1
|
Lin M, Li C, Lin C, Xiong S, Xue Q, Li Y. Characterization of amiodarone action on currents in hERG-T618 gain-of-function mutations. Open Life Sci 2023; 18:20220749. [PMID: 37954102 PMCID: PMC10638844 DOI: 10.1515/biol-2022-0749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 11/14/2023] Open
Abstract
The purpose of this study was to determine the effect of amiodarone (Ami) on hERG-T618I currents in HEK293 cells. A transient transfection method was used to transfer hERG-T618I and hERG wild-type (WT) channel plasmids into HEK293 cells. An extracellular local perfusion method was used for administration. Currents were recorded using the whole-cell patch clamp technique. Ami (10 μM) had a greater retarding effect on the hERG-T618I channel than WT (P < 0.05). The half-inhibitory concentration for the mutant was approximately 1.82 times that of WT (P < 0.05). The WT current inhibition fraction against Ami was significantly greater than T618I in the same cell (P < 0.05). The STEP current of the mutant channel was larger than the WT channel, but the characteristic of inward rectification did not appear. Ami reduced the STEP current of the mutant channel, and the steady-state activation curve indicated that channel activation decreased (P > 0.05). Ami restored partial inactivation of the mutant channel. Ami effectively reduced the current in the phase 2 plateau (P < 0.05), but the phase 3 current did not exhibit the characteristics of a WT current. Ami inhibited hERG-T618I currents on HEK293 cells, but the effect was weaker than WT.
Collapse
Affiliation(s)
- Min Lin
- Department of Cardiology, People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, 350004, China
| | - Cuiyun Li
- Department of Cardiology, People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, 350004, China
| | - Chao Lin
- Department of Cardiology, People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, 350004, China
| | - Shangquan Xiong
- Department of Cardiology, People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, 350004, China
| | - Qiao Xue
- Department of Cardiology, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Yang Li
- Department of Cardiology, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| |
Collapse
|
2
|
Zhang S, Lu W, Yang F, Li Z, Wang S, Jiang M, Wang X, Wei Z. Computational analysis of arrhythmogenesis in KCNH2 T618I mutation-associated short QT syndrome and the pharmacological effects of quinidine and sotalol. NPJ Syst Biol Appl 2022; 8:43. [PMID: 36333337 PMCID: PMC9636227 DOI: 10.1038/s41540-022-00254-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Short QT syndrome (SQTS) is a rare but dangerous genetic disease. In this research, we conducted a comprehensive in silico investigation into the arrhythmogenesis in KCNH2 T618I-associated SQTS using a multi-scale human ventricle model. A Markov chain model of IKr was developed firstly to reproduce the experimental observations. It was then incorporated into cell, tissue, and organ models to explore how the mutation provided substrates for ventricular arrhythmias. Using this T618I Markov model, we explicitly revealed the subcellular level functional alterations by T618I mutation, particularly the changes of ion channel states that are difficult to demonstrate in wet experiments. The following tissue and organ models also successfully reproduced the changed dynamics of reentrant spiral waves and impaired rate adaptions in hearts of T618I mutation. In terms of pharmacotherapy, we replicated the different effects of a drug under various conditions using identical mathematical descriptions for drugs. This study not only simulated the actions of an effective drug (quinidine) at various physiological levels, but also elucidated why the IKr inhibitor sotalol failed in SQT1 patients through profoundly analyzing its mutation-dependent actions.
Collapse
Affiliation(s)
- Shugang Zhang
- College of Computer Science and Technology, Ocean University of China, Qingdao, 266100, China
| | - Weigang Lu
- Department of Educational Technology, Ocean University of China, Qingdao, 266100, China.
- Biological Physics Group, School of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK.
