1
|
Martins L, Bader M, Pesquero JB. Kinins: Locally formed peptides during inflammation with potential use in tissue regeneration. Inflamm Res 2023; 72:1957-1963. [PMID: 37750921 DOI: 10.1007/s00011-023-01799-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 07/23/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023] Open
Abstract
Kinins are a set of peptides present in tissues and involved in cardiovascular regulation, inflammation, and pain. Here, we briefly comment on recent key findings on the use of kinins in regenerative medicine.
Collapse
Affiliation(s)
- Leonardo Martins
- Division of Medical Sciences, Laboratory of Transcriptional Regulation, Institute of Medical Biology of Polish Academy of Sciences (IMB-PAN), 3a Tylna St., 90-364, Łódź, Poland.
- Center for Research and Molecular Diagnosis of Genetic Diseases, Federal University of São Paulo, Rua Pedro de Toledo 669, 9th floor, São Paulo, 04039032, Brazil.
- Department of Biochemistry and Molecular Biology, Federal University of São Paulo, Rua Três de Maio 100, 4th floor, São Paulo, 04044-020, Brazil.
| | - Michael Bader
- Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany
- Institute for Biology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- Charité University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Potsdamer Str. 58, 10785, Berlin, Germany
| | - João Bosco Pesquero
- Center for Research and Molecular Diagnosis of Genetic Diseases, Federal University of São Paulo, Rua Pedro de Toledo 669, 9th floor, São Paulo, 04039032, Brazil
- Department of Biophysics, Federal University of São Paulo, Rua Botucatu 862, 6th floor, São Paulo, 04023-062, Brazil
| |
Collapse
|
2
|
Rampa DR, Murugesan P, Chao H, Feng H, Dai W, Lee D, Pekcec A, Doods H, Wu D. Reversal of pulmonary arterial hypertension and neointimal formation by kinin B1 receptor blockade. Respir Res 2021; 22:281. [PMID: 34717626 PMCID: PMC8557528 DOI: 10.1186/s12931-021-01875-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/19/2021] [Indexed: 11/15/2022] Open
Abstract
Background This study examined whether BI113823, a novel selective kinin B1 receptor antagonist can reverse established pulmonary arterial hypertension (PAH), prevent right heart failure and death, which is critical for clinical translation. Methods Left pneumonectomized male Wistar rats were injected with monocrotaline to induce PAH. Three weeks later, when PAH was well established, the rats received daily treatment of BI113823 or vehicle for 3 weeks. Results Treatment with BI113823 from day 21 to day 42 after monocrotaline injection reversed established PAH as shown by normalized values of mean pulmonary arterial pressure (mPAP). BI113823 therapy reversed pulmonary vascular remodeling, pulmonary arterial neointimal formation, and heart and lung fibrosis, reduced right ventricular pressure, right heart hypertrophy, improved cardiac output, and prevented right heart failure and death. Treatment with BI113823 reduced TNF-α and IL-1β, and macrophages recruitment in bronchoalveolar lavage, reduced CD-68 positive macrophages and expression of proliferating cell nuclear antigen (PCNA) in the perivascular areas, and reduced expression of iNOS, B1 receptors, matrix metalloproteinase (MMP)-2 and MMP-9 proteins, and the phosphorylation of ERK1/2 and AKT in lung. Treatment with BI113823 reduced mRNA expression of ANP, BNP, βMHC, CGTF, collange-I and IV in right heart, compared to vehicle treated controls. In human monocytes cultures, BI113823 reduced LPS-induced TNF-α production, MMP-2 and MMP-9 expression, and reduced TNF-α-induced monocyte migration. Conclusions We conclude that BI113823 reverses preexisting severe experimental pulmonary hypertension via inhibition of macrophage infiltration, cytokine production, as well as down regulation of matrix metalloproteinase proteins.
