1
|
Takeda M, Sashide Y, Toyota R, Ito H. The Phytochemical, Quercetin, Attenuates Nociceptive and Pathological Pain: Neurophysiological Mechanisms and Therapeutic Potential. Molecules 2024; 29:3957. [PMID: 39203035 PMCID: PMC11357422 DOI: 10.3390/molecules29163957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Although phytochemicals are plant-derived toxins that are primarily produced as a form of defense against insects or microbes, several lines of study have demonstrated that the phytochemical, quercetin, has several beneficial biological actions for human health, including antioxidant and inflammatory effects without side effects. Quercetin is a flavonoid that is widely found in fruits and vegetables. Since recent studies have demonstrated that quercetin can modulate neuronal excitability in the nervous system, including nociceptive sensory transmission via mechanoreceptors and voltage-gated ion channels, and inhibit the cyclooxygenase-2-cascade, it is possible that quercetin could be a complementary alternative medicine candidate; specifically, a therapeutic agent against nociceptive and pathological pain. The focus of this review is to elucidate the neurophysiological mechanisms underlying the modulatory effects of quercetin on nociceptive neuronal activity under nociceptive and pathological conditions, without inducing side effects. Based on the results of our previous research on trigeminal pain, we have confirmed in vivo that the phytochemical, quercetin, demonstrates (i) a local anesthetic effect on nociceptive pain, (ii) a local anesthetic effect on pain related to acute inflammation, and (iii) an anti-inflammatory effect on chronic pain. In addition, we discuss the contribution of quercetin to the relief of nociceptive and inflammatory pain and its potential clinical application.
Collapse
Affiliation(s)
- Mamoru Takeda
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara 252-5201, Kanagawa, Japan; (Y.S.); (R.T.); (H.I.)
| | | | | | | |
Collapse
|
2
|
Patankar VR, Jain AK, Rao RD, Rao PR. Assessment of mechanical allodynia in healthy teeth adjacent and contralateral to endodontically diseased teeth: a clinical study. Restor Dent Endod 2024; 49:e31. [PMID: 39247644 PMCID: PMC11377871 DOI: 10.5395/rde.2024.49.e31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 09/10/2024] Open
Abstract
Objectives The present study investigated the prevalence of mechanical allodynia (MA) in healthy teeth adjacent and contralateral to endodontically diseased teeth. Materials and Methods This cross-sectional study included 114 patients with symptomatic irreversible pulpitis and apical periodontitis in permanent mandibular first molars who possessed healthy teeth adjacent and contralateral to the endodontically diseased tooth. The mechanical sensitivity of the teeth was determined by percussion testing. The presence or absence of pain on percussion in the teeth adjacent and contralateral to the endodontically diseased tooth and the tooth distal to the contralateral symmetrical tooth was recorded according to coding criteria. The prevalence of MA was computed as a percentage, and binary logistic regression analysis was done. The Fisher exact test and Mann-Whitney U test were used for binary and ordinal data. Results Age and sex did not influence the prevalence of MA. An increased prevalence of MA was found in patients with higher levels of spontaneous pain (p < 0.001). The prevalence of allodynia was 57% in teeth adjacent to endodontically diseased teeth and 10.5% in teeth contralateral to endodontically diseased teeth. In addition, on the ipsilateral side, there were more painful sensations distal to the diseased tooth than mesially. Conclusions Despite being disease-free, teeth adjacent and contralateral to endodontically diseased teeth exhibited pain on percussion. There was a direct association between the severity of the patient's pain and the presence of MA.
Collapse
Affiliation(s)
- Vaishnavi Ratnakar Patankar
- Department of Conservative Dentistry and Endodontics, Bharati Vidyapeeth Dental College, Navi Mumbai, Maharashtra, India
| | - Ashish K Jain
- Department of Conservative Dentistry and Endodontics, Bharati Vidyapeeth Dental College, Navi Mumbai, Maharashtra, India
| | - Rahul D Rao
- Department of Conservative Dentistry and Endodontics, Bharati Vidyapeeth Dental College, Navi Mumbai, Maharashtra, India
| | - Prajakta R Rao
- Department of Periodontics and Implantology, Bharati Vidyapeeth Dental College, Navi Mumbai, Maharashtra, India
| |
Collapse
|
3
|
Sunaga M, Tsuboi Y, Kaizu A, Shinoda M. Role of macrophages in trigeminal ganglia in ectopic orofacial pain associated with pulpitis. J Oral Biosci 2024; 66:145-150. [PMID: 38342297 DOI: 10.1016/j.job.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
OBJECTIVES This study aimed to elucidate the role of macrophages in the trigeminal ganglia (TG) in developing pulpitis-associated ectopic orofacial pain. METHODS Rats underwent maxillary pulp exposure, and Fluoro-Gold (FG) was administered in the ipsilateral whisker pad (WP). Head withdrawal threshold (HWT) upon mechanical stimulation of the WP was recorded, and liposomal clodronate clophosome-A (LCCA; macrophage depletion agent) was administered to the TG at three and four days after pulp exposure. Immunohistochemically, TG sections were stained with anti-Iba1 (a macrophage marker) and anti-Nav1.7 antibodies. RESULTS Pulp exposure decreased HWT and increased the number of Iba1-IR cells near FG-labelled TG neurons. LCCA inhibited the decrease in HWT and stopped the increase of FG-labelled Nav1.7-IR TG neurons in the pulpitis group. CONCLUSIONS Activation of macrophages by pulpitis induces the overexpression of Nav1.7 in TG neurons receiving inputs from WP, resulting in pulpitis-induced ectopic facial mechanical allodynia.
Collapse
Affiliation(s)
- Miki Sunaga
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Yoshiyuki Tsuboi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan.
| | - Akihiro Kaizu
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
4
|
Kuramoto E, Fukushima M, Sendo R, Ohno S, Iwai H, Yamanaka A, Sugimura M, Goto T. Three-dimensional topography of rat trigeminal ganglion neurons using a combination of retrograde labeling and tissue-clearing techniques. J Comp Neurol 2024; 532:e25584. [PMID: 38341648 DOI: 10.1002/cne.25584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024]
Abstract
The trigeminal nerve is the sensory afferent of the orofacial regions and divided into three major branches. Cell bodies of the trigeminal nerve lie in the trigeminal ganglion and are surrounded by satellite cells. There is a close interaction between ganglion cells via satellite cells, but the function is not fully understood. In the present study, we clarified the ganglion cells' three-dimensional (3D) localization, which is essential to understand the functions of cell-cell interactions in the trigeminal ganglion. Fast blue was injected into 12 sites of the rat orofacial regions, and ganglion cells were retrogradely labeled. The labeled trigeminal ganglia were cleared by modified 3DISCO, imaged with confocal laser-scanning microscopy, and reconstructed in 3D. Histograms of the major axes of the fast blue-positive somata revealed that the peak major axes of the cells innervating the skin/mucosa were smaller than those of cells innervating the deep structures. Ganglion cells innervating the ophthalmic, maxillary, and mandibular divisions were distributed in the anterodorsal, central, and posterolateral portions of the trigeminal ganglion, respectively, with considerable overlap in the border region. The intermingling in the distribution of ganglion cells within each division was also high, in particular, within the mandibular division. Specifically, intermingling was observed in combinations of tongue and masseter/temporal muscles, maxillary/mandibular molars and masseter/temporal muscles, and tongue and mandibular molars. Double retrograde labeling confirmed that some ganglion cells innervating these combinations were closely apposed. Our data provide essential information for understanding the function of ganglion cell-cell interactions via satellite cells.
