1
|
Zheng J, Wang Y, Zhang C, Zhang A, Zhou Y, Xu Y, Yu J, Tian Z. Electroacupuncture negatively regulates the Nesfatin-1/ERK/CREB pathway to alleviate HPA axis hyperactivity and anxiety-like behaviors caused by surgical trauma. Chin Med 2024; 19:108. [PMID: 39153974 PMCID: PMC11330601 DOI: 10.1186/s13020-024-00974-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/29/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis constitutes a pivotal response by surgical trauma, manifesting as a critical aspect of the acute stress reaction. This hyperactivity resulted in adverse surgical outcomes and is often associated with increased postoperative anxiety. Increased evidence suggests that Nesfatin-1 plays a crucial role in stress responses and stress-related psychiatric disorders. Electroacupuncture (EA) is widely used to alleviate stress responses and anxiety, although its mechanism of action remains unclear. This study aimed to assess the mechanisms by which hypothalamic Nesfatin-1 contribute to the alleviation of HPA axis hyperactivity and anxiety by EA. METHODS Partial hepatectomy (HT) was performed to simulate surgical trauma, and EA was applied at Zusanli (ST36) and Sanyinjiao (SP6). The levels of hypothalamic Nesfatin-1, c-Fos, and corticotropin-releasing hormone (CRH) were detected, and serum adrenocorticotropic hormone (ACTH) and corticosterone (CORT) were regarded as indicators of HPA axis activity. Anxiety levels were assessed through open field tests (OFT), elevated plus maze (EPM), and light-dark box tests (LDBT). To investigate the role of Nesfatin-1, its expression was modulated using stereotactic viral injections or plasmid transfections. Transcriptome sequencing was employed to explore the downstream signaling pathways of Nesfatin-1. Additionally, brain cannula implantation was performed to facilitate targeted drug administration. RESULTS Our findings demonstrated that EA reduced the hypothalamic overexpression of CRH and Nesfatin-1, as well as serum levels of ACTH and CORT. Additionally, it alleviated anxiety-like behaviors resulting from surgical trauma. We observed that overexpression of Nesfatin-1 in the hypothalamic paraventricular nucleus (PVN) triggered hyperactivity of the HPA axis and anxiety. Conversely, knocking down Nesfatin-1 in the PVN reversed these effects caused by surgical trauma. Transcriptome sequencing identified the extracellular regulated protein kinases (ERK)/cAMP-response element binding protein (CREB) pathway as a key mediator in the impacts of surgical trauma and EA on the hypothalamus. Both in vivo and in vitro studies showed that overexpression of Nesfatin-1 activated the ERK/CREB pathway. Furthermore, administering ERK or CREB inhibitors into the PVN mitigated HPA axis hyperactivity and anxiety-like behaviors induced by surgical trauma. Finally, EA was observed to decrease the phosphorylation levels of ERK and CREB in the PVN. CONCLUSION EA alleviates HPA axis hyperactivity and anxiety-like behaviors caused by surgical trauma through inhibition of Nesfatin-1/ERK/CREB pathway in the hypothalamus.
Collapse
Affiliation(s)
- Jiayuan Zheng
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute of Acupuncture Research, Academy of Integrative Medicine, Shanghai Key Laboratory for Acupuncture Mechanism and Acupoint Function, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yu Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute of Acupuncture Research, Academy of Integrative Medicine, Shanghai Key Laboratory for Acupuncture Mechanism and Acupoint Function, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Chi Zhang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Anjing Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Department of Neurological Rehabilitation Medicine, The First Rehabilitation Hospital of Shanghai, Shanghai, 200090, China
| | - Yuxiang Zhou
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute of Acupuncture Research, Academy of Integrative Medicine, Shanghai Key Laboratory for Acupuncture Mechanism and Acupoint Function, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yunhua Xu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute of Acupuncture Research, Academy of Integrative Medicine, Shanghai Key Laboratory for Acupuncture Mechanism and Acupoint Function, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jin Yu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute of Acupuncture Research, Academy of Integrative Medicine, Shanghai Key Laboratory for Acupuncture Mechanism and Acupoint Function, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhanzhuang Tian
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute of Acupuncture Research, Academy of Integrative Medicine, Shanghai Key Laboratory for Acupuncture Mechanism and Acupoint Function, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Osiak-Wicha C, Kras K, Tomaszewska E, Muszyński S, Arciszewski MB. Examining the Potential Applicability of Orexigenic and Anorexigenic Peptides in Veterinary Medicine for the Management of Obesity in Companion Animals. Curr Issues Mol Biol 2024; 46:6725-6745. [PMID: 39057043 PMCID: PMC11275339 DOI: 10.3390/cimb46070401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
This review article comprehensively explores the role of orexigenic and anorexigenic peptides in the management of obesity in companion animals, with a focus on clinical applications. Obesity in domestic animals, particularly dogs and cats, is prevalent, with significant implications for their health and well-being. Factors contributing to obesity include overfeeding, poor-quality diet, lack of physical activity, and genetic predispositions. Despite the seriousness of this condition, it is often underestimated, with societal perceptions sometimes reinforcing unhealthy behaviors. Understanding the regulation of food intake and identifying factors affecting the function of food intake-related proteins are crucial in combating obesity. Dysregulations in these proteins, whether due to genetic mutations, enzymatic dysfunctions, or receptor abnormalities, can have profound health consequences. Molecular biology techniques play a pivotal role in elucidating these mechanisms, offering insights into potential therapeutic interventions. The review categorizes food intake-related proteins into anorexigenic peptides (inhibitors of food intake) and orexigenic peptides (enhancers of food intake). It thoroughly examines current research on regulating energy balance in companion animals, emphasizing the clinical application of various peptides, including ghrelin, phoenixin (PNX), asprosin, glucagon-like peptide 1 (GLP-1), leptin, and nesfatin-1, in veterinary obesity management. This comprehensive review aims to provide valuable insights into the complex interplay between peptides, energy balance regulation, and obesity in companion animals. It underscores the importance of targeted interventions and highlights the potential of peptide-based therapies in improving the health outcomes of obese pets.
Collapse
Affiliation(s)
- Cezary Osiak-Wicha
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; (C.O.-W.); (K.K.)
| | - Katarzyna Kras
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; (C.O.-W.); (K.K.)
| | - Ewa Tomaszewska
- Department of Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland;
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| | - Marcin B. Arciszewski
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; (C.O.-W.); (K.K.)
| |
Collapse
|
3
|
El‐Shaer RAA, Ibrahim S, Hewady PM, Atef MM, El‐Deeb OS, Hafez YM, Amer RS, El‐Sharnoby JAE, AbuoHashish NA, Awad MM. Selenium protects against nesfatin-1 modulation of the hypothalamic-pituitary-testicular axis during hypothyroidism in male rats. Physiol Rep 2024; 12:e15923. [PMID: 38268116 PMCID: PMC10808778 DOI: 10.14814/phy2.15923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/29/2023] [Accepted: 12/31/2023] [Indexed: 01/26/2024] Open
Abstract
Normal gonadal function can be disrupted by hypothyroidism. Hypothyroidism disturbs testicular function directly and centrally by affecting the hypothalamic-pituitary-testicular axis with unclear mechanism. As nesfatin-1 neurons co-localized with TRH and GnRH neurons in the hypothalamus, it could play a role in centrally hypothyroidism induced testicular dysfunction. Selenium (Se), by affecting thyroid iodide supply, could relieve these disturbances. So, we aim to identify the role of nesfatin-1 as a link between testicular dysfunction and hypothyroidism through modulating the MAPK/ERK pathway while discussing the possible role of Se in alleviating hypothyroidism and associated testicular damage. Forty male rats were divided equally into: Control: distilled water, Se: Se orally, Propylthiouracil (PTU): PTU orally, PTU + Se: Se with PTU orally. Serum thyroid function, gonadal hormones, nesfatin-1, testicular redox status, sperm analysis, brain tissue GnRH, nucleobindin 2-derived polypeptide, pMAPK/ERK gene expression, histological changes and immunohistochemical expression of testicular proliferating cell antigen (PCNA) were done. PTU induced hypothyroidism and reduction of gonadal hormones which both were correlated with reduced nesfatin-1. There was testicular stress with reduced GnRH, NUCB2, pMAPK/ERK gene expression, and PCNA immunopositive cells. These parameters were reversed by Se. Nesfatin-1 could be the central link between hypothyroidism and disturbances of the hypothalamic pituitary testicular axis.
