1
|
Patnaik HH, Sang MK, Park JE, Song DK, Jeong JY, Hong CE, Kim YT, Shin HJ, Ziwei L, Hwang HJ, Park SY, Kang SW, Ko JH, Lee JS, Park HS, Jo YH, Han YS, Patnaik BB, Lee YS. A review of the endangered mollusks transcriptome under the threatened species initiative of Korea. Genes Genomics 2023; 45:969-987. [PMID: 37405596 DOI: 10.1007/s13258-023-01389-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/09/2023] [Indexed: 07/06/2023]
Abstract
Transcriptome studies for conservation of endangered mollusks is a proactive approach towards managing threats and uncertainties facing these species in natural environments. The population of these species is declining due to habitat destruction, illicit wildlife trade, and global climate change. These activities risk the free movement of species across the wild landscape, loss of breeding grounds, and restrictions in displaying the physiological attributes so crucial for faunal welfare. Gastropods face the most negative ecological effects and have been enlisted under Korea's protective species consortium based on their population dynamics in the last few years. Moreover, with the genetic resources restricted for such species, conservation by informed planning is not possible. This review provides insights into the activities under the threatened species initiative of Korea with special reference to the transcriptome assemblies of endangered mollusks. The gastropods such as Ellobium chinense, Aegista chejuensis, Aegista quelpartensis, Incilaria fruhstorferi, Koreanohadra kurodana, Satsuma myomphala, and Clithon retropictus have been represented. Moreover, the transcriptome summary of bivalve Cristaria plicata and Caenogastropoda Charonia lampas sauliae is also discussed. Sequencing, de novo assembly, and annotation identified transcripts or homologs for the species and, based on an understanding of the biochemical and molecular pathways, were ascribed to predictive gene function. Mining for simple sequence repeats from the transcriptome have successfully assisted genetic polymorphism studies. A comparison of the transcriptome scheme of Korean endangered mollusks with the genomic resources of other endangered mollusks have been discussed with homologies and analogies for dictating future research.
Collapse
Affiliation(s)
- Hongray Howrelia Patnaik
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
| | - Min Kyu Sang
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Research Support Center for Bio-Bigdata Analysis and Utilization of Biological Resources, Soonchunhyang University, Asan, Chungnam, South Korea
| | - Jie Eun Park
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Research Support Center for Bio-Bigdata Analysis and Utilization of Biological Resources, Soonchunhyang University, Asan, Chungnam, South Korea
| | - Dae Kwon Song
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Research Support Center for Bio-Bigdata Analysis and Utilization of Biological Resources, Soonchunhyang University, Asan, Chungnam, South Korea
| | - Jun Yang Jeong
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan,, Chungnam, 31538, South Korea
| | - Chan Eui Hong
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan,, Chungnam, 31538, South Korea
| | - Yong Tae Kim
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan,, Chungnam, 31538, South Korea
| | - Hyeon Jun Shin
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan,, Chungnam, 31538, South Korea
| | - Liu Ziwei
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan,, Chungnam, 31538, South Korea
| | - Hee Ju Hwang
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan,, Chungnam, 31538, South Korea
| | - So Young Park
- Biodiversity Research Team, Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju, Gyeongbuk, 37242, South Korea
| | - Se Won Kang
- Biological Resource Center (BRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk, 56212, South Korea
| | - Jung Ho Ko
- Police Science Institute, Korean National Police University, Asan, Chungnam, 31539, South Korea
| | - Jun Sang Lee
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
| | - Hong Seog Park
- Research Institute, GnC BIO Co., LTD., 621-6 Banseok-dong, Yuseong-gu, Daejeon, 34069, South Korea
| | - Yong Hun Jo
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan,, Chungnam, 31538, South Korea
| | - Yeon Soo Han
- College of Agriculture and Life Science, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Bharat Bhusan Patnaik
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- P.G Department of Biosciences and Biotechnology, Fakir Mohan University, Odisha, 756089, Nuapadhi, Balasore, India
| | - Yong Seok Lee
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea.
- Research Support Center for Bio-Bigdata Analysis and Utilization of Biological Resources, Soonchunhyang University, Asan, Chungnam, South Korea.
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan,, Chungnam, 31538, South Korea.