Collapse
Grants
- JP23H03119 Grants-in-Aid from The Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP23K09316 Grants-in-Aid from The Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP19K10058 Grants-in-Aid from The Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP19K10336 Grants-in-Aid from The Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP19KK0419 Grants-in-Aid from The Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP22H05162 Grants-in-Aid from The Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP22K09916 Grants-in-Aid from The Ministry of Education, Culture, Sports, Science and Technology (MEXT)
Collapse
Affiliation(s)
- Eriko Kuramoto
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Makoto Fukushima
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Ryozo Sendo
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- Department of Dental Anesthesiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Sachi Ohno
- Department of Dental Anesthesiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Haruki Iwai
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Atsushi Yamanaka
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Mitsutaka Sugimura
- Department of Dental Anesthesiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tetsuya Goto
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
5
|
Kwon M, Jung IY, Cha M, Lee BH. Inhibition of the Nav1.7 Channel in the Trigeminal Ganglion Relieves Pulpitis Inflammatory Pain. Front Pharmacol 2021; 12:759730. [PMID: 34955831 PMCID: PMC8694709 DOI: 10.3389/fphar.2021.759730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/15/2021] [Indexed: 11/29/2022] Open
Abstract
Pulpitis causes significant changes in the peripheral nervous system, which induce hyperalgesia. However, the relationship between neuronal activity and Nav1.7 expression following pulpal noxious pain has not yet been investigated in the trigeminal ganglion (TG). The aim of our study was to verify whether experimentally induced pulpitis activates the expression of Nav1.7 peripherally and the neuronal activities of the TGs can be affected by Nav1.7 channel inhibition. Acute pulpitis was induced through allyl isothiocyanate (AITC) application to the rat maxillary molar tooth pulp. Three days after AITC application, abnormal pain behaviors were recorded, and the rats were euthanized to allow for immunohistochemical, optical imaging, and western blot analyses of the Nav1.7 expression in the TG. A significant increase in AITC-induced pain-like behaviors and histological evidence of pulpitis were observed. In addition, histological and western blot data showed that Nav1.7 expressions in the TGs were significantly higher in the AITC group than in the naive and saline group rats. Optical imaging showed that the AITC group showed higher neuronal activity after electrical stimulation of the TGs. Additionally, treatment of ProTxII, selective Nav1.7 blocker, on to the TGs in the AITC group effectively suppressed the hyperpolarized activity after electrical stimulation. These findings indicate that the inhibition of the Nav1.7 channel could modulate nociceptive signal processing in the TG following pulp inflammation.
Collapse
Affiliation(s)
- Minjee Kwon
- Department of Nursing, Kyungil University, Gyeongsan, South Korea
| | - Il Young Jung
- Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, Seoul, South Korea
| | - Myeounghoon Cha
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Bae Hwan Lee
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
6
|
Saber SM, Hashem AA, Khalil DM, Pirani C, Ordinola-Zapata R. Efficacy of four local anaesthesia protocols for mandibular first molars with symptomatic irreversible pulpitis: A randomized clinical trial. Int Endod J 2021; 55:219-230. [PMID: 34800034 DOI: 10.1111/iej.13667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/18/2021] [Indexed: 11/28/2022]
Abstract
AIM To examine the efficacy rate of four anaesthetic protocols in mandibular first molars with symptomatic irreversible pulpitis (SIP). METHODOLOGY One hundred and sixty patients with a diagnosis of SIP were included in this randomized clinical trial. Patients were randomly allocated into four treatment groups (N = 40) according to the administered technique: Group 1 (IANB): standard inferior alveolar nerve block (IANB) injection; Group 2 (IANB + IO): standard IANB followed by a supplemental intraosseous infusion (IO) injection; Group 3 (IANB + PDL): standard IANB followed by a supplemental periodontal ligament (PDL) injection; Group 4 (IANB + BI): standard IANB followed by a supplemental buccal infiltration. Patients rated pain intensity using a verbal rating scale when the root canal treatment procedure was initiated, that is, during caries removal, access preparation and pulpectomy. Heart rate changes were recorded before, during and after each injection. The anaesthetic efficacy rates were analysed using chi-square tests, age differences using one-way anova, gender differences using Fischer Exact tests whilst heart rate changes were analysed using Kruskal-Wallis tests. Statistical significances were set at p < .05 level. RESULTS All the included patients were analysed. No differences in the efficacy rate were found in relation to the age or gender of the participants amongst the study groups (p > .05). IANB + IO injections had a significantly higher efficacy rate (92.5%) when compared to other techniques (p < .05), followed by IANB + PDL injections (72.5%), IANB + BI injections (65.0%), with no significant differences between the IANB + PDL or IANB + BI injections (p > .05). IANB injection alone had a significantly lower rate (40%) compared to the other techniques (p < .05). A transient but significant rise in the heart rate was recorded in 60% (24/40) of patients who received the IANB + IO injection compared to other groups (p < .05). CONCLUSIONS Inferior alveolar nerve block injection alone did not reliably permit pain-free treatment for mandibular molars with SIP. The use of an additional IO supplemental injection provided the most effective anaesthesia for patients requiring emergency root canal treatment for SIP in mandibular posterior teeth.
Collapse
Affiliation(s)
- Shehabeldin Mohamed Saber
- Department of Endodontics, Faculty of Dentistry, Ain Shams University in Egypt, Cairo, Egypt.,Department of Endodontics, Faculty of Dentistry, The British University in Egypt, Cairo, Egypt
| | | | - Dina Mahmoud Khalil
- Department of Endodontics, Faculty of Dentistry, Ain Shams University in Egypt, Cairo, Egypt
| | | | - Ronald Ordinola-Zapata
- Division of Endodontics, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
7
|
Zhan C, Huang M, Yang X, Hou J. Dental nerves: a neglected mediator of pulpitis. Int Endod J 2020; 54:85-99. [PMID: 32880979 DOI: 10.1111/iej.13400] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022]
Abstract
As one of the most densely innervated tissues, the dental pulp contains abundant nerve fibres, including sensory, sympathetic and parasympathetic nerve fibres. Studies in animal models and human patients with pulpitis have revealed distinct alterations in protein expression and histological appearance in all types of dental nerve fibres. Various molecules secreted by neurons, such as classical neurotransmitters, neuropeptides and amino acids, not only contribute to the induction, sensitization and maintenance of tooth pain, but also regulate non-neuronal cells, including fibroblasts, odontoblasts, immune cells and vascular endothelial cells. Dental nerves are particularly important for the microcirculatory and immune responses in pulpitis via their release of a variety of functional substances. Further, nerve fibres are found to be involved in dental soft and hard tissue repair. Thus, understanding how dental nerves participate in pulpitis could have important clinical ramifications for endodontic treatment. In this review, the roles of dental nerves in regulating pulpal inflammatory processes are highlighted and their implications for future research on this topic are discussed.
