1
|
Han X, Yang Q, Lu Y, Xu M, Tao Q, Jiang S, He X, Bai Y, Zhang T, Bai L, Hu J, Zhu Y, Liu H, Li L. Genome-wide association study reveals the candidate genes of humerus quality in laying duck. Poult Sci 2024; 103:103851. [PMID: 38806002 PMCID: PMC11154710 DOI: 10.1016/j.psj.2024.103851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/30/2024] Open
Abstract
Bone plays a crucial role in poultry's health and production. However, during the selection and cage farming, there has been a decline in bone quality. As the development of breeding theory, researchers find that it's possible to enhance bone quality through selective breeding.This study measure 8 humerus quality in 260 samples of the 350-day-old female duck. By descripting the basic characteristic traits, mechanical property traits we found that all the bone quality traits had a large variable coefficient, especially mechanical properties trait (20-70%), indicating that there was a large difference in bone health status among laying ducks. The phenotypic correlations showed a high correlation between weight and density, diameter and perimeter, breaking and toughness (r = 0.52-0.68). And then, we performed the Genome-wide association study (GWAS) to reveal the candidate genes of humerus quality in ducks. Seven candidate protein-coding genes were identified with perimeter trait, and 52 protein-coding genes were associated with toughness trait. We also analysed the candidate region and performed KEGG and GO analyse for 75 candidate genes. Furthermore, the expression analyse of the above candidate genes in different stage of humerus and different tissues were performed. Finally, AP2A2, SMAD3, SMNDC1, NFIA, EPHB2, PMEPA1, UNC5C, ESR1, VAV3, NFATC2 deserve further focus. The obtained results can contribute to new insight into bone quality and provide new genetic biomarkers for application in duck breeding programs.
Collapse
Affiliation(s)
- Xu Han
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Qinglan Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Yinjuan Lu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Mengru Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Qiuyu Tao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Shuaixue Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Xinxin He
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Yuan Bai
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Tao Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Lili Bai
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Jiwei Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Yuanchun Zhu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - HeHe Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Liang Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China.
| |
Collapse
|
2
|
Hsu YC, Chang CC, Hsieh CC, Huang YT, Shih YH, Chang HC, Chang PJ, Lin CL. Dickkopf-1 Acts as a Profibrotic Mediator in Progressive Chronic Kidney Disease. Int J Mol Sci 2023; 24:ijms24087679. [PMID: 37108841 PMCID: PMC10143456 DOI: 10.3390/ijms24087679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Chronic kidney disease (CKD) is a serious public health problem. Due to a high variability in the speed of CKD progression to end-stage renal disease (ESRD) and the critical involvement of Wnt/β-catenin signaling in CKD, we investigated the role of the Wnt antagonist Dickkopf-1 (DKK1) in CKD progression. Our data revealed that patients with CKD stages 4-5 had higher DKK1 levels in their serum and renal tissues than the control subjects. In an 8-year follow-up, the serum DKK1-high group in the enrolled CKD patients showed a faster progression to ESRD than the serum DKK1-low group. Using a rat model of 5/6 nephrectomy (Nx)-induced CKD, we consistently detected elevated serum levels and renal production of DKK1 in 5/6 Nx rats compared to sham-operated rats. Importantly, the knockdown of the DKK1 levels in the 5/6 Nx rats markedly attenuated the CKD-associated phenotypes. Mechanistically, we demonstrated that the treatment of mouse mesangial cells with recombinant DKK1 protein induced not only the production of multiple fibrogenic proteins, but also the expression of endogenous DKK1. Collectively, our findings suggest that DKK1 acts as a profibrotic mediator in CKD, and elevated levels of serum DKK1 may be an independent predictor of faster disease progression to ESRD in patients with advanced CKD.
Collapse
Affiliation(s)
- Yung-Chien Hsu
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Cheng-Chih Chang
- Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Ching-Chuan Hsieh
- Division of General Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Yu-Ting Huang
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Ya-Hsueh Shih
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Hsiu-Ching Chang
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Pey-Jium Chang
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chun-Liang Lin
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Kidney Research Center, Chang Gung Memorial Hospital, Taipei 105, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| |
Collapse
|
3
|
Liang RP, Zhang XX, Zhao J, Lu QW, Zhu RT, Wang WJ, Li J, Bo K, Zhang CX, Sun YL. RING finger and WD repeat domain 3 regulates proliferation and metastasis through the Wnt/β-catenin signalling pathways in hepatocellular carcinoma. World J Gastroenterol 2022; 28:3435-3454. [PMID: 36158256 PMCID: PMC9346462 DOI: 10.3748/wjg.v28.i27.3435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/16/2022] [Accepted: 06/03/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) exhibits high invasiveness and mortality rates, and the molecular mechanisms of HCC have gained increasing research interest. The abnormal DNA damage response has long been recognized as one of the important factors for tumor occurrence and development. Recent studies have shown the potential of the protein RING finger and WD repeat domain 3 (RFWD3) that positively regulates p53 stability in response to DNA damage as a therapeutic target in cancers.