Collapse
Affiliation(s)
- Dileep Reddy Rampa
- Department of Bio-Nanotechnology and Bio-Convergence Engineering, Chonbuk National University, Jeonju, South Korea
| | - Priya Murugesan
- Department of Bio-Nanotechnology and Bio-Convergence Engineering, Chonbuk National University, Jeonju, South Korea
| | - Honglu Chao
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huiying Feng
- Department of Bio-Nanotechnology and Bio-Convergence Engineering, Chonbuk National University, Jeonju, South Korea.,Department of Research, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Wenxin Dai
- Department of Bio-Nanotechnology and Bio-Convergence Engineering, Chonbuk National University, Jeonju, South Korea
| | - Dongwon Lee
- Department of Bio-Nanotechnology and Bio-Convergence Engineering, Chonbuk National University, Jeonju, South Korea
| | - Anton Pekcec
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Henri Doods
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Dongmei Wu
- Department of Bio-Nanotechnology and Bio-Convergence Engineering, Chonbuk National University, Jeonju, South Korea. .,Department of Research, Mount Sinai Medical Center, Miami Beach, FL, USA.
| |
Collapse
|
3
|
Gouda AS, Mégarbane B. Snake venom-derived bradykinin-potentiating peptides: A promising therapy for COVID-19? Drug Dev Res 2020; 82:38-48. [PMID: 32761647 PMCID: PMC7436322 DOI: 10.1002/ddr.21732] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/23/2022]
Abstract
The severe acute respiratory syndrome coronavirus‐2 (SARS‐COV‐2), a novel coronavirus responsible for the recent infectious pandemic, is known to downregulate angiotensin‐converting enzyme‐2 (ACE2). Most current investigations focused on SARS‐COV‐2‐related effects on the renin–angiotensin system and especially the resultant increase in angiotensin II, neglecting its effects on the kinin–kallikrein system. SARS‐COV‐2‐induced ACE2 inhibition leads to the augmentation of bradykinin 1‐receptor effects, as ACE2 inactivates des‐Arg9‐bradykinin, a bradykinin metabolite. SARS‐COV‐2 also decreases bradykinin 2‐receptor effects as it affects bradykinin synthesis by inhibiting cathepsin L, a kininogenase present at the site of infection and involved in bradykinin production. The physiologies of both the renin–angiotensin and kinin–kallikrein system are functionally related suggesting that any intervention aiming to treat SARS‐COV‐2‐infected patients by triggering one system but ignoring the other may not be adequately effective. Interestingly, the snake‐derived bradykinin‐potentiating peptide (BPP‐10c) acts on both systems. BPP‐10c strongly decreases angiotensin II by inhibiting ACE, increasing bradykinin‐related effects on the bradykinin 2‐receptor and increasing nitric oxide‐mediated effects. Based on a narrative review of the literature, we suggest that BPP‐10c could be an optimally effective option to consider when aiming at developing an anti‐SARS‐COV‐2 drug.
