1
|
Baert L, Manfroi B, Quintero M, Chavarria O, Barbon PV, Clement E, Zeller A, Van Kuppevelt T, Sturm N, Moreaux J, Tveita A, Bogen B, McKee T, Huard B. 3-O sulfation of syndecan-1 mediated by the sulfotransferase HS3ST3a1 enhances myeloma aggressiveness. Matrix Biol 2023; 120:60-75. [PMID: 37201729 DOI: 10.1016/j.matbio.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Multiple myeloma is a hematological neoplasm derived from plasma cells invariably developing in the bone marrow (BM). The persisting clinical challenge in MM resides in its high ability to resist drugs as shown by the frequent relapses observed in patients regardless of the treatment applied. In a mouse model of MM, we identified a subpopulation of cells harboring increased resistance to current MM drugs. These cells bound a proliferation inducing ligand (APRIL), a key MM promoting/survival factor. APRIL binding involved the heparan sulfate (HS) chain present on syndecan-1 (SDC-1), and correlated with reactivity to the anti-HS antibody 10e4. 10e4+cells had a high proliferation activity, and were able to form colonies in 3-D cultures. 10e4+ cells were the only cells able to develop in BM after intravenous injection. They also resisted drugs in vivo, since their number increased after treatment in BM. Notably, 10e4+ cells differentiated into 10e4- cells upon in vitro and in vivo expansion. Expression of one sulfotransferase, HS3ST3a1, allowed modification of syndecan-1 to confer reactivity to 10e4 and binding to APRIL. HS3ST3a1 deletion inhibited tumorigenesis in BM. Notably, the two populations coexisted at a variable frequency in the BM of MM patients at diagnosis. In total, our results indicate that 3-O-sulfation on SDC-1 carried out by HS3ST3a1 defines aggressive MM cells, and that targeting of this enzyme could possibly be used to better control drug resistance.
Collapse
Affiliation(s)
- L Baert
- Institute for Advanced Biosciences, University Grenoble-Alpes, INSERM U1209, La Tronche, France
| | - B Manfroi
- Institute for Advanced Biosciences, University Grenoble-Alpes, INSERM U1209, La Tronche, France
| | - M Quintero
- translational innovation in medicine and complexity, University Grenoble-Alpes, CNRS UMR5525, La Tronche, France
| | - O Chavarria
- Institute for Advanced Biosciences, University Grenoble-Alpes, INSERM U1209, La Tronche, France
| | - P V Barbon
- Institute for Advanced Biosciences, University Grenoble-Alpes, INSERM U1209, La Tronche, France
| | - E Clement
- translational innovation in medicine and complexity, University Grenoble-Alpes, CNRS UMR5525, La Tronche, France
| | - A Zeller
- Department of Pathology and Immunology, university Hospitals, Geneva, Switzerland
| | - T Van Kuppevelt
- Rabdoud university medical center, Nijmegen, the Netherlands
| | - N Sturm
- translational innovation in medicine and complexity, University Grenoble-Alpes, CNRS UMR5525, La Tronche, France; Department of Pathology, university Hospital, Grenoble, France
| | - J Moreaux
- Department of Biological Hematology, University Hospital, Montpellier, France; Institute of Human Genetics, centre national de la recherche scientifique, University Montpellier, France
| | - A Tveita
- Department of Immunology and transfusion medicine, Institute for Immunology, university Hospital, Oslo, Norway
| | - B Bogen
- Department of Immunology and transfusion medicine, Institute for Immunology, university Hospital, Oslo, Norway; University of Oslo, Norway
| | - T McKee
- Department of clinical pathology, university Hospitals, Geneva, Switzerland
| | - B Huard
- translational innovation in medicine and complexity, University Grenoble-Alpes, CNRS UMR5525, La Tronche, France.
| |
Collapse
|
2
|
Bekri S, Rodney-Sandy R, Gruenstein D, Mei A, Bogen B, Castle J, Levey D, Cho HJ. Neoantigen vaccine-induced CD4 T cells confer protective immunity in a mouse model of multiple myeloma through activation of CD8 T cells against non-vaccine, tumor-associated antigens. J Immunother Cancer 2022; 10:jitc-2021-003572. [PMID: 35190376 PMCID: PMC8862454 DOI: 10.1136/jitc-2021-003572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Background Cancer-associated neoantigens (neoAg) derived from tumor genomic sequencing and predictive algorithms for mutated peptides are a promising basis for therapeutic vaccines under investigation. Although these are generally designed to bind major histocompatibility complex class I and induce CD8 cytolytic T lymphocyte (CTL) activity, results from preclinical and clinical studies demonstrate that the majority of neoAg vaccines efficiently induce CD4 T helper (Th) responses but not CTL. Despite this, these vaccines have demonstrated clinical efficacy. Therefore, understanding the mechanisms of CD4 + T cell-mediated tumor protection is critical to optimizing this immunotherapeutic strategy. Methods We investigated this phenomenon in the mineral oil-induced plasmacytoma (MOPC).315.BM (MOPC315) mouse model of multiple myeloma, a malignancy of plasma cells. MOPC315 cells express in their lambda chain a unique tumor-specific neoAg, an idiotypic (Id) peptide. We generated a vaccine formulated with this Id peptide fused to a heat shock protein HSC70 binding (HSB) motif co-delivered with poly (I:C). The immunogenicity of the Id-vaccine was measured in splenocytes by ELISpot. Mice were challenged with MOPC315 cells and antitumor immunity was assessed by co-incubating splenocytes and bone marrow mononuclear cells derived from vaccinated mice and controls, with the Id antigen and irradiated MOPC315 cells. The frequency of activated CD4 and CD8 T cells and their phenotype were characterized by flow cytometry. Results Id-vaccine efficiently induced antigen-specific CD4 Th activity and antitumor immunity, protecting mice from MOPC315 tumor growth. CD4 cytolytic activity was not detected under these conditions. Polyfunctional CD8 T cells homed to the bone marrow microenvironment of protected mice and preferentially expanded only when restimulated ex vivo with both Id peptide and MOPC315 cells. Protective activity was abrogated by depletion of either CD4 or CD8 lymphocytes. Conclusion These results demonstrate that Id-HSB +poly (I:C) vaccine protects against MOPC315 growth by priming Id-specific CD4 Th cells that confer protection against tumor but are not directly cytotoxic. These data indicate that activation of CD8 CTL against MOPC315-associated antigens not present in the vaccine is one of the major mechanisms of tumor immunity.
Collapse
Affiliation(s)
- Selma Bekri
- Department of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Reunet Rodney-Sandy
- Department of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Diana Gruenstein
- Department of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Anna Mei
- Department of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bjarne Bogen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Immunology, Oslo University Hospital, Oslo, Norway
| | | | | | - Hearn Jay Cho
- Department of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
3
|
Junctional Adhesion Molecule-C expression specifies a CD138low/neg multiple myeloma cell population in mice and humans. Blood Adv 2021; 6:2195-2206. [PMID: 34861679 PMCID: PMC9006287 DOI: 10.1182/bloodadvances.2021004354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022] Open
Abstract
JAM-C identifies a distinct MM cell population in bone marrow of patients and mice. Targeting JAM-C ameliorates MM progression and offers potential therapeutic options that might complement standard treatment regimens.