AIM To investigate the relationship between HCC and RFWD3 in vitro and in vivo and explored the underlying molecular signalling transduction pathways.
METHODS RFWD3 gene expression was analyzed in HCC tissues and adjacent normal tissues. Lentivirus was used to stably knockdown RFWD3 expression in HCC cell lines. After verifying the silencing efficiency, Celigo/cell cycle/apoptosis and MTT assays were used to evaluate cell proliferation and apoptosis. Subsequently, cell migration and invasion were assessed by wound healing and transwell assays. In addition, transduced cells were implanted subcutaneously and injected into the tail vein of nude mice to observe tumor growth and metastasis. Next, we used lentiviral-mediated rescue of RFWD3 shRNA to verify the phenotype. Finally, the microarray, ingenuity pathway analysis, and western blot analysis were used to analyze the regulatory network underlying HCC.
RESULTS Compared with adjacent tissues, RFWD3 expression levels were significantly higher in clinical HCC tissues and correlated with tumor size and TNM stage (P < 0.05), which indicated a poor prognosis state. RFWD3 silencing in BEL-7404 and HCC-LM3 cells increased apoptosis, decreased growth, and inhibited the migration in shRNAi cells compared with those in shCtrl cells (P < 0.05). Furthermore, the in vitro results were supported by the findings of the in vivo experiments with the reduction of tumor cell invasion and migration. Moreover, the rescue of RFWD3 shRNAi resulted in the resumption of invasion and metastasis in HCC cell lines. Finally, gene expression profiling and subsequent experimental verification revealed that RFWD3 might influence the proliferation and metastasis of HCC via the Wnt/β-catenin signalling pathway.
CONCLUSION We provide evidence for the expression and function of RFWD3 in HCC. RFWD3 affects the prognosis, proliferation, invasion, and metastasis of HCC by regulating the Wnt/β-catenin signalling pathway.
Collapse
Affiliation(s)
- Ruo-Peng Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Xiao-Xue Zhang
- Department of Physical Examination, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Jie Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Qin-Wei Lu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Rong-Tao Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Wei-Jie Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Jian Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Kai Bo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Chi-Xian Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yu-Ling Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| |
Collapse
|
4
|
Martínez-Gil N, Ugartondo N, Grinberg D, Balcells S. Wnt Pathway Extracellular Components and Their Essential Roles in Bone Homeostasis. Genes (Basel) 2022; 13:genes13010138. [PMID: 35052478 PMCID: PMC8775112 DOI: 10.3390/genes13010138] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
The Wnt pathway is involved in several processes essential for bone development and homeostasis. For proper functioning, the Wnt pathway is tightly regulated by numerous extracellular elements that act by both activating and inhibiting the pathway at different moments. This review aims to describe, summarize and update the findings regarding the extracellular modulators of the Wnt pathway, including co-receptors, ligands and inhibitors, in relation to bone homeostasis, with an emphasis on the animal models generated, the diseases associated with each gene and the bone processes in which each member is involved. The precise knowledge of all these elements will help us to identify possible targets that can be used as a therapeutic target for the treatment of bone diseases such as osteoporosis.
Collapse
|
5
|
Alipoor SD, Mirsaeidi M. SARS-CoV-2 cell entry beyond the ACE2 receptor. Mol Biol Rep 2022; 49:10715-10727. [PMID: 35754059 PMCID: PMC9244107 DOI: 10.1007/s11033-022-07700-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/09/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Angiotensin-converting enzyme 2 (ACE2) is known as the major viral entry site for SARS-CoV-2. However, viral tissue tropism and high rate of infectivity do not directly correspond with the level of ACE2 expression in the organs. It may suggest involvement of other receptors or accessory membrane proteins in SARSCoV-2 cell entry. METHODS AND RESULTS A systematic search was carried out in PubMed/Medline, EMBASE, and Cochrane Library for studies reporting SARS-CoV-2 cell entry. We used a group of the MeSH terms including "cell entry", "surface receptor", "ACE2", and "SARS-CoV-2". We reviewed all selected papers published in English up to end of February 2022. We found several receptors or auxiliary membrane proteins (including CD147, NRP-1, CD26, AGTR2, Band3, KREMEN1, ASGR1, ANP, TMEM30A, CLEC4G, and LDLRAD3) along with ACE2 that facilitate virus entry and transmission. Expression of Band3 protein on the surface of erythrocytes and evidence of binding with S protein of SARS-CoV-2 may explain asymptomatic hypoxemia during COVID19 infection. The variants of SARS-CoV-2 including the B.1.1.7 (Alpha), B.1.617.1 (Kappa), B.1.617.2 (Delta), B.1.617.2+ (Delta+), and B.1.1.529 (Omicron) may have different potency to bond with these receptors. CONCLUSIONS The high rate of infectivity of SARS-CoV-2 may be due to its ability to enter the host cell through a group of cell surface receptors. These receptors are potential targets to develop novel therapeutic agents for SARS-CoV-2.