Collapse
Affiliation(s)
- C Zhan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - M Huang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - X Yang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - J Hou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Kayaoglu G, Ekici M, Altunkaynak B. Mechanical Allodynia in Healthy Teeth Adjacent and Contralateral to Endodontically Diseased Teeth: A Clinical Study. J Endod 2020; 46:611-618. [DOI: 10.1016/j.joen.2020.01.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/24/2020] [Accepted: 01/31/2020] [Indexed: 11/26/2022]
|
9
|
Shinoda M, Hayashi Y, Kubo A, Iwata K. Pathophysiological mechanisms of persistent orofacial pain. J Oral Sci 2020; 62:131-135. [PMID: 32132329 DOI: 10.2334/josnusd.19-0373] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Nociceptive stimuli to the orofacial region are typically received by the peripheral terminal of trigeminal ganglion (TG) neurons, and noxious orofacial information is subsequently conveyed to the trigeminal spinal subnucleus caudalis and the upper cervical spinal cord (C1-C2). This information is further transmitted to the cortical somatosensory regions and limbic system via the thalamus, which then leads to the perception of pain. It is a well-established fact that the presence of abnormal pain in the orofacial region is etiologically associated with neuroplastic changes that may occur at any point in the pain transmission pathway from the peripheral to the central nervous system (CNS). Recently, several studies have reported that functional plastic changes in a large number of cells, including TG neurons, glial cells (satellite cells, microglia, and astrocytes), and immune cells (macrophages and neutrophils), contribute to the sensitization and disinhibition of neurons in the peripheral and CNS, which results in orofacial pain hypersensitivity.
Collapse
Affiliation(s)
| | | | - Asako Kubo
- Department of Physiology, Nihon University School of Dentistry
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry
| |
Collapse
|
10
|
Matsuka Y, Afroz S, Dalanon JC, Iwasa T, Waskitho A, Oshima M. The role of chemical transmitters in neuron-glia interaction and pain in sensory ganglion. Neurosci Biobehav Rev 2020; 108:393-399. [DOI: 10.1016/j.neubiorev.2019.11.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 09/20/2019] [Accepted: 11/25/2019] [Indexed: 01/10/2023]
|
11
|
Propargylglycine decreases neuro-immune interaction inducing pain response in temporomandibular joint inflammation model. Nitric Oxide 2019; 93:90-101. [DOI: 10.1016/j.niox.2019.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 09/22/2019] [Accepted: 10/02/2019] [Indexed: 12/20/2022]
|
12
|
Cha M, Sallem I, Jang HW, Jung IY. Role of transient receptor potential vanilloid type 1 in the trigeminal ganglion and brain stem following dental pulp inflammation. Int Endod J 2019; 53:62-71. [DOI: 10.1111/iej.13204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/12/2019] [Indexed: 12/22/2022]
Affiliation(s)
- M. Cha
- Department of Physiology Oral Science Research Center Yonsei University College of Dentistry Seoul Korea
| | - I. Sallem
- Department of Conservative Dentistry and Oral Science Research Center Yonsei University College of Dentistry Seoul Korea
| | - H. W. Jang
- Department of Conservative Dentistry and Oral Science Research Center Yonsei University College of Dentistry Seoul Korea
| | - I. Y. Jung
- Department of Conservative Dentistry and Oral Science Research Center Yonsei University College of Dentistry Seoul Korea
| |
Collapse
|
13
|
Lee K, Lee BM, Park CK, Kim YH, Chung G. Ion Channels Involved in Tooth Pain. Int J Mol Sci 2019; 20:ijms20092266. [PMID: 31071917 PMCID: PMC6539952 DOI: 10.3390/ijms20092266] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 01/05/2023] Open
Abstract
The tooth has an unusual sensory system that converts external stimuli predominantly into pain, yet its sensory afferents in teeth demonstrate cytochemical properties of non-nociceptive neurons. This review summarizes the recent knowledge underlying this paradoxical nociception, with a focus on the ion channels involved in tooth pain. The expression of temperature-sensitive ion channels has been extensively investigated because thermal stimulation often evokes tooth pain. However, temperature-sensitive ion channels cannot explain the sudden intense tooth pain evoked by innocuous temperatures or light air puffs, leading to the hydrodynamic theory emphasizing the microfluidic movement within the dentinal tubules for detection by mechanosensitive ion channels. Several mechanosensitive ion channels expressed in dental sensory systems have been suggested as key players in the hydrodynamic theory, and TRPM7, which is abundant in the odontoblasts, and recently discovered PIEZO receptors are promising candidates. Several ligand-gated ion channels and voltage-gated ion channels expressed in dental primary afferent neurons have been discussed in relation to their potential contribution to tooth pain. In addition, in recent years, there has been growing interest in the potential sensory role of odontoblasts; thus, the expression of ion channels in odontoblasts and their potential relation to tooth pain is also reviewed.
Collapse
Affiliation(s)
- Kihwan Lee
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 406-799, Korea.
| | - Byeong-Min Lee
- Department of Oral Physiology and Program in Neurobiology, School of Dentistry, Seoul National University, Seoul 08826, Korea.
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 406-799, Korea.
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 406-799, Korea.
| | - Gehoon Chung
- Department of Oral Physiology and Program in Neurobiology, School of Dentistry, Seoul National University, Seoul 08826, Korea.
- Dental Research Institute, Seoul National University, Seoul 03080, Korea.
| |
Collapse
|
14
|
IL-10 and CXCL2 in trigeminal ganglia in neuropathic pain. Neurosci Lett 2019; 703:132-138. [PMID: 30904573 DOI: 10.1016/j.neulet.2019.03.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/11/2019] [Accepted: 03/19/2019] [Indexed: 01/31/2023]
Abstract
Many trigeminal neuropathic pain patients suffer severe chronic pain. The neuropathic pain might be related with cross-excitation of the neighboring neurons and satellite glial cells (SGCs) in the sensory ganglia and increasing the pain signals from the peripheral tissue to the central nervous system. We induced trigeminal neuropathic pain by infraorbital nerve constriction injury (IONC) in Sprague-Dawley rats. We tested cytokine (CXCL2 and IL-10) levels in trigeminal ganglia (TGs) after trigeminal neuropathic pain induction, and the effect of direct injection of the anti-CXCL2 and recombinant IL-10 into TG. We found that IONC induced pain behavior. Additionally, IONC induced satellite glial cell activation in TG and cytokine levels of TGs were changed after IONC. CXCL2 levels increased on day 1 of neuropathic pain induction and decreased gradually, with IL-10 levels showing the opposite trend. Recombinant IL-10 or anti-CXCL2 injection into TG decreased pain behavior. Our results show that IL-10 or anti-CXCL2 are therapy options for neuropathic pain.