Collapse
Affiliation(s)
- Ahmed S Gouda
- National Egyptian Center for Toxicological Researches, Faculty of Medicine, University of Cairo, Cairo, Egypt
| | - Bruno Mégarbane
- Department of Medical and Toxicological Critical Care, Lariboisière Hospital, University of Paris, INSERM UMRS-1144, Paris, France
| |
Collapse
|
4
|
Zakaria ZA, Roosli RAJ, Marmaya NH, Omar MH, Basir R, Somchit MN. Methanol Extract of Dicranopteris linearis Leaves Attenuate Pain via the Modulation of Opioid/NO-Mediated Pathway. Biomolecules 2020; 10:biom10020280. [PMID: 32059475 PMCID: PMC7072186 DOI: 10.3390/biom10020280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/18/2019] [Accepted: 10/10/2019] [Indexed: 11/25/2022] Open
Abstract
Dicranopteris linearis leaf has been reported to exert antinociceptive activity. The present study elucidates the possible mechanisms of antinociception modulated by the methanol extract of D. linearis leaves (MEDL) using various mouse models. The extract (25, 150, and 300 mg/kg) was administered orally to mice for 30 min priot to subjection to the acetic acid-induced writhing-, hot plate- or formalin-test to establish the antinociceptive profile of MEDL. The most effective dose was then used in the elucidation of possible mechanisms of action stage. The extract was also subjected to the phytochemical analyses. The results confirmed that MEDL exerted significant (p < 0.05) antinociceptive activity in those pain models as well as the capsaicin-, glutamate-, bradykinin- and phorbol 12-myristate 13-acetate (PMA)-induced paw licking model. Pretreatment with naloxone (a non-selective opioid antagonist) significantly (p < 0.05) reversed MEDL effect on thermal nociception. Only l-arginine (a nitric oxide (NO) donor) but not N(ω)-nitro-l-arginine methyl ester (l-NAME; a NO inhibitor) or 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; a specific soluble guanylyl cyclase inhibitor) significantly (p < 0.05) modified MEDL effect on the writhing test. Several polyphenolics and volatile antinociceptive compounds were detected in MEDL. In conclusion, MEDL exerted the opioid/NO-mediated antinociceptive activity, thus, justify D. linearis as a potential source for new analgesic agents development.
Collapse
Affiliation(s)
- Zainul Amiruddin Zakaria
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (R.A.J.R.); (M.N.S.)
- Integrative Pharmacogenomics Institute (iPROMISE), Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam Selangor 42300, Malaysia
- Correspondence: ; Tel.: +60-19-211-7090
| | - Rushduddin Al Jufri Roosli
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (R.A.J.R.); (M.N.S.)
| | - Najihah Hanisah Marmaya
- Faculty of Business and Management, Universiti Teknologi MARA, Melaka Campus, Melaka 75300, Malaysia;
| | - Maizatul Hasyima Omar
- Phytochemistry Unit, Herbal Medicine Research Centre, Institute for Medical Research, Jalan Pahang, Kuala Lumpur 50588, Malaysia;
| | - Rusliza Basir
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
| | - Muhammad Nazrul Somchit
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (R.A.J.R.); (M.N.S.)
| |
Collapse
|
5
|
Levy RF, Serra AJ, Antonio EL, Dos Santos L, Bocalini DS, Pesquero JB, Bader M, Merino VF, de Oliveira HA, de Arruda Veiga EC, Silva JA, Tucci PJ. Cardiac morphofunctional characteristics of transgenic rats with overexpression of the bradykinin B1 receptor in the endothelium. Physiol Res 2017; 66:925-932. [PMID: 28937259 DOI: 10.33549/physiolres.933596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Our aim was to evaluate whether endothelial overexpressing of the bradykinin B1 receptor could be associated with altered left ventricular and myocardial performance. Echocardiography and hemodynamic were employed to assess left ventricular morphology and function in Sprague Dawley transgenic rats overexpressing the endothelial bradykinin B1 receptor (Tie2B1 rats). The myocardial inotropism was evaluated on papillary muscles contracting in vitro. In Tie2B1 animals, an enlarged left ventricular cavity and lower fractional shortening coupled with a lower rate of pressure change values indicated depressed left ventricular performance. Papillary muscle mechanics revealed that both Tie2B1 and wild-type rat groups had the same contractile capacities under basal conditions; however, in transgenic animals, there was accentuated inotropism due to post-pause potentiation. Following treatment with the Arg(9)-BK agonist, Tie2B1 papillary muscles displayed a reduction in myocardial inotropism. Endothelial B1 receptor overexpression has expanded the LV cavity and worsened its function. There was an exacerbated response of papillary muscle in vitro to a prolonged resting pause, and the use of a B1 receptor agonist impairs myocardial inotropism.