Collapse
Affiliation(s)
- Shamila D. Alipoor
- grid.419420.a0000 0000 8676 7464Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic, Engineering and Biotechnology, Tehran, Iran
| | - Mehdi Mirsaeidi
- grid.15276.370000 0004 1936 8091Division of Pulmonary, Critical Care, and Sleep Disease, College of Medicine-Jacksonville, University of Florida, Jacksonville, FL USA
| |
Collapse
|
6
|
Hong S, Feng L, Yang Y, Jiang H, Hou X, Guo P, Marlow FL, Stanley P, Wu P. In Situ Fucosylation of the Wnt Co-receptor LRP6 Increases Its Endocytosis and Reduces Wnt/β-Catenin Signaling. Cell Chem Biol 2020; 27:1140-1150.e4. [PMID: 32649905 DOI: 10.1016/j.chembiol.2020.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/14/2020] [Accepted: 06/19/2020] [Indexed: 12/16/2022]
Abstract
Wnt/β-catenin signaling regulates critical, context-dependent transcription in numerous physiological events. Among the well-documented mechanisms affecting Wnt/β-catenin activity, modification of N-glycans by L-fucose is the newest and the least understood. Using a combination of Chinese hamster ovary cell mutants with different fucosylation levels and cell-surface fucose editing (in situ fucosylation [ISF]), we report that α(1-3)-fucosylation of N-acetylglucosamine (GlcNAc) in the Galβ(1-4)-GlcNAc sequences of complex N-glycans modulates Wnt/β-catenin activity by regulating the endocytosis of low-density lipoprotein receptor-related protein 6 (LRP6). Pulse-chase experiments reveal that ISF elevates endocytosis of lipid-raft-localized LRP6, leading to the suppression of Wnt/β-catenin signaling. Remarkably, Wnt activity decreased by ISF is fully reversed by the exogenously added fucose. The combined data show that in situ cell-surface fucosylation can be exploited to regulate a specific signaling pathway via endocytosis promoted by a fucose-binding protein, thereby linking glycosylation of a receptor with its intracellular signaling.
Collapse
Affiliation(s)
- Senlian Hong
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla CA 92037, USA
| | - Lei Feng
- Department of Biochemistry, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Yi Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla CA 92037, USA
| | - Hao Jiang
- Department of Biochemistry, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA; The School of Medicine and Pharmacy, Ocean University of China 5 Yushan Road, Qingdao 266003, China
| | - Xiaomeng Hou
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla CA 92037, USA
| | - Peng Guo
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Florence L Marlow
- Department of Cell Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Peng Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla CA 92037, USA.
| |
Collapse
|
7
|
Aykul S, Corpina RA, Goebel EJ, Cunanan CJ, Dimitriou A, Kim HJ, Zhang Q, Rafique A, Leidich R, Wang X, McClain J, Jimenez J, Nannuru KC, Rothman NJ, Lees-Shepard JB, Martinez-Hackert E, Murphy AJ, Thompson TB, Economides AN, Idone V. Activin A forms a non-signaling complex with ACVR1 and type II Activin/BMP receptors via its finger 2 tip loop. eLife 2020; 9:54582. [PMID: 32515349 PMCID: PMC7326492 DOI: 10.7554/elife.54582] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/08/2020] [Indexed: 01/18/2023] Open
Abstract
Activin A functions in BMP signaling in two ways: it either engages ACVR1B to activate Smad2/3 signaling or binds ACVR1 to form a non-signaling complex (NSC). Although the former property has been studied extensively, the roles of the NSC remain unexplored. The genetic disorder fibrodysplasia ossificans progressiva (FOP) provides a unique window into ACVR1/Activin A signaling because in that disease Activin can either signal through FOP-mutant ACVR1 or form NSCs with wild-type ACVR1. To explore the role of the NSC, we generated 'agonist-only' Activin A muteins that activate ACVR1B but cannot form the NSC with ACVR1. Using one of these muteins, we demonstrate that failure to form the NSC in FOP results in more severe disease pathology. These results provide the first evidence for a biological role for the NSC in vivo and pave the way for further exploration of the NSC's physiological role in corresponding knock-in mice.