| |
Collapse
|
2
|
Coupé S, Giantsis IA, Vázquez Luis M, Scarpa F, Foulquié M, Prévot J, Casu M, Lattos A, Michaelidis B, Sanna D, García‐March JR, Tena‐Medialdea J, Vicente N, Bunet R. The characterization of toll-like receptor repertoire in Pinna nobilis after mass mortality events suggests adaptive introgression. Ecol Evol 2023; 13:e10383. [PMID: 37546570 PMCID: PMC10401143 DOI: 10.1002/ece3.10383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 08/08/2023] Open
Abstract
The fan mussel Pinna nobilis is currently on the brink of extinction due to a multifactorial disease mainly caused to the highly pathogenic parasite Haplosporidium pinnae, meaning that the selection pressure outweighs the adaptive potential of the species. Hopefully, rare individuals have been observed somehow resistant to the parasite, stretching the need to identify the traits underlying this better fitness. Among the candidate to explore at first intention are fast-evolving immune genes, of which toll-like receptor (TLR). In this study, we examined the genetic diversity at 14 TLR loci across P. nobilis, Pinna rudis and P. nobilis × P. rudis hybrid genomes, collected at four physically distant regions, that were found to be either resistant or sensitive to the parasite H. pinnae. We report a high genetic diversity, mainly observed at cell surface TLRs compared with that of endosomal TLRs. However, the endosomal TLR-7 exhibited unexpected level of diversity and haplotype phylogeny. The lack of population structure, associated with a high genetic diversity and elevated dN/dS ratio, was interpreted as balancing selection, though both directional and purifying selection were detected. Interestingly, roughly 40% of the P. nobilis identified as resistant to H. pinnae were introgressed with P. rudis TLR. Specifically, they all carried a TLR-7 of P. rudis origin, whereas sensitive P. nobilis were not introgressed, at least at TLR loci. Small contributions of TLR-6 and TLR-4 single-nucleotide polymorphisms to the clustering of resistant and susceptible individuals could be detected, but their specific role in resistance remains highly speculative. This study provides new information on the diversity of TLR genes within the P. nobilis species after MME and additional insights into adaptation to H. pinnae that should contribute to the conservation of this Mediterranean endemic species.
Collapse
Affiliation(s)
- Stéphane Coupé
- Université de Toulon, Aix Marseille Univ, CNRS, IRD, MIOMarseilleFrance
| | | | - Maite Vázquez Luis
- Instituto Español de Oceanografía (IEO, CSIC), Centro Oceanográfico de BalearesPalma de MallorcaSpain
| | - Fabio Scarpa
- Department of Biomedical SciencesFabio Scarpa, Daria Sanna: University of SassariSassariItaly
| | - Mathieu Foulquié
- Université de Toulon, Aix Marseille Univ, CNRS, IRD, MIOMarseilleFrance
- Institut océanographique Paul RicardIle des Embiez, VarFrance
| | | | - Marco Casu
- Department of Veterinary MedicineUniversity of SassariSassariItaly
| | - Athanasios Lattos
- Faculty of Agricultural SciencesUniversity of Western MacedoniaKozaniGreece
| | - Basile Michaelidis
- Faculty of Agricultural SciencesUniversity of Western MacedoniaKozaniGreece
| | - Daria Sanna
- Department of Biomedical SciencesFabio Scarpa, Daria Sanna: University of SassariSassariItaly
| | - José Rafa García‐March
- IMEDMAR‐UCV, Institute of Environment and Marine Science ResearchUniversidad Católica de Valencia SVMCalpe, AlicanteSpain
| | - José Tena‐Medialdea
- IMEDMAR‐UCV, Institute of Environment and Marine Science ResearchUniversidad Católica de Valencia SVMCalpe, AlicanteSpain
| | - Nardo Vicente
- Institut Méditerranéen de Biodiversité et Ecologie marine et continentale (IMBE), Aix‐Marseille Université, CNRS, IRD, Avignon UniversitéAvignonFrance
| | - Robert Bunet
- Institut océanographique Paul RicardIle des Embiez, VarFrance
| |
Collapse
|
3
|
Le Cam S, Brémaud J, Malkócs T, Kreckelbergh E, Becquet V, Dubillot E, Garcia P, Breton S, Pante E. LAMP-based molecular sexing in a gonochoric marine bivalve ( Macoma balthica rubra) with divergent sex-specific mitochondrial genomes. Ecol Evol 2023; 13:e10320. [PMID: 37636868 PMCID: PMC10450836 DOI: 10.1002/ece3.10320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 08/29/2023] Open
Abstract
Taking advantage of the unique system of doubly uniparental inheritance (DUI) of mitochondria, we developed a reliable molecular method to sex individuals of the marine bivalve Macoma balthica rubra. In species with DUI (~100 known bivalves), both sexes transmit their mitochondria: males bear both a male- and female-type mitogenome, while females bear only the female type. Male and female mitotypes are sufficiently divergent to reliably PCR-amplify them specifically. Loop-mediated isothermal amplification (LAMP) is a precise, economical and portable alternative to PCR for molecular sexing and we demonstrate its application in this context. We used 154 individuals sampled along the Atlantic coast of France and sexed microscopically by gonad examination to test for the congruence among gamete type, PCR sexing and LAMP sexing. We show an exact match among the sexing results from these three methods using the male and female mt-cox1 genes. DUI can be disrupted in inter-specific hybrids, causing unexpected distribution of mitogenomes, such as homoplasmic males or heteroplasmic females. To our knowledge, DUI disruption at the intra-specific scale has never been tested. We applied our sexing protocol to control for unexpected heteroplasmy caused by hybridization between divergent genetic lineages and found no evidence of disruption in the mode of mitochondrial inheritance in M. balthica rubra. We propose LAMP as a useful tool to accelerate eco-evolutionary studies of DUI. It offers the opportunity to investigate the potential role of, previously unaccounted-for, sex-specific patterns such as sexual selection or sex-specific dispersal bias in the evolution of free-spawning benthic species.