Collapse
Affiliation(s)
- R F Levy
- Universidade Federal da Paraíba, Joao Pessoa, Paraíba, Brazil, Universidade Federal de Sao Paulo, Sao Paulo, SP, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Resveratrol inhibits BK-induced COX-2 transcription by suppressing acetylation of AP-1 and NF-κB in human rheumatoid arthritis synovial fibroblasts. Biochem Pharmacol 2017; 132:77-91. [DOI: 10.1016/j.bcp.2017.03.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/07/2017] [Indexed: 01/27/2023]
|
7
|
Abdulaal M, Haddad NMN, Sun JK, Silva PS. The Role of Plasma Kallikrein-Kinin Pathway in the Development of Diabetic Retinopathy: Pathophysiology and Therapeutic Approaches. Semin Ophthalmol 2016; 31:19-24. [PMID: 26959125 DOI: 10.3109/08820538.2015.1114829] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Diabetic retinal disease is characterized by a series of retinal microvascular changes and increases in retinal vascular permeability that lead to development of diabetic retinopathy (DR) and diabetic macular edema (DME), respectively. Current treatment strategies for DR and DME are mostly limited to vascular endothelial growth factor (VEGF) inhibitors and laser photocoagulation. These treatment modalities are not universally effective in all patients, and potential side effects persist in a significant portion of patients. The plasma kallikrein-kinin system (KKS) is one of the pathways that has been identified in the vitreous in proliferative DR and DME. Preclinical studies have shown that the activation of intraocular KKS induces retinal vascular permeability, vasodilation, and retinal thickening. Proteomic analysis from vitreous of eyes with DME has shown that KKS and VEGF pathways are potentially independent biologic pathways. Furthermore, proteins associated with DME in the vitreous were significantly more correlated with the KKS pathway compared to VEGF pathway. Preclinical experiments on diabetic animals showed that inhibition of KKS components was found to be an effective approach to decrease retinal vascular permeability. An initial phase I human trial of a novel plasma kallikrein inhibitor for the treatment of DME is currently ongoing to test the safety of this approach and serves as an initial step in the translation of basic science discovery into an innovative clinical intervention.
Collapse
Affiliation(s)
- Marwan Abdulaal
- a Beetham Eye Institute, Joslin Diabetes Center , Boston , Massachusetts , USA , and.,b Department of Ophthalmology , Harvard Medical School , Boston , Massachusetts , USA
| | - Nour Maya N Haddad
- a Beetham Eye Institute, Joslin Diabetes Center , Boston , Massachusetts , USA , and.,b Department of Ophthalmology , Harvard Medical School , Boston , Massachusetts , USA
| | - Jennifer K Sun
- a Beetham Eye Institute, Joslin Diabetes Center , Boston , Massachusetts , USA , and.,b Department of Ophthalmology , Harvard Medical School , Boston , Massachusetts , USA
| | - Paolo S Silva
- a Beetham Eye Institute, Joslin Diabetes Center , Boston , Massachusetts , USA , and.,b Department of Ophthalmology , Harvard Medical School , Boston , Massachusetts , USA
| |
Collapse
|
8
|
Lin X, Bernloehr C, Hildebrandt T, Stadler FJ, Doods H, Wu D. Kinin B1 receptor blockade and ACE inhibition attenuate cardiac postinfarction remodeling and heart failure in rats. Toxicol Appl Pharmacol 2016; 305:153-160. [PMID: 27288733 DOI: 10.1016/j.taap.2016.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 05/18/2016] [Accepted: 06/06/2016] [Indexed: 10/21/2022]
Abstract
INTRODUCTION The aim of the present study was to evaluate the effects of the novel kinin B1 receptor antagonist BI113823 on postinfarction cardiac remodeling and heart failure, and to determine whether B1 receptor blockade alters the cardiovascular effects of an angiotensin 1 converting enzyme (ACE) inhibitor in rats. METHODS AND RESULTS Sprague Dawley rats were subjected to permanent occlusion of the left coronary artery. Cardiovascular function was determined at 6weeks postinfarction. Treatment with either B1 receptor antagonist (BI113823) or an ACE inhibitor (lisinopril) alone or in combination significantly reduced the heart weight-to-body weight and lung weight-to-body weight ratios, and improved postinfarction cardiac function as evidenced by greater cardiac output, the maximum rate of left ventricular pressure rise (±dP/dtmax), left ventricle ejection fraction, fractional shorting, better wall motion, and attenuation of elevated left ventricular end diastolic pressure (LVEDP). Furthermore, all three treatment groups exhibited significant reduction in cardiac interstitial fibrosis, collagen deposition, CD68 positive macrophages, neutrophils, and proinflammatory cytokine production (TNF-α and IL-1β), compared to vehicle controls. CONCLUSION The present study shows that treatment with the novel kinin B1 receptor antagonist, BI113823, reduces postinfarction cardiac remodeling and heart failure, and does not influence the cardiovascular effects of the ACE inhibitor.