Deregulation such as overexpression of adhesion molecules influences cancer progression and survival. Metastasis of malignant cells from their primary tumor site to distant organs is the most common reason for cancer-related deaths. Junctional adhesion molecule-C (JAM-C), a member of the immunoglobulin-like JAM family, can homodimerize and aid cancer cell migration and metastasis. Here we show that this molecule is dynamically expressed on multiple myeloma (MM) cells in the bone marrow and co-localizes with blood vessels within the bone marrow of patients and mice. In addition, upregulation of JAM-C inversely correlates with the downregulation of the canonical plasma cell marker CD138 (syndecan-1), whose surface expression has recently been found to dynamically regulate a switch between MM growth in situ and MM dissemination. Moreover, targeting JAM-C in a syngeneic in vivo MM model ameliorates MM progression and improves outcome. Overall, our data demonstrate that JAM-C might serve not only as an additional novel diagnostic biomarker but also as a therapeutic target in MM disease.
Collapse
|
4
|
Dahlhoff J, Manz H, Steinfatt T, Delgado-Tascon J, Seebacher E, Schneider T, Wilnit A, Mokhtari Z, Tabares P, Böckle D, Rasche L, Martin Kortüm K, Lutz MB, Einsele H, Brandl A, Beilhack A. Transient regulatory T-cell targeting triggers immune control of multiple myeloma and prevents disease progression. Leukemia 2021; 36:790-800. [PMID: 34584204 PMCID: PMC8885410 DOI: 10.1038/s41375-021-01422-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 12/11/2022]
Abstract
Multiple myeloma remains a largely incurable disease of clonally expanding malignant plasma cells. The bone marrow microenvironment harbors treatment-resistant myeloma cells, which eventually lead to disease relapse in patients. In the bone marrow, CD4+FoxP3+ regulatory T cells (Tregs) are highly abundant amongst CD4+ T cells providing an immune protective niche for different long-living cell populations, e.g., hematopoietic stem cells. Here, we addressed the functional role of Tregs in multiple myeloma dissemination to bone marrow compartments and disease progression. To investigate the immune regulation of multiple myeloma, we utilized syngeneic immunocompetent murine multiple myeloma models in two different genetic backgrounds. Analyzing the spatial immune architecture of multiple myeloma revealed that the bone marrow Tregs accumulated in the vicinity of malignant plasma cells and displayed an activated phenotype. In vivo Treg depletion prevented multiple myeloma dissemination in both models. Importantly, short-term in vivo depletion of Tregs in mice with established multiple myeloma evoked a potent CD8 T cell- and NK cell-mediated immune response resulting in complete and stable remission. Conclusively, this preclinical in-vivo study suggests that Tregs are an attractive target for the treatment of multiple myeloma.
Collapse
Affiliation(s)
- Julia Dahlhoff
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.,Center for Interdisciplinary Clinical Research, University of Würzburg, Würzburg, Germany.,Graduate School of Life Sciences, University of Würzburg, Würzburg, Germany
| | - Hannah Manz
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.,Center for Interdisciplinary Clinical Research, University of Würzburg, Würzburg, Germany.,Graduate School of Life Sciences, University of Würzburg, Würzburg, Germany
| | - Tim Steinfatt
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.,Center for Interdisciplinary Clinical Research, University of Würzburg, Würzburg, Germany.,Graduate School of Life Sciences, University of Würzburg, Würzburg, Germany
| | - Julia Delgado-Tascon
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.,Center for Interdisciplinary Clinical Research, University of Würzburg, Würzburg, Germany
| | - Elena Seebacher
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.,Center for Interdisciplinary Clinical Research, University of Würzburg, Würzburg, Germany
| | - Theresa Schneider
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.,Center for Interdisciplinary Clinical Research, University of Würzburg, Würzburg, Germany
| | - Amy Wilnit
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.,Center for Interdisciplinary Clinical Research, University of Würzburg, Würzburg, Germany
| | - Zeinab Mokhtari
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.,Center for Interdisciplinary Clinical Research, University of Würzburg, Würzburg, Germany
| | - Paula Tabares
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.,Center for Interdisciplinary Clinical Research, University of Würzburg, Würzburg, Germany
| | - David Böckle
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Leo Rasche
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.,Mildred Scheel Early Career Center, University Hospital of Würzburg, Würzburg, Germany
| | - K Martin Kortüm
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Manfred B Lutz
- Graduate School of Life Sciences, University of Würzburg, Würzburg, Germany.,Institute for Virology and Immunobiology, Würzburg University, Würzburg, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Andreas Brandl
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.,Center for Interdisciplinary Clinical Research, University of Würzburg, Würzburg, Germany
| | - Andreas Beilhack
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany. .,Center for Interdisciplinary Clinical Research, University of Würzburg, Würzburg, Germany. .,Graduate School of Life Sciences, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
5
|
Röhner L, Ng YLD, Scheffold A, Lindner S, Köpff S, Brandl A, Beilhack A, Krönke J. Generation of a lenalidomide-sensitive syngeneic murine in vivo multiple myeloma model by expression of Crbn I391V. Exp Hematol 2020; 93:61-69.e4. [PMID: 33186626 DOI: 10.1016/j.exphem.2020.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 12/30/2022]
Abstract
The immunomodulatory drugs (IMiDs) thalidomide, lenalidomide, and pomalidomide are approved drugs for the treatment of multiple myeloma. IMiDs induce cereblon (CRBN) E3 ubiquitin ligase-mediated ubiquitination and degradation of Ikaros transcription factors Ikaros (IKZF1) and Aiolos (IKZF3), which are essential for multiple myeloma. However, because of a single amino acid substitution of valine to isoleucine in mouse CRBN at position 391, mice are not susceptible to IMiD-induced degradation of neosubstrates. Here, we report that expression of human CRBN or the CrbnI391V mutant enables IMiD-induced degradation of IKZF1 and IKZF3 in murine MOPC.315.BM.Luc.eGFP and 5T33MM multiple myeloma cells. Accordingly, lenalidomide and pomalidomide decreased cell viability in a dose-dependent fashion in murine multiple myeloma cells expressing CrbnI391V in vitro. The sensitivity of murine cells expressing CrbnI391V to IMiDs highly correlated with their dependence on IKZF1. After transplantation, MOPC.315.BM.Luc.eGFP cells expressing murine CrbnI391V induced multiple myeloma in mice, and treatment with lenalidomide and pomalidomide significantly delayed tumor growth. This straightforward model provides a proof-of-concept for studying the effects of IMiDs in multiple myeloma in mice, which allows for in vivo testing of IMiDs and other CRBN E3 ligase modulators.