Collapse
Affiliation(s)
- Sabrina Le Cam
- Laboratoire Littoral Environnement et Sociétés (LIENSs)UMR 7266 CNRS – La Rochelle UniversitéLa RochelleFrance
| | - Julie Brémaud
- Département de sciences biologiquesUniversité de MontréalMontréalQuébecCanada
| | - Tamás Malkócs
- Laboratoire Littoral Environnement et Sociétés (LIENSs)UMR 7266 CNRS – La Rochelle UniversitéLa RochelleFrance
| | - Eugénie Kreckelbergh
- Laboratoire Littoral Environnement et Sociétés (LIENSs)UMR 7266 CNRS – La Rochelle UniversitéLa RochelleFrance
| | - Vanessa Becquet
- Laboratoire Littoral Environnement et Sociétés (LIENSs)UMR 7266 CNRS – La Rochelle UniversitéLa RochelleFrance
| | - Emmanuel Dubillot
- Laboratoire Littoral Environnement et Sociétés (LIENSs)UMR 7266 CNRS – La Rochelle UniversitéLa RochelleFrance
| | - Pascale Garcia
- Laboratoire Littoral Environnement et Sociétés (LIENSs)UMR 7266 CNRS – La Rochelle UniversitéLa RochelleFrance
| | - Sophie Breton
- Département de sciences biologiquesUniversité de MontréalMontréalQuébecCanada
| | - Eric Pante
- Laboratoire des Sciences de l'Environnement Marin (LEMAR)UMR 6539 CNRS‐UBO‐IRD‐Ifremer, Institut Universitaire Européen de la MerPlouzanéFrance
| |
Collapse
|
4
|
Michnowska A, Hart SFM, Smolarz K, Hallmann A, Metzger MJ. Horizontal transmission of disseminated neoplasia in the widespread clam
Macoma balthica
from the Southern Baltic Sea. Mol Ecol 2022; 31:3128-3136. [DOI: 10.1111/mec.16464] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Alicja Michnowska
- Department of Marine Ecosystems Functioning Institute of Oceanography Faculty of Oceanography and Geography University of Gdańsk Piłsudskiego 46 81‐378 Gdynia
| | - Samuel F. M. Hart
- Pacific Northwest Research Institute 720 Broadway Seattle WA 98122 USA
- Molecular and Cellular Biology Program University of Washington 1959 NE Pacific Street, HSB T‐466 Seattle WA 98195 USA
| | - Katarzyna Smolarz
- Department of Marine Ecosystems Functioning Institute of Oceanography Faculty of Oceanography and Geography University of Gdańsk Piłsudskiego 46 81‐378 Gdynia
| | - Anna Hallmann
- Department of Pharmaceutical Biochemistry Medical University of Gdańsk Dębinki 1 80‐211 Gdańsk
| | - Michael J. Metzger
- Pacific Northwest Research Institute 720 Broadway Seattle WA 98122 USA
- Molecular and Cellular Biology Program University of Washington 1959 NE Pacific Street, HSB T‐466 Seattle WA 98195 USA
| |
Collapse
|
5
|
García G, Ríos N, Gutiérrez V, Serra S, Loureiro M. Transcriptome-Based SNP Discovery and Validation in the Hybrid Zone of the Neotropical Annual Fish Genus Austrolebias. Genes (Basel) 2019; 10:genes10100789. [PMID: 31614537 PMCID: PMC6826752 DOI: 10.3390/genes10100789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 02/04/2023] Open
Abstract
The genus Austrolebias (Cyprinodontiformes: Rivulidae) represents a specious group of taxa following annual life cycles in the neotropical ichthyofauna. They live in temporary ponds and each generation must be completed in a few months, depending on environmental stochasticity. Annual fish survive the dry season through diapausing eggs buried in the substrate of these ponds. A hypothesized bimodal hybrid zone between two taxa of the genus, A. charrua and A. reicherti from Dos Patos Merin lagoon system, was recently proposed based on genetics and morphological analyses. However, hundreds of additional nuclear molecular markers should be used to strongly support this hypothesized bimodal pattern. In the present paper, we conducted RNA-seq-based sequencing of the transcriptomes from pools of individuals of A. charrua, A. reicherti and their putative natural hybrids from the previously characterized hybrid zone. As a result, we identified a set of 111,725 SNP (single nucleotide polymorphism) markers, representing presumably fixed allelic differences among the two species. The present study provided the first panel of 106 SNP markers as a single diagnostic multiplex assay and validated their capacity to reconstruct the patterns of the hybrid zone between both taxa. These nuclear markers combined with Cytb gene and morphological analyses detected a population structure in which some groups among the hybrid swarms showed different level of introgression towards one or the other parental species according to their geographic distribution. High-quality transcriptomes and a large set of gene-linked SNPs should greatly facilitate functional and population genomics studies in the hybrid zone of these endangered species.
Collapse
Affiliation(s)
- Graciela García
- Sección Genética Evolutiva, Facultad de Ciencias, UdelaR, Iguá 4225, Montevideo 11400, Uruguay.
| | - Néstor Ríos
- Sección Genética Evolutiva, Facultad de Ciencias, UdelaR, Iguá 4225, Montevideo 11400, Uruguay.
| | - Verónica Gutiérrez
- Sección Genética Evolutiva, Facultad de Ciencias, UdelaR, Iguá 4225, Montevideo 11400, Uruguay.
| | - Sebastián Serra
- Sección Genética Evolutiva, Facultad de Ciencias, UdelaR, Iguá 4225, Montevideo 11400, Uruguay.