| | - Fei Yang
- School of Mechanical, Electrical, and Information Engineering, Shandong University, Weihai, 264200, China
| | - Zhen Li
- College of Computer Science and Technology, Qingdao University, Qingdao, 266071, China
| | - Shuang Wang
- College of Computer Science and Technology, China University of Petroleum (East China), Qingdao, 266580, China
| | - Mingjian Jiang
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | | | - Zhiqiang Wei
- College of Computer Science and Technology, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
3
|
Du C, Zhang H, Harmer SC, Hancox JC. Identification through action potential clamp of proarrhythmic consequences of the short QT syndrome T618I hERG 'hotspot' mutation. Biochem Biophys Res Commun 2022; 596:49-55. [PMID: 35114584 PMCID: PMC8865743 DOI: 10.1016/j.bbrc.2022.01.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/14/2022] [Indexed: 11/30/2022]
Abstract
The T618I KCNH2-encoded hERG mutation is the most frequently observed mutation in genotyped cases of the congenital short QT syndrome (SQTS), a cardiac condition associated with ventricular fibrillation and sudden death. Most T618I hERG carriers exhibit a pronounced U wave on the electrocardiogram and appear vulnerable to ventricular, but not atrial fibrillation (AF). The basis for these effects is unclear. This study used the action potential (AP) voltage clamp technique to determine effects of the T618I mutation on hERG current (IhERG) elicited by APs from different cardiac regions. Whole-cell patch-clamp recordings were made at 37 °C of IhERG from hERG-transfected HEK-293 cells. Maximal IhERG during a ventricular AP command was increased ∼4-fold for T618I IhERG and occurred much earlier during AP repolarization. The mutation also increased peak repolarizing currents elicited by Purkinje fibre (PF) APs. Maximal wild-type (WT) IhERG current during the PF waveform was 87.2 ± 4.5% of maximal ventricular repolarizing current whilst for the T618I mutant, the comparable value was 47.7 ± 2.7%. Thus, the T618I mutation exacerbated differences in repolarizing IhERG between PF and ventricular APs; this could contribute to heterogeneity of ventricular-PF repolarization and consequently to the U waves seen in T618I carriers. The comparatively shorter duration and lack of pronounced plateau of the atrial AP led to a smaller effect of the T618I mutation during the atrial AP, which may help account for the lack of reported AF in T618I carriers. Use of a paired ventricular AP protocol revealed an alteration to protective IhERG transients that affect susceptibility to premature excitation late in AP repolarization/early in diastole. These observations may help explain altered arrhythmia susceptibility in this form of the SQTS. T618I is a ‘hotspot’ hERG potassium channel mutation in the congenital short QT syndrome. Differences in hERG current during ventricular and Purkinje fibre action potentials are exacerbated by the T618I mutation. T618I has more modest effects on current during atrial action potentials. T618I modifies the protective response of hERG to premature ventricular excitation. These alterations to hERG function help explain ECG changes reported in T618I-hERG carriers.
Collapse
Affiliation(s)
- Chunyun Du
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Henggui Zhang
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
| | - Stephen C Harmer
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Jules C Hancox
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK; Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
4
|
Fan X, Yang G, Kowitz J, Duru F, Saguner AM, Akin I, Zhou X, El-Battrawy I. Preclinical short QT syndrome models: studying the phenotype and drug-screening. Europace 2021; 24:481-493. [PMID: 34516623 DOI: 10.1093/europace/euab214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/05/2021] [Indexed: 11/14/2022] Open
Abstract
Cardiovascular diseases are the main cause of sudden cardiac death (SCD) in developed and developing countries. Inherited cardiac channelopathies are linked to 5-10% of SCDs, mainly in the young. Short QT syndrome (SQTS) is a rare inherited channelopathy, which leads to both atrial and ventricular tachyarrhythmias, syncope, and even SCD. International European Society of Cardiology guidelines include as diagnostic criteria: (i) QTc ≤ 340 ms on electrocardiogram, (ii) QTc ≤ 360 ms plus one of the follwing, an affected short QT syndrome pathogenic gene mutation, or family history of SQTS, or aborted cardiac arrest, or family history of cardiac arrest in the young. However, further evaluation of the QTc ranges seems to be required, which might be possible by assembling large short QT cohorts and considering genetic screening of the newly described pathogenic mutations. Since the mechanisms underlying the arrhythmogenesis of SQTS is unclear, optimal therapy for SQTS is still lacking. The disease is rare, unclear genotype-phenotype correlations exist in a bevy of cases and the absence of an international short QT registry limit studies on the pathophysiological mechanisms of arrhythmogenesis and therapy of SQTS. This leads to the necessity of experimental models or platforms for studying SQTS. Here, we focus on reviewing preclinical SQTS models and platforms such as animal models, heterologous expression systems, human-induced pluripotent stem cell-derived cardiomyocyte models and computer models as well as three-dimensional engineered heart tissues. We discuss their usefulness for SQTS studies to examine genotype-phenotype associations, uncover disease mechanisms and test drugs. These models might be helpful for providing novel insights into the exact pathophysiological mechanisms of this channelopathy and may offer opportunities to improve the diagnosis and treatment of patients with SQT syndrome.
