1
|
Palazzese L, Czernik M, Matsukawa K, Loi P. Somatic Cell Nuclear Transfer Using Freeze-Dried Protaminized Donor Nuclei. Methods Mol Biol 2023; 2647:211-224. [PMID: 37041337 DOI: 10.1007/978-1-0716-3064-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Somatic cell nuclear transfer (SCNT) is the only nuclear reprogramming method that allows rewinding an adult nucleus into a totipotent state. As such, it offers excellent opportunities for the multiplication of elite genotypes or endangered animals, whose number have shrunk to below the threshold of safe existence. Disappointingly, SCNT efficiency is still low. Hence, it would be wise to store somatic cells from threatened animals in biobanks. We were the first to show that freeze-dried cells allow generating blastocysts upon SCNT. Only a few papers have been published on the topic since then, and viable offspring have not been produced. On the other hand, lyophilization of mammalian spermatozoa has made considerable progress, partially due to the physical stability that protamines provide to the genome. In our previous work, we have demonstrated that a somatic cell could be made more amenable to the oocyte reprogramming by the exogenous expression of human Protamine 1. Given that the protamine also provides natural protection against dehydration stress, we have combined the cell protaminization and lyophilization protocols. This chapter comprehensively describes the protocol for somatic cell protaminization, lyophilization, and its application in SCNT. We are confident that our protocol will be relevant for establishing somatic cells stocks amenable to reprogramming at low cost.
Collapse
Affiliation(s)
- Luca Palazzese
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Marta Czernik
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, Poland
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | | | - Pasqualino Loi
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy.
| |
Collapse
|
2
|
A liquid crystal world for the origins of life. Emerg Top Life Sci 2022; 6:557-569. [PMID: 36373852 DOI: 10.1042/etls20220081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022]
Abstract
Nucleic acids (NAs) in modern biology accomplish a variety of tasks, and the emergence of primitive nucleic acids is broadly recognized as a crucial step for the emergence of life. While modern NAs have been optimized by evolution to accomplish various biological functions, such as catalysis or transmission of genetic information, primitive NAs could have emerged and been selected based on more rudimental chemical-physical properties, such as their propensity to self-assemble into supramolecular structures. One such supramolecular structure available to primitive NAs are liquid crystal (LC) phases, which are the outcome of the collective behavior of short DNA or RNA oligomers or monomers that self-assemble into linear aggregates by combinations of pairing and stacking. Formation of NA LCs could have provided many essential advantages for a primitive evolving system, including the selection of potential genetic polymers based on structure, protection by compartmentalization, elongation, and recombination by enhanced abiotic ligation. Here, we review recent studies on NA LC assembly, structure, and functions with potential prebiotic relevance. Finally, we discuss environmental or geological conditions on early Earth that could have promoted (or inhibited) primitive NA LC formation and highlight future investigation axes essential to further understanding of how LCs could have contributed to the emergence of life.
Collapse
|
3
|
Comizzoli P, Amelkina O, Lee PC. Damages and stress responses in sperm cells and other germplasms during dehydration and storage at nonfreezing temperatures for fertility preservation. Mol Reprod Dev 2022; 89:565-578. [PMID: 36370428 DOI: 10.1002/mrd.23651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Long-term preservation of sperm, oocytes, and gonadal tissues at ambient temperatures has the potential to lower the costs and simplify biobanking in human reproductive medicine, as well as for the management of animal populations. Over the past decades, different dehydration protocols and long-term storage solutions at nonfreezing temperatures have been explored, mainly for mammalian sperm cells. Oocytes and gonadal tissues are more challenging to dehydrate so little to no progress have been made. Currently, the detrimental effects of the drying process itself are better characterized than the impact of long-term storage at nonfreezing temperatures. While structural and functional properties of germ cells can be preserved after dehydration, a long list of damages and stresses in nuclei, organelles, and cytoplasmic membranes have been reported and sometimes mitigated. Characterizing those damages and better understanding the response of germ cells and tissues to the stress of dehydration is fundamental. It will contribute to the development of optimal protocols while proving the safety of alternative storage options for fertility preservation. The objective of this review is to (1) document the types of damages and stress responses, as well as their mitigation in cells dried with different techniques, and (2) propose new research directions.