Collapse
Affiliation(s)
- Senem Aykul
- Regeneron Pharmaceuticals, Tarrytown, United States
| | | | | | | | | | | | - Qian Zhang
- Regeneron Pharmaceuticals, Tarrytown, United States
| | | | | | - Xin Wang
- Regeneron Pharmaceuticals, Tarrytown, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Low-density lipoprotein receptor-related protein 6-mediated signaling pathways and associated cardiovascular diseases: diagnostic and therapeutic opportunities. Hum Genet 2020; 139:447-459. [PMID: 32076828 DOI: 10.1007/s00439-020-02124-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/31/2020] [Indexed: 12/15/2022]
Abstract
Low-density lipoprotein receptor-related protein 6 (LRP6) is a member of the low-density lipoprotein receptors (LDLRs) family and accumulating evidence points to the critical role of LRP6 in cardiovascular health and homeostasis. In addition to presenting the well-appreciated roles in canonical signaling regulating blood pressure, blood glucose, lipid metabolism, atherosclerosis, cardiac valve disease, cardiac development, Alzheimer's disease and tumorigenesis, LRP6 also inhibits non-canonical Wnt signals that promote arterial smooth muscle cell proliferation and vascular calcification. Noticeably, the role of LRP6 is displayed in cardiometabolic disease, an increasingly important clinical burden with aging and obesity. The prospect for cardiovascular diseases treatment via targeting LRP6-mediated signaling pathways may improve central blood pressure and lipid metabolism, and reduce neointima formation and myocardial ischemia-reperfusion injury. Thus, a deep and comprehensive understanding of LRP6 structure, function and signaling pathways will contribute to clinical diagnosis, therapy and new drug development for LRP6-related cardiovascular diseases.
Collapse
|
9
|
Lim ZQ, Ng QY, Ng JWQ, Mahendran V, Alonso S. Recent progress and challenges in drug development to fight hand, foot and mouth disease. Expert Opin Drug Discov 2019; 15:359-371. [DOI: 10.1080/17460441.2019.1659241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ze Qin Lim
- Department of Microbiology&Immunology, Yong Loo Lin School of Medicine, Immunology program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Qing Yong Ng
- Department of Microbiology&Immunology, Yong Loo Lin School of Medicine, Immunology program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Justin Wei Qing Ng
- Department of Microbiology&Immunology, Yong Loo Lin School of Medicine, Immunology program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Vikneswari Mahendran
- Department of Microbiology&Immunology, Yong Loo Lin School of Medicine, Immunology program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Sylvie Alonso
- Department of Microbiology&Immunology, Yong Loo Lin School of Medicine, Immunology program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
10
|
Kang S, Pu JL. WITHDRAWN: Low Density Lipoprotein Receptor Related Protein 6-mediated Cardiovascular Diseases and associated signaling pathways. Can J Cardiol 2019. [DOI: 10.1016/j.cjca.2019.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
11
|
Vriend J, Tate RB. Differential Expression of Genes for Ubiquitin Ligases in Medulloblastoma Subtypes. THE CEREBELLUM 2019; 18:469-488. [PMID: 30810905 DOI: 10.1007/s12311-019-1009-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Using publically available datasets on gene expression in medulloblastoma (MB) subtypes, we selected genes for ubiquitin ligases and identified statistically those that best predicted each of the four major MB subgroups as separate disease entities. We identify a gene coding for an ubiquitin ligase, ZNRF3, whose overexpression alone can predict the WNT subgroup for 100% in the Pfister dataset. For the SHH subgroup, we identify a gene for a regulatory subunit of the protein phosphatase 2A (PP2A), PPP2R2C, as the major predictor among the E3 ligases genes. The ubiquitin and ubiquitin-like conjugation database (UUCD) lists PPP2R2C as coding for a Cullin Ring ubiquitin ligase adaptor. For group 3 MBs, the best ubiquitin ligase predictor was PPP2R2B, a gene which codes for another regulatory subunit of the PP2A holoenzyme. For group 4, the best E3 gene predictors were MID2, ZBTB18, and PPP2R2A, which codes for a third PP2A regulatory subunit. Heatmap analysis of the E3 gene data shows that expression of ten genes for ubiquitin ligases can be used to classify MBs into the four major consensus subgroups. This was illustrated by analysis of gene expression of ubiquitin ligases of the Pfister dataset and confirmed in the dataset of Cavalli. We conclude that genes for ubiquitin ligases can be used as genetic markers for MB subtypes and that the proteins coded for by these genes should be investigated as subtype specific therapeutic targets for MB.