Collapse
Affiliation(s)
- Xuehui Fan
- University of Mannheim, University of Heidelberg, Germany.,Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Guoqiang Yang
- Department of Acupuncture and Rehabilitation, Hospital (T.CM.) Affiliated to Southwest Medical University, Luzhou, Sichuan, China.,Research Unit of Molecular Imaging Probes, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | | | - Firat Duru
- Department of Cardiology, University Heart Centre, University Hospital Zurich, Zurich, Switzerland.,Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Ardan M Saguner
- Department of Cardiology, University Heart Centre, University Hospital Zurich, Zurich, Switzerland
| | - Ibrahim Akin
- University of Mannheim, University of Heidelberg, Germany.,DZHK (German Center for Cardiovascular Research) Partner Site, Heidelberg-Mannheim, Germany
| | - Xiaobo Zhou
- University of Mannheim, University of Heidelberg, Germany.,Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China.,DZHK (German Center for Cardiovascular Research) Partner Site, Heidelberg-Mannheim, Germany
| | - Ibrahim El-Battrawy
- University of Mannheim, University of Heidelberg, Germany.,Department of Cardiology, University Heart Centre, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Belletti R, Romero L, Martinez-Mateu L, Cherry EM, Fenton FH, Saiz J. Arrhythmogenic Effects of Genetic Mutations Affecting Potassium Channels in Human Atrial Fibrillation: A Simulation Study. Front Physiol 2021; 12:681943. [PMID: 34135774 PMCID: PMC8201780 DOI: 10.3389/fphys.2021.681943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/05/2021] [Indexed: 11/16/2022] Open
Abstract
Genetic mutations in genes encoding for potassium channel protein structures have been recently associated with episodes of atrial fibrillation in asymptomatic patients. The aim of this study is to investigate the potential arrhythmogenicity of three gain-of-function mutations related to atrial fibrillation-namely, KCNH2 T895M, KCNH2 T436M, and KCNE3-V17M-using modeling and simulation of the electrophysiological activity of the heart. A genetic algorithm was used to tune the parameters' value of the original ionic currents to reproduce the alterations experimentally observed caused by the mutations. The effects on action potentials, ionic currents, and restitution properties were analyzed using versions of the Courtemanche human atrial myocyte model in different tissues: pulmonary vein, right, and left atrium. Atrial susceptibility of the tissues to spiral wave generation was also investigated studying the temporal vulnerability. The presence of the three mutations resulted in an overall more arrhythmogenic substrate. Higher current density, action potential duration shortening, and flattening of the restitution curves were the major effects of the three mutations at the single-cell level. The genetic mutations at the tissue level induced a higher temporal vulnerability to the rotor's initiation and progression, by sustaining spiral waves that perpetuate until the end of the simulation. The mutation with the highest pro-arrhythmic effects, exhibiting the widest sustained VW and the smallest meandering rotor's tip areas, was KCNE3-V17M. Moreover, the increased susceptibility to arrhythmias and rotor's stability was tissue-dependent. Pulmonary vein tissues were more prone to rotor's initiation, while in left atrium tissues rotors were more easily sustained. Re-entries were also progressively more stable in pulmonary vein tissue, followed by the left atrium, and finally the right atrium. The presence of the genetic mutations increased the susceptibility to arrhythmias by promoting the rotor's initiation and maintenance. The study provides useful insights into the mechanisms underlying fibrillatory events caused by KCNH2 T895M, KCNH2 T436M, and KCNE3-V17M and might aid the planning of patient-specific targeted therapies.