Collapse
Affiliation(s)
| | - Sarah Ibrahim
- Human Anatomy and Embryology Department, Faculty of MedicineTanta UniversityTantaEgypt
| | | | | | | | | | - Rania Saed Amer
- Clinical Pathology Department, Faculty of MedicineTanta UniversityTantaEgypt
| | | | | | - Marwa Mahmoud Awad
- Medical Physiology Department, Faculty of MedicineTanta UniversityTantaEgypt
| |
Collapse
|
4
|
Nery Neto JADO, Yariwake VY, Câmara NOS, Andrade-Oliveira V. Enteroendocrine cells and gut hormones as potential targets in the crossroad of the gut-kidney axis communication. Front Pharmacol 2023; 14:1248757. [PMID: 37927592 PMCID: PMC10620747 DOI: 10.3389/fphar.2023.1248757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023] Open
Abstract
Recent studies suggest that disruptions in intestinal homeostasis, such as changes in gut microbiota composition, infection, and inflammatory-related gut diseases, can be associated with kidney diseases. For instance, genomic investigations highlight how susceptibility genes linked to IgA nephropathy are also correlated with the risk of inflammatory bowel disease. Conversely, investigations demonstrate that the use of short-chain fatty acids, produced through fermentation by intestinal bacteria, protects kidney function in models of acute and chronic kidney diseases. Thus, the dialogue between the gut and kidney seems to be crucial in maintaining their proper function, although the factors governing this crosstalk are still emerging as the field evolves. In recent years, a series of studies have highlighted the significance of enteroendocrine cells (EECs) which are part of the secretory lineage of the gut epithelial cells, as important components in gut-kidney crosstalk. EECs are distributed throughout the epithelial layer and release more than 20 hormones in response to microenvironment stimuli. Interestingly, some of these hormones and/or their pathways such as Glucagon-Like Peptide 1 (GLP-1), GLP-2, gastrin, and somatostatin have been shown to exert renoprotective effects. Therefore, the present review explores the role of EECs and their hormones as regulators of gut-kidney crosstalk and their potential impact on kidney diseases. This comprehensive exploration underscores the substantial contribution of EEC hormones in mediating gut-kidney communication and their promising potential for the treatment of kidney diseases.
Collapse
Affiliation(s)
- José Arimatéa de Oliveira Nery Neto
- Bernardo’s Lab, Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Victor Yuji Yariwake
- Bernardo’s Lab, Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Niels Olsen Saraiva Câmara
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Vinicius Andrade-Oliveira
- Bernardo’s Lab, Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Zhang S, Zhang T, Xu Y, Rong G, Jing J. Inhibition of NUCB2 suppresses the proliferation, migration, and invasion of rheumatoid arthritis synovial fibroblasts from patients with rheumatoid arthritis in vitro. J Orthop Surg Res 2022; 17:574. [PMID: 36585713 PMCID: PMC9801639 DOI: 10.1186/s13018-022-03453-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune polyarthritis in which synovial fibroblasts (SF) play a major role in cartilage and bone destruction through tumorlike proliferation, migration, and invasion. Nesfatin-1, an 82-amino-acid-long peptide discovered by Oh-I in 2006, is derived from the precursor protein nucleobindin-2 (NUCB2). NUCB2/nesfatin-1 promotes cell proliferation, migration, and invasion in various tumors. We have previously shown that increased nesfatin-1 levels in the synovium may be associated with disease severity in patients with RA. However, the effect of NUCB2 on the tumorlike transformation of RASF has not yet been reported. The expression of NUCB2 mRNA in the synovium of RA and non-RA patients was further confirmed using three individual datasets from the NCBI GEO database. Gene set enrichment analysis (GSEA) was employed to explore the association between NUCB2 mRNA and RA-related gene signatures or signaling pathways in the GSE77298 dataset. Cell proliferation, migration, and invasion abilities were determined using Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), wound healing, and transwell assays, respectively. The results showed that the levels of NUCB2 mRNA in the synovium were significantly elevated in patients with RA. Moreover, GSEA showed that high expression of NUCB2 mRNA was related to gene signatures, including those involved in the cell cycle, DNA replication, extracellular matrix-receptor interaction, and focal adhesion. Furthermore, the results of CCK-8 and EdU assays indicated that inhibition of NUCB2 markedly repressed RASF proliferation. Additionally, the results of wound healing and transwell assays demonstrated that inhibition of NUCB2 significantly suppressed the migratory and invasive abilities of RASFs. Our findings are the first to demonstrate that the inhibition of NUCB2 suppresses the proliferation, migration, and invasion of RASFs in vitro.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230032, Anhui, People's Republic of China
| | - Tao Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yayun Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Genxiang Rong
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Juehua Jing
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230032, Anhui, People's Republic of China.
| |
Collapse
|
6
|
Weibert E, Hofmann T, Elbelt U, Rose M, Stengel A. NUCB2/nesfatin-1 is associated with severity of eating disorder symptoms in female patients with obesity. Psychoneuroendocrinology 2022; 143:105842. [PMID: 35752057 DOI: 10.1016/j.psyneuen.2022.105842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Nesfatin-1 has been described as an anorexigenic peptide. Comprehensive evidence also points towards an involvement of nesfatin-1 in the modulation of emotional pathways with a sex-specific regulation of nesfatin-1 in association with anxiety. Although the implication of nesfatin-1 in the regulation of food intake is well-established in animals, data in humans are lacking. Therefore, we investigated a possible association of circulating NUCB2/nesfatin-1 with eating disorder symptoms in female and male patients displaying a wide range of body weight. METHODS We enrolled 243 inpatients (177 female, 66 male) hospitalized due to anorexia nervosa (n = 66) or obesity (n = 144) or with normal weight and suffering from somatoform, adjustment, depressive or anxiety disorders (n = 33). Plasma samples (NUCB2/nesfatin-1 levels measured by ELISA) and measures of eating disorder symptoms (by EDI-2, range 0-100) were obtained within three days after admission. RESULTS The study population displayed a distinct prevalence of eating disorder symptoms with female patients with anorexia nervosa (+ 77.0%, p < 0.001) and obesity (+ 87.9%, p < 0.001) reported significantly higher EDI-2 scores than normal weight patients of the same sex. Accordingly, males with anorexia nervosa (+ 39.7%, p < 0.05) and obesity (+ 51.7%, p < 0.001) had significantly higher EDI-2 scores than males with normal weight. Within the same BMI group, women displayed significantly higher scores than men (+ 21.4%, p < 0.05 in patients with anorexia nervosa, + 18.8%, p < 0.001 in participants with obesity). We observed a positive correlation between NUCB2/nesfatin-1 levels and EDI-2 total scores in female patients with obesity (r = 0.285, p = 0.015), whereas no associations were found in other subgroups. A positive correlation between NUCB2/nesfatin-1 levels and BMI was only observed in the male study population (r = 0.315, p = 0.018). CONCLUSIONS NUCB2/nesfatin-1 plasma levels were positively associated with EDI-2 total scores in women with obesity, while no association was observable in men. The lacking association of NUCB2/nesfatin-1 and EDI-2 total scores in female patients with anorexia nervosa might be due to already low NUCB2/nesfatin-1 plasma levels. Whether NUCB2/nesfatin-1 is selectively involved in eating behavior in women with obesity will have to be further investigated.
Collapse
Affiliation(s)
- Elena Weibert
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Charité Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Tobias Hofmann
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Charité Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Ulf Elbelt
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Charité Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany; Endokrinologikum Berlin, Berlin, Germany
| | - Matthias Rose
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Charité Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Quantitative Health Sciences, Outcomes Measurement Science, University of Massachusetts Medical School, Worcester, MA, USA
| | - Andreas Stengel
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Charité Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
7
|
Chen X, Dong J, Jiao Q, Du X, Bi M, Jiang H. "Sibling" battle or harmony: crosstalk between nesfatin-1 and ghrelin. Cell Mol Life Sci 2022; 79:169. [PMID: 35239020 PMCID: PMC11072372 DOI: 10.1007/s00018-022-04193-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/17/2022]
Abstract
Ghrelin was first identified as an endogenous ligand of the growth hormone secretagogue receptor (GHSR) in 1999, with the function of stimulating the release of growth hormone (GH), while nesfatin-1 was identified in 2006. Both peptides are secreted by the same kind of endocrine cells, X/A-like cells in the stomach. Compared with ghrelin, nesfatin-1 exerts opposite effects on energy metabolism, glucose metabolism, gastrointestinal functions and regulation of blood pressure, but exerts similar effects on anti-inflammation and neuroprotection. Up to now, nesfatin-1 remains as an orphan ligand because its receptor has not been identified. Several studies have shown the effects of nesfatin-1 are dependent on the receptor of ghrelin. We herein compare the effects of nesfatin-1 and ghrelin in several aspects and explore the possibility of their interactions.