- Departamento de Ecología y Evolución, Facultad de Ciencias, UdelaR, Iguá 4225, Montevideo 11400, Uruguay.
- Sección Ictiología, Museo Nacional de Historia Natural, Montevideo 11400, Uruguay.
| | - Marcelo Loureiro
- Departamento de Ecología y Evolución, Facultad de Ciencias, UdelaR, Iguá 4225, Montevideo 11400, Uruguay.
- Sección Ictiología, Museo Nacional de Historia Natural, Montevideo 11400, Uruguay.
| |
Collapse
|
6
|
Yurchenko AA, Katolikova N, Polev D, Shcherbakova I, Strelkov P. Transcriptome of the bivalve Limecola balthica L. from Western Pacific: A new resource for studies of European populations. Mar Genomics 2018; 40:58-63. [DOI: 10.1016/j.margen.2018.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 03/29/2018] [Accepted: 03/31/2018] [Indexed: 10/17/2022]
|
7
|
Nielsen ES, Henriques R, Toonen RJ, Knapp ISS, Guo B, von der Heyden S. Complex signatures of genomic variation of two non-model marine species in a homogeneous environment. BMC Genomics 2018; 19:347. [PMID: 29743012 PMCID: PMC5944137 DOI: 10.1186/s12864-018-4721-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/23/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Genomic tools are increasingly being used on non-model organisms to provide insights into population structure and variability, including signals of selection. However, most studies are carried out in regions with distinct environmental gradients or across large geographical areas, in which local adaptation is expected to occur. Therefore, the focus of this study is to characterize genomic variation and selective signals over short geographic areas within a largely homogeneous region. To assess adaptive signals between microhabitats within the rocky shore, we compared genomic variation between the Cape urchin (Parechinus angulosus), which is a low to mid-shore species, and the Granular limpet (Scutellastra granularis), a high shore specialist. RESULTS Using pooled restriction site associated DNA (RAD) sequencing, we described patterns of genomic variation and identified outlier loci in both species. We found relatively low numbers of outlier SNPs within each species, and identified outlier genes associated with different selective pressures than those previously identified in studies conducted over larger environmental gradients. The number of population-specific outlier loci differed between species, likely owing to differential selective pressures within the intertidal environment. Interestingly, the outlier loci were highly differentiated within the two northernmost populations for both species, suggesting that unique evolutionary forces are acting on marine invertebrates within this region. CONCLUSIONS Our study provides a background for comparative genomic studies focused on non-model species, as well as a baseline for the adaptive potential of marine invertebrates along the South African west coast. We also discuss the caveats associated with Pool-seq and potential biases of sequencing coverage on downstream genomic metrics. The findings provide evidence of species-specific selective pressures within a homogeneous environment, and suggest that selective forces acting on small scales are just as crucial to acknowledge as those acting on larger scales. As a whole, our findings imply that future population genomic studies should expand from focusing on model organisms and/or studying heterogeneous regions to better understand the evolutionary processes shaping current and future biodiversity patterns, particularly when used in a comparative phylogeographic context.
Collapse
Affiliation(s)
- Erica S Nielsen
- Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland,, 7602, South Africa
| | - Romina Henriques
- Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland,, 7602, South Africa
| | - Robert J Toonen
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA
| | - Ingrid S S Knapp
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA
| | - Baocheng Guo
- The Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology Chinese Academy of Sciences, Beijing, 100101, China
| | - Sophie von der Heyden
- Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland,, 7602, South Africa.
| |
Collapse
|
8
|
Metivier SL, Kim J, Addison JA. Genotype by sequencing identifies natural selection as a driver of intraspecific divergence in Atlantic populations of the high dispersal marine invertebrate, Macoma petalum. Ecol Evol 2017; 7:8058-8072. [PMID: 29043056 PMCID: PMC5632645 DOI: 10.1002/ece3.3332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 06/14/2017] [Accepted: 07/18/2017] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial DNA analyses indicate that the Bay of Fundy population of the intertidal tellinid bivalve Macoma petalum is genetically divergent from coastal populations in the Gulf of Maine and Nova Scotia. To further examine the evolutionary forces driving this genetic break, we performed double digest genotype by sequencing (GBS) to survey the nuclear genome for evidence of both neutral and selective processes shaping this pattern. The resulting reads were mapped to a partial transcriptome of its sister species, M. balthica, to identify single nucleotide polymorphisms (SNPs) in protein-coding genes. Population assignment tests, principle components analyses, analysis of molecular variance, and outlier tests all support differentiation between the Bay of Fundy genotype and the genotypes of the Gulf of Maine, Gulf of St. Lawrence, and Nova Scotia. Although both neutral and non-neutral patterns of genetic subdivision were significant, genetic structure among the regions was nearly 20 times higher for loci putatively under selection, suggesting a strong role for natural selection as a driver of genetic diversity in this species. Genetic differences were the greatest between the Bay of Fundy and all other population samples, and some outlier proteins were involved in immunity-related processes. Our results suggest that in combination with limited gene flow across the mouth of the Bay of Fundy, local adaptation is an important driver of intraspecific genetic variation in this marine species with high dispersal potential.