Collapse
Affiliation(s)
- Jerry Vriend
- Department of Human Anatomy & Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Rm134, BMSB, 745 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0J9, Canada.
| | - Robert B Tate
- Department of Community Health Sciences, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
12
|
Kabir MH, Patrick R, Ho JWK, O'Connor MD. Identification of active signaling pathways by integrating gene expression and protein interaction data. BMC SYSTEMS BIOLOGY 2018; 12:120. [PMID: 30598083 PMCID: PMC6311899 DOI: 10.1186/s12918-018-0655-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background Signaling pathways are the key biological mechanisms that transduce extracellular signals to affect transcription factor mediated gene regulation within cells. A number of computational methods have been developed to identify the topological structure of a specific signaling pathway using protein-protein interaction data, but they are not designed for identifying active signaling pathways in an unbiased manner. On the other hand, there are statistical methods based on gene sets or pathway data that can prioritize likely active signaling pathways, but they do not make full use of active pathway structure that link receptor, kinases and downstream transcription factors. Results Here, we present a method to simultaneously predict the set of active signaling pathways, together with their pathway structure, by integrating protein-protein interaction network and gene expression data. We evaluated the capacity for our method to predict active signaling pathways for dental epithelial cells, ocular lens epithelial cells, human pluripotent stem cell-derived lens epithelial cells, and lens fiber cells. This analysis showed our approach could identify all the known active pathways that are associated with tooth formation and lens development. Conclusions The results suggest that SPAGI can be a useful approach to identify the potential active signaling pathways given a gene expression profile. Our method is implemented as an open source R package, available via https://github.com/VCCRI/SPAGI/. Electronic supplementary material The online version of this article (10.1186/s12918-018-0655-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Md Humayun Kabir
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia.,Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,Department of Computer Science and Engineering, University of Rajshahi, Rajshahi, Bangladesh
| | - Ralph Patrick
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia.,Stem Cells Australia, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Joshua W K Ho
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia. .,St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia. .,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China.
| | - Michael D O'Connor
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia. .,Molecular Medicine Research Group, Western Sydney University, Campbelltown, NSW, Australia.
| |
Collapse
|
13
|
Wu D, Wang S, Wen X, Han X, Wang Y, Shen M, Fan S, Zhuang J, Zhang Z, Shan Q, Li M, Hu B, Sun C, Lu J, Chen G, Zheng Y. Retracted
: Suppression of microRNA‐342‐3p increases glutamate transporters and prevents dopaminergic neuron loss through activating the Wnt signaling pathway via p21‐activated kinase 1 in mice with Parkinson's disease. J Cell Physiol 2018; 234:9033-9044. [DOI: 10.1002/jcp.27577] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 09/17/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Dong‐Mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University Xuzhou China
- College of Health Sciences, Jiangsu Normal University Xuzhou China
| | - Shan Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University Xuzhou China
- College of Health Sciences, Jiangsu Normal University Xuzhou China
| | - Xin Wen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University Xuzhou China
- College of Health Sciences, Jiangsu Normal University Xuzhou China
| | - Xin‐Rui Han
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University Xuzhou China
- College of Health Sciences, Jiangsu Normal University Xuzhou China
| | - Yong‐Jian Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University Xuzhou China
- College of Health Sciences, Jiangsu Normal University Xuzhou China
| | - Min Shen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University Xuzhou China
- College of Health Sciences, Jiangsu Normal University Xuzhou China
| | - Shao‐Hua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University Xuzhou China
- College of Health Sciences, Jiangsu Normal University Xuzhou China
| | - Juan Zhuang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University Xuzhou China
- School of Environment Science and Spatial Informatics, China University of Mining and Technology Xuzhou China
- Jiangsu Key Laboratory for Eco‐Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University Huaian China
| | - Zi‐Feng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University Xuzhou China
- College of Health Sciences, Jiangsu Normal University Xuzhou China
| | - Qun Shan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University Xuzhou China