Collapse
Affiliation(s)
- Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Jing Dong
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Mingxia Bi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
8
|
Rupp SK, Stengel A. Interactions between nesfatin-1 and the autonomic nervous system-An overview. Peptides 2022; 149:170719. [PMID: 34953946 DOI: 10.1016/j.peptides.2021.170719] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022]
Abstract
Nesfatin-1, an 82-amino acid polypeptide derived from the precursor protein nucleobindin-2 (NUCB2), was first discovered in 2006 in the rat hypothalamus. The effects and distribution of nesfatin-1 immunopositive neurons in the brain and spinal cord point towards a role of NUCB2/nesfatin-1 in autonomic regulation. Therefore, studies which have been conducted to investigate the interplay between nesfatin-1 and the autonomic nervous system were examined, and the outcomes of this research were summarized. NUCB2/nesfatin-1 immunoreactivity is widely distributed in autonomic centers of the brain and spinal cord in both rodents and humans. In several regions of the hypothalamus, midbrain and brainstem, nesfatin-1 modulates autonomic functions. On the other hand, the autonomic nervous system also influences the activity of nesfatin-1 neurons. Here, the vagus nerve seems to be a crucial factor in the regulation of nesfatin-1. In summary, although data here is still sparse, there is a clear interplay between nesfatin-1 and the autonomic nervous system, the precise clarification of which still requires further research to gain more insight into these complex relationships.
Collapse
Affiliation(s)
- Sophia Kristina Rupp
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Stengel
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany; Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
9
|
Nasri A, Unniappan S. Nucleobindin-derived nesfatin-1 and nesfatin-1-like peptide stimulate pro-opiomelanocortin synthesis in murine AtT-20 corticotrophs through the cAMP/PKA/CREB signaling pathway. Mol Cell Endocrinol 2021; 536:111401. [PMID: 34302909 DOI: 10.1016/j.mce.2021.111401] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022]
Abstract
Nucleobindin (NUCB)-derived peptides, nesfatin-1 (NES-1) and nesfatin-1-like peptide (NLP) have several physiological roles in vertebrates. While NES-1 is implicated in stress, whether NUCB1/NLP and NUCB2/NES-1 have any effect on proopiomelanocortin (POMC) remains unknown. The main aim of this study was to determine if NES-1 and/or NLP affect POMC synthesis in mouse corticotrophs. Immunocytochemistry was employed to target NUCB colocalization with POMC in immortalized mouse tumoral corticotrophs (AtT-20 cells). The ability of NES-1 and NLP to modulate POMC mRNA and protein in AtT-20 cells was assessed by qPCR and Western blot, respectively. Moreover, cell-signaling molecules mediating the effect of NES-1 and NLP on POMC synthesis in mouse tumoral corticotrophs were studied using pharmacological blockers. Mouse tumoral corticotrophs showed immunoreactivity for both NUCB1/NLP and NUCB2/NES-1. Both NES-1 and NLP exerted a stimulatory effect on POMC transcript abundance and protein expression in a dose- and time-dependent manner. This effect was comparable to corticotropin-releasing factor (CRF, positive control) stimulation of POMC. Incubation of mouse tumoral corticotrophs with NES-1 or NLP upregulated the phosphorylation of protein kinase A (PKA) and cAMP-response element-binding protein (CREB). The stimulatory effect of these peptides on POMC transcript abundance and protein expression was blocked by the PKA inhibitor, H89, and an adenylate cyclase inhibitor, 2',3'-dideoxyadenosine (DDA). These pharmacological studies indicate that NES-1 and NLP act through the cAMP/PKA/CREB cellular pathway to stimulate POMC synthesis. Our results provide molecular evidence to support a stimulatory role for nucleobindin-derived peptides on POMC synthesis from corticotrophs. Collectively, this research indicates that corticotrophs produce NUCBs, and the encoded peptides NES-1 and NLP could elicit a direct action to stimulate the pituitary stress hormone. This stimulatory effect is mediated by an uncharacterized G protein-coupled receptor (GPCR) that utilizes the cAMP/PKA/CREB pathway.
Collapse
Affiliation(s)
- Atefeh Nasri
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7V 1H2, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7V 1H2, Canada.
| |
Collapse
|
10
|
Dotania K, Tripathy M, Rai U. A comparative account of nesfatin-1 in vertebrates. Gen Comp Endocrinol 2021; 312:113874. [PMID: 34331938 DOI: 10.1016/j.ygcen.2021.113874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 07/14/2021] [Accepted: 07/25/2021] [Indexed: 12/17/2022]
Abstract
Nesfatin-1 was discovered as an anorexigenic peptide derived from proteolytic cleavage of the prepropeptide, nucleobindin 2 (NUCB2). It is widely expressed in central as well as peripheral tissues and is known to have pleiotropic effects such as regulation of feeding, reproduction, cardiovascular functions and maintenance of glucose homeostasis. In order to execute its multifaceted role, nesfatin-1 employs diverse signaling pathways though its receptor has not been identified till date. Further, nesfatin-1 is reported to be under the regulatory effect of feeding state, nutritional status as well as several metabolic and reproductive hormones. This peptide has also been associated with variety of human diseases, especially metabolic, reproductive, cardiovascular and mental disorders. The current review is aimed to present a consolidated picture and highlight lacunae for further investigation in order to develop a deeper comprehensive understanding on physiological significance of nesfatin-1 in vertebrates.
Collapse
Affiliation(s)
| | - Mamta Tripathy
- Department of Zoology, Kalindi College, University of Delhi, Delhi 110008, India
| | - Umesh Rai
- Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
11
|
Role of the Novel Peptide Phoenixin in Stress Response and Possible Interactions with Nesfatin-1. Int J Mol Sci 2021; 22:ijms22179156. [PMID: 34502065 PMCID: PMC8431171 DOI: 10.3390/ijms22179156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/23/2022] Open
Abstract
The novel peptide phoenixin was shown to be involved in several physiological processes ranging from reproduction to food intake. Interest in this protein has steadily increased over the last few years and its known implications have become much broader, playing a role in glucose homeostasis, anxiety, nociception, and pruritus. Phoenixin is expressed in a multitude of organs such as the small intestine, pancreas, and in the hypothalamus, as well as several other brain nuclei influencing numerous physiological functions. Its highly conserved amino-acid sequence amongst species leads to the assumption, that phoenixin might be involved in essential physiological functions. Its co-expression and opposing functionality to the extensively studied peptide nesfatin-1 has given rise to the idea of a possible counterbalancing role. Several recent publications focused on phoenixin’s role in stress reactions, namely restraint stress and lipopolysaccharide-induced inflammation response, in which also nesfatin-1 is known to be altered. This review provides an overview on the phoenixins and nesfatin-1 properties and putative effects, and especially highlights the recent developments on their role and interaction in the response to response.
Collapse
|
12
|
Vélez EJ, Nasri A, Unniappan S. Nesfatin-1 and Nesfatin-1-like peptide suppress basal and TRH-Induced expression of prolactin and prolactin regulatory element-binding protein mRNAs in rat GH3 somatolactotrophs. Mol Cell Endocrinol 2021; 529:111269. [PMID: 33819522 DOI: 10.1016/j.mce.2021.111269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/20/2021] [Accepted: 03/29/2021] [Indexed: 11/23/2022]
Abstract
Prolactin (PRL), mainly synthesized and secreted by the lactotrophs and somatolactotrophs of the anterior pituitary, is a pleiotropic hormone that regulates lactation. In the last decade, nesfatin-1 (NESF) and NESF-like peptide (NLP), encoded in nucleobindin 1 and 2 (NUCB1 and NUCB2), respectively, were characterized as metabolic factors with a potential role in the control of pituitary hormones. We hypothesized that NUCBs and their encoded peptides (NESF and NLP) suppress PRL transcription in the pituitary. The main objective of this research was to determine whether exogenous NESF and NLP, and/or endogenous NUCB1 and NUCB2 regulate the expression of prl and preb mRNAs. Using immortalized rat somatolactotrophs (GH3 cells), dose-response studies were performed to test whether NESF and NLP affect prl and preb. Moreover, the ability of these peptides to modulate the effects of the PRL stimulator thyrotropin releasing hormone (TRH) was studied. Besides, the effects of siRNA-mediated knockdown of endogenous NUCBs on prl and preb mRNAs were determined. NESF and NLP reduced the transcription of prl and preb in GH3 cells. Both NESF and NLP also prevented the stimulatory effects of TRH prl and preb expression. The knockdown of endogenous NUCB1 attenuates both basal prl and TRH-induced expression of prl and preb, while the silencing of NUCBs did not affect the actions of exogenous NESF or NLP. Overall, this work reveals that NUCBs and encoded-peptides are novel regulators of PRL. Future research should test whether the effects observed here in GH3 cells are preserved both in vivo and at the post-transcriptional level.
Collapse
Affiliation(s)
- Emilio J Vélez
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Atefeh Nasri
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
13
|
Schalla MA, Taché Y, Stengel A. Neuroendocrine Peptides of the Gut and Their Role in the Regulation of Food Intake. Compr Physiol 2021; 11:1679-1730. [PMID: 33792904 DOI: 10.1002/cphy.c200007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The regulation of food intake encompasses complex interplays between the gut and the brain. Among them, the gastrointestinal tract releases different peptides that communicate the metabolic state to specific nuclei in the hindbrain and the hypothalamus. The present overview gives emphasis on seven peptides that are produced by and secreted from specialized enteroendocrine cells along the gastrointestinal tract in relation with the nutritional status. These established modulators of feeding are ghrelin and nesfatin-1 secreted from gastric X/A-like cells, cholecystokinin (CCK) secreted from duodenal I-cells, glucagon-like peptide 1 (GLP-1), oxyntomodulin, and peptide YY (PYY) secreted from intestinal L-cells and uroguanylin (UGN) released from enterochromaffin (EC) cells. © 2021 American Physiological Society. Compr Physiol 11:1679-1730, 2021.