Collapse
|
15
|
Trigeminal Nerve Transection-Induced Neuroplastic Changes in the Somatosensory and Insular Cortices in a Rat Ectopic Pain Model. eNeuro 2019; 6:eN-NWR-0462-18. [PMID: 30693315 PMCID: PMC6348450 DOI: 10.1523/eneuro.0462-18.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/21/2018] [Accepted: 01/03/2019] [Indexed: 11/21/2022] Open
Abstract
The primary sensory cortex processes competitive sensory inputs. Ablation of these competitive inputs induces neuroplastic changes in local cortical circuits. However, information concerning cortical plasticity induced by a disturbance of competitive nociceptive inputs is limited. Nociceptive information from the maxillary and mandibular molar pulps converges at the border between the ventral secondary somatosensory cortex (S2) and insular oral region (IOR); therefore, S2/IOR is a suitable target for examining the cortical changes induced by a disturbance of noxious inputs, which often causes neuropathic pain and allodynia. We focused on the plastic changes in S2/IOR excitation in a model of rats subjected to inferior alveolar nerve transection (IANX). Our optical imaging using a voltage-sensitive dye (VSD) revealed that the maxillary molar pulp stimulation-induced excitatory propagation was expanded one to two weeks after IANX at the macroscopic level. At the cellular level, based on Ca2+ imaging using two-photon microscopy, the amplitude of the Ca2+ responses and the number of responding neurons in S2/IOR increased in both excitatory and inhibitory neurons. The in vitro laser scanning photostimulation (LSPS) revealed that Layer II/III pyramidal and GABAergic fast-spiking neurons in S2/IOR received larger excitatory inputs from Layer IV in the IANX models, which supports the findings obtained by the macroscopic and microscopic optical imaging. Furthermore, the inhibitory postsynaptic inputs to the pyramidal neurons were decreased in the IANX models, suggesting suppression of inhibitory synaptic transmission onto excitatory neurons. These results suggest that IANX induces plastic changes in S2/IOR by changing the local excitatory and inhibitory circuits.
Collapse
|
16
|
Fan W, Zhu X, He Y, Zhu M, Wu Z, Huang F, He H. The role of satellite glial cells in orofacial pain. J Neurosci Res 2018; 97:393-401. [PMID: 30450738 DOI: 10.1002/jnr.24341] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/29/2018] [Accepted: 09/21/2018] [Indexed: 12/14/2022]
Abstract
Some chronic pain conditions in the orofacial region are common, the mechanisms underlying which are unresolved. Satellite glial cells (SGCs) are the glial cells of the peripheral nervous system. In the sensory ganglia, each neuronal body is surrounded by SGCs forming distinct functional units. The unique structural organization enables SGCs to communicate with each other and with their enwrapped neurons via a variety of ways. There is a growing body of evidence that SGCs can influence the level of neuronal excitability and are involved in the development and/or maintenance of pain. The aim of this review was to summarize the latest advances made about the implication of SGCs in orofacial pain. It may offer new targets for the development of orofacial pain treatment.
Collapse
Affiliation(s)
- Wenguo Fan
- Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China.,Department of Anesthesiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiao Zhu
- The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Yifan He
- Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China
| | - Mengzhu Zhu
- Department of Rheumatology, Chinese Medicine Hospital in Linyi City, Shandong, China
| | - Zhi Wu
- Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China
| | - Fang Huang
- Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
Filippini HF, Scalzilli PA, Costa KM, Freitas RDS, Campos MM. Activation of trigeminal ganglion satellite glial cells in CFA-induced tooth pulp pain in rats. PLoS One 2018; 13:e0207411. [PMID: 30419075 PMCID: PMC6231674 DOI: 10.1371/journal.pone.0207411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023] Open
Abstract
This study further investigated the mechanisms underlying the rat model of tooth pulp inflammatory pain elicited by complete Freund's adjuvant (CFA), in comparison to other pulpitis models. Pulps of the left maxillary first molars were accessed. In the CFA group, the pulps were exposed, and CFA application was followed by dental sealing. In the open group, the pulps were left exposed to the oral cavity. For the closed group, the pulps were exposed, and the teeth were immediately sealed. Naïve rats were used as negative controls. Several parameters were evaluated at 1, 2, 3 and 8 days. There was no statistical significant difference among the groups when body weight variation, food or water consumption were compared. Analysis of serum cytokines (IL-1β, TNF or IL-6) or differential blood cell counts did not reveal any evidence of systemic inflammation. The CFA group displayed a significant reduction in the locomotor activity (at 1 and 3 days), associated with an increased activation of satellite glial cells in the ipsilateral trigeminal ganglion (TG; for up to 8 days). Amygdala astrocyte activation was unaffected in any experimental groups. We provide novel evidence indicating that CFA-induced pulp inflammation impaired the locomotor activity, with persistent activation of ipsilateral TG satellite cells surrounding sensory neurons, without any evidence of systemic inflammation or amygdala astrogliosis.
Collapse
Affiliation(s)
- Helena F. Filippini
- Programa de Pós-graduação em Odontologia, Escola de Ciências da Saúde, PUCRS, Porto Alegre, RS, Brasil
| | - Paulo A. Scalzilli
- Laboratório de Patologia, Escola de Ciência da Saúde, PUCRS, Porto Alegre, RS, Brasil
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde, PUCRS, Porto Alegre, RS, Brasil
| | - Kesiane M. Costa
- Programa de Pós-graduação em Medicina e Ciências da Saúde, Escola de Medicina, PUCRS, Porto Alegre, RS, Brasil
| | - Raquel D. S. Freitas
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde, PUCRS, Porto Alegre, RS, Brasil
- Programa de Pós-graduação em Medicina e Ciências da Saúde, Escola de Medicina, PUCRS, Porto Alegre, RS, Brasil
| | - Maria M. Campos
- Programa de Pós-graduação em Odontologia, Escola de Ciências da Saúde, PUCRS, Porto Alegre, RS, Brasil
- Laboratório de Patologia, Escola de Ciência da Saúde, PUCRS, Porto Alegre, RS, Brasil
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde, PUCRS, Porto Alegre, RS, Brasil
- Programa de Pós-graduação em Medicina e Ciências da Saúde, Escola de Medicina, PUCRS, Porto Alegre, RS, Brasil
| |
Collapse
|
18
|
Lee C, Ramsey A, De Brito-Gariepy H, Michot B, Podborits E, Melnyk J, Gibbs JL. Molecular, cellular and behavioral changes associated with pathological pain signaling occur after dental pulp injury. Mol Pain 2018; 13:1744806917715173. [PMID: 28580829 PMCID: PMC5480629 DOI: 10.1177/1744806917715173] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Persistent pain can occur after routine dental treatments in which the dental pulp is
injured. To better understand pain chronicity after pulp injury, we assessed whether
dental pulp injury in mice causes changes to the sensory nervous system associated with
pathological pain. In some experiments, we compared findings after dental pulp injury to a
model of orofacial neuropathic pain, in which the mental nerve is injured. After
unilateral dental pulp injury, we observed increased expression of activating
transcription factor 3 (ATF3) and neuropeptide Y (NPY) mRNA and decreased tachykinin
precursor 1 gene expression, in the ipsilateral trigeminal ganglion. We also observed an
ipsilateral increase in the number of trigeminal neurons expressing immunoreactivity for
ATF3, a decrease in substance P (SP) immunoreactive cells, and no change in the number of
cells labeled with IB4. Mice with dental pulp injury transiently exhibit hindpaw
mechanical allodynia, out to 12 days, while mice with mental nerve injury have persistent
hindpaw allodynia. Mice with dental pulp injury increased spontaneous consumption of a
sucrose solution for 17 days while mental nerve injury mice did not. Finally, after dental
pulp injury, an increase in expression of the glial markers Iba1 and glial fibrillary
acidic protein occurs in the transition zone between nucleus caudalis and interpolaris,
ipsilateral to the injury. Collectively these studies suggest that dental pulp injury is
associated with significant neuroplasticity that could contribute to persistent pain after
of dental pulp injury.