Collapse
Affiliation(s)
- Pierre Comizzoli
- Smithsonian's National Zoo and Conservation Biology Institute, Veterinary Hospital, Washington, District of Columbia, USA
| | - Olga Amelkina
- Smithsonian's National Zoo and Conservation Biology Institute, Veterinary Hospital, Washington, District of Columbia, USA
| | - Pei-Chih Lee
- Smithsonian's National Zoo and Conservation Biology Institute, Veterinary Hospital, Washington, District of Columbia, USA
| |
Collapse
|
4
|
Wakayama S, Ito D, Hayashi E, Ishiuchi T, Wakayama T. Healthy cloned offspring derived from freeze-dried somatic cells. Nat Commun 2022; 13:3666. [PMID: 35790715 PMCID: PMC9256722 DOI: 10.1038/s41467-022-31216-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/08/2022] [Indexed: 12/14/2022] Open
Abstract
Maintaining biodiversity is an essential task, but storing germ cells as genetic resources using liquid nitrogen is difficult, expensive, and easily disrupted during disasters. Our aim is to generate cloned mice from freeze-dried somatic cell nuclei, preserved at -30 °C for up to 9 months after freeze drying treatment. All somatic cells died after freeze drying, and nucleic DNA damage significantly increased. However, after nuclear transfer, we produced cloned blastocysts from freeze-dried somatic cells, and established nuclear transfer embryonic stem cell lines. Using these cells as nuclear donors for re-cloning, we obtained healthy cloned female and male mice with a success rate of 0.2-5.4%. Here, we show that freeze-dried somatic cells can produce healthy, fertile clones, suggesting that this technique may be important for the establishment of alternative, cheaper, and safer liquid nitrogen-free bio-banking solutions.
Collapse
Affiliation(s)
- Sayaka Wakayama
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu, 400-8510, Japan. .,Advanced Biotechnology Center, University of Yamanashi, Kofu, 400-8510, Japan.
| | - Daiyu Ito
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu, 400-8510, Japan
| | - Erika Hayashi
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu, 400-8510, Japan
| | - Takashi Ishiuchi
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu, 400-8510, Japan
| | - Teruhiko Wakayama
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu, 400-8510, Japan. .,Advanced Biotechnology Center, University of Yamanashi, Kofu, 400-8510, Japan.
| |
Collapse
|
5
|
Molecular and Histological Evaluation of Sheep Ovarian Tissue Subjected to Lyophilization. Animals (Basel) 2021; 11:ani11123407. [PMID: 34944182 PMCID: PMC8697944 DOI: 10.3390/ani11123407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Freeze-drying (or lyophilization) is a method to preserve cells and tissues in which frozen material is dried by sublimation of ice. One of the main advantages is that nitrogen and dry ice are no longer required for the storage and shipment of biological material, which can be kept at room temperature or 4 °C, resulting in enormous reductions in costs. Although widely used to preserve biomolecules and macromolecular assemblies, freeze-drying of cells and tissues is currently experimental. Here, we lyophilized sheep ovarian tissue with a novel device named Darya and assessed effects on tissue integrity and gene expression. We show that ovarian tissue survives lyophilization procedures, maintaining its general structure and reacting to the different experimental steps by regulation of specific genes. Our results contribute to the optimization of protocols to freeze-dry ovarian tissues and may find application in programs of animal and human reproductive tissue preservation. Abstract Cryopreservation is routinely used to preserve cells and tissues; however, long time storage brings many inconveniences including the use of liquid nitrogen. Freeze-drying could enable higher shelf-life stability at ambient temperatures and facilitate transport and storage. Currently, the possibility to freeze-dry reproductive tissues maintaining vitality and functions is still under optimization. Here, we lyophilized sheep ovarian tissue with a novel device named Darya and a new vitrification and drying protocol and assessed effects on tissue integrity and gene expression. The evaluation was performed immediately after lyophilization (Lio), after rehydration (LR0h) or after two hours of in vitro culture (IVC; LR2h). The tissue survived lyophilization procedures and maintained its general structure, including intact follicles at different stages of development, however morphological and cytoplasmic modifications were noticed. Lyophilization, rehydration and further IVC increasingly affected RNA integrity and caused progressive morphological alterations. Nevertheless, analysis of a panel of eight genes showed tissue survival and reaction to the different procedures by regulation of specific gene expression. Results show that sheep ovarian tissue can tolerate the applied vitrification and drying protocol and constitute a valid basis for further improvements of the procedures, with the ultimate goal of optimizing tissue viability after rehydration.
Collapse
|
6
|
Weng L. Technologies and Applications Toward Preservation of Cells in a Dry State for Therapies. Biopreserv Biobank 2021; 19:332-341. [PMID: 33493407 DOI: 10.1089/bio.2020.0130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cell-based therapeutics promise to transform the treatment of a wide range of diseases, many of which, up to this point, are incurable. During the past decade, an increasing number of cell therapies have been approved by government regulatory agencies in the United States, Europe, and Japan. Thousands of clinical trials based on live cell therapies are now taking place around the world. But most of these live cell therapies face temporal and/or spatial distances between manufacture and administration, posing a risk of degradation in potency. Cryopreservation has become the predominant biobanking approach to maintain the product's safety and efficacy during transportation and storage. However, the necessity of cryogenic shipment and storage could limit patient access to these emerging therapies and increase the costs of logistics. In the (bio)pharmaceutical industries, freeze-drying and desiccation are established preservation procedures for manufacturing small molecule drugs, liposomes, and monoclonal antibodies. Over the past two decades, there has been a growing body of research exploring the freeze-drying or drying of mammalian cells, with varying degrees of success. This article provides an overview of the technologies that were adopted or developed in these pioneering studies, paving the road toward the preservation of cell-based therapeutics in a dry state for biomanufacturing.