Collapse
Affiliation(s)
- Linda Röhner
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany
| | - Yuen Lam Dora Ng
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany; Department for Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Annika Scheffold
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany
| | - Stefanie Lindner
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany
| | - Simon Köpff
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany
| | - Andreas Brandl
- Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany
| | - Andreas Beilhack
- Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany
| | - Jan Krönke
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany; Department for Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany.
| |
Collapse
|
6
|
Ding ZC, Shi H, Aboelella NS, Fesenkova K, Park EJ, Liu Z, Pei L, Li J, McIndoe RA, Xu H, Piazza GA, Blazar BR, Munn DH, Zhou G. Persistent STAT5 activation reprograms the epigenetic landscape in CD4 + T cells to drive polyfunctionality and antitumor immunity. Sci Immunol 2020; 5:eaba5962. [PMID: 33127608 PMCID: PMC8265158 DOI: 10.1126/sciimmunol.aba5962] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/21/2020] [Accepted: 10/08/2020] [Indexed: 01/05/2023]
Abstract
The presence of polyfunctional CD4+ T cells is often associated with favorable antitumor immunity. We report here that persistent activation of signal transducer and activator of transcription 5 (STAT5) in tumor-specific CD4+ T cells drives the development of polyfunctional T cells. We showed that ectopic expression of a constitutively active form of murine STAT5A (CASTAT5) enabled tumor-specific CD4+ T cells to undergo robust expansion, infiltrate tumors vigorously, and elicit antitumor CD8+ T cell responses in a CD4+ T cell adoptive transfer model system. Integrated epigenomic and transcriptomic analysis revealed that CASTAT5 induced genome-wide chromatin remodeling in CD4+ T cells and established a distinct epigenetic and transcriptional landscape. Single-cell RNA sequencing analysis further identified a subset of CASTAT5-transduced CD4+ T cells with a molecular signature indicative of progenitor polyfunctional T cells. The therapeutic significance of CASTAT5 came from our finding that adoptive transfer of T cells engineered to coexpress CD19-targeting chimeric antigen receptor (CAR) and CASTAT5 gave rise to polyfunctional CD4+ CAR T cells in a mouse B cell lymphoma model. The optimal therapeutic outcome was obtained when both CD4+ and CD8+ CAR T cells were transduced with CASTAT5, indicating that CASTAT5 facilitates productive CD4 help to CD8+ T cells. Furthermore, we provide evidence that CASTAT5 is functional in primary human CD4+ T cells, underscoring its potential clinical relevance. Our results implicate STAT5 as a valid candidate for T cell engineering to generate polyfunctional, exhaustion-resistant, and tumor-tropic antitumor CD4+ T cells to potentiate adoptive T cell therapy for cancer.
Collapse
Affiliation(s)
- Zhi-Chun Ding
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| | - Huidong Shi
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, USA.
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Nada S Aboelella
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Kateryna Fesenkova
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Eun-Jeong Park
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Zhuoqi Liu
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Lirong Pei
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Jiaqi Li
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Richard A McIndoe
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Hongyan Xu
- Division of Biostatistics and Data Science, Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Gary A Piazza
- University of South Alabama Mitchell Cancer Institute, Mobile, AL, USA
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - David H Munn
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Gang Zhou
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, USA.
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
7
|
Yado S, Luboshits G, Hazan O, Or R, Firer MA. Long-term survival without graft-versus-host-disease following infusion of allogeneic myeloma-specific Vβ T cell families. J Immunother Cancer 2019; 7:301. [PMID: 31727148 PMCID: PMC6854718 DOI: 10.1186/s40425-019-0776-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022] Open
Abstract
Background Despite chemo-induction therapy and autologous stem cell transplantation (ASCT), the vast majority of patients with Multiple Myeloma (MM) relapse within 7 years and the disease remains incurable. Adoptive Allogeneic T-cell therapy (ATCT) might be curative for MM, however current ATCT protocols often lead to graft versus host disease (GvHD). Transplanting only tumor reactive donor T cells that mediate a graft-versus-myeloma (GvM) but not GvHD may overcome this problem. Methods We used an MHC-matched/miHA-disparate B10.D2 → Balb/c bone marrow transplantation (BMT) murine model and MOPC315.BM MM cells to develop an ATCT protocol consisting of total body irradiation, autologous-BMT and infusion of selective, myeloma-reactive lymphocytes of T cell receptor (TCR) Vβ 2, 3 and 8.3 families (MM-auto BMT ATCT). Results Pre-stimulation ex vivo of allogeneic T cells by exposure to MOPC315.BM MM cells in the presence of IL-2, anti-CD3 and anti-CD28 resulted in expansion of the myeloma-reactive T cell TCRVβ 2, 3 and 8.3 subfamilies. Their isolation and infusion into MM-bearing mice resulted in a vigorous GvM response without induction GvHD and long-term survival. Repeated infusion of naïve myeloma-reactive T cell TCRVβ 2, 3 and 8.3 subfamilies was also effective. Conclusions These data demonstrate that a transplantation protocol involving only selective tumor-reactive donor T cell families is an effective immunotherapy and results in long-term survival in a mouse model of human MM. The results highlight the need to develop similar ATCT strategies for MM patients that result in enhanced survival without symptoms of GvHD.
Collapse
Affiliation(s)
- S Yado
- Chemical Engineering and Biotechnology, and Adelson School of Medicine, Ariel University, 40700, Ariel, Israel
| | - G Luboshits
- Chemical Engineering and Biotechnology, and Adelson School of Medicine, Ariel University, 40700, Ariel, Israel.,Ariel Center for Applied Cancer Research, Ariel University, 40700, Ariel, Israel
| | - O Hazan
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - R Or
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - M A Firer
- Chemical Engineering and Biotechnology, and Adelson School of Medicine, Ariel University, 40700, Ariel, Israel. .,Ariel Center for Applied Cancer Research, Ariel University, 40700, Ariel, Israel. .,Adelson Medical School, Ariel University, 40700, Ariel, Israel.
| |
Collapse
|
8
|
Maes K, Boeckx B, Vlummens P, De Veirman K, Menu E, Vanderkerken K, Lambrechts D, De Bruyne E. The genetic landscape of 5T models for multiple myeloma. Sci Rep 2018; 8:15030. [PMID: 30301958 PMCID: PMC6177465 DOI: 10.1038/s41598-018-33396-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/25/2018] [Indexed: 12/24/2022] Open
Abstract
Murine models for multiple myeloma (MM) are often used to investigate pathobiology of multiple myeloma and disease progression. Unlike transgenic mice models, where it is known which oncogene is driving MM disease, the somatic aberrations of spontaneous syngeneic 5T models of MM have not yet been reported. Here, we analyzed the copy-number alterations (CNA) and mutational landscape of 5T2, 5T33vv and 5TGM1 murine MM models using whole-genome and whole-exome sequencing. Forty four percent of the genome of 5T2 cells is affected by CNAs while this was only 11% and 17% for 5T33vv and 5TGM1 cells, respectively. We found that up to 69% of the genes linked to gain of 1q or deletion of 13q in MM patients are present as respectively gains in 5T2 cells or deletions in 5T33 and 5TGM1 cells. Exome sequencing furthermore revealed mutations of genes involved in RAS/MAPK, PI3K/AKT1 and JAK/STAT signaling, DNA damage response, cell cycle, epigenetic regulation and extracellular matrix organization. We observed a statistically significant overlap of genes mutated in the 5T models and MM patients. Overall, the genetic landscape of the 5T models is heterogeneous with a high number of aberrations involving genes in various multiple myeloma-related pathways.