Collapse
Affiliation(s)
- Caroline Lee
- Department of Endodontics. New York University College of Dentistry. NY, NY USA
| | - Austin Ramsey
- Department of Endodontics. New York University College of Dentistry. NY, NY USA
| | | | - Benoit Michot
- Department of Endodontics. New York University College of Dentistry. NY, NY USA
| | - Eugene Podborits
- Department of Endodontics. New York University College of Dentistry. NY, NY USA
| | - Janet Melnyk
- Department of Endodontics. New York University College of Dentistry. NY, NY USA
| | | |
Collapse
|
19
|
Iwata K, Katagiri A, Shinoda M. Neuron-glia interaction is a key mechanism underlying persistent orofacial pain. J Oral Sci 2018. [PMID: 28637974 DOI: 10.2334/josnusd.16-0858] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Excitability of neurons in the trigeminal ganglion (TG), trigeminal spinal subnucleus caudalis (Vc), and upper cervical spinal cord (C1-C2) is greatly enhanced after orofacial inflammation and trigeminal nerve injury, and TG, Vc, and C1-C2 neurons remain sensitized long after such episodes. Sensitized neurons generate various molecules, which are released from nociceptive neurons in these areas and are involved in modulating the excitability of TG, Vc, and C1-C2 nociceptive neurons. Hyperexcitable nociceptive neurons also activate satellite glial cells in the TG and microglial cells and astrocytes in the Vc and C1-C2. Glial cell activation spreads throughout the TG, Vc, and C1-C2 and triggers the release of various molecules involved in modulating nociceptive neurons in TG, Vc, and C1-C2 neurons. These findings suggest that functional interaction between neurons and glial cells is critical in persistent orofacial pain associated with orofacial inflammation and trigeminal nerve injury.
Collapse
Affiliation(s)
- Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry
| | - Ayano Katagiri
- Department of Physiology, Nihon University School of Dentistry
| | | |
Collapse
|
20
|
Zhang P, Bi RY, Gan YH. Glial interleukin-1β upregulates neuronal sodium channel 1.7 in trigeminal ganglion contributing to temporomandibular joint inflammatory hypernociception in rats. J Neuroinflammation 2018; 15:117. [PMID: 29678208 PMCID: PMC5910598 DOI: 10.1186/s12974-018-1154-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/09/2018] [Indexed: 12/18/2022] Open
Abstract
Background The proinflammatory cytokine interleukin-1β (IL-1β) drives pain by inducing the expression of inflammatory mediators; however, its ability to regulate sodium channel 1.7 (Nav1.7), a key driver of temporomandibular joint (TMJ) hypernociception, remains unknown. IL-1β induces cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2). We previously showed that PGE2 upregulated trigeminal ganglionic Nav1.7 expression. Satellite glial cells (SGCs) involve in inflammatory pain through glial cytokines. Therefore, we explored here in the trigeminal ganglion (TG) whether IL-1β upregulated Nav1.7 expression and whether the IL-1β located in the SGCs upregulated Nav1.7 expression in the neurons contributing to TMJ inflammatory hypernociception. Methods We treated rat TG explants with IL-1β with or without inhibitors, including NS398 for COX-2, PF-04418948 for EP2, and H89 and PKI-(6-22)-amide for protein kinase A (PKA), or with adenylate cyclase agonist forskolin, and used real-time PCR, Western blot, and immunohistofluorescence to determine the expressions or locations of Nav1.7, COX-2, cAMP response element-binding protein (CREB) phosphorylation, and IL-1β. We used chromatin immunoprecipitation to examine CREB binding to the Nav1.7 promoter. Finally, we microinjected IL-1β into the TGs or injected complete Freund’s adjuvant into TMJs with or without previous microinjection of fluorocitrate, an inhibitor of SGCs activation, into the TGs, and evaluated nociception and gene expressions. Differences between groups were examined by one-way analysis of variance (ANOVA) or independent samples t test. Results IL-1β upregulated Nav1.7 mRNA and protein expressions in the TG explants, whereas NS398, PF-04418948, H89, or PKI-(6-22)-amide could all block this upregulation, and forskolin could also upregulate Nav1.7 mRNA and protein expressions. IL-1β enhanced CREB binding to the Nav1.7 promoter. Microinjection of IL-1β into the TGs or TMJ inflammation both induced hypernociception of TMJ region and correspondingly upregulated COX-2, phospho-CREB, and Nav1.7 expressions in the TGs. Moreover, microinjection of fluorocitrate into the TGs completely blocked TMJ inflammation-induced activation of SGCs and the upregulation of IL-1β and COX-2 in the SGCs, and phospho-CREB and Nav1.7 in the neurons and alleviated inflammation-induced TMJ hypernociception. Conclusions Glial IL-1β upregulated neuronal Nav1.7 expression via the crosstalk between signaling pathways of the glial IL-1β/COX-2/PGE2 and the neuronal EP2/PKA/CREB/Nav1.7 in TG contributing to TMJ inflammatory hypernociception.
Collapse
Affiliation(s)
- Peng Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, China.,Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, China.,Center for TMD & Orofacial Pain, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, China
| | - Rui-Yun Bi
- The Third Dental Center, Peking University School and Hospital of Stomatology, 10 Huayuan Lu, Haidian District, Beijing, 100088, China
| | - Ye-Hua Gan
- Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, China. .,Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, China. .,Center for TMD & Orofacial Pain, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, China.