Collapse
Affiliation(s)
| | - Jin‐Hong Kim
- Department of BiologyUniversity of New BrunswickFrederictonNBCanada
| | - Jason A. Addison
- Department of BiologyUniversity of New BrunswickFrederictonNBCanada
| |
Collapse
|
9
|
Heikkinen LK, Kesäniemi JE, Knott KE. De novo transcriptome assembly and developmental mode specific gene expression of Pygospio elegans. Evol Dev 2017; 19:205-217. [PMID: 28869352 DOI: 10.1111/ede.12230] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Species with multiple different larval developmental modes are interesting models for the study of mechanisms underlying developmental mode transitions and life history evolution. Pygospio elegans, a small, tube-dwelling polychaete worm commonly found in estuarine and marine habitats around the northern hemisphere, is one species with variable developmental modes. To provide new genomic resources for studying P. elegans and to address the differences in gene expression between individuals producing offspring with different larval developmental modes, we performed whole transcriptome Illumina RNA sequencing of adult worms from two populations and prepared a de novo assembly of the P. elegans transcriptome. The transcriptome comprises 66,233 unigenes, of which 33,807 contain predicted coding sequences, 26,448 have at least one functional annotation, and 3,076 are classified as putative long non-coding RNAs. We found more than 8,000 unigenes significantly differentially expressed between adult worms from populations producing either planktonic or benthic larvae. This comprehensive transcriptome resource for P. elegans adds to the available genomic data for annelids and can be used to uncover mechanisms allowing developmental variation in this and potentially other marine invertebrate species.
Collapse
Affiliation(s)
- Liisa K Heikkinen
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland
| | - Jenni E Kesäniemi
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland
| | - K Emily Knott
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland
| |
Collapse
|
10
|
Lopez-Maestre H, Brinza L, Marchet C, Kielbassa J, Bastien S, Boutigny M, Monnin D, Filali AE, Carareto CM, Vieira C, Picard F, Kremer N, Vavre F, Sagot MF, Lacroix V. SNP calling from RNA-seq data without a reference genome: identification, quantification, differential analysis and impact on the protein sequence. Nucleic Acids Res 2016; 44:e148. [PMID: 27458203 PMCID: PMC5100560 DOI: 10.1093/nar/gkw655] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 07/11/2016] [Indexed: 11/14/2022] Open
Abstract
SNPs (Single Nucleotide Polymorphisms) are genetic markers whose precise identification is a prerequisite for association studies. Methods to identify them are currently well developed for model species, but rely on the availability of a (good) reference genome, and therefore cannot be applied to non-model species. They are also mostly tailored for whole genome (re-)sequencing experiments, whereas in many cases, transcriptome sequencing can be used as a cheaper alternative which already enables to identify SNPs located in transcribed regions. In this paper, we propose a method that identifies, quantifies and annotates SNPs without any reference genome, using RNA-seq data only. Individuals can be pooled prior to sequencing, if not enough material is available from one individual. Using pooled human RNA-seq data, we clarify the precision and recall of our method and discuss them with respect to other methods which use a reference genome or an assembled transcriptome. We then validate experimentally the predictions of our method using RNA-seq data from two non-model species. The method can be used for any species to annotate SNPs and predict their impact on the protein sequence. We further enable to test for the association of the identified SNPs with a phenotype of interest.
Collapse
Affiliation(s)
- Hélène Lopez-Maestre
- Université de Lyon, F-69000, Lyon; Université Lyon 1; CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, F-69622 Villeurbanne, France.,EPI ERABLE - Inria Grenoble, Rhône-Alpes
| | - Lilia Brinza
- PT Génomique et Transcriptomique, BIOASTER, Lyon, France
| | - Camille Marchet
- Université de Rennes, F-35000 Rennes; équipe GenScale, IRISA, Rennes
| | - Janice Kielbassa
- Synergie-Lyon-Cancer, Universite Lyon 1, Centre Leon Berard, Lyon, France
| | - Sylvère Bastien
- Université de Lyon, F-69000, Lyon; Université Lyon 1; CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, F-69622 Villeurbanne, France.,EPI ERABLE - Inria Grenoble, Rhône-Alpes
| | - Mathilde Boutigny
- Université de Lyon, F-69000, Lyon; Université Lyon 1; CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, F-69622 Villeurbanne, France.,EPI ERABLE - Inria Grenoble, Rhône-Alpes
| | - David Monnin
- Université de Lyon, F-69000, Lyon; Université Lyon 1; CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, F-69622 Villeurbanne, France
| | - Adil El Filali
- Université de Lyon, F-69000, Lyon; Université Lyon 1; CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, F-69622 Villeurbanne, France
| | - Claudia Marcia Carareto
- Department of Biology, UNESP - São Paulo State University, São José do Rio Preto, São Paulo, Brazil
| | - Cristina Vieira
- Université de Lyon, F-69000, Lyon; Université Lyon 1; CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, F-69622 Villeurbanne, France.,EPI ERABLE - Inria Grenoble, Rhône-Alpes
| | - Franck Picard
- Université de Lyon, F-69000, Lyon; Université Lyon 1; CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, F-69622 Villeurbanne, France
| | - Natacha Kremer
- Université de Lyon, F-69000, Lyon; Université Lyon 1; CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, F-69622 Villeurbanne, France