Collapse
Affiliation(s)
- Rebecca Belletti
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Lucia Romero
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Laura Martinez-Mateu
- Departamento de Teoría de la Señal y Comunicaciones y Sistemas Telemáticos y Computación, Universidad Rey Juan Carlos, Madrid, Spain
| | - Elizabeth M. Cherry
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Flavio H. Fenton
- School of Physics, Georgia Institute of Technology, Atlanta, GA, United States
| | - Javier Saiz
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
6
|
Lan H, Xu Q, El-Battrawy I, Zhong R, Li X, Lang S, Cyganek L, Borggrefe M, Zhou X, Akin I. Ionic Mechanisms of Disopyramide Prolonging Action Potential Duration in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes From a Patient With Short QT Syndrome Type 1. Front Pharmacol 2020; 11:554422. [PMID: 33154722 PMCID: PMC7586889 DOI: 10.3389/fphar.2020.554422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/16/2020] [Indexed: 11/29/2022] Open
Abstract
Short QT syndrome (SQTS) is associated with tachyarrhythmias and sudden cardiac death. So far, only quinidine has been demonstrated to be effective in patients with SQTS type 1(SQTS1). The aim of this study was to investigate the mechanisms of disopyramide underlying its antiarrhythmic effects in SQTS1 with the N588K mutation in HERG channel. Human-induced pluripotent stem cell–derived cardiomyocytes (hiPSC-CMs) from a patient with SQTS1 and a healthy donor, patch clamp, and calcium imaging measurements were employed to assess the drug effects. Disopyramide prolonged the action potential duration (APD) in hiPSC-CMs from a SQTS1-patient (SQTS1-hiPSC-CMs). In spontaneously beating SQTS1-hiPSC-CMs challenged by carbachol plus epinephrine, disopyramide reduced the arrhythmic events. Disopyramide enhanced the inward L-type calcium channel current (ICa-L), the late sodium channel current (late INa) and the Na/Ca exchanger current (INCX), but it reduced the outward small-conductance calcium-activated potassium channel current (ISK), leading to APD-prolongation. Disopyramide displayed no effects on the rapidly and slowly activating delayed rectifier and ATP-sensitive potassium channel currents. In hiPSC-CMs from the healthy donor, disopyramide reduced peak INa, ICa-L, IKr, and ISK but enhanced late INa and INCX. The results demonstrated that disopyramide may be effective for preventing tachyarrhythmias in SQTS1-patients carrying the N588K mutation in HERG channel by APD-prolongation via enhancing ICa-L, late INa, INCX, and reducing ISK.
Collapse
Affiliation(s)
- Huan Lan
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Qiang Xu
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany.,Department of Histology and Embryology, Southwest Medical University, Luzhou, China
| | - Ibrahim El-Battrawy
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg-Mannheim, Mannheim, Germany
| | - Rujia Zhong
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Xin Li
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Siegfried Lang
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg-Mannheim, Mannheim, Germany
| | - Lukas Cyganek
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.,Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Martin Borggrefe
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg-Mannheim, Mannheim, Germany
| | - Xiaobo Zhou
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.,First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg-Mannheim, Mannheim, Germany
| | - Ibrahim Akin
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg-Mannheim, Mannheim, Germany
| |
Collapse
|
7
|
Guo F, Sun Y, Wang X, Wang H, Wang J, Gong T, Chen X, Zhang P, Su L, Fu G, Su J, Yang S, Lai R, Jiang C, Liang P. Patient-Specific and Gene-Corrected Induced Pluripotent Stem Cell-Derived Cardiomyocytes Elucidate Single-Cell Phenotype of Short QT Syndrome. Circ Res 2019; 124:66-78. [PMID: 30582453 DOI: 10.1161/circresaha.118.313518] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RATIONALE Short QT syndrome (SQT) is a rare but arrhythmogenic disorder featured by shortened ventricular repolarization and a propensity toward life-threatening ventricular arrhythmias and sudden cardiac death. OBJECTIVE This study aimed to investigate the single-cell mechanism of SQT using patient-specific and gene-corrected induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). METHODS AND RESULTS One SQT patient carrying missense mutation T618I in potassium voltage-gated channel subfamily H member 2 ( KCNH2) was recruited as well as 2 healthy control subjects in this study. Control and SQT patient-specific iPSCs were generated from skin fibroblasts using nonintegrated Sendai virus. The KCNH2 T618I mutation was corrected by genome editing in SQT iPSC lines to generate isogenic controls. All iPSCs were differentiated into iPSC-CMs using monolayer-based differentiation protocol. SQT iPSC-CMs exhibited abnormal action potential phenotype featured by shortened action potential duration and increased beat-beat interval variability, when compared with control and gene-corrected iPSC-CMs. Furthermore, SQT iPSC-CMs showed KCNH2 gain-of-function with increased rapid delayed rectifying potassium current (IKr) density and enhanced membrane expression. Gene expression profiling of iPSC-CMs exhibited a differential cardiac ion-channel gene expression profile of SQT. Moreover, QTc of SQT patient and action potential durations of SQT iPSC-CMs were both normalized by quinidine, indicating that quinidine is beneficial to KCNH2 T618I of SQT. Importantly, shortened action potential duration phenotype observed in SQT iPSC-CMs was effectively rescued by a short-peptide scorpion toxin BmKKx2 with a mechanism of targeting KCNH2. CONCLUSIONS We demonstrate that patient-specific and gene-corrected iPSC-CMs are able to recapitulate single-cell phenotype of SQT, which is caused by the gain-of-function mutation KCNH2 T618I. These findings will help elucidate the mechanisms underlying SQT and discover therapeutic drugs for treating the disease by using peptide toxins as lead compounds.