- College of Health Sciences, Jiangsu Normal University Xuzhou China
| | - Meng‐Qiu Li
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University Xuzhou China
- College of Health Sciences, Jiangsu Normal University Xuzhou China
| | - Bin Hu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University Xuzhou China
- College of Health Sciences, Jiangsu Normal University Xuzhou China
| | - Chun‐Hui Sun
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University Xuzhou China
- College of Health Sciences, Jiangsu Normal University Xuzhou China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University Xuzhou China
- College of Health Sciences, Jiangsu Normal University Xuzhou China
| | - Gui‐Quan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University Nanjing China
| | - Yuan‐Lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University Xuzhou China
- College of Health Sciences, Jiangsu Normal University Xuzhou China
| |
Collapse
|
14
|
Patel S, Barkell AM, Gupta D, Strong SL, Bruton S, Muskett FW, Addis PW, Renshaw PS, Slocombe PM, Doyle C, Clargo A, Taylor RJ, Prosser CE, Henry AJ, Robinson MK, Waters LC, Holdsworth G, Carr MD. Structural and functional analysis of Dickkopf 4 (Dkk4): New insights into Dkk evolution and regulation of Wnt signaling by Dkk and Kremen proteins. J Biol Chem 2018; 293:12149-12166. [PMID: 29925589 PMCID: PMC6078440 DOI: 10.1074/jbc.ra118.002918] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/11/2018] [Indexed: 11/06/2022] Open
Abstract
Dickkopf (Dkk) family proteins are important regulators of Wnt signaling pathways, which play key roles in many essential biological processes. Here, we report the first detailed structural and dynamics study of a full-length mature Dkk protein (Dkk4, residues 19–224), including determination of the first atomic-resolution structure for the N-terminal cysteine-rich domain (CRD1) conserved among Dkk proteins. We discovered that CRD1 has significant structural homology to the Dkk C-terminal cysteine-rich domain (CRD2), pointing to multiple gene duplication events during Dkk family evolution. We also show that Dkk4 consists of two independent folded domains (CRD1 and CRD2) joined by a highly flexible, nonstructured linker. Similarly, the N-terminal region preceding CRD1 and containing a highly conserved NXI(R/K) sequence motif was shown to be dynamic and highly flexible. We demonstrate that Dkk4 CRD2 mediates high-affinity binding to both the E1E2 region of low-density lipoprotein receptor–related protein 6 (LRP6 E1E2) and the Kremen1 (Krm1) extracellular domain. In contrast, the N-terminal region alone bound with only moderate affinity to LRP6 E1E2, consistent with binding via the conserved NXI(R/K) motif, but did not interact with Krm proteins. We also confirmed that Dkk and Krm family proteins function synergistically to inhibit Wnt signaling. Insights provided by our integrated structural, dynamics, interaction, and functional studies have allowed us to refine the model of synergistic regulation of Wnt signaling by Dkk proteins. Our results indicate the potential for the formation of a diverse range of ternary complexes comprising Dkk, Krm, and LRP5/6 proteins, allowing fine-tuning of Wnt-dependent signaling.
Collapse
Affiliation(s)
- Saleha Patel
- Leicester Institute of Structural and Chemical Biology, Lancaster Road, Leicester LE1 7HB, United Kingdom; Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
| | - Alice M Barkell
- Leicester Institute of Structural and Chemical Biology, Lancaster Road, Leicester LE1 7HB, United Kingdom; Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
| | - Deepti Gupta
- UCB, 208 Bath Road, Slough SL1 3WE, United Kingdom
| | - Sarah L Strong
- Leicester Institute of Structural and Chemical Biology, Lancaster Road, Leicester LE1 7HB, United Kingdom; Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
| | - Shaun Bruton
- Leicester Institute of Structural and Chemical Biology, Lancaster Road, Leicester LE1 7HB, United Kingdom; Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
| | - Frederick W Muskett
- Leicester Institute of Structural and Chemical Biology, Lancaster Road, Leicester LE1 7HB, United Kingdom; Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
| | - Philip W Addis
- Leicester Institute of Structural and Chemical Biology, Lancaster Road, Leicester LE1 7HB, United Kingdom; Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
| | - Philip S Renshaw
- Leicester Institute of Structural and Chemical Biology, Lancaster Road, Leicester LE1 7HB, United Kingdom; Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
| | | | - Carl Doyle
- UCB, 208 Bath Road, Slough SL1 3WE, United Kingdom
| | | | | | - Christine E Prosser
- Leicester Institute of Structural and Chemical Biology, Lancaster Road, Leicester LE1 7HB, United Kingdom; UCB, 208 Bath Road, Slough SL1 3WE, United Kingdom
| | | | | | - Lorna C Waters
- Leicester Institute of Structural and Chemical Biology, Lancaster Road, Leicester LE1 7HB, United Kingdom; Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom.
| | | | - Mark D Carr
- Leicester Institute of Structural and Chemical Biology, Lancaster Road, Leicester LE1 7HB, United Kingdom; Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom.