Collapse
Affiliation(s)
- Lindong Weng
- Sana Biotechnology, Inc., South San Francisco, California, USA
| |
Collapse
|
7
|
Loi P, Anzalone DA, Palazzese L, Dinnyés A, Saragusty J, Czernik M. Dry storage of mammalian spermatozoa and cells: state-of-the-art and possible future directions. Reprod Fertil Dev 2021; 33:82-90. [PMID: 38769676 DOI: 10.1071/rd20264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
This review provides a snapshot of the current state-of-the-art of drying cells and spermatozoa. The major successes and pitfalls of the most relevant literature are described separately for spermatozoa and cells. Overall, the data published so far indicate that we are closer to success in spermatozoa, whereas the situation is far more complex with cells. Critical for success is the presence of xeroprotectants inside the spermatozoa and, even more so, inside cells to protect subcellular compartments, primarily DNA. We highlight workable strategies to endow gametes and cells with the right combination of xeroprotectants, mostly sugars, and late embryogenesis abundant (LEA) or similar 'intrinsically disordered' proteins to help them withstand reversible desiccation. We focus on the biological aspects of water stress, and in particular cellular and DNA damage, but also touch on other still unexplored issues, such as the choice of both dehydration and rehydration methods or approaches, because, in our view, they play a primary role in reducing desiccation damage. We conclude by highlighting the need to exhaustively explore desiccation strategies other than lyophilisation, such as air drying, spin drying or spray drying, ideally with new prototypes, other than the food and pharmaceutical drying strategies currently used, tailored for the unique needs of cells and spermatozoa.
Collapse
Affiliation(s)
- P Loi
- Laboratory of Embryology, Faculty of Veterinary Medicine, University of Teramo, Teramo, TE 64100, Italy; and Corresponding author
| | - D A Anzalone
- Laboratory of Embryology, Faculty of Veterinary Medicine, University of Teramo, Teramo, TE 64100, Italy
| | - L Palazzese
- Laboratory of Embryology, Faculty of Veterinary Medicine, University of Teramo, Teramo, TE 64100, Italy
| | - A Dinnyés
- BioTalentum Ltd, Gödöllo, 2100 Gödöllo, Hungary; and HCEMM-USZ, StemCell Research Group, University of Szeged, Szeged, Hungary; and Sichuan University, College of Life Sciences, Chengdu, China
| | - J Saragusty
- Laboratory of Embryology, Faculty of Veterinary Medicine, University of Teramo, Teramo, TE 64100, Italy
| | - M Czernik
- Laboratory of Embryology, Faculty of Veterinary Medicine, University of Teramo, Teramo, TE 64100, Italy; and Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, Poland
| |
Collapse
|
8
|
Palazzese L, Anzalone DA, Turri F, Faieta M, Donnadio A, Pizzi F, Pittia P, Matsukawa K, Loi P. Whole genome integrity and enhanced developmental potential in ram freeze-dried spermatozoa at mild sub-zero temperature. Sci Rep 2020; 10:18873. [PMID: 33139842 PMCID: PMC7606492 DOI: 10.1038/s41598-020-76061-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/19/2020] [Indexed: 11/30/2022] Open
Abstract
Freeze-dried spermatozoa typically shows a reduction in fertility primarily due to the DNA damage resulting from the sublimation process. In order to minimize the physical/mechanical damage resulting from lyophilization, here we focused on the freezing phase, comparing two cooling protocols: (i) rapid-freezing, where ram sperm sample is directly plunged into liquid nitrogen (LN-group), as currently done; (ii) slow-freezing, where the sample is progressively cooled to − 50 °C (SF-group). The spermatozoa dried in both conditions were analysed to assess residual water content by Thermal Gravimetric Analysis (TGA) and DNA integrity using Sperm Chromatin Structure Assay (SCSA). TGA revealed more than 90% of water subtraction in both groups. A minor DNA damage, Double-Strand Break (DSB) in particular, characterized by a lower degree of abnormal chromatin structure (Alpha-T), was detected in the SF-group, comparing to the LN-one. In accordance with the structural and DNA integrity data, spermatozoa from SF-group had the best embryonic development rates, comparing to LN-group: cleaved embryos [42/100 (42%) versus 19/75 (25.3%), P < 0.05, SL and LN respectively] and blastocyst formation [7/100 (7%) versus 2/75 (2.7%), P < 0.05, SF and LN respectively]. This data represents a significant technological advancement for the development of lyophilization as a valuable and cheaper alternative to deep-freezing in LN for ram semen.