Collapse
Affiliation(s)
- Xinchun Lin
- Department of Research, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| | | | | | - Florian J Stadler
- Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Shenzhen 518060, PR China.
| | - Henri Doods
- Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Dongmei Wu
- Department of Research, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; Department of BIN Convergence Technology, Chonbuk National University, South Korea.
| |
Collapse
|
9
|
Kinin B1 receptor antagonist BI113823 reduces allergen-induced airway inflammation and mucus secretion in mice. Pharmacol Res 2015; 104:132-9. [PMID: 26747401 DOI: 10.1016/j.phrs.2015.12.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 12/15/2015] [Accepted: 12/15/2015] [Indexed: 12/30/2022]
Abstract
Kinin B1 receptors are implicated in asthmatic airway inflammation. Here we tested this hypothesis by examining the anti-inflammatory effects of BI113823, a novel non-peptide orally active kinin B1 receptor antagonist in mice sensitized to ovalbumin (OVA). Male Balb-c mice were randomly assigned to four study groups: (1) control, (2) OVA+vehicle, (3) OVA+BI113823, (4) OVA+dexamethasone. Mice were sensitized intraperitoneally with 75μg ovalbumin on days 1 and 8. On days 15-17, mice were challenged intranasally with 50μg of ovalbumin. Mice received vehicle, BI113823, or dexamethasone (positive control) on days 16-18. On day 19, bronchoalveolar lavage (BAL) and lung tissue were collected for biochemical and immuno-histological analysis. Compared to controls treatment with BI113823 significantly reduced the numbers of BAL eosinophils, macrophages, neutrophils and lymphocytes by 58.3%, 61.1%, 66.4% and 56.0%, respectively. Mice treated with dexamethasone showed similar reductions in BAL cells. Treatment with BI113823 and dexamethasone also significantly reduced total protein content, IgE, TNF-α and IL-1β in lavage fluid, reduced myeloperoxidase activity, mucus secretion in lung tissues, and reduced the expression of B1 receptors, matrix metalloproteinase (MMP)-2 and cyclooxygenase (COX)-2 compared to vehicle-treated mice. Only BI113823 reduced MMP-9 and inducible nitric oxide synthase (iNOS). BI113823 effectively reduced OVA-induced inflammatory cell, mediator and signaling pathways equal to or greater than that seen with steroids in a mouse asthma model. BI113823 might be useful in modulating inflammation in asthma.