Collapse
Affiliation(s)
- Martha A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Yvette Taché
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.,VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
14
|
Devesa J. The Complex World of Regulation of Pituitary Growth Hormone Secretion: The Role of Ghrelin, Klotho, and Nesfatins in It. Front Endocrinol (Lausanne) 2021; 12:636403. [PMID: 33776931 PMCID: PMC7991839 DOI: 10.3389/fendo.2021.636403] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/12/2021] [Indexed: 12/27/2022] Open
Abstract
The classic concept of how pituitary GH is regulated by somatostatin and GHRH has changed in recent years, following the discovery of peripheral hormones involved in the regulation of energy homeostasis and mineral homeostasis. These hormones are ghrelin, nesfatins, and klotho. Ghrelin is an orexigenic hormone, released primarily by the gastric mucosa, although it is widely expressed in many different tissues, including the central nervous system and the pituitary. To be active, ghrelin must bind to an n-octanoyl group (n = 8, generally) on serine 3, forming acyl ghrelin which can then bind and activate a G-protein-coupled receptor leading to phospholipase C activation that induces the formation of inositol 1,4,5-triphosphate and diacylglycerol that produce an increase in cytosolic calcium that allows the release of GH. In addition to its direct action on somatotrophs, ghrelin co-localizes with GHRH in several neurons, facilitating its release by inhibiting somatostatin, and acts synergistically with GHRH stimulating the synthesis and secretion of pituitary GH. Gastric ghrelin production declines with age, as does GH. Klotho is an anti-aging agent, produced mainly in the kidneys, whose soluble circulating form directly induces GH secretion through the activation of ERK1/2 and inhibits the inhibitory effect that IGF-I exerts on GH. Children and adults with untreated GH-deficiency show reduced plasma levels of klotho, but treatment with GH restores them to normal values. Deletions or mutations of the Klotho gene affect GH production. Nesfatins 1 and 2 are satiety hormones, they inhibit food intake. They have been found in GH3 cell cultures where they significantly reduce the expression of gh mRNA and that of pituitary-specific positive transcription factor 1, consequently acting as inhibitors of GH production. This is a consequence of the down-regulation of the cAMP/PKA/CREB signaling pathway. Interestingly, nesfatins eliminate the strong positive effect that ghrelin has on GH synthesis and secretion. Throughout this review, we will attempt to broadly analyze the role of these hormones in the complex world of GH regulation, a world in which these hormones already play a very important role.
Collapse
Affiliation(s)
- Jesús Devesa
- Scientific and Medical Direction, Medical Center Foltra, Teo, Spain
| |
Collapse
|
15
|
Yeom E, Shin H, Yoo W, Jun E, Kim S, Hong SH, Kwon DW, Ryu TH, Suh JM, Kim SC, Lee KS, Yu K. Tumour-derived Dilp8/INSL3 induces cancer anorexia by regulating feeding neuropeptides via Lgr3/8 in the brain. Nat Cell Biol 2021; 23:172-183. [PMID: 33558728 DOI: 10.1038/s41556-020-00628-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 12/16/2020] [Indexed: 01/30/2023]
Abstract
In patients with advanced-stage cancer, cancer-associated anorexia affects treatment success and patient survival. However, the underlying mechanism is poorly understood. Here, we show that Dilp8, a Drosophila homologue of mammalian insulin-like 3 peptide (INSL3), is secreted from tumour tissues and induces anorexia through the Lgr3 receptor in the brain. Activated Dilp8-Lgr3 signalling upregulated anorexigenic nucleobinding 1 (NUCB1) and downregulated orexigenic short neuropeptide F (sNPF) and NPF expression in the brain. In the cancer condition, the protein expression of Lgr3 and NUCB1 was significantly upregulated in neurons expressing sNPF and NPF. INSL3 levels were increased in tumour-implanted mice and INSL3-treated mouse hypothalamic cells showed Nucb2 upregulation and Npy downregulation. Food consumption was significantly reduced in intracerebrospinal INSL3-injected mice. In patients with pancreatic cancer, higher serum INSL3 levels increased anorexia. These results indicate that tumour-derived Dilp8/INSL3 induces cancer anorexia by regulating feeding hormones through the Lgr3/Lgr8 receptor in Drosophila and mammals.
Collapse
Affiliation(s)
- Eunbyul Yeom
- Metabolism and Neurophysiology Research Group, Disease Target Structure Research Center, KRIBB, Daejeon, Korea
- Tunneling Nanotube Research Center, Korea University, Seoul, Korea
| | - Hyemi Shin
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Korea
| | - Wonbeak Yoo
- Environmental Disease Research Center, KRIBB, Daejeon, Korea
| | - Eunsung Jun
- Department of Convergence Medicine and Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, University of Ulsan College of Medicine, Asan Institute for Life Sciences, AMIST, Asan Medical Center, Seoul, Korea
| | - Seokho Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, Korea
| | - Seung Hyun Hong
- Metabolism and Neurophysiology Research Group, Disease Target Structure Research Center, KRIBB, Daejeon, Korea
| | - Dae-Woo Kwon
- Metabolism and Neurophysiology Research Group, Disease Target Structure Research Center, KRIBB, Daejeon, Korea
- Department of Functional Genomics, UST, Daejeon, Korea
| | - Tae Hoon Ryu
- Metabolism and Neurophysiology Research Group, Disease Target Structure Research Center, KRIBB, Daejeon, Korea
- Department of Functional Genomics, UST, Daejeon, Korea
| | - Jae Myoung Suh
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Korea.
| | - Song Cheol Kim
- Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Asan Biomedical Engineering Research Center, AMIST, Seoul, Korea.
| | - Kyu-Sun Lee
- Metabolism and Neurophysiology Research Group, Disease Target Structure Research Center, KRIBB, Daejeon, Korea.
- Department of Functional Genomics, UST, Daejeon, Korea.
| | - Kweon Yu
- Metabolism and Neurophysiology Research Group, Disease Target Structure Research Center, KRIBB, Daejeon, Korea.
- Department of Functional Genomics, UST, Daejeon, Korea.
- Convergence Research Center of Dementia, KIST, Seoul, Korea.
| |
Collapse
|
16
|
Rupp SK, Wölk E, Stengel A. Nesfatin-1 Receptor: Distribution, Signaling and Increasing Evidence for a G Protein-Coupled Receptor - A Systematic Review. Front Endocrinol (Lausanne) 2021; 12:740174. [PMID: 34566899 PMCID: PMC8461182 DOI: 10.3389/fendo.2021.740174] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Nesfatin-1 is an 82-amino acid polypeptide, cleaved from the 396-amino acid precursor protein nucleobindin-2 (NUCB2) and discovered in 2006 in the rat hypothalamus. In contrast to the growing body of evidence for the pleiotropic effects of the peptide, the receptor mediating these effects and the exact signaling cascades remain still unknown. METHODS This systematic review was conducted using a search in the Embase, PubMed, and Web of Science databases. The keywords "nesfatin-1" combined with "receptor", "signaling", "distribution", "pathway", g- protein coupled receptor", and "binding" were used to identify all relevant articles reporting about potential nesfatin-1 signaling and the assumed mediation via a Gi protein-coupled receptor. RESULTS Finally, 1,147 articles were found, of which 1,077 were excluded in several steps of screening, 70 articles were included in this systematic review. Inclusion criteria were studies investigating nesfatin-1's putative receptor or signaling cascade, observational preclinical and clinical studies, experimental studies, registry-based studies, cohort studies, population-based studies, and studies in English language. After screening for eligibility, the studies were assigned to the following subtopics and discussed regarding intracellular signaling of nesfatin-1 including the potential receptor mediating these effects and downstream signaling of the peptide. CONCLUSION The present review sheds light on the various effects of nesfatin-1 by influencing several intracellular signaling pathways and downstream cascades, including the peptide's influence on various hormones and their receptors. These data point towards mediation via a Gi protein-coupled receptor. Nonetheless, the identification of the nesfatin-1 receptor will enable us to better investigate the exact mediating mechanisms underlying the different effects of the peptide along with the development of agonists and antagonists.