Collapse
Affiliation(s)
- Luca Palazzese
- Faculty of Veterinary Medicine, University of Teramo, Street R. Balzarini 1, Campus Coste Sant'Agostino, 64100, Teramo, Italy
| | - Debora Agata Anzalone
- Faculty of Veterinary Medicine, University of Teramo, Street R. Balzarini 1, Campus Coste Sant'Agostino, 64100, Teramo, Italy
| | - Federica Turri
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), 26900, Lodi, Italy
| | - Marco Faieta
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Anna Donnadio
- Department of Pharmaceutical Sciences, University of Perugia, 06123, Perugia, Italy
| | - Flavia Pizzi
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), 26900, Lodi, Italy
| | - Paola Pittia
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Kazutsugu Matsukawa
- Faculty of Agriculture and Marine Science, Kochi University, Kochi, 783-8502, Japan
| | - Pasqualino Loi
- Faculty of Veterinary Medicine, University of Teramo, Street R. Balzarini 1, Campus Coste Sant'Agostino, 64100, Teramo, Italy.
| |
Collapse
|
9
|
Exploring dry storage as an alternative biobanking strategy inspired by Nature. Theriogenology 2019; 126:17-27. [DOI: 10.1016/j.theriogenology.2018.11.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/20/2018] [Accepted: 11/25/2018] [Indexed: 12/13/2022]
|
10
|
Palazzese L, Gosálvez J, Anzalone DA, Loi P, Saragusty J. DNA fragmentation in epididymal freeze-dried ram spermatozoa impairs embryo development. J Reprod Dev 2018; 64:393-400. [PMID: 29973438 PMCID: PMC6189572 DOI: 10.1262/jrd.2018-033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/14/2018] [Indexed: 12/20/2022] Open
Abstract
Sperm freeze-drying is a revolutionary technique, which has been gaining prominence in recent years. The first related significant result was Wakayama and Yanagimachi's demonstration in 1998 of the birth of healthy mouse offspring by Intracytoplasmic Sperm Injection (ICSI), using epididymal freeze-dried spermatozoa. Mouse, rat, and hamster models were the first small mammals born from lyophilized epididymal spermatozoa, whereas most other studies in this field used ejaculated spermatozoa. In this work, we applied this technique to ram epididymal spermatozoa, checking the correlation between DNA integrity and embryo development following ICSI. To do this, epididymal sperm from four rams was lyophilized in a trehalose, glucose, KCl, HEPES, and Trolox media. To evaluate DNA damage and fragmentation after rehydration, samples were processed for Sperm Chromatin Dispersion test (SCD), Two-Tailed Comet Assay, and were used for ICSI. Ram #2 had a higher rate of spermatozoa with intact DNA compared with rams #1, #3, and #4 (28% vs. 3.8%, 2.8%, and 5%, respectively) and the lowest rate of Single-Strand Breaks (SSBs) (70% vs. 95.9%, 92.6%, and 93% respectively). Ram #3 had a higher level of Double-Strand Breaks (DSBs) compared to Ram #1 (4.6% vs. 0.33%, respectively). Embryo development to the blastocyst stage following ICSI was only reached from rams whose sperm had higher level of intact DNA - Rams #2 and #4 (6%, 5/147 and 6.3%, 4/64, respectively). Definitively, the impact of sperm DNA damage on embryonic development depends on the balance between sperm DNA fragmentation extent, fragmentation type (SSBs or DSBs), and the oocyte's repair capacity.