Collapse
|
10
|
|
11
|
Murugesan P, Jung B, Lee D, Khang G, Doods H, Wu D. Kinin B1 Receptor Inhibition With BI113823 Reduces Inflammatory Response, Mitigates Organ Injury, and Improves Survival Among Rats With Severe Sepsis. J Infect Dis 2015; 213:532-40. [PMID: 26310310 DOI: 10.1093/infdis/jiv426] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/11/2015] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND This study examined the therapeutic effects of an orally active nonpeptide kinin B1 receptor antagonist, BI113823, in a clinically relevant experimental model of polymicrobial sepsis in rats. METHODS Sepsis was induced by cecal ligation and puncture (CLP). Animals received treatment with either vehicle or BI113823. The experiment was terminated in the first set of animals 15 hours after CLP. Seven-day survival following CLP was determined in the second set of animals. RESULTS Compared with vehicle treatment, administration of BI113823 reduced neutrophil and macrophage infiltration, reduced cytokine production, attenuated intestinal mucosal hyperpermeability, prevented hemodynamic derangement, and improved cardiac output. Furthermore, administration of BI113823 reduced inducible nitric oxide synthase expression and the injury score in the lung and attenuated nuclear factor ĸB activation and apoptosis in the liver. Treatment with BI113823 also reduced plasma levels of cardiac troponin, aspartate aminotransferase, alanine aminotransferase, urea, and lactate, as well as proteinuria. Finally, administration of BI113823 improved the 7-day survival rate following CLP in rats. CONCLUSIONS Administration of BI113823 reduced systemic and tissue inflammatory responses, prevented hemodynamic derangement, attenuated multiorgan injury, and improved overall survival.
Collapse
Affiliation(s)
- Priya Murugesan
- Department of BIN Fusion Technology, World Class University Program, Chonbuk National University, Jeonju, Korea
| | - Birgit Jung
- Respiratory Diseases Research, Boehringer Ingelheim Pharma, Biberach, Germany
| | - Dongwon Lee
- Department of BIN Fusion Technology, World Class University Program, Chonbuk National University, Jeonju, Korea
| | - Gilson Khang
- Department of BIN Fusion Technology, World Class University Program, Chonbuk National University, Jeonju, Korea
| | - Henri Doods
- Respiratory Diseases Research, Boehringer Ingelheim Pharma, Biberach, Germany
| | - Dongmei Wu
- Department of BIN Fusion Technology, World Class University Program, Chonbuk National University, Jeonju, Korea Department of Research, Mount Sinai Medical Center, Miami Beach, Florida
| |
Collapse
|
12
|
Murugesan P, Hildebrandt T, Bernlöhr C, Lee D, Khang G, Doods H, Wu D. Inhibition of kinin B1 receptors attenuates pulmonary hypertension and vascular remodeling. Hypertension 2015; 66:906-12. [PMID: 26303291 DOI: 10.1161/hypertensionaha.115.05338] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 08/04/2015] [Indexed: 01/15/2023]
Abstract
This study examined whether the kinin B1 receptor is involved in the pathogenesis of pulmonary hypertension, and whether its inhibition could reduce inflammation, pulmonary hypertension, vascular remodeling, and right heart dysfunction. Male Wistar rats underwent left pneumonectomy. Seven days later, the rats were injected subcutaneously with monocrotaline (60 mg/kg). The rats were then randomly assigned to receive treatment with vehicle or with BI113823 (a selective B1 receptor antagonist, 30 mg/kg, twice per day) via oral gavage from the day of monocrotaline injection to day 28. By day 28, BI113823-treated rats had significantly lower mean pulmonary artery pressure, less right ventricular hypertrophy, and pulmonary arterial neointimal formation than that of the vehicle-treated rats. Real-time polymerase chain reaction revealed that there was a significant increase in mRNA expression of B1 receptors in the lungs of monocrotaline-challenged pneumonectomized rats. Treatment with BI113823 significantly reduced macrophage recruitment, as measured via bronchoalveolar lavage. It also markedly reduced CD-68 positive macrophages and proliferating cell nuclear antigen positive cells in the perivascular areas, reduced expression of inducible nitric oxide synthase, matrix metalloproteinase 2 and 9, and B1 receptors compared with measurements in vehicle-treated rats. These findings demonstrate that kinin B1 receptors represent a novel therapeutic target for pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Priya Murugesan
- Department of BIN Fusion Technology, Chonbuk National University, Jeonju, South Korea (P.M., D.L., G.K., D.W.); Department of Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany (T.H., C.B., H.D.); and Department of Research, Mount Sinai Medical Center, Miami Beach, FL (D.W.)