| |
Collapse
|
15
|
Robertson MJ, Horatscheck A, Sauer S, von Kleist L, Baker JR, Stahlschmidt W, Nazaré M, Whiting A, Chau N, Robinson PJ, Haucke V, McCluskey A. 5-Aryl-2-(naphtha-1-yl)sulfonamido-thiazol-4(5H)-ones as clathrin inhibitors. Org Biomol Chem 2016; 14:11266-11278. [PMID: 27853797 DOI: 10.1039/c6ob02308h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of a (Z)-5-((6,8-dichloro-4-oxo-4H-chromen-3-yl)methylene)-2-thioxothiazolidin-4-one (2), rhodanine-based lead that led to the Pitstop® 2 family of clathrin inhibitors is described herein. Head group substitution and bioisosteric replacement of the rhodanine core with a 2-aminothiazol-4(5H)-one scaffold eliminated off target dynamin activity. A series of N-substituents gave first phenylglycine (20, IC50 ∼ 20 μM) then phenyl (25, IC50 ∼ 7.1 μM) and 1-napthyl sulfonamide (26, Pitstop® 2 compound, IC50 ∼ 1.9 μM) analogues with good activity, validating this approach. A final library exploring the head group resulted in three analogues displaying either slight improvements or comparable activity (33, 38, and 29 with IC50 ∼ 1.4, 1.6 and 1.8 μM respectively) and nine others with IC50 < 10 μM. These results were rationalized using in silico docking studies. Docking studies predicted enhanced Pitstop® 2 family binding, not a loss of binding, within the Pistop® groove of the reported clathrin mutant invalidating recent assumptions of poor selectivity for this family of clathrin inhibitors.
Collapse
Affiliation(s)
- Mark J Robertson
- Chemistry, Priority Research Centre for Chemical Biology, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
| | - André Horatscheck
- Leibniz Institut für Molekulare Pharmakologie & Freie Universität Berlin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Samantha Sauer
- Chemistry, Priority Research Centre for Chemical Biology, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
| | - Lisa von Kleist
- Leibniz Institut für Molekulare Pharmakologie & Freie Universität Berlin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Jennifer R Baker
- Chemistry, Priority Research Centre for Chemical Biology, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
| | - Wiebke Stahlschmidt
- Leibniz Institut für Molekulare Pharmakologie & Freie Universität Berlin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Marc Nazaré
- Leibniz Institut für Molekulare Pharmakologie & Freie Universität Berlin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Ainslie Whiting
- Cell Signaling Unit, Children's Medical Research Institute, The University of Sydney, Sydney, NSW 2145, Australia
| | - Ngoc Chau
- Cell Signaling Unit, Children's Medical Research Institute, The University of Sydney, Sydney, NSW 2145, Australia
| | - Phillip J Robinson
- Cell Signaling Unit, Children's Medical Research Institute, The University of Sydney, Sydney, NSW 2145, Australia
| | - Volker Haucke
- Leibniz Institut für Molekulare Pharmakologie & Freie Universität Berlin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Adam McCluskey
- Chemistry, Priority Research Centre for Chemical Biology, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
| |
Collapse
|
16
|
Mulvaney JF, Thompkins C, Noda T, Nishimura K, Sun WW, Lin SY, Coffin A, Dabdoub A. Kremen1 regulates mechanosensory hair cell development in the mammalian cochlea and the zebrafish lateral line. Sci Rep 2016; 6:31668. [PMID: 27550540 PMCID: PMC4994024 DOI: 10.1038/srep31668] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/21/2016] [Indexed: 02/06/2023] Open
Abstract
Here we present spatio-temporal localization of Kremen1, a transmembrane receptor, in the mammalian cochlea, and investigate its role in the formation of sensory organs in mammal and fish model organisms. We show that Kremen1 is expressed in prosensory cells during cochlear development and in supporting cells of the adult mouse cochlea. Based on this expression pattern, we investigated whether Kremen1 functions to modulate cell fate decisions in the prosensory domain of the developing cochlea. We used gain and loss-of-function experiments to show that Kremen1 is sufficient to bias cells towards supporting cell fate, and is implicated in suppression of hair cell formation. In addition to our findings in the mouse cochlea, we examined the effects of over expression and loss of Kremen1 in the zebrafish lateral line. In agreement with our mouse data, we show that over expression of Kremen1 has a negative effect on the number of mechanosensory cells that form in the zebrafish neuromasts, and that fish lacking Kremen1 protein develop more hair cells per neuromast compared to wild type fish. Collectively, these data support an inhibitory role for Kremen1 in hair cell fate specification.
