medicine, Qinghai University, Xining 810000, China
| | - T L Wu
- Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan Xilu No. 2, Haidian District, Beijing 100193, China
| | - Y L Lv
- Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan Xilu No. 2, Haidian District, Beijing 100193, China
| | - Q M Wu
- Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan Xilu No. 2, Haidian District, Beijing 100193, China.
| |
Collapse
|