| | - Fabrice Vavre
- Université de Lyon, F-69000, Lyon; Université Lyon 1; CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, F-69622 Villeurbanne, France.,EPI ERABLE - Inria Grenoble, Rhône-Alpes
| | - Marie-France Sagot
- Université de Lyon, F-69000, Lyon; Université Lyon 1; CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, F-69622 Villeurbanne, France.,EPI ERABLE - Inria Grenoble, Rhône-Alpes
| | - Vincent Lacroix
- Université de Lyon, F-69000, Lyon; Université Lyon 1; CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, F-69622 Villeurbanne, France .,EPI ERABLE - Inria Grenoble, Rhône-Alpes
| |
Collapse
|
11
|
Gleason LU, Burton RS. Genomic evidence for ecological divergence against a background of population homogeneity in the marine snail Chlorostoma funebralis. Mol Ecol 2016; 25:3557-73. [PMID: 27199218 DOI: 10.1111/mec.13703] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 12/19/2022]
Abstract
The balance between natural selection, gene flow and genetic drift is difficult to resolve in marine invertebrates with extensive dispersal and fluctuating population sizes. The intertidal snail Chlorostoma funebralis has planktonic larvae and previous work using mtDNA polymorphism reported no genetic population structure. Nevertheless, recent studies have documented differences in thermal tolerance and transcriptomic responses to heat stress between northern and southern California, USA, populations. To gain insight into the dynamics influencing adaptive divergence, we used double-digest restriction site-associated DNA (ddRAD) sequencing to identify 1861 genomewide, quality-filtered single-nucleotide polymorphism (SNP) loci for C. funebralis collected from three northern and three southern California sites (15 individuals per population). Considering all SNPs, there was no evidence for genetic differentiation among populations or regions (average FST = 0.0042). However, outlier tests revealed 34 loci putatively under divergent selection between northern and southern populations, and structure and SNP tree analyses based on these outliers show clear genetic differentiation between geographic regions. Three of these outliers are known or hypothesized to be involved in stress granule formation, a response to environmental stress such as heat. Combined with previous work that found thermally tolerant southern populations show high baseline expression of stress response genes, these results further suggest that thermal stress is a strong selective pressure across C. funebralis populations. Overall, this study increases our understanding of the factors constraining local adaptation in marine organisms, while suggesting that ecologically driven, strong differentiation can occur at relevant loci in a species with planktonic larvae.
Collapse
Affiliation(s)
- Lani U Gleason
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093-0202, USA.,Department of Biology, Loyola Marymount University, Los Angeles, CA, 90045, USA
| | - Ronald S Burton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093-0202, USA
| |
Collapse
|
12
|
Riesgo A, Taboada S, Avila C. Evolutionary patterns in Antarctic marine invertebrates: an update on molecular studies. Mar Genomics 2015; 23:1-13. [PMID: 26228311 DOI: 10.1016/j.margen.2015.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 07/17/2015] [Accepted: 07/17/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Ana Riesgo
- Department of Animal Biology and Biodiversity Research Institute (IrBIO), Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Catalonia, Spain.
| | - Sergi Taboada
- Department of Animal Biology and Biodiversity Research Institute (IrBIO), Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Catalonia, Spain
| | - Conxita Avila
- Department of Animal Biology and Biodiversity Research Institute (IrBIO), Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
13
|
Porcelli D, Butlin RK, Gaston KJ, Joly D, Snook RR. The environmental genomics of metazoan thermal adaptation. Heredity (Edinb) 2015; 114:502-14. [PMID: 25735594 PMCID: PMC4815515 DOI: 10.1038/hdy.2014.119] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 11/06/2014] [Accepted: 11/11/2014] [Indexed: 01/07/2023] Open
Abstract
Continued and accelerating change in the thermal environment places an ever-greater priority on understanding how organisms are going to respond. The paradigm of ‘move, adapt or die', regarding ways in which organisms can respond to environmental stressors, stimulates intense efforts to predict the future of biodiversity. Assuming that extinction is an unpalatable outcome, researchers have focussed attention on how organisms can shift in their distribution to stay in the same thermal conditions or can stay in the same place by adapting to a changing thermal environment. How likely these respective outcomes might be depends on the answer to a fundamental evolutionary question, namely what genetic changes underpin adaptation to the thermal environment. The increasing access to and decreasing costs of next-generation sequencing (NGS) technologies, which can be applied to both model and non-model systems, provide a much-needed tool for understanding thermal adaptation. Here we consider broadly what is already known from non-NGS studies about thermal adaptation, then discuss the benefits and challenges of different NGS methodologies to add to this knowledge base. We then review published NGS genomics and transcriptomics studies of thermal adaptation to heat stress in metazoans and compare these results with previous non-NGS patterns. We conclude by summarising emerging patterns of genetic response and discussing future directions using these increasingly common techniques.