| | - Tobias Hildebrandt
- Department of BIN Fusion Technology, Chonbuk National University, Jeonju, South Korea (P.M., D.L., G.K., D.W.); Department of Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany (T.H., C.B., H.D.); and Department of Research, Mount Sinai Medical Center, Miami Beach, FL (D.W.)
| | - Christian Bernlöhr
- Department of BIN Fusion Technology, Chonbuk National University, Jeonju, South Korea (P.M., D.L., G.K., D.W.); Department of Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany (T.H., C.B., H.D.); and Department of Research, Mount Sinai Medical Center, Miami Beach, FL (D.W.)
| | - Dongwon Lee
- Department of BIN Fusion Technology, Chonbuk National University, Jeonju, South Korea (P.M., D.L., G.K., D.W.); Department of Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany (T.H., C.B., H.D.); and Department of Research, Mount Sinai Medical Center, Miami Beach, FL (D.W.)
| | - Gilson Khang
- Department of BIN Fusion Technology, Chonbuk National University, Jeonju, South Korea (P.M., D.L., G.K., D.W.); Department of Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany (T.H., C.B., H.D.); and Department of Research, Mount Sinai Medical Center, Miami Beach, FL (D.W.)
| | - Henri Doods
- Department of BIN Fusion Technology, Chonbuk National University, Jeonju, South Korea (P.M., D.L., G.K., D.W.); Department of Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany (T.H., C.B., H.D.); and Department of Research, Mount Sinai Medical Center, Miami Beach, FL (D.W.)
| | - Dongmei Wu
- Department of BIN Fusion Technology, Chonbuk National University, Jeonju, South Korea (P.M., D.L., G.K., D.W.); Department of Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany (T.H., C.B., H.D.); and Department of Research, Mount Sinai Medical Center, Miami Beach, FL (D.W.).
| |
Collapse
|
13
|
Pyridostigmine ameliorates cardiac remodeling induced by myocardial infarction via inhibition of the transforming growth factor-β1/TGF-β1-activated kinase pathway. J Cardiovasc Pharmacol 2014; 63:412-20. [PMID: 24805145 DOI: 10.1097/fjc.0000000000000062] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Autonomic imbalance characterized by sympathetic predominance coinciding with diminished vagal activity is an independent risk factor in cardiovascular diseases. Several studies show that vagus nerve stimulation exerted beneficial effects on cardiac function and survival. In this study, we investigated the vagomimetic effect of pyridostigmine on left ventricular (LV) remodeling in rats after myocardial infarction. After myocardial infarction, surviving rats were treated with or without pyridostigmine (31 mg·kg⁻¹·d⁻¹) for 2 weeks, and hemodynamic parameters were measured. LV tissue was used to assess infarct size and interstitial fibrosis by Masson's trichrome and 0.1% picrosirius red staining. Protein expression of heart tissues was used to assess the efficacy of the treatment. Pyridostigmine markedly reduced myocardial infarct size and improved cardiac diastolic function. These improvements were accompanied with a significant decrease in matrix metalloproteinase-2 expression and collagen deposition. Additionally, pyridostigmine inhibited both transforming growth factor-β1 (TGF-β1) and TGF-β1-activated kinase expression in hearts postmyocardial infarction. Thus, pyridostigmine reduces collagen deposition, attenuates cardiac fibrosis, and improves LV diastolic function after myocardial infarction via TGF-β1/TGF-β1-activated kinase pathway inhibition.