| |
Collapse
|
21
|
Komiya H, Shimizu K, Ishii K, Kudo H, Okamura T, Kanno K, Shinoda M, Ogiso B, Iwata K. Connexin 43 expression in satellite glial cells contributes to ectopic tooth-pulp pain. J Oral Sci 2018; 60:493-499. [DOI: 10.2334/josnusd.17-0452] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Hiroki Komiya
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry
| | - Kohei Shimizu
- Department of Endodontics, Nihon University School of Dentistry
- Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry
| | - Kae Ishii
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry
| | - Hiroshi Kudo
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry
| | - Teinosuke Okamura
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry
| | - Kohei Kanno
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry
| | - Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry
| | - Bunnai Ogiso
- Department of Endodontics, Nihon University School of Dentistry
- Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry
| |
Collapse
|
22
|
Komiya H, Shimizu K, Noma N, Tsuboi Y, Honda K, Kanno K, Ohara K, Shinoda M, Ogiso B, Iwata K. Role of Neuron-Glial Interaction Mediated by IL-1β in Ectopic Tooth Pain. J Dent Res 2017; 97:467-475. [PMID: 29131694 DOI: 10.1177/0022034517741253] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Although many reports have demonstrated that ectopic pain develops in the orofacial region following tooth pulp inflammation, which often causes misdiagnosis and inappropriate treatment for patients with pulpitis, the precise mechanism remains unknown. In the present study, we hypothesized that the functional interaction between satellite glial cells and neurons mediated by interleukin 1β (IL-1β) in the trigeminal ganglion (TG) is involved in ectopic orofacial pain associated with tooth pulp inflammation. The digastric muscle electromyogram (D-EMG) activity elicited by capsaicin administration into the maxillary second molar tooth pulp was analyzed to evaluate the noxious reflex and was significantly increased in rats with inflammation of the maxillary first molar (M1) versus rats injected with saline. A significant increase in the expression of connexin43 (Cx43), a gap junction containing protein, was observed in activated satellite glial cells surrounding second molar-innervating neurons in the TG after M1 pulpitis. Daily administration of Gap26, a Cx43 mimetic peptide and inhibitor, in the TG significantly suppressed the enhancement of capsaicin-induced D-EMG activity and the percentage of Fluoro-Gold (FG)-labeled cells encircled by glial fibrillary acid protein-immunoreactive (IR) + Cx43-IR cells after M1 pulp inflammation ( P < 0.01). The percentage of FG-labeled cells encircled by glial fibrillary acid protein-IR + IL-1β-IR cells, IL-1 type I receptor-IR cells labeled with FG, and TRPV1-IR cells labeled with FG significantly increased after M1 pulp inflammation ( P < 0.01). Daily administration of IL-1ra, an IL-1 receptor antagonist, into the TG significantly reduced the enhancement of capsaicin-induced D-EMG activity and the percentage of TRPV1-IR neurons labeled with FG after M1 pulp inflammation ( P < 0.01). The present findings suggest that satellite glial cell is activated in the TG via activated gap junctions composed of Cx43 following tooth pulp inflammation, which leads to the hyperactivation of remote neurons via IL-1β mechanisms and results in ectopic tooth pulp pain in the adjacent tooth.
Collapse
Affiliation(s)
- H Komiya
- 1 Department of Endodontics, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - K Shimizu
- 1 Department of Endodontics, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan.,2 Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - N Noma
- 3 Department of Oral Diagnostic Sciences, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan.,4 Division of Clinical Research, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Y Tsuboi
- 5 Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan.,6 Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - K Honda
- 5 Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - K Kanno
- 1 Department of Endodontics, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - K Ohara
- 1 Department of Endodontics, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - M Shinoda
- 5 Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan.,6 Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - B Ogiso
- 1 Department of Endodontics, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan.,2 Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - K Iwata
- 5 Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan.,6 Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
23
|
Fehrenbacher JC, Guo C, Kelley MR, Vasko MR. DNA damage mediates changes in neuronal sensitivity induced by the inflammatory mediators, MCP-1 and LPS, and can be reversed by enhancing the DNA repair function of APE1. Neuroscience 2017; 366:23-35. [PMID: 28965839 DOI: 10.1016/j.neuroscience.2017.09.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/22/2017] [Accepted: 09/24/2017] [Indexed: 12/16/2022]
Abstract
Although inflammation-induced peripheral sensitization oftentimes resolves as an injury heals, this sensitization can be pathologically maintained and contribute to chronic inflammatory pain. Numerous inflammatory mediators increase the production of reactive oxygen (ROS) and nitrogen species (RNS) during inflammation and in animal models of chronic neuropathic pain. Our previous studies demonstrate that ROS/RNS and subsequent DNA damage mediate changes in neuronal sensitivity induced by anticancer drugs and by ionizing radiation in sensory neurons, thus we investigated whether inflammation and inflammatory mediators also could cause DNA damage in sensory neurons and whether that DNA damage alters neuronal sensitivity. DNA damage was assessed by pH2A.X expression and the release of the neuropeptide, calcitonin gene-related peptide (CGRP), was measured as an index of neuronal sensitivity. Peripheral inflammation or exposure of cultured sensory neurons to the inflammatory mediators, LPS and MCP-1, elicited DNA damage. Moreover, exposure of sensory neuronal cultures to LPS or MCP-1 resulted in changes in the stimulated release of CGRP, without altering resting release or CGRP content. Genetically enhancing the expression of the DNA repair enzyme, apurinic/apyrimidinic endonuclease (APE1) or treatment with a small-molecule modulator of APE1 DNA repair activity, both which enhance DNA repair, attenuated DNA damage and the changes in neuronal sensitivity elicited by LPS or MCP-1. In conclusion, our studies demonstrate that inflammation or exposure to inflammatory mediators elicits DNA damage in sensory neurons. By enhancing DNA repair, we demonstrate that this DNA damage mediates the alteration of neuronal function induced by inflammatory mediators in peptidergic sensory neurons.
Collapse
Affiliation(s)
- Jill C Fehrenbacher
- Indiana University School of Medicine, Department of Pharmacology and Toxicology, USA; Indiana University School of Medicine, Stark Neuroscience Research Institute, USA.
| | - Chunlu Guo
- Indiana University School of Medicine, Department of Pharmacology and Toxicology, USA.
| | - Mark R Kelley
- Indiana University School of Medicine, Department of Pharmacology and Toxicology, USA; Indiana University School of Medicine, Department of Pediatrics, Herman B Wells Center for Pediatric Research, USA.
| | - Michael R Vasko
- Indiana University School of Medicine, Department of Pharmacology and Toxicology, USA; Indiana University School of Medicine, Stark Neuroscience Research Institute, USA.
| |
Collapse
|
24
|
Role of β-1,3-galactosyltransferase 2 in trigeminal neuronal sensitization induced by peripheral inflammation. Neuroscience 2017; 349:17-26. [DOI: 10.1016/j.neuroscience.2017.02.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 01/16/2017] [Accepted: 02/20/2017] [Indexed: 02/06/2023]
|
25
|
de la Rosa-Lugo V, Acevedo-Quiroz M, Déciga-Campos M, Rios MY. Antinociceptive effect of natural and synthetic alkamides involves TRPV1 receptors. J Pharm Pharmacol 2017; 69:884-895. [DOI: 10.1111/jphp.12721] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/04/2017] [Indexed: 12/16/2022]
Abstract
Abstract
Objective
To establish the role of TRPV1 receptor in the antinociceptive effect of natural alkamides (i.e. affinin, longipinamide A, longipenamide A and longipenamide B) isolated from Heliopsis longipes (A. Gray) S.F. Blake and some related synthetic alkamides (i.e. N-isobutyl-feruloylamide and N-isobutyl-dihydroferuloylamide).
Methods
The orofacial formalin test was used to assess the antinociceptive activity of natural (1–30 μg, orofacial region) and synthetic alkamides (0.1–100 μg, orofacial region). The alkamide capsaicin was used as positive control, while capsazepine was used to evaluate the possible participation of TRPV1 receptor in alkamide-induced antinociception.