Collapse
Affiliation(s)
- Luca Palazzese
- Faculty of Veterinary Medicine, University of Teramo, Teramo 64100, Italy
| | - Jaime Gosálvez
- Genetics Unit, Department of Biology, University Autónoma of Madrid, Catoblanco, 28049 Madrid, Spain
| | - Debora A Anzalone
- Faculty of Veterinary Medicine, University of Teramo, Teramo 64100, Italy
| | - Pasqualino Loi
- Faculty of Veterinary Medicine, University of Teramo, Teramo 64100, Italy
| | - Joseph Saragusty
- Faculty of Veterinary Medicine, University of Teramo, Teramo 64100, Italy
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research, Berlin 10315, Germany
- Present: Faculty of Veterinary Medicine, University of Teramo, Teramo 64100, Italy
| |
Collapse
|
11
|
Palazzese L, Czernik M, Iuso D, Toschi P, Loi P. Nuclear quiescence and histone hyper-acetylation jointly improve protamine-mediated nuclear remodeling in sheep fibroblasts. PLoS One 2018; 13:e0193954. [PMID: 29543876 PMCID: PMC5854339 DOI: 10.1371/journal.pone.0193954] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 02/21/2018] [Indexed: 11/18/2022] Open
Abstract
Recently we have demonstrated the possibility to replace histones with protamine, through the heterologous expression of human protamine 1 (hPrm1) gene in sheep fibroblasts. Here we have optimized protaminization of somatic nucleus by adjusting the best concentration and exposure time to trichostatin A (TSA) in serum-starved fibroblasts (nuclear quiescence), before expressing Prm1 gene. To stop cell proliferation, we starved cells in 0.5% FBS in MEM ("starved"-ST group), whereas in the Control group (CTR) the cells were cultured in 10% FBS in MEM. To find the most effective TSA concentration, we treated the cells with increasing concentrations of TSA in MEM + 10% FBS. Our results show that combination of cell culture conditions in 50 nM TSA, is more effective in terminating cell proliferation than ST and CTR groups (respectively 8%, 17.8% and 90.2% p<0.0001). Moreover, nuclear quiescence marker genes expression (Dicer1, Smarca 2, Ezh1 and Ddx39) confirmed that our culture conditions kept the cells in a nuclear quiescent state. Finally, ST and 50 nM TSA jointly increased the number of spermatid-like cell (39.4%) at higher rate compared to 25 nM TSA (20.4%, p<0.05) and 100 nM TSA (13.7%, p<0.05). To conclude, we have demonstrated that nuclear quiescence in ST cells and the open nuclear structure conferred by TSA resulted in an improved Prm1-mediated conversion of somatic nuclei into spermatid-like structures. This finding might improve nuclear reprogramming of somatic cells following nuclear transfer.
Collapse
Affiliation(s)
- Luca Palazzese
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Marta Czernik
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Domenico Iuso
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Paola Toschi
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Pasqualino Loi
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
- * E-mail:
| |
Collapse
|
12
|
Freeze-dried spermatozoa: An alternative biobanking option for endangered species. Anim Reprod Sci 2018; 190:85-93. [PMID: 29397252 DOI: 10.1016/j.anireprosci.2018.01.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/15/2018] [Accepted: 01/26/2018] [Indexed: 12/21/2022]
Abstract
In addition to the iconic wild species, such as the pandas and Siberian tigers, an ever-increasing number of domestic species are also threatened with extinction. Biobanking of spermatozoa could preserve genetic heritages of extinct species, and maintain biodiversity of existing species. Because lyophilized spermatozoa retain fertilizing capacity, the aim was to assess whether freeze-dried spermatozoa are an alternative option to save endangered sheep breeds. To achieve this objective, semen was collected from an Italian endangered sheep breed (Pagliarola), and a biobank of cryopreserved and freeze-dried spermatozoa was established, and evaluated using IVF (for frozen spermatozoa) and ICSI procedures (for frozen and freeze-dried spermatozoa). As expected, the fertilizing capacity of cryopreserved Pagliarola's spermatozoa was comparable to commercial semen stocks. To evaluate the activating capability of freeze-dried spermatozoa, 108 MII sheep oocytes were subjected to ICSI, and allocated to two groups: 56 oocytes were activated by incubation with ionomycin (ICSI-FDSa) and 52 were not activated (ICSI-FDSna). Pronuclear formation (2PN) was investigated at 14-16 h after ICSI in fixed presumptive zygotes. Only artificially activated oocytes developed into blastocysts after ICSI. In the present study, freeze-dried ram spermatozoa induced blastocyst development following ICSI at a relatively high proportion, providing evidence that sperm lyophilization is an alternative, low cost storage option for biodiversity preservation of domestic species.