Collapse
Affiliation(s)
- Ken Maes
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussel, 1090, Belgium.
| | - Bram Boeckx
- Laboratory for Translational Genetics, Department of Human Genetics, Katholieke Universiteit Leuven, VIB Center for Cancer Biology, Leuven, 3000, Belgium
| | - Philip Vlummens
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussel, 1090, Belgium
- Department of Clinical Hematology, Ghent University Hospital, Gent, 9000, Belgium
| | - Kim De Veirman
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussel, 1090, Belgium
| | - Eline Menu
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussel, 1090, Belgium
| | - Karin Vanderkerken
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussel, 1090, Belgium
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, Katholieke Universiteit Leuven, VIB Center for Cancer Biology, Leuven, 3000, Belgium
| | - Elke De Bruyne
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussel, 1090, Belgium
| |
Collapse
|
9
|
Kuczma MP, Ding ZC, Li T, Habtetsion T, Chen T, Hao Z, Bryan L, Singh N, Kochenderfer JN, Zhou G. The impact of antibiotic usage on the efficacy of chemoimmunotherapy is contingent on the source of tumor-reactive T cells. Oncotarget 2017; 8:111931-111942. [PMID: 29340102 PMCID: PMC5762370 DOI: 10.18632/oncotarget.22953] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/26/2017] [Indexed: 12/11/2022] Open
Abstract
In recent years the combined use of chemotherapy and immunotherapy, collectively termed chemoimmunotherapy, has emerged as a promising treatment option for patients with cancer. Antibiotics are commonly used to reduce infection-related complications in patients undergoing chemotherapy. Intriguingly, accumulating evidence has implicated gut microbiota as a critical determinant of host antitumor immune responses, raising the question as to whether the use of broad-spectrum antibiotics would invariably diminish tumor response to chemoimmunotherapies. We investigated the impact of antibiotics on the therapeutic outcomes of cyclophosphamide (CTX) chemotherapy and adoptive T-cell therapy (ACT) where CTX was used as the host-conditioning regimen in mice. We show that antibiotic prophylaxis dampened the endogenous T cell responses elicited by CTX, and reduced the efficacy of CTX against B-cell lymphoma. In the ACT setting, antibiotics administration impaired the therapeutic effects of adoptively transferred tumor-specific CD4+ T cells in mice with implanted colorectal tumors. In contrast, long-term antibiotic exposure did not affect the efficacy of ACT using CD19-targeting chimeric antigen receptor (CAR) T cells in mice with systemic B-cell lymphoma, although it correlated with prolonged CAR expression and sustained B-cell aplasia. Our study demonstrates that chemoimmunotherapies may have variable reliance on intestinal microbiota for T cell activation and function, and thus have different sensitivities to antibiotic prophylaxis. These findings may have implications for the judicial use of antibiotics in cancer patients receiving chemoimmunotherapies.
Collapse
Affiliation(s)
- Michal P Kuczma
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA.,Current/Present address: Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Zhi-Chun Ding
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Tao Li
- Department of Oncology and Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Province, PR China
| | | | - Tingting Chen
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Zhonglin Hao
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Locke Bryan
- Hematology/Oncology, Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Nagendra Singh
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia, USA
| | - James N Kochenderfer
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Gang Zhou
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
10
|
JAM-A as a prognostic factor and new therapeutic target in multiple myeloma. Leukemia 2017; 32:736-743. [PMID: 29064484 PMCID: PMC5843918 DOI: 10.1038/leu.2017.287] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 08/01/2017] [Accepted: 08/16/2017] [Indexed: 01/04/2023]
Abstract
Cell adhesion in the multiple myeloma (MM) microenvironment has been recognized as a major mechanism of MM cell survival and the development of drug resistance. Here we addressed the hypothesis that the protein junctional adhesion molecule-A (JAM-A) may represent a novel target and a clinical biomarker in MM. We evaluated JAM-A expression in MM cell lines and in 147 MM patient bone marrow aspirates and biopsies at different disease stages. Elevated JAM-A levels in patient-derived plasma cells were correlated with poor prognosis. Moreover, circulating soluble JAM-A (sJAM-A) levels were significantly increased in MM patients as compared with controls. Notably, in vitro JAM-A inhibition impaired MM migration, colony formation, chemotaxis, proliferation and viability. In vivo treatment with an anti-JAM-A monoclonal antibody (αJAM-A moAb) impaired tumor progression in a murine xenograft MM model. These results demonstrate that therapeutic targeting of JAM-A has the potential to prevent MM progression, and lead us to propose JAM-A as a biomarker in MM, and sJAM-A as a serum-based marker for clinical stratification.
Collapse
|
11
|
Ehlerding EB, England CG, Jiang D, Graves SA, Kang L, Lacognata S, Barnhart TE, Cai W. CD38 as a PET Imaging Target in Lung Cancer. Mol Pharm 2017; 14:2400-2406. [PMID: 28573863 DOI: 10.1021/acs.molpharmaceut.7b00298] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Daratumumab (Darzalex, Janssen Biotech) is a clinically approved antibody targeting CD38 for the treatment of multiple myeloma. However, CD38 is also expressed by other cancer cell types, including lung cancer, where its expression or absence may offer prognostic value. We therefore developed a PET tracer based upon daratumumab for tracking CD38 expression, utilizing murine models of non-small cell lung cancer to verify its specificity. Daratumumab was prepared for radiolabeling with 89Zr (t1/2 = 78.4 h) through conjugation with desferrioxamine (Df). Western blot, flow cytometry, and saturation binding assays were utilized to characterize CD38 expression and binding of daratumumab to three non-small cell lung cancer cell lines: A549, H460, and H358. Murine xenograft models of the cell lines were also generated for further in vivo studies. Longitudinal PET imaging was performed following injection of 89Zr-Df-daratumumab out to 120 h postinjection, and nonspecific uptake was also evaluated through the injection of a radiolabeled control IgG antibody in A549 mice, 89Zr-Df-IgG. Ex vivo biodistribution and histological analyses were also performed after the terminal imaging time point at 120 h postinjection. Through cellular studies, A549 cells were found to express higher levels of CD38 than the H460 or H358 cell lines. PET imaging and ex vivo biodistribution studies verified in vitro trends, with A549 tumor uptake peaking at 8.1 ± 1.2%ID/g at 120 h postinjection according to PET analysis, and H460 and H358 at lower levels at the same time point (6.7 ± 0.7%ID/g and 5.1 ± 0.4%ID/g, respectively; n = 3 or 4). Injection of a nonspecific radiolabeled IgG into A549 tumor-bearing mice also demonstrated lower tracer uptake of 4.4 ± 1.3%ID/g at 120 h. Immunofluorescent staining of tumor tissues showed higher staining levels present in A549 tissues over H460 and H358. Thus, 89Zr-Df-daratumumab is able to image CD38-expressing tissues in vivo using PET, as verified through the exploration of non-small cell lung cancer models in this study. This agent therefore holds potential to image CD38 in other malignancies and aid in patient stratification and elucidation of the biodistribution of CD38.