Collapse
Affiliation(s)
- Fengfeng Guo
- From the Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital (F.G., X.W., J.W., T.G., J.S., P.L.), Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaxun Sun
- Department of Cardiology (Y.S., C.J.), Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaochen Wang
- From the Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital (F.G., X.W., J.W., T.G., J.S., P.L.), Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University, Hangzhou, China (F.G., X.W., J.W., J.S., P.L.)
| | - Hao Wang
- Department of Prenatal Diagnosis (Screening) Center, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), China (H.W.)
| | - Jue Wang
- From the Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital (F.G., X.W., J.W., T.G., J.S., P.L.), Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University, Hangzhou, China (F.G., X.W., J.W., J.S., P.L.)
| | - Tingyu Gong
- From the Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital (F.G., X.W., J.W., T.G., J.S., P.L.), Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianzhen Chen
- Department of Dermatology and Venerology (X.C.), Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Zhang
- Department of Cardiology, Beijing Tsinghua Changgeng Hospital, China (P.Z.)
| | - Lan Su
- Cardiovascular Medicine Department, The First Affiliated Hospital of Wenzhou Medical University, China (L.S.)
| | - Guosheng Fu
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China (F.G., X.W., J.W., J.S., P.L.)
| | - Jun Su
- From the Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital (F.G., X.W., J.W., T.G., J.S., P.L.), Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University, Hangzhou, China (F.G., X.W., J.W., J.S., P.L.).,Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences (S.Y., L.R.), Kunming Institute of Zoology, China
| | - Shilong Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences (S.Y., L.R.), Kunming Institute of Zoology, China.,Key Laboratory of Bioactive Peptides of Yunnan Province (S.Y., L.R.), Kunming Institute of Zoology, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences (S.Y., L.R.), Kunming Institute of Zoology, China.,Key Laboratory of Bioactive Peptides of Yunnan Province (S.Y., L.R.), Kunming Institute of Zoology, China
| | - Chenyang Jiang
- Department of Cardiology (Y.S., C.J.), Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Liang
- From the Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital (F.G., X.W., J.W., T.G., J.S., P.L.), Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University, Hangzhou, China (F.G., X.W., J.W., J.S., P.L.)
| |
Collapse
|
8
|
Butler A, Zhang Y, Stuart AG, Dempsey CE, Hancox JC. Functional and pharmacological characterization of an S5 domain hERG mutation associated with short QT syndrome. Heliyon 2019; 5:e01429. [PMID: 31049424 PMCID: PMC6479114 DOI: 10.1016/j.heliyon.2019.e01429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/21/2019] [Accepted: 03/22/2019] [Indexed: 11/18/2022] Open
Abstract
Congenital short QT syndrome (SQTS) is a repolarization disorder characterized by abbreviated QT intervals, atrial and ventricular arrhythmias and a risk of sudden death. This study characterized a missense mutation (I560T) in the S5 domain of the hERG K+ channel that has been associated with variant 1 of the SQTS. Whole cell patch clamp recordings of wild-type (WT) and I560T hERG current (IhERG) were made at 37 °C from hERG expressing HEK 293 cells, and the structural context of the mutation was investigated using a recently reported cryo-EM structure of hERG. Under conventional voltage clamp, the I560T mutation increased IhERG amplitude without altering the voltage-dependence of activation, although it accelerated activation time-course and also slowed deactivation time-course at some voltages. The voltage dependence of IhERG inactivation was positively shifted (by ∼24 mV) and the time-course of inactivation was slowed by the I560T mutation. There was also a modest decrease in K+ over Na+ ion selectivity with the I560T mutation. Under action potential (AP) voltage clamp, the net charge carried by hERG was significantly increased during ventricular, Purkinje fibre and atrial APs, with maximal IhERG also occurring earlier during the plateau phase of ventricular and Purkinje fibre APs. The I560T mutation exerted only a modest effect on quinidine sensitivity of IhERG: the IC50 for mutant IhERG was 2.3 fold that for WT IhERG under conventional voltage clamp. Under AP voltage clamp the inhibitory effect of 1 μM quinidine was largely retained for I560T hERG and the timing of peak I560T IhERG was altered towards that of the WT channel. In both the open channel structure and a closed hERG channel model based on the closely-related EAG structure, I560T side-chains were oriented towards membrane lipid and away from adjacent domains of the channel, contrasting with previous predictions based on homology modelling. In summary, the I560T mutation produces multiple effects on hERG channel operation that result in a gain-of-function that is expected to abbreviate ventricular, atrial and Purkinje fibre repolarization. Quinidine is likely to be of value in offsetting the increase in IhERG and altered IhERG timing during ventricular APs in SQTS with this mutation.