Collapse
|
13
|
Lustri AM, Di Matteo S, Fraveto A, Costantini D, Cantafora A, Napoletano C, Bragazzi MC, Giuliante F, De Rose AM, Berloco PB, Grazi GL, Carpino G, Alvaro D. TGF-β signaling is an effective target to impair survival and induce apoptosis of human cholangiocarcinoma cells: A study on human primary cell cultures. PLoS One 2017; 12:e0183932. [PMID: 28873435 PMCID: PMC5584931 DOI: 10.1371/journal.pone.0183932] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 08/14/2017] [Indexed: 12/15/2022] Open
Abstract
Cholangiocarcinoma (CCA) and its subtypes (mucin- and mixed-CCA) arise from the neoplastic transformation of cholangiocytes, the epithelial cells lining the biliary tree. CCA has a high mortality rate owing to its aggressiveness, late diagnosis and high resistance to radiotherapy and chemotherapeutics. We have demonstrated that CCA is enriched for cancer stem cells which express epithelial to mesenchymal transition (EMT) traits, with these features being associated with aggressiveness and drug resistance. TGF-β signaling is upregulated in CCA and involved in EMT. We have recently established primary cell cultures from human mucin- and mixed-intrahepatic CCA. In human CCA primary cultures with different levels of EMT trait expression, we evaluated the anticancer effects of: (i) CX-4945, a casein kinase-2 (CK2) inhibitor that blocks TGF-β1-induced EMT; and (ii) LY2157299, a TGF-β receptor I kinase inhibitor. We tested primary cell lines expressing EMT trait markers (vimentin, N-cadherin and nuclear catenin) but negative for epithelial markers, and cell lines expressing epithelial markers (CK19-positive) in association with EMT traits. Cell viability was evaluated by MTS assays, apoptosis by Annexin V FITC and cell migration by wound-healing assay. Results: at a dose of 10 μM, CX4945 significantly decreased cell viability of primary human cell cultures from both mucin and mixed CCA, whereas in CK19-positive cell cultures, the effect of CX4945 on cell viability required higher concentrations (>30μM). At the same concentrations, CX4945 also induced apoptosis (3- fold increase vs controls) which correlated with the expression level of CK2 in the different CCA cell lines (mucin- and mixed-CCA). Indeed, no apoptotic effects were observed in CK19-positive cells expressing lower CK2 levels. The effects of CX4945 on viability and apoptosis were associated with an increased number of γ-H2ax (biomarker for DNA double-strand breaks) foci, suggesting the active role of CK2 as a repair mechanism in CCAs. LY2157299 failed to influence cell proliferation or apoptosis but significantly inhibited cell migration. At a 50 μM concentration, in fact, LY2157299 significantly impaired (at 24, 48 and 120 hrs) the wound-healing of primary cell cultures from both mucin-and mixed-CCA. In conclusion, we demonstrated that CX4945 and LY2157299 exert relevant but distinct anticancer effects against human CCA cells, with CX4945 acting on cell viability and apoptosis, and LY2157299 impairing cell migration. These results suggest that targeting the TGF-β signaling with a combination of CX-4945 and LY2157299 could have potential benefits in the treatment of human CCA.
Collapse
Affiliation(s)
- Anna Maria Lustri
- Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, RM, ROMA, Italy
| | - Sabina Di Matteo
- Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, RM, ROMA, Italy
| | - Alice Fraveto
- Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, RM, ROMA, Italy
| | - Daniele Costantini
- Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, RM, ROMA, Italy
| | - Alfredo Cantafora
- Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, RM, ROMA, Italy
| | - Chiara Napoletano
- Department of Experimental Medicine, University of Rome Sapienza, Roma, Italy
| | | | - Felice Giuliante
- Catholic University of the Sacred Heart School of Medicine, Roma, Italy
| | | | - Pasquale B. Berloco
- Department of General Surgery and Organ Transplantation, Sapienza University of Rome, Roma, Italy
| | - Gian Luca Grazi
- Regina Elena National Cancer Institute, the Gastroenterology Unit, Roma, Italy
| | - Guido Carpino
- Department of Health Science, University of Rome Foro Italico, Roma, Italy
| | - Domenico Alvaro
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, RM, ROMA, Italy
- * E-mail:
| |
Collapse
|
14
|
Duah EKA, Mohapatra SK, Sood TJ, Sandhu A, Singla SK, Chauhan MS, Manik RS, Palta P. Production of hand-made cloned buffalo (Bubalus bubalis) embryos from non-viable somatic cells. In Vitro Cell Dev Biol Anim 2016; 52:983-988. [DOI: 10.1007/s11626-016-0071-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/03/2016] [Indexed: 01/26/2023]
|
15
|
Iuso D, Czernik M, Toschi P, Fidanza A, Zacchini F, Feil R, Curtet S, Buchou T, Shiota H, Khochbin S, Ptak GE, Loi P. Exogenous Expression of Human Protamine 1 (hPrm1) Remodels Fibroblast Nuclei into Spermatid-like Structures. Cell Rep 2015; 13:1765-71. [PMID: 26628361 PMCID: PMC4675893 DOI: 10.1016/j.celrep.2015.10.066] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 09/04/2015] [Accepted: 10/21/2015] [Indexed: 11/26/2022] Open
Abstract