Collapse
Affiliation(s)
- Emily B Ehlerding
- Department of Medical Physics, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Christopher G England
- Department of Medical Physics, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Dawei Jiang
- Department of Radiology, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Stephen A Graves
- Department of Radiology, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Lei Kang
- Department of Radiology, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Saige Lacognata
- Department of Radiology, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Todd E Barnhart
- Department of Medical Physics, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Weibo Cai
- Department of Medical Physics, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States.,Department of Radiology, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States.,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin 53705, United States
| |
Collapse
|
12
|
Bartee E, Bartee MY, Bogen B, Yu XZ. Systemic therapy with oncolytic myxoma virus cures established residual multiple myeloma in mice. MOLECULAR THERAPY-ONCOLYTICS 2016; 3:16032. [PMID: 27933316 PMCID: PMC5142464 DOI: 10.1038/mto.2016.32] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/21/2016] [Accepted: 10/31/2016] [Indexed: 02/07/2023]
Abstract
Multiple myeloma is an incurable malignancy of plasma B-cells. Traditional chemotherapeutic regimes often induce initial tumor regression; however, virtually all patients eventually succumb to relapse caused by either reintroduction of disease during autologous transplant or expansion of chemotherapy resistant minimal residual disease. It has been previously demonstrated that an oncolytic virus known as myxoma can completely prevent myeloma relapse caused by reintroduction of malignant cells during autologous transplant. The ability of this virus to treat established residual disease in vivo, however, remained unknown. Here we demonstrate that intravenous administration of myxoma virus into mice bearing disseminated myeloma results in the elimination of 70–90% of malignant cells within 24 hours. This rapid debulking was dependent on direct contact of myxoma virus with residual myeloma and did not occur through destruction of the hematopoietic bone marrow niche. Importantly, systemic myxoma therapy also induced potent antimyeloma CD8+ T cell responses which localized to the bone marrow and were capable of completely eradicating established myeloma in some animals. These results demonstrate that oncolytic myxoma virus is not only effective at preventing relapse caused by reinfusion of tumor cells during stem cell transplant, but is also potentially curative for patients bearing established minimal residual disease.
Collapse
Affiliation(s)
- Eric Bartee
- Department of Microbiology and Immunology, Medical University of South Carolina , Charleston, South Carolina
| | - Mee Y Bartee
- Department of Microbiology and Immunology, Medical University of South Carolina , Charleston, South Carolina
| | - Bjarne Bogen
- Institute of Immunology, KG Jebsen Centre for Research on Influenza Vaccines and Centre for Immune Regulation, University of Oslo and Oslo University Hospital , Oslo, Norway
| | - Xue-Zhong Yu
- Department of Microbiology and Immunology, Medical University of South Carolina , Charleston, South Carolina
| |
Collapse
|
13
|
Müller E, Bauer S, Stühmer T, Mottok A, Scholz CJ, Steinbrunn T, Brünnert D, Brandl A, Schraud H, Kreßmann S, Beilhack A, Rosenwald A, Bargou RC, Chatterjee M. Pan-Raf co-operates with PI3K-dependent signalling and critically contributes to myeloma cell survival independently of mutated RAS. Leukemia 2016; 31:922-933. [DOI: 10.1038/leu.2016.264] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 07/28/2016] [Accepted: 09/01/2016] [Indexed: 12/20/2022]
|
14
|
Kim EJ, Lee H, Yeom A, Hong KS. In vivo fluorescence imaging to assess early therapeutic response to tumor progression in a xenograft cancer model. BIOTECHNOL BIOPROC E 2016. [DOI: 10.1007/s12257-016-0251-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
The KISS1 Receptor as an In Vivo Microenvironment Imaging Biomarker of Multiple Myeloma Bone Disease. PLoS One 2016; 11:e0155087. [PMID: 27158817 PMCID: PMC4861277 DOI: 10.1371/journal.pone.0155087] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/22/2016] [Indexed: 11/19/2022] Open
Abstract
Multiple myeloma is one of the most common hematological diseases and is characterized by an aberrant proliferation of plasma cells within the bone marrow. As a result of crosstalk between cancer cells and the bone microenvironment, bone homeostasis is disrupted leading to osteolytic lesions and poor prognosis. Current diagnostic strategies for myeloma typically rely on detection of excess monoclonal immunoglobulins or light chains in the urine or serum. However, these strategies fail to localize the sites of malignancies. In this study we sought to identify novel biomarkers of myeloma bone disease which could target the malignant cells and/or the surrounding cells of the tumor microenvironment. From these studies, the KISS1 receptor (KISS1R), a G-protein-coupled receptor known to play a role in the regulation of endocrine functions, was identified as a target gene that was upregulated on mesenchymal stem cells (MSCs) and osteoprogenitor cells (OPCs) when co-cultured with myeloma cells. To determine the potential of this receptor as a biomarker, in vitro and in vivo studies were performed with the KISS1R ligand, kisspeptin, conjugated with a fluorescent dye. In vitro microscopy showed binding of fluorescently-labeled kisspeptin to both myeloma cells as well as MSCs under direct co-culture conditions. Next, conjugated kisspeptin was injected into immune-competent mice containing myeloma bone lesions. Tumor-burdened limbs showed increased peak fluorescence compared to contralateral controls. These data suggest the utility of the KISS1R as a novel biomarker for multiple myeloma, capable of targeting both tumor cells and host cells of the tumor microenvironment.