Key findings
Natural (1–30 μg) and synthetic (0.1–100 μg) alkamides administered to the orofacial region produced antinociception in mice. The antinociceptive effect induced by affinin, N-isobutyl-feruloylamide and N-isobutyl-dihydroferuloylamide was antagonized by capsazepine but not by vehicle.
Conclusions
These results suggest that alkamide affinin, longipinamide A, longipenamide A and longipenamide B isolated from Heliopsis longipes as well as the synthesized analogue compounds N-isobutyl-feruloylamide and N-isobutyl-dihydroferuloylamide produce their effects by activating TRPV1 receptor and they may have potential for the development of new analgesic drugs for the treatment of orofacial pain.
Collapse
Affiliation(s)
- Vianey de la Rosa-Lugo
- Centro de Investigaciones Químicas, IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Macdiel Acevedo-Quiroz
- Centro de Investigaciones Químicas, IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Myrna Déciga-Campos
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - María Yolanda Rios
- Centro de Investigaciones Químicas, IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| |
Collapse
|
26
|
Aggarwal V, Singla M, Subbiya A, Vivekanandhan P, Sharma V, Sharma R, Prakash V, Geethapriya N. Effect of Preoperative Pain on Inferior Alveolar Nerve Block. Anesth Prog 2016; 62:135-9. [PMID: 26650491 DOI: 10.2344/15-00019.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The present study tested the hypothesis that the amount and severity of preoperative pain will affect the anesthetic efficacy of inferior alveolar nerve block (IANB) in patients with symptomatic irreversible pulpitis. One-hundred seventy-seven adult volunteer subjects, actively experiencing pain in a mandibular molar, participated in this prospective double-blind study carried out at 2 different centers. The patients were classified into 3 groups on the basis of severity of preoperative pain: mild, 1-54 mm on the Heft-Parker visual analog scale (HP VAS); moderate, 55-114 mm; and severe, greater than 114 mm. After IANB with 1.8 mL of 2% lidocaine, endodontic access preparation was initiated. Pain during treatment was recorded using the HP VAS. The primary outcome measure was the ability to undertake pulp access and canal instrumentation with no or mild pain. The success rates were statistically analyzed by multiple logistic regression test. There was a significant difference between the mild and severe preoperative pain group (P = .03). There was a positive correlation between the values of preoperative and intraoperative pain (r = .2 and .4 at 2 centers). The amount of preoperative pain can affect the anesthetic success rates of IANB in patients with symptomatic irreversible pulpitis.
Collapse
Affiliation(s)
- Vivek Aggarwal
- Department of Conservative Dentistry & Endodontics, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
| | - Mamta Singla
- Department of Conservative Dentistry & Endodontics, SGT Dental College, Gurgaon, India
| | - Arunajatesan Subbiya
- Department of Conservative Dentistry & Endodontics, Sree Balaji Dental College and Hospital, Chennai, India
| | - Paramasivam Vivekanandhan
- Department of Conservative Dentistry & Endodontics, Sree Balaji Dental College and Hospital, Chennai, India
| | - Vikram Sharma
- Department of Conservative Dentistry & Endodontics, SGT Dental College, Gurgaon, India
| | - Ritu Sharma
- Department of Conservative Dentistry & Endodontics, SGT Dental College, Gurgaon, India
| | - Venkatachalam Prakash
- Department of Conservative Dentistry & Endodontics, Sree Balaji Dental College and Hospital, Chennai, India
| | - Nagarajan Geethapriya
- Department of Conservative Dentistry & Endodontics, Sree Balaji Dental College and Hospital, Chennai, India
| |
Collapse
|
27
|
Kaji K, Shinoda M, Honda K, Unno S, Shimizu N, Iwata K. Connexin 43 contributes to ectopic orofacial pain following inferior alveolar nerve injury. Mol Pain 2016; 12:12/0/1744806916633704. [PMID: 27030716 PMCID: PMC4955997 DOI: 10.1177/1744806916633704] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 12/29/2015] [Indexed: 12/22/2022] Open
Abstract
Background Clinically, it is well known that injury of mandibular nerve fiber induces persistent ectopic pain which can spread to a wide area of the orofacial region innervated by the uninjured trigeminal nerve branches. However, the exact mechanism of such persistent ectopic orofacial pain is not still known. The present study was undertaken to determine the role of connexin 43 in the trigeminal ganglion on mechanical hypersensitivity in rat whisker pad skin induced by inferior alveolar nerve injury. Here, we examined changes in orofacial mechanical sensitivity following inferior alveolar nerve injury. Furthermore, changes in connexin 43 expression in the trigeminal ganglion and its localization in the trigeminal ganglion were also examined. In addition, we investigated the functional significance of connexin 43 in relation to mechanical allodynia by using a selective gap junction blocker (Gap27). Results Long-lasting mechanical allodynia in the whisker pad skin and the upper eyelid skin, and activation of satellite glial cells in the trigeminal ganglion, were induced after inferior alveolar nerve injury. Connexin 43 was expressed in the activated satellite glial cells encircling trigeminal ganglion neurons innervating the whisker pad skin, and the connexin 43 protein expression was significantly increased after inferior alveolar nerve injury. Administration of Gap27 in the trigeminal ganglion significantly reduced satellite glial cell activation and mechanical hypersensitivity in the whisker pad skin. Moreover, the marked activation of satellite glial cells encircling trigeminal ganglion neurons innervating the whisker pad skin following inferior alveolar nerve injury implies that the satellite glial cell activation exerts a major influence on the excitability of nociceptive trigeminal ganglion neurons. Conclusions These findings indicate that the propagation of satellite glial cell activation throughout the trigeminal ganglion via gap junctions, which are composed of connexin 43, plays a pivotal role in ectopic mechanical hypersensitivity in whisker pad skin following inferior alveolar nerve injury.
Collapse
Affiliation(s)
- Kaori Kaji
- Department of Orthodontics, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Kuniya Honda
- Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Syumpei Unno
- Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Noriyoshi Shimizu
- Department of Orthodontics, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
28
|
Kim YS, Kim TH, McKemy DD, Bae YC. Expression of vesicular glutamate transporters in transient receptor potential melastatin 8 (TRPM8)-positive dental afferents in the mouse. Neuroscience 2015; 303:378-88. [PMID: 26166724 DOI: 10.1016/j.neuroscience.2015.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/01/2015] [Accepted: 07/02/2015] [Indexed: 01/31/2023]
Abstract
Transient receptor potential melastatin 8 (TRPM8) is activated by innocuous cool and noxious cold and plays a crucial role in cold-induced acute pain and pain hypersensitivity. To help understand the mechanism of TRPM8-mediated cold perception under normal and pathologic conditions, we used light microscopic immunohistochemistry and Western blot analysis in mice expressing a genetically encoded axonal tracer in TRPM8-positive (+) neurons. We investigated the coexpression of TRPM8 and vesicular glutamate transporter 1 (VGLUT1) and VGLUT2 in the trigeminal ganglion (TG) and the dental pulp before and after inducing pulpal inflammation. Many TRPM8+ neurons in the TG and axons in the dental pulp expressed VGLUT2, while none expressed VGLUT1. TRPM8+ axons were dense in the pulp horn and peripheral pulp and also frequently observed in the dentinal tubules. Following pulpal inflammation, the proportion of VGLUT2+ and of VGLUT2+/TRPM8+ neurons increased significantly, whereas that of TRPM8+ neurons remained unchanged. Our findings suggest the existence of VGLUT2 (but not VGLUT1)-mediated glutamate signaling in TRPM8+ neurons possibly underlying the cold-induced acute pain and hypersensitivity to cold following pulpal inflammation.