Collapse
Affiliation(s)
- Sophia Kristina Rupp
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - Ellen Wölk
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Andreas Stengel
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- *Correspondence: Andreas Stengel,
| |
Collapse
|
17
|
Nesfatin-1 and nesfatin-1-like peptide suppress growth hormone synthesis via the AC/PKA/CREB pathway in mammalian somatotrophs. Sci Rep 2020; 10:16686. [PMID: 33028951 PMCID: PMC7541516 DOI: 10.1038/s41598-020-73840-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/23/2020] [Indexed: 12/16/2022] Open
Abstract
Nesfatin-1 (NESF) and NESF-like peptide (NLP), encoded in nucleobindin 2 and 1 (NUCB2 and NUCB1), respectively, are orphan ligands and metabolic factors. We hypothesized that NESF and NLP suppress growth hormone (GH) synthesis, and aimed to determine whether mammalian somatotrophs are a source and site of action of these peptides. Using immortalized rat somatotrophs (GH3 cells), NUCB expression was determined by qPCR, immunofluorescence and Western blot. NESF and NLP binding to GH3 cells was tested using fluorescence imaging. Both time- and concentration-dependent studies were performed to test whether NESF and NLP affect GH. Moreover, the ability of these peptides to modulate the effects of ghrelin, and cell-signaling pathways were studied. GH3 cells express NUCB mRNAs and protein. Labeled NESF and NLP bind to the surface of GH3 cells, and incubation with either NESF or NLP decreased GH mRNA and protein expression, downregulated pit-1 mRNA, and blocked the GH stimulatory effects of ghrelin. Pre-incubation with either of these peptides reduced CREB phosphorylation by an AC-activator, but not when PKA was directly activated by a cAMP analog. Our results indicate that rat somatotrophs are a source of NUCBs, and that NESF and NLP downregulate GH synthesis through the AC/PKA/CREB signaling pathway.
Collapse
|
18
|
Schalla MA, Unniappan S, Lambrecht NWG, Mori M, Taché Y, Stengel A. NUCB2/nesfatin-1 - Inhibitory effects on food intake, body weight and metabolism. Peptides 2020; 128:170308. [PMID: 32229144 DOI: 10.1016/j.peptides.2020.170308] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/17/2020] [Accepted: 03/20/2020] [Indexed: 02/06/2023]
Abstract
Since its discovery in 2006 by Oh-I and colleagues, NUCB2/nesfatin-1 encoded by nucleobindin-2 (NUCB2) has drawn sustained attention as reflected in over 500 publications. Among those, more than half focused on the alterations of food intake, body weight and metabolism (glucose, fat) induced by nesfatin-1 and/or NUCB2/nesfatin-1. In the current review we discuss the existing literature focusing on NUCB2/nesfatin-1's influence on food intake, body weight and glucose as well as fat metabolism and highlight gaps in knowledge.
Collapse
Affiliation(s)
- Martha A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Nils W G Lambrecht
- Department of Pathology and Laboratory Medicine, VA Medical Center, Long Beach, California, USA
| | - Masatomo Mori
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yvette Taché
- VA Greater Los Angeles Healthcare System, Los Angeles, California, USA; Department of Medicine, CURE: Digestive Diseases Research Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
19
|
Angelone T, Rocca C, Pasqua T. Nesfatin-1 in cardiovascular orchestration: From bench to bedside. Pharmacol Res 2020; 156:104766. [PMID: 32201244 DOI: 10.1016/j.phrs.2020.104766] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/09/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022]
Abstract
Since the discovery of Nesfatin-1 in 2006, intensive research was finalized to further and deeper investigate the precise physiological functions of the peptide at both central and peripheral levels, rapidly enriching the knowledge regarding this intriguing molecule. Nesfatin-1 is a hypothalamic peptide generated via the post-translational processing of its precursor Nucleobindin 2, a protein supposed to play a role in many biological processes thanks to its ability to bind calcium and to interact with different intracellular proteins. Nesfatin-1 is mainly known for its anorexic properties, but it also controls water intake and glucose homeostasis. Recent experimental evidences describe the peptide as a possible direct/indirect orchestrator of central and peripheral cardiovascular control. A specific Nesfatin-1 receptor still remains to be identified although numerous studies suggest that the peptide activates extra- and intracellular regulatory pathways by involving several putative binding sites. The present paper was designed to systematically review the latest findings about Nesfatin-1, focusing on its cardiovascular regulatory properties under normal and physiopathological conditions. The hope is to provide the conceptual basis to consider Nesfatin-1 not only as a pleiotropic neuroendocrine molecule, but also as a homeostatic modulator of the cardiovascular function and with a crucial role in cardiovascular diseases.
Collapse
Affiliation(s)
- Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Patho-physiology, Dept of Biology, Ecology and Earth Sciences, University of Calabria, Rende, CS, Italy; National Institute of Cardiovascular Research I.N.R.C., Bologna, Italy.
| | - Carmine Rocca
- Laboratory of Cellular and Molecular Cardiovascular Patho-physiology, Dept of Biology, Ecology and Earth Sciences, University of Calabria, Rende, CS, Italy
| | - Teresa Pasqua
- Laboratory of Cellular and Molecular Cardiovascular Patho-physiology, Dept of Biology, Ecology and Earth Sciences, University of Calabria, Rende, CS, Italy.
| |
Collapse
|
20
|
Dong D, Xie J, Wang J. Neuroprotective Effects of Brain-Gut Peptides: A Potential Therapy for Parkinson's Disease. Neurosci Bull 2019; 35:1085-1096. [PMID: 31286411 DOI: 10.1007/s12264-019-00407-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/29/2019] [Indexed: 12/16/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease and is typically associated with progressive motor and non-motor dysfunctions. Currently, dopamine replacement therapy is mainly used to relieve the motor symptoms, while its long-term application can lead to various complications and does not cure the disease. Numerous studies have demonstrated that many brain-gut peptides have neuroprotective effects in vivo and in vitro, and may be a promising treatment for PD. In recent years, some progress has been made in studies on the neuroprotective effects of some newly-discovered brain-gut peptides, such as glucagon-like peptide 1, pituitary adenylate cyclase activating polypeptide, nesfatin-1, and ghrelin. However, there is still no systematic review on the neuroprotective effects common to these peptides. Thus, here we review the neuroprotective effects and the associated mechanisms of these four peptides, as well as other brain-gut peptides related to PD, in the hope of providing new ideas for the treatment of PD and related clinical research.
Collapse
Affiliation(s)
- Dong Dong
- Department of Physiology and Pathophysiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, 266071, China
| | - Junxia Xie
- Department of Physiology and Pathophysiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, 266071, China.
| | - Jun Wang
- Department of Physiology and Pathophysiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
21
|
Pate AT, Schnell AL, Ennis TA, Samson WK, Yosten GLC. Expression and function of nesfatin-1 are altered by stage of the estrous cycle. Am J Physiol Regul Integr Comp Physiol 2019; 317:R328-R336. [PMID: 31141415 DOI: 10.1152/ajpregu.00249.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nesfatin-1 is a peptide derived from the nucleobindin 2 (Nucb2) precursor protein that has been shown to exert potent effects on appetite and cardiovascular function in male animals. Sex hormones modulate the expression of Nucb2 in several species, including goldfish, mouse, and rat, and human studies have revealed differential expression based on male or female sex. We therefore hypothesized that the ability of nesfatin-1 to increase mean arterial pressure (MAP) would be influenced by stage of the estrous cycle. Indeed, we found that in cycling female Sprague-Dawley rats, nesfatin-1 induced an increase in MAP on diestrus, when both estrogen and progesterone levels are low but not on proestrus or estrus. The effect of nesfatin-1 on MAP was dependent on functional central melanocortin receptors, because the nesfatin-1-induced increase in MAP was abolished by pretreatment with the melanocortin 3/4 receptor antagonist, SHU9119. We previously reported that nesfatin-1 inhibited angiotensin II-induced water drinking in male rats but found no effect of nesfatin-1 in females in diestrus. However, nesfatin-1 enhanced angiotensin II-induced elevations in MAP in females in diestrus but had no effect on males. Finally, in agreement with previous reports, the expression of Nucb2 mRNA in hypothalamus was significantly reduced in female rats in proestrus compared with rats in diestrus. From these data we conclude that the function and expression of nesfatin-1 are modulated by sex hormone status. Further studies are required to determine the contributions of chromosomal sex and individual sex hormones to the cardiovascular effects of nesfatin-1.