Protamines confer a compact structure to the genome of male gametes. Here, we find that somatic cells can be remodeled by transient expression of protamine 1 (Prm1). Ectopically expressed Prm1 forms scattered foci in the nuclei of fibroblasts, which coalescence into spermatid-like structures, concomitant with a loss of histones and a reprogramming barrier, H3 lysine 9 methylation. Protaminized nuclei injected into enucleated oocytes efficiently underwent protamine to maternal histone TH2B exchange and developed into normal blastocyst stage embryos in vitro. Altogether, our findings present a model to study male-specific chromatin remodeling, which can be exploited for the improvement of somatic cell nuclear transfer. In vitro protaminization of somatic cell nuclei Conversion of interphase somatic nuclei into “spermatid-like” structures Protaminization of somatic nuclei that is reversed upon injection into enucleated oocytes A simplified model of nuclear remodeling and reprogramming in vitro
Collapse
Affiliation(s)
- Domenico Iuso
- Faculty of Veterinary Medicine, University of Teramo, Renato Balzarini Street 1, Campus Coste Sant'Agostino, 64100 Teramo, Italy
| | - Marta Czernik
- Faculty of Veterinary Medicine, University of Teramo, Renato Balzarini Street 1, Campus Coste Sant'Agostino, 64100 Teramo, Italy
| | - Paola Toschi
- Faculty of Veterinary Medicine, University of Teramo, Renato Balzarini Street 1, Campus Coste Sant'Agostino, 64100 Teramo, Italy
| | - Antonella Fidanza
- Faculty of Veterinary Medicine, University of Teramo, Renato Balzarini Street 1, Campus Coste Sant'Agostino, 64100 Teramo, Italy
| | - Federica Zacchini
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postepu 36A, Jastrzębiec, 05-552 Magdalenka, Poland
| | - Robert Feil
- Institute of Molecular Genetics (IGMM), CNRS UMR-5535 and University of Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Sandrine Curtet
- INSERM, U823, Institut Albert Bonniot, Université Grenoble Alpes, 38700 Grenoble, France
| | - Thierry Buchou
- INSERM, U823, Institut Albert Bonniot, Université Grenoble Alpes, 38700 Grenoble, France
| | - Hitoshi Shiota
- INSERM, U823, Institut Albert Bonniot, Université Grenoble Alpes, 38700 Grenoble, France
| | - Saadi Khochbin
- INSERM, U823, Institut Albert Bonniot, Université Grenoble Alpes, 38700 Grenoble, France
| | - Grazyna Ewa Ptak
- Faculty of Veterinary Medicine, University of Teramo, Renato Balzarini Street 1, Campus Coste Sant'Agostino, 64100 Teramo, Italy; Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postepu 36A, Jastrzębiec, 05-552 Magdalenka, Poland; National Research Institute of Animal Production 1, Krakowska Street, 32-083 Balice n/Krakow, Poland
| | - Pasqualino Loi
- Faculty of Veterinary Medicine, University of Teramo, Renato Balzarini Street 1, Campus Coste Sant'Agostino, 64100 Teramo, Italy.
| |
Collapse
|
16
|
Ma L, Liu X, Wang F, He X, Chen S, Li W. Different Donor Cell Culture Methods Can Influence the Developmental Ability of Cloned Sheep Embryos. PLoS One 2015; 10:e0135344. [PMID: 26291536 PMCID: PMC4546374 DOI: 10.1371/journal.pone.0135344] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 07/21/2015] [Indexed: 11/28/2022] Open
Abstract
It was proposed that arresting nuclear donor cells in G0/G1 phase facilitates the development of embryos that are derived from somatic cell nuclear transfer (SCNT). Full confluency or serum starvation is commonly used to arrest in vitro cultured somatic cells in G0/G1 phase. However, it is controversial as to whether these two methods have the same efficiency in arresting somatic cells in G0/G1 phase. Moreover, it is unclear whether the cloned embryos have comparable developmental ability after somatic cells are subjected to one of these methods and then used as nuclear donors in SCNT. In the present study, in vitro cultured sheep skin fibroblasts were divided into four groups: (1) cultured to 70–80% confluency (control group), (2) cultured to full confluency, (3) starved in low serum medium for 4 d, or (4) cultured to full confluency and then further starved for 4 d. Flow cytometry was used to assay the percentage of fibroblasts in G0/G1 phase, and cell counting was used to assay the viability of the fibroblasts. Then, real-time reverse transcription PCR was used to determine the levels of expression of several cell cycle-related genes. Subsequently, the four groups of fibroblasts were separately used as nuclear donors in SCNT, and the developmental ability and the quality of the cloned embryos were compared. The results showed that the percentage of fibroblasts in G0/G1 phase, the viability of fibroblasts, and the expression levels of cell cycle-related genes was different among the four groups of fibroblasts. Moreover, the quality of the cloned embryos was comparable after these four groups of fibroblasts were separately used as nuclear donors in SCNT. However, cloned embryos derived from fibroblasts that were cultured to full confluency combined with serum starvation had the highest developmental ability. The results of the present study indicate that there are synergistic effects of full confluency and serum starvation on arresting fibroblasts in G0/G1 phase, and the short-term treatment of nuclear donor cells with these two methods could improve the efficiency of SCNT.