Collapse
Affiliation(s)
- Y S Kim
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 700-412, South Korea
| | - T H Kim
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 700-412, South Korea
| | - D D McKemy
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Y C Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 700-412, South Korea.
| |
Collapse
|
29
|
Activation of satellite glial cells in the trigeminal ganglion contributes to masseter mechanical allodynia induced by restraint stress in rats. Neurosci Lett 2015; 602:150-5. [PMID: 26135545 DOI: 10.1016/j.neulet.2015.06.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/23/2015] [Accepted: 06/24/2015] [Indexed: 11/21/2022]
Abstract
It is commonly accepted that psychological stress contributes to the development of chronic orofacial pain. However, the neural mechanism underlying this process has remained unclear. The present study was performed to determine the involvement of satellite glia cells (SGCs) in the trigeminal ganglion (TG) in stress-induced increases in masseter muscle allodynia in rats. Using a chronic restraint stress model, we found that exposure to a 14-day stress but not a 3-day stress (6 h/day) caused decreased body weight gain, behavioral changes and marked masseter allodynia in rats. SGCs were dramatically activated, and substance P (SP) expression was significantly increased in the TG. A further analysis was undertaken to investigate the contribution of SGCs; the expression of interleukin-1β (IL-1β) in SGCs and interleukin-1 receptor I (IL-1RI) in neurons was significantly increased after chronic restraint stress, whereas injection of L-α-aminoadipate (a SGC inhibitor, LAA) into the TG dramatically inhibited the overexpression of these proteins. In addition, LAA or interleukin-1 receptor antagonist (IL-1ra) administration into the TG could significantly attenuate the mechanical masseter allodynia and overexpression of SP in the TG induced by restraint stress. These results suggest that SGC activation in the TG may play a role in masseter allodynia induced by restraint stress. The over-release of IL-1β and excessive IL1-RI expressions have close relationship with the stress induced masseter allodynia.
Collapse
|
30
|
Cho Y, Kim Y, Moozhayil S, Yang E, Bae Y. The expression of hyperpolarization-activated cyclic nucleotide-gated channel 1 (HCN1) and HCN2 in the rat trigeminal ganglion, sensory root, and dental pulp. Neuroscience 2015; 291:15-25. [DOI: 10.1016/j.neuroscience.2015.01.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/27/2015] [Accepted: 01/28/2015] [Indexed: 10/24/2022]
|
31
|
Nakamura H, Kato R, Shirakawa T, Koshikawa N, Kobayashi M. Spatiotemporal profiles of dental pulp nociception in rat cerebral cortex: an optical imaging study. J Comp Neurol 2015; 523:1162-74. [PMID: 25308210 DOI: 10.1002/cne.23692] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/07/2014] [Accepted: 10/07/2014] [Indexed: 01/01/2023]
Abstract
Somatosensation is topographically organized in the primary (S1) and secondary somatosensory cortex (S2), which contributes to identify the region receiving sensory inputs. However, it is still unknown how somatosensory inputs from the oral region, especially nociceptive inputs from the teeth, are processed in the somatosensory cortex. We performed in vivo optical imaging and identified the precise cortical regions responding to electrical stimulation of the maxillary and mandibular dental pulp in rats. Electrical stimulation of the mandibular incisor pulp evoked neural excitation in two areas: the most rostroventral part of S1, and the ventral part of S2 caudal to the middle cerebral artery. Maxillary incisor pulp stimulation initially evoked responses only in the ventral part of S2, although later maximum responses were also observed in S1 similar to mandibular incisor stimulation responses. The maxillary and mandibular molar pulp-responding regions were located in the most ventral S2, a part of which was histologically classified as the insular oral region (IOR). In terms of the initial responses, maxillary incisor and molar stimulation induced excitation in the S2/IOR rostral to the mandibular dental pulp-responding region. Contrary to the spatially segregated initial responses, the maximum excitatory areas responding to both incisors and molars in the mandible and maxilla overlapped in S1 and the S2/IOR. Multielectrode extracellular recording supported the characteristic localization of S2/IOR neurons responding to mandibular and maxillary molar pulp stimulation. The discrete and overlapped spatial profiles of initial and maximum responses, respectively, may characterize nociceptive information processing of dental pain in the cortex.
Collapse
Affiliation(s)
- Hiroko Nakamura
- Department of Pharmacology, Nihon University School of Dentistry, Tokyo, 101-8310, Japan; Department of Pediatric Dentistry, Nihon University School of Dentistry, Tokyo, 101-8310, Japan
| | | | | | | | | |
Collapse
|
32
|
Abstract
AbstractSensory ganglia comprise functional units built up by neurons and satellite glial cells (SGCs). In animal species there was proven the presence of neuronoglial progenitor cells in adult samples. Such neural crest-derived progenitors were found in immunohistochemistry (IHC). These findings were not previously documented in transmission electron microscopy (TEM). It was thus aimed to assess in TEM if cells of the human adult trigeminal ganglion indeed have ultrastructural features to qualify for a progenitor, or quiescent phenotype. Trigeminal ganglia were obtained from fifteen adult donor cadavers. In TEM, cells with heterochromatic nuclei, a pancytoplasmic content of free ribosomes, few perinuclear mitochondria, poor developed endoplasmic reticulum, lack of Golgi complexes and membrane trafficking specializations, were found included in the neuronal envelopes built-up by SGCs. The ultrastructural pattern was strongly suggestive for these cells being quiescent progenitors. However, further experiments should correlate the morphologic and immune phenotypes of such cells.
Collapse
|
33
|
Abstract
Due, in part, to the unique structure of the tooth, dental pain is initiated via distinct mechanisms. Here we review recent advances in our understanding of inflammatory tooth pain and discuss 3 hypotheses proposed to explain dentinal hypersensitivity: The first hypothesis, supported by functional expression of temperature-sensitive transient receptor potential channels, emphasizes the direct transduction of noxious temperatures by dental primary afferent neurons. The second hypothesis, known as hydrodynamic theory, attributes dental pain to fluid movement within dentinal tubules, and we discuss several candidate cellular mechanical transducers for the detection of fluid movement. The third hypothesis focuses on the potential sensory function of odontoblasts in the detection of thermal or mechanical stimuli, and we discuss the accumulating evidence that supports their excitability. We also briefly update on a novel strategy for local nociceptive anesthesia via nociceptive transducer molecules in dental primary afferents with the potential to specifically silence pain fibers during dental treatment. Further understanding of the molecular mechanisms of dental pain would greatly enhance the development of therapeutics that target dental pain.
Collapse
Affiliation(s)
- G Chung
- Pain Cognitive Function Research Center, Dental Research Institute and Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | | | | |
Collapse
|