Collapse
|
16
|
Dietl S, Schwinn S, Dietl S, Riedel S, Deinlein F, Rutkowski S, von Bueren AO, Krauss J, Schweitzer T, Vince GH, Picard D, Eyrich M, Rosenwald A, Ramaswamy V, Taylor MD, Remke M, Monoranu CM, Beilhack A, Schlegel PG, Wölfl M. MB3W1 is an orthotopic xenograft model for anaplastic medulloblastoma displaying cancer stem cell- and Group 3-properties. BMC Cancer 2016; 16:115. [PMID: 26883117 PMCID: PMC4756501 DOI: 10.1186/s12885-016-2170-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 02/14/2016] [Indexed: 11/18/2022] Open
Abstract
Background Medulloblastoma is the most common malignant brain tumor in children and can be divided in different molecular subgroups. Patients whose tumor is classified as a Group 3 tumor have a dismal prognosis. However only very few tumor models are available for this subgroup. Methods We established a robust orthotopic xenograft model with a cell line derived from the malignant pleural effusions of a child suffering from a Group 3 medulloblastoma. Results Besides classical characteristics of this tumor subgroup, the cells display cancer stem cell characteristics including neurosphere formation, multilineage differentiation, CD133/CD15 expression, high ALDH-activity and high tumorigenicity in immunocompromised mice with xenografts exactly recapitulating the original tumor architecture. Conclusions This model using unmanipulated, human medulloblastoma cells will enable translational research, specifically focused on Group 3 medulloblastoma. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2170-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sebastian Dietl
- University Children's Hospital, Pediatric Oncology, Hematology and Stem Cell Transplantation, University of Würzburg, Würzburg, Germany
| | - Stefanie Schwinn
- University Children's Hospital, Pediatric Oncology, Hematology and Stem Cell Transplantation, University of Würzburg, Würzburg, Germany
| | - Susanne Dietl
- Department of Surgery II, University of Würzburg, Würzburg, Germany
| | - Simone Riedel
- Interdisciplinary Center for Clinical Research Laboratory (IZKF Würzburg), Department of Internal Medicine II, University of Würzburg, Würzburg, Germany
| | - Frank Deinlein
- University Children's Hospital, Pediatric Oncology, Hematology and Stem Cell Transplantation, University of Würzburg, Würzburg, Germany
| | - Stefan Rutkowski
- Department of Pediatric Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andre O von Bueren
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Hospital of Geneva, Geneva, Switzerland
| | - Jürgen Krauss
- Department of Neurosurgery, University of Würzburg, Würzburg, Germany
| | | | - Giles H Vince
- Department of Neurosurgery, University of Würzburg, Würzburg, Germany
| | - Daniel Picard
- Department of Pediatric Oncology, Hematology and Clinical Immunology / Department of Neuropathology, Heinrich Heine University, Düsseldorf, Germany
| | - Matthias Eyrich
- University Children's Hospital, Pediatric Oncology, Hematology and Stem Cell Transplantation, University of Würzburg, Würzburg, Germany
| | | | - Vijay Ramaswamy
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, Toronto, Canada
| | - Michael D Taylor
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, Toronto, Canada
| | - Marc Remke
- Department of Pediatric Oncology, Hematology and Clinical Immunology / Department of Neuropathology, Heinrich Heine University, Düsseldorf, Germany.,Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, Toronto, Canada
| | | | - Andreas Beilhack
- Interdisciplinary Center for Clinical Research Laboratory (IZKF Würzburg), Department of Internal Medicine II, University of Würzburg, Würzburg, Germany
| | - Paul G Schlegel
- University Children's Hospital, Pediatric Oncology, Hematology and Stem Cell Transplantation, University of Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | - Matthias Wölfl
- University Children's Hospital, Pediatric Oncology, Hematology and Stem Cell Transplantation, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
17
|
Lawson MA, McDonald MM, Kovacic N, Hua Khoo W, Terry RL, Down J, Kaplan W, Paton-Hough J, Fellows C, Pettitt JA, Neil Dear T, Van Valckenborgh E, Baldock PA, Rogers MJ, Eaton CL, Vanderkerken K, Pettit AR, Quinn JMW, Zannettino ACW, Phan TG, Croucher PI. Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche. Nat Commun 2015; 6:8983. [PMID: 26632274 PMCID: PMC4686867 DOI: 10.1038/ncomms9983] [Citation(s) in RCA: 258] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/23/2015] [Indexed: 12/25/2022] Open
Abstract
Multiple myeloma is largely incurable, despite development of therapies that target myeloma cell-intrinsic pathways. Disease relapse is thought to originate from dormant myeloma cells, localized in specialized niches, which resist therapy and repopulate the tumour. However, little is known about the niche, and how it exerts cell-extrinsic control over myeloma cell dormancy and reactivation. In this study, we track individual myeloma cells by intravital imaging as they colonize the endosteal niche, enter a dormant state and subsequently become activated to form colonies. We demonstrate that dormancy is a reversible state that is switched ‘on' by engagement with bone-lining cells or osteoblasts, and switched ‘off' by osteoclasts remodelling the endosteal niche. Dormant myeloma cells are resistant to chemotherapy that targets dividing cells. The demonstration that the endosteal niche is pivotal in controlling myeloma cell dormancy highlights the potential for targeting cell-extrinsic mechanisms to overcome cell-intrinsic drug resistance and prevent disease relapse. Therapy resistant dormant myeloma cells contribute to disease relapse. Here, the authors use intravital microscopy to track the location of these cells and demonstrate that they hone to the endosteal niche within the bone.
Collapse
Affiliation(s)
- Michelle A Lawson
- Department of Oncology, University of Sheffield Medical School, University of Sheffield, Beech Hill Road, Sheffield, South Yorkshire S10 2RX, UK.,Mellanby Centre for Bone Research, University of Sheffield Medical School, University of Sheffield, Beech Hill Road, Sheffield, South Yorkshire S10 2RX, UK
| | - Michelle M McDonald
- Garvan Institute of Medical Research, 384 Victoria Street, Sydney, New South Wales 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Sydney, New South Wales 2010, Australia
| | - Natasa Kovacic
- Garvan Institute of Medical Research, 384 Victoria Street, Sydney, New South Wales 2010, Australia
| | - Weng Hua Khoo
- Garvan Institute of Medical Research, 384 Victoria Street, Sydney, New South Wales 2010, Australia.,School of Biotechnology and Biomolecular Sciences, UNSW Australia, Sydney, New South Wales 2010, Australia
| | - Rachael L Terry
- Garvan Institute of Medical Research, 384 Victoria Street, Sydney, New South Wales 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Sydney, New South Wales 2010, Australia
| | - Jenny Down
- Garvan Institute of Medical Research, 384 Victoria Street, Sydney, New South Wales 2010, Australia
| | - Warren Kaplan
- Garvan Institute of Medical Research, 384 Victoria Street, Sydney, New South Wales 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Sydney, New South Wales 2010, Australia
| | - Julia Paton-Hough
- Department of Oncology, University of Sheffield Medical School, University of Sheffield, Beech Hill Road, Sheffield, South Yorkshire S10 2RX, UK.,Mellanby Centre for Bone Research, University of Sheffield Medical School, University of Sheffield, Beech Hill Road, Sheffield, South Yorkshire S10 2RX, UK
| | - Clair Fellows