Collapse
Affiliation(s)
- D Porcelli
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - R K Butlin
- 1] Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK [2] Sven Lovén Centre-Tjärnö, University of Gothenburg, Strömstad, Sweden
| | - K J Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn, UK
| | - D Joly
- 1] Laboratoire Evolution, Génomes et Spéciation, CNRS-UPR 9034, Gif sur Yvette, France [2] Université Paris-Sud, Orsay, France
| | - R R Snook
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
14
|
Saunier A, Garcia P, Becquet V, Marsaud N, Escudié F, Pante E. Mitochondrial genomes of the Baltic clam Macoma balthica (Bivalvia: Tellinidae): setting the stage for studying mito-nuclear incompatibilities. BMC Evol Biol 2014; 14:259. [PMID: 25527898 PMCID: PMC4302422 DOI: 10.1186/s12862-014-0259-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 12/05/2014] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Allopatric divergence across lineages can lead to post-zygotic reproductive isolation upon secondary contact and disrupt coevolution between mitochondrial and nuclear genomes, promoting emergence of genetic incompatibilities. A previous F ST scan on the transcriptome of the Baltic clam Macoma balthica highlighted several genes potentially involved in mito-nuclear incompatibilities (MNIs). As proteins involved in the mitochondrial oxidative phosphorylation (OXPHO) chain are prone to MNIs and can contribute to the maintenance of genetic barriers, the mitochondrial genomes of six Ma. balthica individuals spanning two secondary contact zones were sequenced using the Illumina MiSeq plateform. RESULTS The mitogenome has an approximate length of 16,806 bp and encodes 13 protein-coding genes, 2 rRNAs and 22 tRNAs, all located on the same strand. atp8, a gene long reported as rare in bivalves, was detected. It encodes 42 amino acids and is putatively expressed and functional. A large unassigned region was identified between rrnS and tRNA (Met) and could likely correspond to the Control Region. Replacement and synonymous mutations were mapped on the inferred secondary structure of all protein-coding genes of the OXPHO chain. The atp6 and atp8 genes were characterized by background levels of replacement mutations, relative to synonymous mutations. However, most nad genes (notably nad2 and nad5) were characterized by an elevated proportion of replacement mutations. CONCLUSIONS Six nearly complete mitochondrial genomes were successfully assembled and annotated, providing the necessary roadmap to study MNIs at OXPHO loci. Few replacement mutations were mapped on mitochondrial-encoded ATP synthase subunits, which is in contrast with previous data on nuclear-encoded subunits. Conversely, the high population divergence and the prevalence of non-synonymous mutations at nad genes are congruent with previous observations from the nuclear transcriptome. This further suggest that MNIs between subunits of Complex I of the OXPHO chain, coding for NADH dehydrogenase, may play a role in maintaining barriers to gene flow in Ma. balthica.
Collapse
Affiliation(s)
- Alice Saunier
- Littoral, Environnement et Sociétés, UMR 7266 CNRS, Université de La Rochelle, 2 rue Olympe de Gouges, La Rochelle, 17000, France.
| | - Pascale Garcia
- Littoral, Environnement et Sociétés, UMR 7266 CNRS, Université de La Rochelle, 2 rue Olympe de Gouges, La Rochelle, 17000, France.
| | - Vanessa Becquet
- Littoral, Environnement et Sociétés, UMR 7266 CNRS, Université de La Rochelle, 2 rue Olympe de Gouges, La Rochelle, 17000, France.
| | - Nathalie Marsaud
- GeT-PlaGe, Genotoul, INRA Auzeville, Castanet-Tolosan, 31326, France.
| | - Frédéric Escudié
- GeT-PlaGe, Genotoul, INRA Auzeville, Castanet-Tolosan, 31326, France.
| | - Eric Pante
- Littoral, Environnement et Sociétés, UMR 7266 CNRS, Université de La Rochelle, 2 rue Olympe de Gouges, La Rochelle, 17000, France.
| |
Collapse
|
15
|
Prentis PJ, Pavasovic A. The Anadara trapezia transcriptome: a resource for molluscan physiological genomics. Mar Genomics 2014; 18 Pt B:113-5. [PMID: 25151889 DOI: 10.1016/j.margen.2014.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/22/2014] [Accepted: 08/12/2014] [Indexed: 11/25/2022]
Abstract
In this study we undertook deep sequencing of the blood cockle, Anadara trapezia, transcriptome to generate genomic resources for future functional genomics analyses. Over 27 million high quality paired end reads were assembled into 75024 contigs. Of these contigs, 29013 (38.7%) received significant BLASTx hits and gene ontology (GO) terms were assigned to 13718 of these sequences. This resource will facilitate physiological genomic studies to test the gene expression response of A. trapezia to various environmental stresses.
Collapse
Affiliation(s)
- Peter J Prentis
- School of Earth, Environmental and Biological Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Qld 4001, Australia; Institute for Future Environments, Queensland University of Technology, GPO Box 2434, Brisbane, Qld 4001, Australia
| | - Ana Pavasovic
- School of Biomedical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Qld 4001, Australia.