Collapse
Affiliation(s)
- Alicia T Pate
- Saint Louis College of Pharmacy, St. Louis, Missouri
| | - Abigayle L Schnell
- Department of Pharmacology and Physiology, St. Louis University School of Medicine, St. Louis, Missouri
| | - Teresa A Ennis
- Department of Pharmacology and Physiology, St. Louis University School of Medicine, St. Louis, Missouri
| | - Willis K Samson
- Department of Pharmacology and Physiology, St. Louis University School of Medicine, St. Louis, Missouri
| | - Gina L C Yosten
- Department of Pharmacology and Physiology, St. Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
22
|
Leung AKW, Ramesh N, Vogel C, Unniappan S. Nucleobindins and encoded peptides: From cell signaling to physiology. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 116:91-133. [PMID: 31036300 DOI: 10.1016/bs.apcsb.2019.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nucleobindins (NUCBs) are DNA and calcium binding, secreted proteins with various signaling functions. Two NUCBs, nucleobindin-1 (NUCB1) and nucleobindin-2 (NUCB2), were discovered during the 1990s. These two peptides are shown to have diverse functions, including the regulation of inflammation and bone formation, among others. In 2006, Oh-I and colleagues discovered that three peptides encoded within the NUCB2 could be processed by prohormone convertases. These peptides were named nesfatin-1, 2 and 3, mainly due to the satiety and fat influencing properties of nesfatin-1. However, it was found that nesfatin-2 and -3 have no such effects. Nesfatin-1, especially its mid-segment, is very highly conserved across vertebrates. Although the receptor(s) that mediate nesfatin-1 effects are currently unknown, it is now considered an endogenous peptide with multiple functions, affecting central and peripheral tissues to regulate metabolism, reproduction, endocrine and other functions. We recently identified a nesfatin-1-like peptide (NLP) encoded within the NUCB1. Like nesfatin-1, NLP suppressed feed intake in mice and fish, and stimulated insulin secretion from pancreatic beta cells. There is considerable evidence available to indicate that nucleobindins and its encoded peptides are multifunctional regulators of cell biology and whole animal physiology. This review aims to briefly discuss the structure, distribution, functions and mechanism of action nucleobindins and encoded peptides.
Collapse
Affiliation(s)
- Adelaine Kwun-Wai Leung
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, Saskatoon, SK, Canada
| | - Naresh Ramesh
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, Saskatoon, SK, Canada
| | - Christine Vogel
- Department of Biology, New York University, New York, NY, United States
| | - Suraj Unniappan
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, Saskatoon, SK, Canada.
| |
Collapse
|
23
|
Schalla MA, Stengel A. Current Understanding of the Role of Nesfatin-1. J Endocr Soc 2018; 2:1188-1206. [PMID: 30302423 PMCID: PMC6169466 DOI: 10.1210/js.2018-00246] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 09/05/2018] [Indexed: 12/13/2022] Open
Abstract
Nesfatin-1 was discovered in 2006 and implicated in the regulation of food intake. Subsequently, its widespread central and peripheral distribution gave rise to additional effects. Indeed, a multitude of actions were described, including modulation of gastrointestinal functions, glucose and lipid metabolism, thermogenesis, mediation of anxiety and depression, as well as cardiovascular and reproductive functions. Recent years have witnessed a great increase in our knowledge of these effects and their underlying mechanisms, which will be discussed in the present review. Lastly, gaps in knowledge will be highlighted to foster further studies.
Collapse
Affiliation(s)
- Martha A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
24
|
Blanco AM, Velasco C, Bertucci JI, Soengas JL, Unniappan S. Nesfatin-1 Regulates Feeding, Glucosensing and Lipid Metabolism in Rainbow Trout. Front Endocrinol (Lausanne) 2018; 9:484. [PMID: 30210451 PMCID: PMC6121026 DOI: 10.3389/fendo.2018.00484] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 08/06/2018] [Indexed: 12/21/2022] Open
Abstract
Nesfatin-1 is an 82 amino acid peptide that has been involved in a wide variety of physiological functions in both mammals and fish. This study aimed to elucidate the role of nesfatin-1 on rainbow trout food intake, and its putative effects on glucose and fatty acid sensing systems. Intracerebroventricular administration of 25 ng/g nesfatin-1 resulted in a significant inhibition of appetite, likely mediated by the activation of central POMC and CART. Nesfatin-1 stimulated the glucosensing machinery (changes in sglt1, g6pase, gsase, and gnat3 mRNA expression) in the hindbrain and hypothalamus. Central fatty acid sensing mechanisms were unaltered by nesfatin-1, but this peptide altered the expression of mRNAs encoding factors regulating lipid metabolism (fat/cd36, acly, mcd, fas, lpl, pparα, and pparγ), suggesting that nesfatin-1 promotes lipid accumulation in neurons. In the liver, intracerebroventricular nesfatin-1 treatment resulted in decreased capacity for glucose use and lipogenesis, and increased the potential of fatty acid oxidation. Altogether, the present results demonstrate that nesfatin-1 is involved in the homeostatic regulation of food intake and metabolism in fish.
Collapse
Affiliation(s)
- Ayelén M. Blanco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Cristina Velasco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Juan I. Bertucci
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Chascomús, Argentina
| | - José L. Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Suraj Unniappan
| |
Collapse
|
25
|
Adipokine Contribution to the Pathogenesis of Osteoarthritis. Mediators Inflamm 2017; 2017:5468023. [PMID: 28490838 PMCID: PMC5401756 DOI: 10.1155/2017/5468023] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/25/2017] [Accepted: 03/07/2017] [Indexed: 12/13/2022] Open
Abstract
Recent studies have shown that overweight and obesity play an important role in the development of osteoarthritis (OA). However, joint overload is not the only risk factor in this disease. For instance, the presence of OA in non-weight-bearing joints such as the hand suggests that metabolic factors may also contribute to its pathogenesis. Recently, white adipose tissue (WAT) has been recognized not only as an energy reservoir but also as an important secretory organ of adipokines. In this regard, adipokines have been closely associated with obesity and also play an important role in bone and cartilage homeostasis. Furthermore, drugs such as rosuvastatin or rosiglitazone have demonstrated chondroprotective and anti-inflammatory effects in cartilage explants from patients with OA. Thus, it seems that adipokines are important factors linking obesity, adiposity, and inflammation in OA. In this review, we are focused on establishing the physiological mechanisms of adipokines on cartilage homeostasis and evaluating their role in the pathophysiology of OA based on evidence derived from experimental research as well as from clinical-epidemiological studies.
Collapse
|
26
|
Nesfatin-1 protects dopaminergic neurons against MPP +/MPTP-induced neurotoxicity through the C-Raf-ERK1/2-dependent anti-apoptotic pathway. Sci Rep 2017; 7:40961. [PMID: 28106099 PMCID: PMC5247731 DOI: 10.1038/srep40961] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 12/14/2016] [Indexed: 01/16/2023] Open
Abstract
Several brain-gut peptides have been reported to have a close relationship with the central dopaminergic system; one such brain-gut peptide is nesfatin-1. Nesfatin-1 is a satiety peptide that is predominantly secreted by X/A-like endocrine cells in the gastric glands, where ghrelin is also secreted. We previously reported that ghrelin exerted neuroprotective effects on nigral dopaminergic neurons, which implied a role for ghrelin in Parkinson’s disease (PD). In the present study, we aim to clarify whether nesfatin-1 has similar effects on dopaminergic neurons both in vivo and in vitro. We show that nesfatin-1 attenuates the loss of nigral dopaminergic neurons in the 1-methyl-4-phenyl-1, 2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. In addition, nesfatin-1 antagonized 1-methyl-4-phenylpyridillium ion (MPP+)-induced toxicity by restoring mitochondrial function, inhibiting cytochrome C release and preventing caspase-3 activation in MPP+-treated MES23.5 dopaminergic cells. These neuroprotective effects could be abolished by selective inhibition of C-Raf and the extracellular signal-regulated protein kinase 1/2 (ERK1/2). Our data suggest that C-Raf-ERK1/2, which is involved in an anti-apoptotic pathway, is responsible for the neuroprotective effects of nesfatin-1 in the context of MPTP-induced toxicity. These results imply that nesfatin-1 might have therapeutic potential for PD.
Collapse
|
27
|
Dore R, Levata L, Lehnert H, Schulz C. Nesfatin-1: functions and physiology of a novel regulatory peptide. J Endocrinol 2017; 232:R45-R65. [PMID: 27754932 DOI: 10.1530/joe-16-0361] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/17/2016] [Indexed: 12/12/2022]
Abstract
Nesfatin-1 was identified in 2006 as a potent anorexigenic peptide involved in the regulation of homeostatic feeding. It is processed from the precursor-peptide NEFA/nucleobindin 2 (NUCB2), which is expressed both in the central nervous system as well as in the periphery, from where it can access the brain via non-saturable transmembrane diffusion. In hypothalamus and brainstem, nesfatin-1 recruits the oxytocin, the melancortin and other systems to relay its anorexigenic properties. NUCB2/nesfatin-1 peptide expression in reward-related areas suggests that nesfatin-1 might also be involved in hedonic feeding. Besides its initially discovered anorexigenic properties, over the last years, other important functions of nesfatin-1 have been discovered, many of them related to energy homeostasis, e.g. energy expenditure and glucose homeostasis. Nesfatin-1 is not only affecting these physiological processes but also the alterations of the metabolic state (e.g. fat mass, glycemic state) have an impact on the synthesis and release of NUCB2 and/or nesfatin-1. Furthermore, nesfatin-1 exerts pleiotropic actions at the level of cardiovascular and digestive systems, as well as plays a role in stress response, behavior, sleep and reproduction. Despite the recent advances in nesfatin-1 research, a putative receptor has not been identified and furthermore potentially distinct functions of nesfatin-1 and its precursor NUCB2 have not been dissected yet. To tackle these open questions will be the major objectives of future research to broaden our knowledge on NUCB2/nesfatin-1.