Collapse
Affiliation(s)
- LiBing Ma
- School of Mathematics, Physics and Biological Engineering, Inner Mongolia University of Science & Technology, Baotou, Inner Mongolia, China
- * E-mail:
| | - XiYu Liu
- School of Mathematics, Physics and Biological Engineering, Inner Mongolia University of Science & Technology, Baotou, Inner Mongolia, China
| | - FengMei Wang
- Baotou Light Industry Vocational Technical College, Baotou, Inner Mongolia, China
| | - XiaoYing He
- School of Mathematics, Physics and Biological Engineering, Inner Mongolia University of Science & Technology, Baotou, Inner Mongolia, China
| | - Shan Chen
- School of Mathematics, Physics and Biological Engineering, Inner Mongolia University of Science & Technology, Baotou, Inner Mongolia, China
| | - WenDa Li
- School of Mathematics, Physics and Biological Engineering, Inner Mongolia University of Science & Technology, Baotou, Inner Mongolia, China
| |
Collapse
|
17
|
Selokar NL, Saini M, Palta P, Chauhan MS, Manik R, Singla SK. Hope for restoration of dead valuable bulls through cloning using donor somatic cells isolated from cryopreserved semen. PLoS One 2014; 9:e90755. [PMID: 24614586 PMCID: PMC3948694 DOI: 10.1371/journal.pone.0090755] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/03/2014] [Indexed: 11/19/2022] Open
Abstract
Somatic cells were isolated from cryopreserved semen of 4 buffalo bulls, 3 of which had died over 10 years earlier, and were established in culture. The cells expressed cytokeratin-18, keratin and vimentin indicating that they were of epithelial origin. The cells were used as nuclear donors for hand-made cloning for producing buffalo embryos. The blastocyst rate and quality, as indicated by apoptotic index, were comparable among embryos produced using cells obtained from fresh or frozen-thawed semen or those obtained from conventional cell sources such as skin. Examination of the epigenetic status revealed that the global level of H3K27me3 but not that of H3K9/14ac and H4K5ac differed significantly (P<0.05) among cloned embryos from different bulls. The relative mRNA abundance of HDAC1, DNMT1, P53 and CASPASE 3 but not that of DNMT3a differed in cells and in cloned embryos. Following transfer of 24 cloned embryos produced from fresh semen-derived cells to 12 recipients, one calf weighing 55 kg, which is now 6 months of age and is normal, was born through normal parturition. Following transfer of 20 embryos produced from frozen-thawed semen-derived cells to 10 recipients, 2 became pregnant, one of which aborted in the first trimester; the calf born was severely underweight (17 kg), and died 12 h after birth. The ability of cells derived from fresh and frozen-thawed semen to produce live offspring confirms the ability of these cells to be reprogrammed. Our findings pave the way for restoration of highly precious progeny-tested bulls, which has immense economic importance, and can also be used for restoration of endangered species.
Collapse
Affiliation(s)
- Naresh L. Selokar
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
- Cellular Reprogramming Lab., Department of Animal Physiology and Reproduction, Central Institute for Research on Buffaloes, Hisar, India
| | - Monika Saini
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Prabhat Palta
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Manmohan S. Chauhan
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Radheysham Manik
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Suresh K. Singla
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
- * E-mail:
| |
Collapse
|
18
|
Loi P, Saragusty J, Ptak G. Cloning the mammoth: a complicated task or just a dream? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 753:489-502. [PMID: 25091921 DOI: 10.1007/978-1-4939-0820-2_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recently there has been growing interest in applying the most advanced embryological tools, particularly cloning, to bring extinct species back to life, with a particular focus on the woolly mammoth (Mammuthus primigenius). Mammoth's bodies found in the permafrost are relatively well preserved, with identifiable nuclei in their tissues. The purpose of this chapter is to review the literature published on the topic, and to present the strategies potentially suitable for a mammoth cloning project, with a frank assessment of their feasibility and the ethical issues involved.
Collapse
Affiliation(s)
- Pasqualino Loi
- Department of Comparative Biomedical Sciences, University of Teramo, Piazza Aldo Moro 45, Teramo, 64100, Italy,
| | | | | |
Collapse
|
19
|
Effect of trehalose on DNA integrity of freeze-dried boar sperm, fertilization, and embryo development after intracytoplasmic sperm injection. Theriogenology 2013; 80:1033-44. [DOI: 10.1016/j.theriogenology.2013.08.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 06/21/2013] [Accepted: 08/01/2013] [Indexed: 11/20/2022]
|