Collapse
|
14
|
More AS, Kim HM, Khang G, Hildebrandt T, Bernlöhr C, Doods H, Vanhoutte PM, Wu D. Des-Arg9-bradykinin causes kinin B1 receptor mediated endothelium-independent contractions in endotoxin-treated porcine coronary arteries. Pharmacol Res 2014; 90:18-24. [DOI: 10.1016/j.phrs.2014.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 09/12/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
|
15
|
Silva JA, Santana ET, Manchini MT, Antônio EL, Bocalini DS, Krieger JE, Tucci PJF, Serra AJ. Exercise training can prevent cardiac hypertrophy induced by sympathetic hyperactivity with modulation of kallikrein-kinin pathway and angiogenesis. PLoS One 2014; 9:e91017. [PMID: 24614810 PMCID: PMC3948752 DOI: 10.1371/journal.pone.0091017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 02/07/2014] [Indexed: 01/19/2023] Open
Abstract
Sympathetic hyperactivity induces adverse effects in myocardial. Recent studies have shown that exercise training induces cardioprotection against sympathetic overload; however, relevant mechanisms of this issue remain unclear. We analyzed whether exercise can prevent pathological hypertrophy induced by sympathetic hyperactivity with modulation of the kallikrein-kinin and angiogenesis pathways. Male Wistar rats were assigned to non-trained group that received vehicle; non-trained isoproterenol treated group (Iso, 0.3 mg kg(-1) day-(1)); and trained group (Iso+Exe) which was subjected to sympathetic hyperactivity with isoproterenol. The Iso rats showed hypertrophy and myocardial dysfunction with reduced force development and relaxation of muscle. The isoproterenol induced severe fibrosis, apoptosis and reduced myocardial capillary. Interestingly, exercise blunted hypertrophy, myocardial dysfunction, fibrosis, apoptosis and capillary decreases. The sympathetic hyperactivity was associated with high abundance of ANF mRNA and β-MHC mRNA, which was significantly attenuated by exercise. The tissue kallikrein was augmented in the Iso+Exe group, and kinin B1 receptor mRNA was increased in the Iso group. Moreover, exercise induced an increase of kinin B2 receptor mRNA in myocardial. The myocardial content of eNOS, VEGF, VEGF receptor 2, pAkt and Bcl-2 were increased in the Iso+Exe group. Likewise, increased expression of pro-apoptotic Bad in the Iso rats was prevented by prior exercise. Our results represent the first demonstration that exercise can modulate kallikrein-kinin and angiogenesis pathways in the myocardial on sympathetic hyperactivity. These findings suggest that kallikrein-kinin and angiogenesis may have a key role in protecting the heart.
Collapse
Affiliation(s)
- José Antônio Silva
- Universidade Nove de Julho (Uninove), Programa de Pós-graduação em Ciências da Reabilitação, Rua Vergueiro, São Paulo, SP, Brazil
- Universidade Nove de Julho (Uninove), Programa de Pós-graduação em Medicina, Rua Vergueiro, São Paulo, SP, Brazil
| | - Eduardo Tadeu Santana
- Universidade Nove de Julho (Uninove), Programa de Pós-graduação em Ciências da Reabilitação, Rua Vergueiro, São Paulo, SP, Brazil
| | - Martha Trindade Manchini
- Universidade Nove de Julho (Uninove), Programa de Pós-graduação em Ciências da Reabilitação, Rua Vergueiro, São Paulo, SP, Brazil
| | - Ednei Luis Antônio
- Universidade Federal de São Paulo (Unifesp), Rua Napoleão de Barros, São Paulo, SP, Brazil
| | - Danilo Sales Bocalini
- Universidade Nove de Julho (Uninove), Programa de Pós-graduação em Ciências da Reabilitação, Rua Vergueiro, São Paulo, SP, Brazil
| | - José Eduardo Krieger
- Universidade de São Paulo, Incor. Av. Dr. Enéas de Carvalho Aguiar, São Paulo, SP, Brazil
| | | | - Andrey Jorge Serra
- Universidade Nove de Julho (Uninove), Programa de Pós-graduação em Ciências da Reabilitação, Rua Vergueiro, São Paulo, SP, Brazil
- Universidade Nove de Julho (Uninove), Programa de Pós-graduação em Medicina, Rua Vergueiro, São Paulo, SP, Brazil
| |
Collapse
|