Collapse
Affiliation(s)
- Andrew Butler
- School of Physiology, Pharmacology and Neuroscience, Medical Sciences Building, University Walk, Bristol, BS8 1TD, United Kingdom
| | - Yihong Zhang
- School of Physiology, Pharmacology and Neuroscience, Medical Sciences Building, University Walk, Bristol, BS8 1TD, United Kingdom
- Corresponding author.
| | - A. Graham Stuart
- Bristol Heart Institute, University of Bristol, Bristol, BS2 8HW, United Kingdom
| | - Christopher E. Dempsey
- School of Biochemistry, Medical Sciences Building, University Walk, Bristol, BS8 1TD, United Kingdom
| | - Jules C. Hancox
- School of Physiology, Pharmacology and Neuroscience, Medical Sciences Building, University Walk, Bristol, BS8 1TD, United Kingdom
- Bristol Heart Institute, University of Bristol, Bristol, BS2 8HW, United Kingdom
- Corresponding author.
| |
Collapse
|
9
|
Hancox JC, Whittaker DG, Zhang H, Stuart AG. Learning from studying very rare cardiac conditions: the example of short QT syndrome. JOURNAL OF CONGENITAL CARDIOLOGY 2019. [DOI: 10.1186/s40949-019-0024-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
10
|
Hancox JC, Whittaker DG, Du C, Stuart AG, Zhang H. Emerging therapeutic targets in the short QT syndrome. Expert Opin Ther Targets 2018; 22:439-451. [DOI: 10.1080/14728222.2018.1470621] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jules C Hancox
- School of Physiology, Pharmacology and Neuroscience, Medical Sciences Building, University Walk, Bristol, United Kingdom
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Dominic G Whittaker
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Chunyun Du
- School of Physiology, Pharmacology and Neuroscience, Medical Sciences Building, University Walk, Bristol, United Kingdom
| | - A. Graham Stuart
- Cardiology, Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
11
|
Helliwell MV, Zhang Y, El Harchi A, Du C, Hancox JC, Dempsey CE. Structural implications of hERG K + channel block by a high-affinity minimally structured blocker. J Biol Chem 2018; 293:7040-7057. [PMID: 29545312 PMCID: PMC5936838 DOI: 10.1074/jbc.ra117.000363] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/06/2018] [Indexed: 11/29/2022] Open
Abstract
Cardiac potassium channels encoded by human ether-à-go-go–related gene (hERG) are major targets for structurally diverse drugs associated with acquired long QT syndrome. This study characterized hERG channel inhibition by a minimally structured high-affinity hERG inhibitor, Cavalli-2, composed of three phenyl groups linked by polymethylene spacers around a central amino group, chosen to probe the spatial arrangement of side chain groups in the high-affinity drug-binding site of the hERG pore. hERG current (IhERG) recorded at physiological temperature from HEK293 cells was inhibited with an IC50 of 35.6 nm with time and voltage dependence characteristic of blockade contingent upon channel gating. Potency of Cavalli-2 action was markedly reduced for attenuated inactivation mutants located near (S620T; 54-fold) and remote from (N588K; 15-fold) the channel pore. The S6 Y652A and F656A mutations decreased inhibitory potency 17- and 75-fold, respectively, whereas T623A and S624A at the base of the selectivity filter also decreased potency (16- and 7-fold, respectively). The S5 helix F557L mutation decreased potency 10-fold, and both F557L and Y652A mutations eliminated voltage dependence of inhibition. Computational docking using the recent cryo-EM structure of an open channel hERG construct could only partially recapitulate experimental data, and the high dependence of Cavalli-2 block on Phe-656 is not readily explainable in that structure. A small clockwise rotation of the inner (S6) helix of the hERG pore from its configuration in the cryo-EM structure may be required to optimize Phe-656 side chain orientations compatible with high-affinity block.