| |
Collapse
|
16
|
Amin S, Prentis PJ, Gilding EK, Pavasovic A. Assembly and annotation of a non-model gastropod (Nerita melanotragus) transcriptome: a comparison of de novo assemblers. BMC Res Notes 2014; 7:488. [PMID: 25084827 PMCID: PMC4124492 DOI: 10.1186/1756-0500-7-488] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 07/25/2014] [Indexed: 01/22/2023] Open
Abstract
Background The sequencing, de novo assembly and annotation of transcriptome datasets generated with next generation sequencing (NGS) has enabled biologists to answer genomic questions in non-model species with unprecedented ease. Reliable and accurate de novo assembly and annotation of transcriptomes, however, is a critically important step for transcriptome assemblies generated from short read sequences. Typical benchmarks for assembly and annotation reliability have been performed with model species. To address the reliability and accuracy of de novo transcriptome assembly in non-model species, we generated an RNAseq dataset for an intertidal gastropod mollusc species, Nerita melanotragus, and compared the assembly produced by four different de novo transcriptome assemblers; Velvet, Oases, Geneious and Trinity, for a number of quality metrics and redundancy. Results Transcriptome sequencing on the Ion Torrent PGM™ produced 1,883,624 raw reads with a mean length of 133 base pairs (bp). Both the Trinity and Oases de novo assemblers produced the best assemblies based on all quality metrics including fewer contigs, increased N50 and average contig length and contigs of greater length. Overall the BLAST and annotation success of our assemblies was not high with only 15-19% of contigs assigned a putative function. Conclusions We believe that any improvement in annotation success of gastropod species will require more gastropod genome sequences, but in particular an increase in mollusc protein sequences in public databases. Overall, this paper demonstrates that reliable and accurate de novo transcriptome assemblies can be generated from short read sequencers with the right assembly algorithms.
Collapse
Affiliation(s)
| | | | | | - Ana Pavasovic
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, GPO Box 2434, Brisbane, Qld 4001, Australia.
| |
Collapse
|
17
|
Feng N, Ma H, Ma C, Xu Z, Li S, Jiang W, Liu Y, Ma L. Characterization of 40 single nucleotide polymorphism (SNP) via Tm-shift assay in the mud crab (Scylla paramamosain). Mol Biol Rep 2014; 41:5467-71. [PMID: 24867081 DOI: 10.1007/s11033-014-3420-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 05/16/2014] [Indexed: 11/28/2022]
Abstract
In this study, single nucleotide polymorphism (SNP) were identified, confirmed and genotyped in the mud crab (Scylla paramamosain) using Tm-shift assay. High quality sequences (13, 311 bp long) were obtained by re-sequencing that contained 91 SNPs, with a density of one SNP every 146 bp. Of all 91 SNPs, 40 were successfully genotyped and characterized using 30 wild specimens by Tm-shift assay. The minor allele frequency per locus ranged from 0.017 to 0.500. The observed and expected heterozygosity, and polymorphism information content (PIC) ranged from 0.000 to 0.600, from 0.033 to 0.509, and from 0.033 to 0.375, respectively, with an average of 0.142, 0.239 and 0.198 per locus. Seventeen SNPs were significantly deviated from Hardy-Weinberg equilibrium. No significant linkage disequilibrium between pairs of loci was detected after sequential Bonferroni correction (P > 0.00125). Seventeen SNPs were related with known function genes. This study provided new molecular markers for investigation of population genetic diversity, construction of genetic linkage maps and molecular marker-assisted selection in this important crustacean species.
Collapse
Affiliation(s)
- Nana Feng
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Burton RS, Pereira RJ, Barreto FS. Cytonuclear Genomic Interactions and Hybrid Breakdown. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2013. [DOI: 10.1146/annurev-ecolsys-110512-135758] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ronald S. Burton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0202; , ,
| | - Ricardo J. Pereira
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0202; , ,
| | - Felipe S. Barreto
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0202; , ,
| |
Collapse
|
19
|
Suárez-Ulloa V, Fernández-Tajes J, Manfrin C, Gerdol M, Venier P, Eirín-López JM. Bivalve omics: state of the art and potential applications for the biomonitoring of harmful marine compounds. Mar Drugs 2013; 11:4370-89. [PMID: 24189277 PMCID: PMC3853733 DOI: 10.3390/md11114370] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/27/2013] [Accepted: 10/09/2013] [Indexed: 12/26/2022] Open
Abstract
The extraordinary progress experienced by sequencing technologies and bioinformatics has made the development of omic studies virtually ubiquitous in all fields of life sciences nowadays. However, scientific attention has been quite unevenly distributed throughout the different branches of the tree of life, leaving molluscs, one of the most diverse animal groups, relatively unexplored and without representation within the narrow collection of well established model organisms. Within this Phylum, bivalve molluscs play a fundamental role in the functioning of the marine ecosystem, constitute very valuable commercial resources in aquaculture, and have been widely used as sentinel organisms in the biomonitoring of marine pollution. Yet, it has only been very recently that this complex group of organisms became a preferential subject for omic studies, posing new challenges for their integrative characterization. The present contribution aims to give a detailed insight into the state of the art of the omic studies and functional information analysis of bivalve molluscs, providing a timely perspective on the available data resources and on the current and prospective applications for the biomonitoring of harmful marine compounds.
Collapse
Affiliation(s)
- Victoria Suárez-Ulloa
- Chromatin Structure and Evolution (CHROMEVOL) Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA; E-Mail:
| | - Juan Fernández-Tajes
- Wellcome Trust Center for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; E-Mail:
| | - Chiara Manfrin
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy; E-Mails: (C.M.); (M.G.)
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy; E-Mails: (C.M.); (M.G.)
| | - Paola Venier
- Department of Biology, University of Padova, Padova 35121, Italy; E-Mail:
| | - José M. Eirín-López
- Chromatin Structure and Evolution (CHROMEVOL) Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-305-919-4000; Fax: +1-305-919-4030
| |
Collapse
|