Collapse
Affiliation(s)
- Riccardo Dore
- Department of Internal Medicine ICenter of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Luka Levata
- Department of Internal Medicine ICenter of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Hendrik Lehnert
- Department of Internal Medicine ICenter of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Carla Schulz
- Department of Internal Medicine ICenter of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| |
Collapse
|
28
|
Nakata M, Gantulga D, Santoso P, Zhang B, Masuda C, Mori M, Okada T, Yada T. Paraventricular NUCB2/Nesfatin-1 Supports Oxytocin and Vasopressin Neurons to Control Feeding Behavior and Fluid Balance in Male Mice. Endocrinology 2016; 157:2322-32. [PMID: 27105386 DOI: 10.1210/en.2015-2082] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nesfatin-1, derived from nucleobindin-2 (NUCB2), is expressed in the hypothalamus, including the paraventricular nucleus (PVN), an integrative center for energy homeostasis. However, precise role of the NUCB2/nesfatin-1 in PVN remains less defined. The present study aimed to clarify physiological and/or pathophysiological roles of endogenous NUCB2/nesfatin-1 in PVN by using adeno-associated virus vectors encoding short hairpin RNAs targeting NUCB2 in mice. PVN-specific NUCB2 knockdown primarily increased food intake and decreased plasma oxytocin level specifically in light phase, leading to increased body weight gain without affecting energy expenditure. Furthermore, high-salt diet increased the systolic blood pressure, plasma arginine vasopressin (AVP) and AVP mRNA expression in PVN, and all these changes were blunted by PVN-specific NUCB2 knockdown. These results reveal that the endogenous NUCB2/nesfatin-1 in PVN regulates PVN AVP and oxytocin and consequently the fluid and energy balance.
Collapse
Affiliation(s)
- Masanori Nakata
- Division of Integrative Physiology (M.N., D.G., P.S., B.Z., T.Y.), Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0498, Japan; Department of Biochemistry and Molecular Biology (C.M., T.O.), Division of Gene Therapy, Research Center for Advanced Medical Technology, Nippon Medical School, Tokyo 113-8603, Japan; Metabolic and Obese Research Institute (M.M.), Maebashi, Gunma 371-0037, Japan; and Department of Developmental Physiology (T.Y.), Division of Adaptation Development, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Darambazar Gantulga
- Division of Integrative Physiology (M.N., D.G., P.S., B.Z., T.Y.), Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0498, Japan; Department of Biochemistry and Molecular Biology (C.M., T.O.), Division of Gene Therapy, Research Center for Advanced Medical Technology, Nippon Medical School, Tokyo 113-8603, Japan; Metabolic and Obese Research Institute (M.M.), Maebashi, Gunma 371-0037, Japan; and Department of Developmental Physiology (T.Y.), Division of Adaptation Development, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Putra Santoso
- Division of Integrative Physiology (M.N., D.G., P.S., B.Z., T.Y.), Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0498, Japan; Department of Biochemistry and Molecular Biology (C.M., T.O.), Division of Gene Therapy, Research Center for Advanced Medical Technology, Nippon Medical School, Tokyo 113-8603, Japan; Metabolic and Obese Research Institute (M.M.), Maebashi, Gunma 371-0037, Japan; and Department of Developmental Physiology (T.Y.), Division of Adaptation Development, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Boyang Zhang
- Division of Integrative Physiology (M.N., D.G., P.S., B.Z., T.Y.), Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0498, Japan; Department of Biochemistry and Molecular Biology (C.M., T.O.), Division of Gene Therapy, Research Center for Advanced Medical Technology, Nippon Medical School, Tokyo 113-8603, Japan; Metabolic and Obese Research Institute (M.M.), Maebashi, Gunma 371-0037, Japan; and Department of Developmental Physiology (T.Y.), Division of Adaptation Development, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Chiaki Masuda
- Division of Integrative Physiology (M.N., D.G., P.S., B.Z., T.Y.), Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0498, Japan; Department of Biochemistry and Molecular Biology (C.M., T.O.), Division of Gene Therapy, Research Center for Advanced Medical Technology, Nippon Medical School, Tokyo 113-8603, Japan; Metabolic and Obese Research Institute (M.M.), Maebashi, Gunma 371-0037, Japan; and Department of Developmental Physiology (T.Y.), Division of Adaptation Development, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Masatomo Mori
- Division of Integrative Physiology (M.N., D.G., P.S., B.Z., T.Y.), Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0498, Japan; Department of Biochemistry and Molecular Biology (C.M., T.O.), Division of Gene Therapy, Research Center for Advanced Medical Technology, Nippon Medical School, Tokyo 113-8603, Japan; Metabolic and Obese Research Institute (M.M.), Maebashi, Gunma 371-0037, Japan; and Department of Developmental Physiology (T.Y.), Division of Adaptation Development, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Takashi Okada
- Division of Integrative Physiology (M.N., D.G., P.S., B.Z., T.Y.), Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0498, Japan; Department of Biochemistry and Molecular Biology (C.M., T.O.), Division of Gene Therapy, Research Center for Advanced Medical Technology, Nippon Medical School, Tokyo 113-8603, Japan; Metabolic and Obese Research Institute (M.M.), Maebashi, Gunma 371-0037, Japan; and Department of Developmental Physiology (T.Y.), Division of Adaptation Development, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Toshihiko Yada
- Division of Integrative Physiology (M.N., D.G., P.S., B.Z., T.Y.), Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0498, Japan; Department of Biochemistry and Molecular Biology (C.M., T.O.), Division of Gene Therapy, Research Center for Advanced Medical Technology, Nippon Medical School, Tokyo 113-8603, Japan; Metabolic and Obese Research Institute (M.M.), Maebashi, Gunma 371-0037, Japan; and Department of Developmental Physiology (T.Y.), Division of Adaptation Development, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
29
|
Feijóo-Bandín S, Rodríguez-Penas D, García-Rúa V, Mosquera-Leal A, González-Juanatey JR, Lago F. Nesfatin-1: a new energy-regulating peptide with pleiotropic functions. Implications at cardiovascular level. Endocrine 2016; 52:11-29. [PMID: 26662184 DOI: 10.1007/s12020-015-0819-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/24/2015] [Indexed: 02/07/2023]
Abstract
Nesfatin-1 is a new energy-regulating peptide widely expressed at both central and peripheral tissues with pleiotropic effects. In the last years, the study of nesfatin-1 actions and its possible implication in the development of different diseases has created a great interest among the scientific community. In this review, we will summarize nesfatin-1 main functions, focusing on its cardiovascular implications.
Collapse
Affiliation(s)
- Sandra Feijóo-Bandín
- Cellular and Molecular Cardiology Research Unit of the Institute of Biomedical Research (IDIS) of Santiago de Compstela, and Department of Cardiology of the University Clinical Hospital of Santiago de Compostela, 15706, Santiago De Compostela, Spain.
| | - Diego Rodríguez-Penas
- Cellular and Molecular Cardiology Research Unit of the Institute of Biomedical Research (IDIS) of Santiago de Compstela, and Department of Cardiology of the University Clinical Hospital of Santiago de Compostela, 15706, Santiago De Compostela, Spain
| | - Vanessa García-Rúa
- Cellular and Molecular Cardiology Research Unit of the Institute of Biomedical Research (IDIS) of Santiago de Compstela, and Department of Cardiology of the University Clinical Hospital of Santiago de Compostela, 15706, Santiago De Compostela, Spain
| | - Ana Mosquera-Leal
- Cellular and Molecular Cardiology Research Unit of the Institute of Biomedical Research (IDIS) of Santiago de Compstela, and Department of Cardiology of the University Clinical Hospital of Santiago de Compostela, 15706, Santiago De Compostela, Spain
| | - José Ramón González-Juanatey
- Cellular and Molecular Cardiology Research Unit of the Institute of Biomedical Research (IDIS) of Santiago de Compstela, and Department of Cardiology of the University Clinical Hospital of Santiago de Compostela, 15706, Santiago De Compostela, Spain
| | - Francisca Lago
- Cellular and Molecular Cardiology Research Unit of the Institute of Biomedical Research (IDIS) of Santiago de Compstela, and Department of Cardiology of the University Clinical Hospital of Santiago de Compostela, 15706, Santiago De Compostela, Spain
| |
Collapse
|
30
|
Prinz P, Goebel-Stengel M, Teuffel P, Rose M, Klapp BF, Stengel A. Peripheral and central localization of the nesfatin-1 receptor using autoradiography in rats. Biochem Biophys Res Commun 2016; 470:521-527. [DOI: 10.1016/j.bbrc.2016.01.113] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 01/18/2016] [Indexed: 10/22/2022]
|
31
|
Tanida M, Gotoh H, Yamamoto N, Wang M, Kuda Y, Kurata Y, Mori M, Shibamoto T. Hypothalamic Nesfatin-1 Stimulates Sympathetic Nerve Activity via Hypothalamic ERK Signaling. Diabetes 2015; 64:3725-36. [PMID: 26310564 DOI: 10.2337/db15-0282] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 07/20/2015] [Indexed: 11/13/2022]
Abstract
Nesfatin-1 acts on the hypothalamus and regulates the autonomic nervous system. However, the hypothalamic mechanisms of nesfatin-1 on the autonomic nervous system are not well understood. In this study, we found that intracerebroventricular (ICV) administration of nesfatin-1 increased the extracellular signal-regulated kinase (ERK) activity in rats. Furthermore, the activity of sympathetic nerves, in the kidneys, liver, and white adipose tissue (WAT), and blood pressure was stimulated by the ICV injection of nesfatin-1, and these effects were abolished owing to pharmacological inhibition of ERK. Renal sympathoexcitatory and hypertensive effects were also observed with nesfatin-1 microinjection into the paraventricular hypothalamic nucleus (PVN). Moreover, nesfatin-1 increased the number of phospho (p)-ERK1/2-positive neurons in the PVN and coexpression of the protein in neurons expressing corticotropin-releasing hormone (CRH). Pharmacological blockade of CRH signaling inhibited renal sympathetic and hypertensive responses to nesfatin-1. Finally, sympathetic stimulation of WAT and increased p-ERK1/2 levels in response to nesfatin-1 were preserved in obese animals such as rats that were fed a high-fat diet and leptin receptor-deficient Zucker fatty rats. These findings indicate that nesfatin-1 regulates the autonomic nervous system through ERK signaling in PVN-CRH neurons to maintain cardiovascular function and that the antiobesity effect of nesfatin-1 is mediated by hypothalamic ERK-dependent sympathoexcitation in obese animals.