Collapse
Affiliation(s)
- Matthew V Helliwell
- From the Schools of Biochemistry and.,Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Yihong Zhang
- Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Aziza El Harchi
- Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Chunyun Du
- Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Jules C Hancox
- Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TD, United Kingdom
| | | |
Collapse
|
12
|
Abstract
Short QT syndrome (SQTS) is a myocardial conduction disorder characterized by a short QT interval on electrocardiogram and predisposition to familial atrial fibrillation and/or sudden cardiac death. Genetic SQTS is primarily caused by one or more cardiac ion channelopathies, in which either impaired depolarization currents, or enhanced repolarization currents, shorten cardiac action potential duration. Given that QT interval duration is not always predictive of arrhythmia burden and risk of death in SQTS, there is a need to understand the molecular mechanisms of the condition to improve risk prognostication and potential pharmacologic treatment. In the last decade, several computational advances and in vitro preclinical studies have provided insight into the molecular mechanisms underlying congenital SQTS. In this review, we discuss recent findings in SQTS molecular mechanisms and correlate these advances with clinical guidelines for SQTS diagnosis and treatment.
Collapse
Affiliation(s)
- Srikanth Perike
- Department of Medicine, Section of Cardiology, Department of Bioengineering, Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Mark D McCAULEY
- Department of Medicine, Section of Cardiology, Department of Bioengineering, Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
13
|
Hu D, Li Y, Zhang J, Pfeiffer R, Gollob MH, Healey J, Harrell DT, Makita N, Abe H, Sun Y, Guo J, Zhang L, Yan G, Mah D, Walsh EP, Leopold HB, Giustetto C, Gaita F, Zienciuk-Krajka A, Mazzanti A, Priori SG, Antzelevitch C, Barajas-Martinez H. The Phenotypic Spectrum of a Mutation Hotspot Responsible for the Short QT Syndrome. JACC Clin Electrophysiol 2017; 3:727-743. [DOI: 10.1016/j.jacep.2016.11.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 11/18/2016] [Accepted: 11/22/2016] [Indexed: 10/20/2022]
|
14
|
Melgari D, Zhang Y, El Harchi A, Dempsey CE, Hancox JC. Molecular basis of hERG potassium channel blockade by the class Ic antiarrhythmic flecainide. J Mol Cell Cardiol 2015; 86:42-53. [PMID: 26159617 PMCID: PMC4564290 DOI: 10.1016/j.yjmcc.2015.06.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/19/2015] [Accepted: 06/30/2015] [Indexed: 11/02/2022]
Abstract
The class Ic antiarrhythmic drug flecainide inhibits KCNH2-encoded "hERG" potassium channels at clinically relevant concentrations. The aim of this study was to elucidate the underlying molecular basis of this action. Patch clamp recordings of hERG current (IhERG) were made from hERG expressing cells at 37°C. Wild-type (WT) IhERG was inhibited with an IC50 of 1.49μM and this was not significantly altered by reversing the direction of K(+) flux or raising external [K(+)]. The use of charged and uncharged flecainide analogues showed that the charged form of the drug accesses the channel from the cell interior to produce block. Promotion of WT IhERG inactivation slowed recovery from inhibition, whilst the N588K and S631A attenuated-inactivation mutants exhibited IC50 values 4-5 fold that of WT IhERG. The use of pore-helix/selectivity filter (T623A, S624A V625A) and S6 helix (G648A, Y652A, F656A) mutations showed <10-fold shifts in IC50 for all but V625A and F656A, which respectively exhibited IC50s 27-fold and 142-fold their WT controls. Docking simulations using a MthK-based homology model suggested an allosteric effect of V625A, since in low energy conformations flecainide lay too low in the pore to interact directly with that residue. On the other hand, the molecule could readily form π-π stacking interactions with aromatic residues and particularly with F656. We conclude that flecainide accesses the hERG channel from the cell interior on channel gating, binding low in the inner cavity, with the S6 F656 residue acting as a principal binding determinant.