Collapse
Affiliation(s)
- Joanna F Mulvaney
- Biological Sciences, Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada
| | - Cathrine Thompkins
- College of Arts and Sciences and Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, USA
| | - Teppei Noda
- Biological Sciences, Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada
| | - Koji Nishimura
- Biological Sciences, Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada
| | - Willy W Sun
- Biological Sciences, Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada
| | - Shuh-Yow Lin
- Department of Surgery, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Allison Coffin
- College of Arts and Sciences and Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, USA
| | - Alain Dabdoub
- Biological Sciences, Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada.,Department of Otolaryngology - Head and Neck Surgery, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| |
Collapse
|
17
|
Feng Q, Gao N. Keeping Wnt signalosome in check by vesicular traffic. J Cell Physiol 2015; 230:1170-80. [PMID: 25336320 DOI: 10.1002/jcp.24853] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 10/17/2014] [Indexed: 01/01/2023]
Abstract
Wg/Wnts are paracrine and autocrine ligands that activate distinct signaling pathways while being internalized through surface receptors. Converging and contrasting views are shaping our understanding of whether, where, and how endocytosis may modulate Wnt signaling. We gather considerable amount of evidences to elaborate the point that signal-receiving cells utilize distinct, flexible, and sophisticated vesicular trafficking mechanisms to keep Wnt signaling activity in check. Same molecules in a highly context-dependent fashion serve as regulatory hub for various signaling purposes: amplification, maintenance, inhibition, and termination. Updates are provided for the regulatory mechanisms related to the three critical cell surface complexes, Wnt-Fzd-LRP6, Dkk1-Kremen-LRP6, and R-spondin-LGR5-RNF43, which potently influence Wnt signaling. We pay particular attentions to how cells achieve sustained and delicate control of Wnt signaling strength by employing comprehensive aspects of vesicular trafficking.
Collapse
Affiliation(s)
- Qiang Feng
- Department of Biological Sciences, Rutgers University, Newark, New Jersey
| | | |
Collapse
|
18
|
Robertson MJ, Deane FM, Stahlschmidt W, von Kleist L, Haucke V, Robinson PJ, McCluskey A. Synthesis of the Pitstop family of clathrin inhibitors. Nat Protoc 2014; 9:1592-606. [PMID: 24922269 DOI: 10.1038/nprot.2014.106] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This protocol describes the synthesis of two classes of clathrin inhibitors, Pitstop 1 and Pitstop 2, along with two inactive analogs that can be used as negative controls (Pitstop inactive controls, Pitnot-2 and Pitnot-2-100). Pitstop-induced inhibition of clathrin TD function acutely interferes with clathrin-mediated endocytosis (CME), synaptic vesicle recycling and cellular entry of HIV, whereas clathrin-independent internalization pathways and secretory traffic proceed unperturbed; these reagents can, therefore, be used to investigate clathrin function, and they have potential pharmacological applications. Pitstop 1 is synthesized in two steps: sulfonation of 1,8-naphthalic anhydride and subsequent reaction with 4-amino(methyl)aniline. Pitnot-1 results from the reaction of 4-amino(methyl)aniline with commercially available 4-sulfo-1,8-naphthalic anhydride potassium salt. Reaction of 1-naphthalene sulfonyl chloride with pseudothiohydantoin followed by condensation with 4-bromobenzaldehyde yields Pitstop 2. The synthesis of the inactive control commences with the condensation of 4-bromobenzaldehyde with the rhodanine core. Thioketone methylation and displacement with 1-napthylamine affords the target compound. Although Pitstop 1-series compounds are not cell permeable, they can be used in biochemical assays or be introduced into cells via microinjection. The Pitstop 2-series compounds are cell permeable. The synthesis of these compounds does not require specialist equipment and can be completed in 3-4 d. Microwave irradiation can be used to reduce the synthesis time. The synthesis of the Pitstop 2 family is easily adaptable to enable the synthesis of related compounds such as Pitstop 2-100 and Pitnot-2-100. The procedures are also simple, efficient and amenable to scale-up, enabling cost-effective in-house synthesis for users of these inhibitor classes.
Collapse
Affiliation(s)
- Mark J Robertson
- 1] Department of Chemistry, Centre for Chemical Biology, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia. [2]
| | - Fiona M Deane
- 1] Department of Chemistry, Centre for Chemical Biology, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia. [2]
| | - Wiebke Stahlschmidt
- Leibniz Institut für Molekulare Pharmakologie & Freie Universität Berlin, Berlin, Germany
| | - Lisa von Kleist
- Leibniz Institut für Molekulare Pharmakologie & Freie Universität Berlin, Berlin, Germany
| | - Volker Haucke
- Leibniz Institut für Molekulare Pharmakologie & Freie Universität Berlin, Berlin, Germany
| | - Phillip J Robinson
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Adam McCluskey
- Department of Chemistry, Centre for Chemical Biology, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|