- Department of Oncology, University of Sheffield Medical School, University of Sheffield, Beech Hill Road, Sheffield, South Yorkshire S10 2RX, UK.,Mellanby Centre for Bone Research, University of Sheffield Medical School, University of Sheffield, Beech Hill Road, Sheffield, South Yorkshire S10 2RX, UK
| | - Jessica A Pettitt
- Garvan Institute of Medical Research, 384 Victoria Street, Sydney, New South Wales 2010, Australia
| | - T Neil Dear
- South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia
| | - Els Van Valckenborgh
- Department of Hematology and Immunology, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Paul A Baldock
- Garvan Institute of Medical Research, 384 Victoria Street, Sydney, New South Wales 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Sydney, New South Wales 2010, Australia
| | - Michael J Rogers
- Garvan Institute of Medical Research, 384 Victoria Street, Sydney, New South Wales 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Sydney, New South Wales 2010, Australia
| | - Colby L Eaton
- Mellanby Centre for Bone Research, University of Sheffield Medical School, University of Sheffield, Beech Hill Road, Sheffield, South Yorkshire S10 2RX, UK.,Department of Human Metabolism and Clinical Biochemistry, University of Sheffield Medical School, University of Sheffield, Beech Hill Road, Sheffield, South Yorkshire S10 2RX, UK
| | - Karin Vanderkerken
- Department of Hematology and Immunology, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Allison R Pettit
- Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland 4102, Australia
| | - Julian M W Quinn
- Garvan Institute of Medical Research, 384 Victoria Street, Sydney, New South Wales 2010, Australia
| | - Andrew C W Zannettino
- South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia.,School of Medical Sciences, University of Adelaide, Frome Road, Adelaide, South Australia 5000, Australia
| | - Tri Giang Phan
- Garvan Institute of Medical Research, 384 Victoria Street, Sydney, New South Wales 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Sydney, New South Wales 2010, Australia
| | - Peter I Croucher
- Garvan Institute of Medical Research, 384 Victoria Street, Sydney, New South Wales 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Sydney, New South Wales 2010, Australia
| |
Collapse
|
18
|
Kikuchi J, Koyama D, Wada T, Izumi T, Hofgaard PO, Bogen B, Furukawa Y. Phosphorylation-mediated EZH2 inactivation promotes drug resistance in multiple myeloma. J Clin Invest 2015; 125:4375-90. [PMID: 26517694 DOI: 10.1172/jci80325] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 09/17/2015] [Indexed: 12/21/2022] Open
Abstract
Alterations in chromatin modifications, such as histone methylation, have been suggested as mediating chemotherapy resistance in several cancer types; therefore, elucidation of the epigenetic mechanisms that underlie drug resistance may greatly contribute to the advancement of cancer therapies. In the present study, we identified histone H3-lysine 27 (H3K27) as a critical residue for epigenetic modification in multiple myeloma. We determined that abrogation of drug-induced H3K27 hypermethylation is associated with cell adhesion-mediated drug resistance (CAM-DR), which is the most important form of drug resistance, using a coculture system to evaluate stroma cell adhesion-dependent alterations in multiple myeloma cells. Cell adhesion counteracted anticancer drug-induced hypermethylation of H3K27 via inactivating phosphorylation of the transcription regulator EZH2 at serine 21, leading to the sustained expression of antiapoptotic genes, including IGF1, B cell CLL/lymphoma 2 (BCL2), and hypoxia inducible factor 1, α subunit (HIF1A). Pharmacological and genetic inhibition of the IGF-1R/PI3K/AKT pathway reversed CAM-DR by promoting EZH2 dephosphorylation and H3K27 hypermethylation both in vitro and in refractory murine myeloma models. Together, our findings identify and characterize an epigenetic mechanism that underlies CAM-DR and suggest that kinase inhibitors to counteract EZH2 phosphorylation should be included in combination chemotherapy to increase therapeutic index.
Collapse
|
19
|
Schwarzer R, Nickel N, Godau J, Willie BM, Duda GN, Schwarzer R, Cirovic B, Leutz A, Manz R, Bogen B, Dörken B, Jundt F. Notch pathway inhibition controls myeloma bone disease in the murine MOPC315.BM model. Blood Cancer J 2014; 4:e217. [PMID: 24927406 PMCID: PMC4080208 DOI: 10.1038/bcj.2014.37] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 04/30/2014] [Indexed: 01/16/2023] Open
Abstract
Despite evidence that deregulated Notch signalling is a master regulator of multiple myeloma (MM) pathogenesis, its contribution to myeloma bone disease remains to be resolved. Notch promotes survival of human MM cells and triggers human osteoclast activity in vitro. Here, we show that inhibition of Notch through the γ-secretase inhibitor XII (GSI XII) induces apoptosis of murine MOPC315.BM myeloma cells with high Notch activity. GSI XII impairs murine osteoclast differentiation of receptor activator of NF-κB ligand (RANKL)-stimulated RAW264.7 cells in vitro. In the murine MOPC315.BM myeloma model GSI XII has potent anti-MM activity and reduces osteolytic lesions as evidenced by diminished myeloma-specific monoclonal immunoglobulin (Ig)-A serum levels and quantitative assessment of bone structure changes via high-resolution microcomputed tomography scans. Thus, we suggest that Notch inhibition through GSI XII controls myeloma bone disease mainly by targeting Notch in MM cells and possibly in osteoclasts in their microenvironment. We conclude that Notch inhibition is a valid therapeutic strategy in MM.
Collapse
Affiliation(s)
- R Schwarzer
- Department of Hematology, Oncology and Tumor Immunology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - N Nickel
- Department of Hematology, Oncology and Tumor Immunology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - J Godau
- Department of Hematology, Oncology and Tumor Immunology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - B M Willie
- Julius Wolff Institute and Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - G N Duda
- Julius Wolff Institute and Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - R Schwarzer
- Institute of Biology and Molecular Biophysics, Humboldt University Berlin, Berlin, Germany
| | - B Cirovic
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - A Leutz
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - R Manz
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - B Bogen
- 1] Centre for Immune Regulation, Institute of Immunology, Oslo University Hospital, Oslo, Norway [2] Jebsen Centre for Research on Influenza Vaccines, University of Oslo, Oslo, Norway
| | - B Dörken
- 1] Department of Hematology, Oncology and Tumor Immunology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany [2] Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - F Jundt
- 1] Department of Hematology, Oncology and Tumor Immunology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany [2] Department of Internal Medicine II, University Hospital Würzburg, University of Würzburg, Würzburg, Germany
| |
Collapse
|
20
|
Trebing J, Lang I, Chopra M, Salzmann S, Moshir M, Silence K, Riedel SS, Siegmund D, Beilhack A, Otto C, Wajant H. A novel llama antibody targeting Fn14 exhibits anti-metastatic activity in vivo. MAbs 2014; 6:297-308. [PMID: 24135629 PMCID: PMC3929451 DOI: 10.4161/mabs.26709] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/02/2013] [Accepted: 10/04/2013] [Indexed: 12/30/2022] Open
Abstract