Collapse
Affiliation(s)
- Mamoru Tanida
- Department of Physiology II, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Hitoshi Gotoh
- Department of Biology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naoki Yamamoto
- College of Pharmacology, Hokuriku University, Kanazawa, Ishikawa, Japan
| | - Mofei Wang
- Department of Physiology II, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Yuhichi Kuda
- Department of Physiology II, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Yasutaka Kurata
- Department of Physiology II, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Masatomo Mori
- Kitakanto Molecular Novel Research Institute for Obesity and Metabolism, Midori City, Gunma, Japan
| | - Toshishige Shibamoto
- Department of Physiology II, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| |
Collapse
|
32
|
Stengel A. Nesfatin-1 - More than a food intake regulatory peptide. Peptides 2015; 72:175-83. [PMID: 26116783 DOI: 10.1016/j.peptides.2015.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 02/08/2023]
Abstract
Nesfatin-1 was discovered a decade ago and despite the fact that it represents just one of a multitude of food intake-inhibiting factors it received increasing attention. This led to a detailed characterization of NUCB2/nesfatin-1's physiological property to reduce food intake and also gave rise to an involvement in the long term regulation of body weight, especially under conditions of obesity. In addition, studies indicated the involvement of NUCB2/nesfatin-1 in other homeostatic functions as well: glucose homeostasis, water intake, gastrointestinal functions, temperature regulation, cardiovascular functions, puberty onset and sleep. These pleiotropic actions underline the physiological relevance of this peptide. Recently, the involvement of NUCB2/nesfatin-1 in psychiatric disorders such as anxiety has been investigated giving rise to the speculation that NUCB2/nesfatin-1 represents a peptidergic link between eating and anxiety/depression disorders.
Collapse
Affiliation(s)
- Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Division of General Internal and Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany.
| |
Collapse
|
33
|
Finelli C, Martelli G, Rossano R, Padula MC, La Sala N, Sommella L, Tarantino G. Nesfatin-1: role as possible new anti-obesity treatment. EXCLI JOURNAL 2014; 13:586-91. [PMID: 26417285 PMCID: PMC4464156 DOI: pmid/26417285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/08/2014] [Indexed: 02/07/2023]
Abstract
In this article, we review on the current concepts about Nesfatin-1 as a new anti-obesity treatment and evaluate the existing issues in the context of this knowledge and the available literature. The intent is to enable clinicians to know Nesfatin-1 as a new anti-obesity treatment and make rational decisions based on this perspective as possible clinical application. Future research should seek to clarify whether Nesfatin-1 would be beneficial in the management of obesity.
Collapse
Affiliation(s)
- Carmine Finelli
- Center of Obesity and Eating Disorders, Stella Maris Mediterraneum Foundation, Chiaromonte, Potenza, Italy
- *To whom correspondence should be addressed: Carmine Finelli, Center of Obesity and Eating Disorders, Stella Maris Mediterraneum Foundation, Chiaromonte, Potenza, Italy, E-mail:
| | - Giuseppe Martelli
- Department of Science, University of Basilicata, Potenza, Viale dell'Ateneo Lucano, 10, 85100, Italy
| | - Rocco Rossano
- Department of Science, University of Basilicata, Potenza, Viale dell'Ateneo Lucano, 10, 85100, Italy
| | - Maria Carmela Padula
- Department of Science, University of Basilicata, Potenza, Viale dell'Ateneo Lucano, 10, 85100, Italy
| | - Nicolina La Sala
- Center of Obesity and Eating Disorders, Stella Maris Mediterraneum Foundation, Chiaromonte, Potenza, Italy
| | - Luigi Sommella
- Unit of Surgery, S. Giovanni Hospital - Lagonegro, Potenza, Italy
| | - Giovanni Tarantino
- National Cancer Institute "Pascale Foundation" - IRCS- 83013 Mercogliano (Av), Italy
| |
Collapse
|
34
|
Abstract
Hunger and satiety are regulated in a complex fashion by a few food intake stimulatory (orexigenic) and a multitude of inhibitory (anorexigenic) factors produced in the periphery (mainly in the gastrointestinal tract) or directly in the brain. Within the brain, the hypothalamus plays a pivotal role as a production site of food intake regulatory factors. Importantly, this site integrates peripheral and central signaling factors to orchestrate food intake and in the long term body weight. Our knowledge on these regulatory pathways is not static but rather rapidly changing as new factors as well as up- and downstream signaling pathways of already known transmitters are uncovered. Hypothalamic nucleobindin2 (NUCB2), the precursor of nesfatin-1, was first described in 2006 and nesfatin-1 found to be a novel anorexigenic modulator of food intake and body weight. The initial report stimulated several groups to investigate the biological actions of nesfatin-1 and subsequent studies delineated the underlying brain mechanisms involved in its food reducing effect. Of interest was the demonstration that NUCB2 also exerts its anorexigenic action in the paraventricular nucleus of the hypothalamus and is regulated at this site by changes in metabolic status with a diurnal rhythm inversely related to that of feeding in rats. The present review describes the current state-of-knowledge on central nesfatin-1's effects on food intake and body weight and highlights important missing links regarding cellular signaling mechanisms involved in nesfatin-1's action.
Collapse
Affiliation(s)
- A. Stengel
- Charité Center for Internal Medicine and Dermatology, Division for General Internal and Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Y. Taché
- Department of Medicine, CURE Digestive Diseases Research Center and Center for Neurobiology of Stress, Digestive Diseases Division UCLA, and VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
35
|
Nesfatin-1 Decreases Excitability of Dopaminergic Neurons in the Substantia Nigra. J Mol Neurosci 2013; 52:419-24. [DOI: 10.1007/s12031-013-0169-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 10/31/2013] [Indexed: 11/26/2022]
|
36
|
Stengel A, Mori M, Taché Y. The role of nesfatin-1 in the regulation of food intake and body weight: recent developments and future endeavors. Obes Rev 2013; 14:859-70. [PMID: 23980879 PMCID: PMC3810163 DOI: 10.1111/obr.12063] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 06/29/2013] [Accepted: 07/09/2013] [Indexed: 01/07/2023]
Abstract
Nesfatin-1 was discovered in 2006 and introduced as a potential novel anorexigenic modulator of food intake and body weight. The past years have witnessed increasing evidence establishing nesfatin-1 as a potent physiological inhibitor of food intake and body weight and unravelled nesfatin-1's interaction with other brain transmitters to exert its food consumption inhibitory effect. As observed for other anorexigenic brain neuropeptides, nesfatin-1 is also likely to exert additional, if not pleiotropic, actions in the brain and periphery. Recent studies established the prominent expression of the nesfatin-1 precursor, nucleobindin2 (NUCB2), in the stomach and pancreas, where nesfatin-1 influences endocrine secretion. This review will highlight the current experimental state-of-knowledge on the effects of NUCB2/nesfatin-1 on food intake, body weight and glucose homeostasis. Potential implications in human obesity will be discussed in relation to the evidence of changes in circulating levels of NUCB2/nesfatin-1 in disease states, the occurrence of genetic NUCB2 polymorphisms and--in contrast to several other hormones--the independence of leptin signalling known to be blunted under conditions of chronically increased body weight.
Collapse
Affiliation(s)
- A Stengel
- Charité Center for Internal Medicine and Dermatology, Division for General Internal and Psychosomatic Medicine, Charité- Universitätsmedizin Berlin, Berlin, Germany
| | | | | |
Collapse
|