Collapse
Affiliation(s)
- Dario Melgari
- School of Physiology & Pharmacology, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Yihong Zhang
- School of Physiology & Pharmacology, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Aziza El Harchi
- School of Physiology & Pharmacology, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Christopher E Dempsey
- School of Biochemistry, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Jules C Hancox
- School of Physiology & Pharmacology, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK.
| |
Collapse
|
15
|
Harrell DT, Ashihara T, Ishikawa T, Tominaga I, Mazzanti A, Takahashi K, Oginosawa Y, Abe H, Maemura K, Sumitomo N, Uno K, Takano M, Priori SG, Makita N. Genotype-dependent differences in age of manifestation and arrhythmia complications in short QT syndrome. Int J Cardiol 2015; 190:393-402. [DOI: 10.1016/j.ijcard.2015.04.090] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 04/03/2015] [Accepted: 04/14/2015] [Indexed: 11/16/2022]
|
16
|
Gammons MV, Fedorov O, Ivison D, Du C, Clark T, Hopkins C, Hagiwara M, Dick AD, Cox R, Harper SJ, Hancox JC, Knapp S, Bates DO. Topical antiangiogenic SRPK1 inhibitors reduce choroidal neovascularization in rodent models of exudative AMD. Invest Ophthalmol Vis Sci 2013; 54:6052-62. [PMID: 23887803 PMCID: PMC3771558 DOI: 10.1167/iovs.13-12422] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/18/2013] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Exudative AMD (wet AMD) is treated by monthly injection into the eye of anti-VEGF proteins. VEGF is alternatively spliced to produce numerous isoforms that differ in angiogenic activity. Serine-rich protein kinase-1 (SRPK1) has been identified as a regulator of pro-angiogenic VEGF splicing by phosphorylating serine-rich splicing factor-1 (SRSF1), which binds to VEGF pre-mRNA. We tested the hypothesis that topical (eye drop) SRPK1-selective inhibitors could be generated that reduce pro-angiogenic isoforms, and prevent choroidal neovascularization in vivo. METHODS Novel inhibitors were tested for SRPK inhibition in vitro, pro-angiogenic VEGF production in RPE cells by PCR and ELISA, and for inhibition of choroidal neovascularisation in mice and rats. RESULTS A novel disubstituted furan inhibitor was selective for the SRPK family of kinases and reduced expression of pro-angiogenic but not antiangiogenic VEGF isoforms. This inhibitor and previously identified SRPK inhibitors significantly reduced choroidal neovascularisation in vivo. Topical administration of SRPK inhibitors dose-dependently blocked CNV with an EC50 of 9 μM. CONCLUSIONS These results indicate that novel SRPK1 selective inhibitors could be a potentially novel topical (eye drop) therapeutic for wet AMD.
Collapse
Affiliation(s)
- Melissa V. Gammons
- Microvascular Research Laboratories, School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - Oleg Fedorov
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium and Target Discovery Institute (TDI), University of Oxford, Oxford, United Kingdom
| | - David Ivison
- School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Chunyun Du
- Cardiovascular Research Laboratories, School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - Tamsyn Clark
- Microvascular Research Laboratories, School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - Claire Hopkins
- Microvascular Research Laboratories, School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology Graduate School of Medicine, Kyoto University, Japan
| | - Andrew D. Dick
- School of Clinical Sciences and School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Russell Cox
- School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Steven J. Harper
- Microvascular Research Laboratories, School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - Jules C. Hancox
- Cardiovascular Research Laboratories, School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - Stefan Knapp
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium and Target Discovery Institute (TDI), University of Oxford, Oxford, United Kingdom
| | - David O. Bates
- Microvascular Research Laboratories, School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
- Cancer Biology, Division of Oncology, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| |
Collapse
|
17
|
Abriel H, Rougier JS. β-blockers in congenital short-QT syndrome as ion channel blockers. J Cardiovasc Electrophysiol 2013; 24:1172-4. [PMID: 23890274 DOI: 10.1111/jce.12204] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Hugues Abriel
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | | |
Collapse
|