Expression of fibroblast growth factor (FGF)-inducible 14 (Fn14), a member of the tumor necrosis factor receptor superfamily, is typically low in healthy adult organisms, but strong Fn14 expression is induced in tissue injury and tissue remodeling. High Fn14 expression is also observed in solid tumors, which is why this receptor is under consideration as a therapeutic target in oncology. Here, we describe various novel mouse-human cross-reactive llama-derived recombinant Fn14-specific antibodies (5B6, 18D1, 4G5) harboring the human IgG1 Fc domain. In contrast to recombinant variants of the established Fn14-specific antibodies PDL192 and P4A8, all three llama-derived antibodies efficiently bound to the W42A and R56P mutants of human Fn14. 18D1 and 4G5, but not 5B6, efficiently blocked TNF-like weak inducer of apoptosis(TWEA K) binding at low concentrations (0.2–2 μg/ml). Oligomerization and Fcγ receptor (FcγR) binding converted all antibodies into strong Fn14 agonists. Variants of 18D1 with enhanced and reduced antibody-dependent cell-mediated cytotoxicity (ADCC) activity were further analyzed in vivo with respect to their effect on metastasis. In a xenogeneic model using human colon carcinoma cancer cells, both antibody variants were effective in reducing metastasis to the liver. In contrast, only the 18D1 variant with enhanced ADCC activity, but not its ADCC-defective counterpart, suppressed lung metastasis in the RE NCA model. In sum, this suggests that Fn14 targeting might primarily act by triggering of antibody effector functions, but also by blockade of TWEA K-Fn14 interaction in some cases
Collapse
Affiliation(s)
- Johannes Trebing
- Division of Molecular Internal Medicine; Department of Internal Medicine II; University Hospital of Würzburg; Würzburg, Germany
| | - Isabell Lang
- Division of Molecular Internal Medicine; Department of Internal Medicine II; University Hospital of Würzburg; Würzburg, Germany
| | - Martin Chopra
- IZKF Research Laboratory for Experimental Stem Cell Transplantation; Department of Internal Medicine II; University Hospital of Würzburg; Würzburg, Germany
| | - Steffen Salzmann
- Division of Molecular Internal Medicine; Department of Internal Medicine II; University Hospital of Würzburg; Würzburg, Germany
| | | | | | - Simone S Riedel
- IZKF Research Laboratory for Experimental Stem Cell Transplantation; Department of Internal Medicine II; University Hospital of Würzburg; Würzburg, Germany
| | - Daniela Siegmund
- Division of Molecular Internal Medicine; Department of Internal Medicine II; University Hospital of Würzburg; Würzburg, Germany
| | - Andreas Beilhack
- IZKF Research Laboratory for Experimental Stem Cell Transplantation; Department of Internal Medicine II; University Hospital of Würzburg; Würzburg, Germany
| | - Christoph Otto
- Department of General, Visceral, Vascular, and Paediatric Surgery; University Hospital of Würzburg; Würzburg, Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine; Department of Internal Medicine II; University Hospital of Würzburg; Würzburg, Germany
| |
Collapse
|
21
|
Schueler J, Wider D, Klingner K, Siegers GM, May AM, Wäsch R, Fiebig HH, Engelhardt M. Intratibial injection of human multiple myeloma cells in NOD/SCID IL-2Rγ(null) mice mimics human myeloma and serves as a valuable tool for the development of anticancer strategies. PLoS One 2013; 8:e79939. [PMID: 24223204 PMCID: PMC3819303 DOI: 10.1371/journal.pone.0079939] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 10/06/2013] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND We systematically analyzed multiple myeloma (MM) cell lines and patient bone marrow cells for their engraftment capacity in immunodeficient mice and validated the response of the resulting xenografts to antimyeloma agents. DESIGN AND METHODS Using flow cytometry and near infrared fluorescence in-vivo-imaging, growth kinetics of MM cell lines L363 and RPMI8226 and patient bone marrow cells were investigated with use of a murine subcutaneous bone implant, intratibial and intravenous approach in NOD/SCID, NOD/SCID treated with CD122 antibody and NOD/SCID IL-2Rγ(null) mice (NSG). RESULTS Myeloma growth was significantly increased in the absence of natural killer cell activity (NSG or αCD122-treated NOD/SCID). Comparison of NSG and αCD122-treated NOD/SCID revealed enhanced growth kinetics in the former, especially with respect to metastatic tumor sites which were exclusively observed therein. In NSG, MM cells were more tumorigenic when injected intratibially than intravenously. In NOD/SCID in contrast, the use of juvenile long bone implants was superior to intratibial or intravenous cancer cell injection. Using the intratibial NSG model, mice developed typical disease symptoms exclusively when implanted with human MM cell lines or patient-derived bone marrow cells, but not with healthy bone marrow cells nor in mock-injected animals. Bortezomib and dexamethasone delayed myeloma progression in L363- as well as patient-derived MM cell bearing NSG. Antitumor activity could be quantified via flow cytometry and in vivo imaging analyses. CONCLUSIONS Our results suggest that the intratibial NSG MM model mimics the clinical situation of the disseminated disease and serves as a valuable tool in the development of novel anticancer strategies.
Collapse
Affiliation(s)
- Julia Schueler
- Department of Hematology and Oncology, University of Freiburg Medical Center, Freiburg, Germany
- Department for Invivo Tumorbiology, Oncotest, Freiburg, Germany
| | - Dagmar Wider
- Department of Hematology and Oncology, University of Freiburg Medical Center, Freiburg, Germany
| | | | - Gabrielle M. Siegers
- Department of Anatomy & Cell Biology, Schulich School of Medicine, Western University, London, Ontario, Canada
| | - Annette M. May
- Department of Pathology, University of Freiburg Medical Center, Freiburg, Germany
| | - Ralph Wäsch
- Department of Hematology and Oncology, University of Freiburg Medical Center, Freiburg, Germany
| | | | - Monika Engelhardt
- Department of Hematology and Oncology, University of Freiburg Medical Center, Freiburg, Germany
- * E-mail:
| |
Collapse
|
22
|
Noninvasive visualization of tumor growth in a human colorectal liver metastases xenograft model using bioluminescence in vivo imaging. J Surg Res 2013; 185:143-51. [PMID: 23998649 DOI: 10.1016/j.jss.2013.03.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 02/26/2013] [Accepted: 03/07/2013] [Indexed: 11/21/2022]
Abstract
BACKGROUND Bioluminescence imaging (BLI) is an ideal tool for noninvasive, quantitative monitoring of tumor progression/regression in animal models. The effectiveness of different treatment strategies is displayed by an altered intensity of bioluminescence, demonstrating a change of the tumor burden. The aim of this study was to establish a reliable, reproducible colorectal hepatic metastases cancer animal model. METHODS Cells of the human colon carcinoma cell line HCT-116 Luc(pos) expressing the firefly luciferase enzyme gene were used. HCT-116 Luc(pos) cells (2.5 × 10(6)) were injected through the portal vein into the liver of immunoincompetent nude mice. BLI was used to analyze intrahepatic tumor burden and growth kinetic. RESULTS HCT-116 Luc(pos) cells demonstrated a progressive and reproducible growth in the liver after intraportal injection. Four days after injection, the animals were analyzed for tumor growth by BLI, and mice without or too low bioluminescence signals were excluded (between 10% and 20% animals). HCT-116 Luc(pos) intrahepatic tumors responded successfully to different dosages (5 and 10 mg/kg) of 5-fluorouracil. CONCLUSIONS BLI is an important tool with many potential advantages for investigators. The measurement of intrahepatic tumor growth by imaging luciferase activity noninvasively provides valuable information on tumor burden and effectiveness of therapy. Thus, the presented intrahepatic metastases model based on the growth of HCT-116 Luc(pos) cells is suitable for in vivo testing of different cancer therapy strategies.
Collapse
|